
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Windows® Phone 7
Development Internals

Andrew Whitechapel

www.allitebooks.com

http://www.allitebooks.org

Published with the authorization of Microsoft Corporation by:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, California 95472

Copyright © 2012 by Andrew Whitechapel.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any

means without the written permission of the publisher.

ISBN: 978-0-7356-6325-1

1 2 3 4 5 6 7 8 9 LSI 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related

to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of

this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/

Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of

their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and

events depicted herein are ictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without

any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,

nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly

or indirectly by this book.

Acquisitions Editor: Russell Jones

Developmental Editor: Russell Jones

Production Editor: Melanie Yarbrough

Editorial Production: Octal Publishing, Inc.

Technical Reviewer: Peter Torr

Copyeditor: Bob Russell

Indexer: WordCo Indexing Services

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: Robert Romano

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

Foreword xvii

Introduction xix

PART I BuIlDIng BloCks

ChAPter 1 Vision and Architecture 3

ChAPter 2 UI Core 29

ChAPter 3 Controls 61

ChAPter 4 Data Binding and Layer Decoupling 91

ChAPter 5 touch UI 135

PART II APPlICATIon MoDEl

ChAPter 6 Application Model 175

ChAPter 7 Navigation State and Storage 199

ChAPter 8 Diagnostics and Debugging 243

PART III ExTEnDED sERvICEs

ChAPter 9 Phone Services 291

ChAPter 10 Media Services 319

ChAPter 11 Web and Cloud 349

ChAPter 12 Push Notiications 409

ChAPter 13 Security 445

ChAPter 14 Go to Market 499

PART Iv vERsIon 7.5 EnhAnCEMEnTs

ChAPter 15 Multi-tasking and Fast App Switching 553

ChAPter 16 enhanced Phone Services 589

ChAPter 17 enhanced Connectivity Features 627

ChAPter 18 Data Support 667

ChAPter 19 Framework enhancements 711

ChAPter 20 tooling enhancements 745

Index 773

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

 v

Contents

Foreword .xvii

Introduction . xix

PART I BuIlDIng BloCks

Chapter 1 vision and Architecture 3

Windows Phone Vision . 3

Metro . 4

Developer Guidelines . 7

Windows Phone Architecture . 8

Comparison of Silverlight and XNA . 9

Developer Tools .10

Development Cycle .11

The Anatomy of a Basic Windows Phone Application 13

XAP Contents .14

Standard Project Types .15

Themes and Accent Colors . 17

Standard Application Images .22

Version 7 vs. Version 7.1 .24

Summary. .27

Chapter 2 uI Core 29

Phone UI Elements .29

Standard UI Elements .29

Visual Tree .32

Screen Layout .38

UserControl vs. Custom Control . 41

Routed Events .44

Resources .47

Content vs. Resource .48

Resource Dictionaries .49

www.allitebooks.com

http://www.allitebooks.org

vi Contents

Dependency and Attached Properties .54

Dependency Properties .54

Attached Properties .56

Summary. .59

Chapter 3 Controls 61

Standard Controls .61

Platform, SDK, Toolkit .61

SDK Controls: Pivot .63

SDK Controls: Panorama .69

Toolkit Controls .78

Transient Panels .81

Summary. .89

Chapter 4 Data Binding and layer Decoupling 91

Life without Data Binding .91

Simple Data Binding and INotifyPropertyChanged.94

Data Binding Collections .98

Data Templates .100

Dynamic Data-Bound Collections .103

Template Resources .105

Type/Value Converters .106

Element Binding .108

Data Validation .110

Separating Concerns .113

Design-Time Data .115

The Model-View ViewModel Pattern .117

The Visual Studio Databound Application Project124

Summary. .133

www.allitebooks.com

http://www.allitebooks.org

 vii

Chapter 5 Touch uI 135

Logical Touch Gestures .135

Manipulation Events: Single Touch (Tap) .138

Manipulation Events: Single Touch (Flick) .140

Manipulation Events: Multi-Touch .142

Mouse Events .144

FrameReported Events .147

Combining Manipulation and Mouse Events .148

Click vs. Mouse/Manipulation Events .150

The Silverlight Toolkit GestureService .150

Pinch and Drag .152

Flick and Tap .153

Problems with the GestureService .154

Behaviors .155

Keyboard Input .159

Orientation .162

The Application Bar .167

Summary. .172

PART II APPlICATIon MoDEl

Chapter 6 Application Model 175

Lifetime Events and Tombstoning .175

Application Closing .180

Application Deactivated .181

Application Deactivated (the Non-Tombstone Case) 183

Unhandled Exceptions .185

Why Is There No App.Exit? .186

Obscured and Unobscured. .186

Launchers/Choosers and Tombstoning .189

User Expectations .189

www.allitebooks.com

http://www.allitebooks.org

viii Contents

Page Model .190

Page Creation Order .195

Summary. .198

Chapter 7 navigation state and storage 199

Navigation and State .199

Application and Page State .200

Detecting Resurrection .207

Navigation Options. .209

Using NavigateUri .209

Pages in Separate Assemblies .210

Fragment and QueryString . 211

The NavigationMode Property .214

Rerouting Navigation and URI Mappers .215

Nonlinear Navigation Service .217

Isolated Storage .220

Simple Persistence .221

Persisting the ViewModel .225

Serialization Options .229

Isolated Storage Helpers .237

Summary. .241

Chapter 8 Diagnostics and Debugging 243

Visual Studio Debugging .243

Simple Diagnostics .244

Setting Up a Diagnostics Pop-Up Window .244

Fixed Diagnostics Control .249

Post-Release Diagnostics .251

Persisting Logs .253

Conigurable Diagnostics .255

Screen Capture .259

Emulator Console Output .261

Debugging Tombstoning and Lock-Screen .263

Debugging MediaPlayer .264

www.allitebooks.com

http://www.allitebooks.org

 ix

Device and User Information .267

Windows Phone Performance Counters .271

Memory Diagnostics .273

The Device Emulator .278

Emulator vs. Device .279

XDE Automation .280

Using the Microsoft Network Monitor .283

Fiddler .285

Silverlight Spy .287

Summary. .288

PART III ExTEnDED sERvICEs

Chapter 9 Phone services 291

Phone Hardware .291

Launchers and Choosers .293

Photo Extras .297

Accelerometer .301

Reactive Extensions for .NET .304

Level Starter Kit .307

Shake .311

Geo-Location .314

Summary .318

Chapter 10 Media services 319

Audio and Video Hardware .319

Audio and Video APIs. .320

Media Playback .320

The MediaPlayerLauncher Class .321

The MediaElement Class .321

The MediaStreamSource and ManagedMediaHelpers Classes323

MediaElement Controls .325

x Contents

Audio Input and Manipulation .328

The SoundEffect and SoundEffectInstance Classes329

Audio Input and the Microphone .331

The DynamicSoundEffectInstance Class .339

Music and Videos Hub .343

The FM Tuner .345

Summary .348

Chapter 11 Web and Cloud 349

The WebClient Class .349

WebClient: The DownloadStringAsync Method 349

WebClient: The OpenReadAsync Method .351

The HttpWebRequest Class .353

Web Browser Control .353

Silverlight and Javascript .355

Web Services .358

WCF Data Services .361

The OData Client and XML Data .361

JSON-Formatted Data .369

Bing Maps and Geolocation .372

Using the Map Control .372

Geolocation .374

Bing Maps Web Services .375

Deep Zoom (MultiScaleImage) .378

Windows Azure .383

Windows Azure Web Services .385

Windows Azure Toolkit for Windows Phone390

bitly .394

Facebook .396

Windows Live .400

SkyDrive .405

Summary. .407

 xi

Chapter 12 Push Notiications 409
Architecture .409

Push Notiication Server .412

Push Notiication Client .418

Additional Server Features .423

Batching Intervals .423

XML Payload .424

Response Information .426

Additional Client Features .427

Persistent Client Settings .427

The ErrorOccurred Event .428

User Opt-In/Out .429

Implementing a Push ViewModel .431

The Push Notiication Server-Side Helper Library .437

Common Push Notiication Service .439

Summary. .443

Chapter 13 security 445

Device Security .445

Application Safeguards .446

Application Deployment .447

Managed Code Constraints .449

Chambers and Capabilities .451

Missing Security Features .454

Data Encryption .455

SDL Tools .460

Threat Modeling .461

Static Code Analysis/FxCop .462

Web Service Security .467

Authentication .468

Forms Authentication .468

Basic Authentication .479

SSL .484

xii Contents

Push Notiication Security .490

OAuth 1.0 .491

OAuth 2.0 .493

Securing Web Service IDs .494

Implementing Security for the WebBrowser Control496

Summary. .497

Chapter 14 go to Market 499

Threading .499

Performance .505

UI vs. Render Thread, and BitmapCache Mode 505

UI Layout and ListBoxes .512

More UI Performance Tips .513

Non-UI Performance Tips .515

Silverlight Unit Testing Framework .517

Certiication and Publication .523

Updates .530

Marketplace Reports .533

Beta Testing .534

Versions .534

Light-Up Features .535

Obfuscation .537

Ads .540

Trial Mode . 544

Silverlight Analytics Framework .546

Summary. .549

 xiii

PART Iv vERsIon 7.5 EnhAnCEMEnTs

Chapter 15 Multi-Tasking and Fast App switching 553

Fast Application Switching .553

Multi-Tasking .557

Alarms and Reminders .558

Alarms .558

Reminders .561

Background Transfer Service .564

Generic Background Agents .568

Background Audio .578

Background Audio: The Main Application .583

Background Audio: The Background Agent585

Summary. .587

Chapter 16 Enhanced Phone services 589

Sensor APIs .589

Accelerometer. .590

Compass. .593

Gyroscope .598

Motion APIs .601

Camera Pipeline .606

Augmented Reality .610

The Geo Augmented Reality Toolkit .614

New Photo Extensibility .616

Launcher and Chooser Enhancements .619

The DeviceStatus and DeviceNetworkInformation classes621

Version 7.1.1 .623

Summary. .626

xiv Contents

Chapter 17 Enhanced Connectivity Features 627

Push, Tile, and Toast Enhancements .627

Local Tiles .628

Pinning Tiles .632

Push Enhancements .638

Sockets .642

TCP Sockets .643

OData Client .650

Search Extensibility .657

App Connect .657

App Instant Answer .664

Summary. .665

Chapter 18 Data support 667

Local Database and LINQ-to-SQL .667

Create and Read .669

Update and Delete .675

Schema Updates .677

Associations .681

Isolated Storage Explorer Tool .684

Performance Considerations .692

Database Encryption .695

Encrypting Data and Credentials .697

Contacts and Calendar .699

Sync Framework .703

Service Coniguration .705

Database Provisioning .707

Code Generation .707

Summary. .710

 xv

Chapter 19 Framework Enhancements 711

Navigation Enhancements .711

Frame and Page Navigation .711

Backstack Management .714

UI Enhancements .717

Enhanced Controls .718

The ApplicationBar and SystemTray Classes,

and the ProgressIndicator Property .723

The Clipboard API .727

32 Bits per Pixel .728

Background Image Decoding .729

Touch Thread .729

Silverlight 4.0 .730

Implicit Styles .730

Command Binding .732

Data-Binding Enhancements .736

Summary. .744

Chapter 20 Tooling Enhancements 745

Emulator Improvements .745

Debugger Experience .747

Marketplace Test Kit .749

The Proiler .754

UserVoice Forums .764

Portable Library Tools .765

Async Framework .769

Summary. .772

Index 773

 xvii

Foreword

So, you’re curious about Windows Phone development? Welcome aboard! Whether you’re an

existing Microsoft Silverlight developer wanting to branch out into the mobile space, an existing

mobile developer looking to extend your reach across a second or third ecosystem, a rising star who’s

ready to create the Next Big Thing and take the world by storm, or maybe just a curious phone user

who wants to know what all the “app” fuss is about, Windows Phone is the platform for you.

Getting started with Windows Phone development is free and easy; everything you need to write

apps is just a couple of clicks away. You can have your irst app up and running in a matter of minutes,
even if you know next to nothing about Windows Phone development or don’t even own a device. As

your apps become more ambitious and you encounter more complex development issues, a vibrant

developer community on the web is ready and willing to help you out along the way. Mastery of this

platform, with its rich feature set, unique application model, integrated end-to-end experiences, and

burgeoning international marketplace, takes time and effort—and an expertly written guide. Luckily

for you, this book is just such a guide.

The Windows Phone platform stands on the shoulders of giants—giants such as Silverlight, XNA,

Microsoft Visual Studio, and Microsoft Expression Blend—and as we built the platform, we embraced

the power and familiarity that these existing technologies afforded us; our goal was to introduce new

concepts only when strictly necessary to enable new scenarios, and to re-use existing concepts every-

where else. We spent less time re-solving old problems (such as navigation and microphone capture)

and more time tackling new ones so that we could ship a vast array of new phone-speciic APIs for
developers to wrap their heads around—cameras, gyroscopes, multi-tasking, phone integration, user

data access, and live tile updates, just to name a few—and Andrew covers all of them (and more!) in

this book.

As you’ve probably heard (and seen), Windows Phone ushered in a new design language for

Microsoft, code-named “Metro.” Adhering closely to this design is critical when building user experi-

ences that will delight and engage your customers. As you would expect, the Windows Phone devel-

oper tools give you a big helping hand in this department, providing user interface elements and ap-

plication templates that “just work” by default. Nevertheless, as the owner of your application’s overall

experience you are ultimately responsible for ensuring it performs optimally, adhering not just to the

graphic design rules, such as “content over chrome,” but also the fast and luid interaction model that
your customers will come to expect. Throughout this book you’ll ind practical examples and guid-

ance that show how to embody the Metro design language in your applications, along with examples

of common pitfalls and how to avoid them—particularly with respect to application performance and

responsiveness, which are key factors in user satisfaction (and hence, app ratings and proitability).

xviii Foreword

On a more personal note, I was thrilled when Andrew asked me to tech-review this book (although

writing this foreword was more than a little daunting!). As an infrastructure guy at heart, I love build-

ing platforms and enabling developers to be successful on top of them, but there are only so many

people you can reach via blogs or conference speaking sessions. I’ve been asked to author books

before, but I've never had the time or inclination to do so. By piggybacking on Andrew’s hard work

with this book, I feel like I’ve made a difference—if only a small one—and that makes me grateful for

the opportunity. I also learned a lot while reviewing this book, and I know that you will, too.

Peter Torr

Program Manager in the

Windows Phone Application

Platform team

www.allitebooks.com

http://www.allitebooks.org

 xix

Introduction

The smart phone is increasingly important in people’s daily lives. It is used for a wide variety of

tasks, both work-related and non-work related. People use smart phones to keep up to date

with friends and family, for relaxation, and for entertainment, as well as for viewing documents and

spreadsheets, suring the Internet, and enriching their lives. There is therefore considerable scope
for building smart phone applications. Windows Phone is not just another smart phone; rather, it is

positioned as an opportunity for developers to build applications that can make a real difference to

people’s lives. The platform has been designed from the ground up to support an all-encompassing,

integrated, and attractive user experience.

Windows Phone 7 Development Internals covers the breadth of application development for the

Windows Phone platform, both the major 7 and 7.1/7.5 versions and the minor 7.1.1 version, and

shows how you can build such compelling and useful applications. You can build applications for

Windows Phone 7.x by using either the Microsoft Silverlight runtime or the XNA runtime. This book

focuses on Silverlight applications. The primary development and design tools are Microsoft Visual

Studio and Microsoft Expression Blend. Here again, this book focuses on Visual Studio.

Each chapter covers a handful of related features. For each feature, the book provides one or more

sample applications and walks you through the signiicant code (C# and XAML). This will help you
to understand the techniques used and also the design and implementation choices that you have

in each case. Potential pitfalls are called out, as are scenarios in which you can typically make per-

formance or user experience improvements. An underlying theme is to conform not only to the user

interface design guidelines, but also to the notion of a balanced, healthy phone ecosystem.

Who should Read This Book

This book is intended to help existing developers understand the core concepts, the signiicant pro-

grammable feature areas, and the major techniques in Windows Phone development. The book is tai-

lored for existing Silverlight developers that want to jump into the exciting world of mobile application

developer with the Windows Phone platform. Developers experienced with other mobile platforms

will ind this book invaluable in learning the ins and outs of Microsoft’s operating system, but will
likely need additional resources to pick up C# and XAML languages.

The Windows Phone 7 release only supports C#, and although support for Visual Basic was intro-

duced with the 7.1 SDK, this book focuses purely on C# and XAML. The basic architecture of the
platform is covered in Chapter 1, “Vision and Architecture,” and most chapters go deeply into the

internal behavior of the system. This is knowledge that helps to round out your understanding of the

platform, and inform your design decisions, even though, in some cases, the internal details have no

immediate impact on the exposed API.

xx Introduction

Assumptions
The book assumes that you have a reasonable level of experience of developing in managed code,

speciically in C#. Basic language constructs are not discussed, nor is basic use of Visual Studio, the
project system or the debugger, although more advanced techniques, and phone-speciic features
are, of course, explained in detail. You should also have some knowledge of XAML development,

preferably in Silverlight, although Windows Presentation Foundation experience would also be useful

background.

Although many component-level diagrams are presented as high-level abstractions, there are also

many sections that describe the behavior of the feature in question through the use of UML sequence

diagrams. It helps to have an understanding of sequence diagrams, but it is not essential, as they are

fairly self-explanatory.

Who should not Read This Book

This book is not intended for use by application designers—if designers are deined as developers
who use Expression Blend—although designers might ind it useful to understand some of the issues
facing developers in the Windows Phone application space. The book is also not suitable for XNA

developers because it does not cover game development at all.

organization of This Book

Windows Phone 7 was irst released in October 2010. The irst major update, code-named “Mango,”
was released in September 2011. The Mango release includes a wide range of enhancements and

additional features. Note that the user-focused version number for the Mango release (that is, the

product version) is version 7.5; however, the developer-focused number is 7.1 (for both the OS version

and the SDK version). The reason for this slightly confusing numbering situation is that the Mango

release includes improvements across the board—in the operating system, the developer tooling, in

the emulator, in the application platform, in Silverlight itself, and also in the server-side experience

of marketplace, and in ingestion. All of this is Windows Phone, or Windows Phone 7.5. A developer is

normally focused more on the pure technical aspects: the operating system, tooling, and application

platform subset of the overall release, and that is technically the 7.1 release (both SDK and OS).

This book covers all 7.x versions: the original Windows Phone 7 release, the later Windows Phone

7.1 release, and the minor 7.1.1 release. Applications built for version 7 also work without change on

7.1 devices. Note that, while there are still about a million version 7 phones in use, it is safe to assume

that most of these will be upgraded to 7.1 at some point. However, to keep things simple, the irst
14 chapters focus on the basic infrastructure, programming model, and the core features that are

common to both versions. Where there are material differences, these are called out, with references

to the later chapter where the 7.1 behavior is explained in detail. Chapter 15, “Multi-Tasking and

Fast App Switching,” onward focuses on the features and platform enhancements that are speciic
to version 7.1.

 Introduction xxi

The 7.1.1 version is a narrowly scoped release intended to support phones with low memory

capabilities (256 MB) for speciic target markets. Most developers—and most applications—will not
be affected by this. For the small number that might be affected, the 7.1.1 release provides additional

support for performance tuning and an additional marketplace submission option, as discussed in

Chapter 16, “Enhanced Phone Services.”

It’s also worth reading Chapter 14, “Go To Market” ahead of time. This chapter focuses on the

end-game of bringing your application to market, including tuning the design for performance and

robustness, and marketplace certiication. Even before you have a thorough understanding of the
architecture and fundamentals, it is instructive to see what you’ll be aiming for.

Conventions and Features in This Book

This book presents information by using conventions designed to make the information readable and

easy to follow.

 ■ In some cases, especially in the early chapters, application code is listed in its entirety. More

often, only the signiicant code is listed. Wherever code has been omitted for the sake of brev-

ity, this is called out in the listing. In all cases, you can refer to the sample code that accompa-

nies this book for complete listings.

 ■ In the XAML listings, attributes that are not relevant to the topic under discussion, and that have

already been explained in previous sections, are omitted. This applies, for example, to Grid.Row,

Grid.Column, Margin, FontSize, and similarly trivial attributes. In this way, you can focus on the

elements and attributes that do actually contribute to the feature at hand, without irrelevant

distractions.

 ■ Code identiiers (the names for classes, methods, properties, events, enum values, and so on)
are all italicized in the text.

 ■ In the few cases where two or more listings are given with the explicit aim of comparing alter-

native techniques (or “before” and “after” scenarios), the differences appear in bold.

 ■ Boxed elements with labels such as “Note” provide additional information or alternative meth-

ods for completing a step successfully.

 ■ Text that you type (apart from code blocks) appears in bold.

 ■ A plus sign (+) between two key names means that you must press those keys at the same

time. For example, “Press Alt+Tab” means that you hold down the Alt key while you press the

Tab key.

 ■ A vertical bar between two or more menu items (for example, File | Close), means that you

should select the irst menu or menu item, then the next, and so on.

xxii Introduction

system Requirements

You can build and run the accompanying sample code, or you can create your own solutions from

scratch, following the instructions in the text. In either case, you will need the following hardware and

software to create the sample applications in this book:

 ■ Either Windows Vista (x86 and x64) with Service Pack 2, all editions except the Starter Edition,

or Windows 7 (x86 and x64), all editions except the Starter Edition. If you install the Windows

Phone SDK 7.1.1 Update, this also works with the Windows 8 Consumer Preview, although this

is not a supported coniguration.

 ■ The Windows Phone SDK version 7.0 or 7.1. These are both free downloads that include Visual

Studio 2010 Express Edition and all other standard tools, as listed in Chapter 1. If you install the

SDK version 7.1, you can then also upgrade this with the SDK version 7.1.1. This is an update to

7.1, not a stand-alone install.

 ■ Some of the server-side sample projects require Visual Studio Professional, but all of the Win-

dows Phone samples work with Visual Studio Express.

 ■ Installing the SDK requires 4 GB of free disk space on the system drive. If you use the proiler
(described in Chapter 20, “Tooling Enhancements”) for an extended period, you will need

considerably more disk space.

 ■ 4 GB RAM (8 GB recommended).

 ■ Windows Phone Emulator requires a DirectX 10 or above capable graphics card with a

WDDM 1.1 driver.

 ■ 2.6 GHz or faster processor (4GHz or 2.6GHz dual-core, recommended).

 ■ Internet connection to download additional software or chapter examples, and for testing

web-related applications.

Depending on your Windows coniguration, you might require Local Administrator rights to install
or conigure Visual Studio 2010, and to install or conigure features such as Internet Information
Services, if not already installed.

For the latest requirements, visit the Windows Phone SDK download page at http://www.microsoft.

com/download/en/details.aspx?id=27570.

http://www.microsoft.com/download/en/details.aspx?id=27570
http://www.microsoft.com/download/en/details.aspx?id=27570

 Introduction xxiii

Code samples

All of the chapters in this book include multiple sample solutions with which you can interactively try

out new material learned in the main text. All sample projects can be downloaded from the following

page:

http://go.microsoft.com/FWLink/?Linkid=248889

Follow the instructions to download the WP7xDevInternals.zip ile.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can refer to them while

learning about the techniques that they demonstrate.

1. Unzip the WP7xDevInternals.zip ile that you downloaded from the book’s website to any suit-
able folder on your local hard disk. The sample code expands out to nearly 200 MB, and you

will need even more space for the binaries if you choose to build any of the samples.

2. If prompted, review the displayed end-user license agreement. If you accept the terms, select

the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it from the same webpage

from which you downloaded the WP7xDevInternals.zip ile.

Using the Code Samples
When you unzip the sample code, this creates a number of subfolders, one for each chapter. Within

each chapter’s subfolder there are further subfolders. In most cases, there is one subfolder per applica-

tion (or per version of an application), but in some cases, multiple applications are grouped together;

for example, where there is a server-side application as well as a client-side application in the solution.

In keeping with the book's structure, the samples for the irst 14 chapters were built as version 7 proj-
ects, and the remaining samples were built as version 7.1 projects. However, you can use the version

7.1 (or 7.1.1) SDK for all the sample projects, for all chapters.

All of the samples are complete, fully functioning applications. Note, however, that in some cases,

you might need to update assembly references, depending on where you install the SDK as well as

where you install supplementary libraries and frameworks that don’t ship with the main SDK (for

instance the Silverlight toolkit, Live SDK, Azure toolkit, and so on).

For samples that demonstrate the use of some supplementary framework, you will need to down-

load and install that framework so that you can reference its assemblies. Also note that, in some cases,

this requires a user ID, such as for Bing maps, FaceBook, or Google Analytics, as described in the

relevant sections. In all cases, you can sign up for the ID without charge as of the time of this writing.

http://go.microsoft.com/FWLink/?Linkid=248889

xxiv Introduction

Acknowledgments

The Windows Phone development space is truly inspiring, and the Windows Phone teams at Microsoft

are chock-full of smart, helpful people. The list of folks who helped me prepare this book is very long.

I’d particularly like to thank Peter Torr for doing all the heavy lifting in the technical review. It’s mainly

thanks to Peter that this book isn’t riddled with schoolboy errors. In addition, I’d like to thank all the

other people who answered my dumb questions, and corrected my various misinterpretations of the

internal workings of the platform, especially Tim Kurtzman, Wei Zhang, Jason Fuller, Vij Vasu, Abolade

Gbadegesin, Andrew Clinick, Darin Miller, Mark Paley, Jeff Wilcox, Thomas Fennel, Matt Klupchak,

Alper Selcuk, Gary Lin, Conrad Chang, Justin Horst, Sai Prasad Patro, Yasser Shaaban, Mike Battista,

Jorge Raastroem, and Joao Guberman Raza. I’d also like to thank the folks at O’Reilly Media and Mi-

crosoft Press who helped to turn my scattered thoughts into polished prose, especially Russell Jones,

Devon Musgrave, Melanie Yarbrough, and Bob Russell (at Octal Publishing, Inc.). Finally, none of this

would have been possible without the patience and support of Narins Bergstrom.

Errata & Book support

We’ve made every effort to ensure the accuracy of this book and its companion content. Any er-

rors that have been reported since this book was published are listed on our Microsoft Press site at

oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=248888

If you ind an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses

above.

We Want to hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.

Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance for

your input!

stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://go.microsoft.com/FWLink/?Linkid=248888
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

Part I

Building Blocks

ChAPTER 1 Vision and Architecture . 3

ChAPTER 2 UI Core .29

ChAPTER 3 Controls .61

ChAPTER 4 Data Binding and Layer Decoupling.91

ChAPTER 5 Touch UI. .135

This part describes the overall vision and architecture of Windows

Phone applications, and the basic building blocks that every

application requires in order to support minimum functionality.

This includes the core user interface features, the various stan-

dard controls, touch manipulation, and data-binding.

 3

C h A P T E R 1

Vision and Architecture

There are two dimensions to this chapter: an introduction to the vision of the Windows Phone plat-

form and the revolutionary Metro design philosophy, and an introduction to the basic architec-

ture and building blocks of a Windows Phone application. The vision is extremely important; it should

inform the way you think about applications, from irst concept through design to implementation
and inal publication. The application platform provides support and guidance, such that it’s quite
dificult to build a truly bad application, but it is deinitely possible to build an application that is in
conlict with the system and fails to provide a good user experience (UX). An understanding of the
vision should steer you toward good design choices and help you to identify potential pitfalls, thereby

accelerating your development cycle.

Windows Phone vision

“Windows Phone is a software platform that can improve a person’s life.” This is a quote from the

Microsoft User Experience Design Guidelines (kept up-to-date online at http://msdn.microsoft.com/

en-us/library/hh202915(VS.92).aspx). It is a philosophy on which the teams that are responsible for

building the Windows Phone operating system, application platform, and SDK are highly focused.

It’s not just marketing-speak, and it’s not just an inspirational motto—it really does speak to the core

vision of the platform.

Traditional desktop operating systems such as Windows 7 and Mac OS are used for all sorts of rea-

sons and purposes, but predominantly for work-related activities. So applications built for the desktop

(including browser clients for web applications) are typically business-focused (although buttoned-

down PCs are also increasingly being used for social networking applications like Facebook). Applica-

tions for Microsoft Xbox and other game consoles are predominantly geared toward entertainment.

The idea behind the Windows Phone UX model is that this is a device that users turn to for every-

thing—for work and play, for keeping in touch with friends and family, for relaxation, games, music

and videos, for research and fact-inding—in short, for enhancing their day-to-day lives. As develop-

ers, you have the weighty responsibility of living up to this vision. You are encouraged (and extensively

supported through the application platform) to build applications that do improve the user’s life.

A good Windows Phone application is engaging, compelling, and attractive to the user. A great

Windows Phone application can make a meaningful contribution to the user’s life. The user interac-

tion is well thought out, predictable, and familiar. It gives him enjoyment every time he uses it, or it

fulills some pragmatic need in a simple, unobtrusive manner. The application integrates seamlessly

http://msdn.microsoft.com/en-us/library/hh202915(VS.92).aspx
http://msdn.microsoft.com/en-us/library/hh202915(VS.92).aspx

4 PART I Building Blocks

with standard features on the phone, such as email, contacts, photos, and so on. It’s a ”team player,”

cooperating with the system. It’s conservative in its use of CPU, memory, and sensor resources. It

doesn’t consume battery power in an unbounded way, and it is thoughtful about its use of the user’s

data plan. The application should have a way to keep itself up-to-date so that its data is always fresh.

It can also be location-aware; this way, it can ensure that it is always relevant to the user’s context, and

functions in the smart way that user’s expect from a “smart” phone.

A good application should also look and feel like it’s a part of the overall phone ecosystem, using

the Metro design guidelines in an appropriate way, so that it doesn’t jar the senses or look out of

place. The same applies to navigation and the way the application behaves when the user switches

away from it, and perhaps comes back to it later. It should be conigurable, so that the user can per-
sonalize it, just as he can personalize other parts of the phone experience, such as the Start page, the

theme, and accent colors. There should be a way for the user to provide feedback to the developer, to

report bugs, or to request new features. The user should be able to consider the phone as an exten-

sion of his personality, conigured the way he likes it, and tailoring the set of installed applications to
suit his own personal needs and preferences.

Metro
Metro is the code name for the design language used in establishing the UX for Windows Phone.

Metro is modern and clean, light, open, and fast. Metro is alive and in motion—hence, the extensive

use of page transition animations and the considerable thought that has gone into perfecting the

standard animations to provide a visually pleasing experience. Consider just one feature: when the

user swipes to scroll through a list, the scrolling speed closely matches the force of the swipe gesture.

It responds immediately when the user holds a inger on the screen to stop the scrolling. If the user
drags a list down (or up) to its limits, there’s a visible compression effect, which provides clear feed-

back that she’s reached the end of the list. When she releases her inger, the compression bounces
back in a pleasing and intrinsically recognizable way that makes the phone seem almost organically

alive. The standard animations have all been designed to provide just the right level of feedback—

again, in a pleasing way, without becoming intrusive or distracting.

You are encouraged to use the Metro design style for your application. Metro covers all aspects

of the user interface (UI), including the use of space, control styles, and typography. Content is seen

as an important part of any application; this is in deliberate and emphatic contrast to chrome (that

is, artifacts of the UI that allow the user to manipulate the UI, such as buttons and grab-handles that

are presented in addition to the actual content). Other phone platforms focus a lot on chrome—shiny

buttons, gradient ills, 3D images, arbitrary custom animations, and so on. All these chrome effects
might seem entertaining for a brief period, but they soon become a distraction, and they also lead to

a cluttered, inconsistent, confusing UI. By contrast, Windows Phone and Metro considers content to

be king, whereas chrome should always be unobtrusive: it should serve its purpose, and then get out

of the user’s way. Think about the implementation of the system tray; most of the time, this is invisible.

If the user wants to see it, she taps the top of the screen, the tray drops down with a slight bounce,

stays around long enough for the user to see the information she needs, and then disappears, leaving

www.allitebooks.com

http://www.allitebooks.org

 ChAPTER 1 Vision and Architecture 5

the screen free for the application. It also has no shiny, colorful, arbitrarily animated distractions. The

same applies for the application bar.

The aim is to achieve a UI that looks and feels clean, light, and open. Figure 1-1 shows an example

of a panorama-based application in the spirit of Metro: clean lines, no gradient ills, content-driven.

FIguRE 1-1 Metro applications should be clean and open.

This really represents a major shift in the way you design applications. What you might call the

“90s aesthetic” was all about iconography, whereby the chrome took center stage, and the model was

hyper-realistic. Metro brings a content-focused aesthetic, through which content is represented in its

cleanest form, without embellishment or adornment, and without distractions. The premise is that the

user can get to the information directly, without having to navigate some developer’s view of what is

suitable UI decoration. Consider, for example, the scrollbar. In Metro, this is mostly invisible; the user

scrolls the content, not some shiny scrollbar chrome thumb or widget. This is especially important on a

mobile device, given the smaller screen real estate and the use of a touch-based input model.

Metro celebrates typography: after all, this is a large part of what the user will see in all applica-

tions, so the typography must be true to the Metro principles. To embody this principle, the font

selected as the standard system font on Windows Phone is Segoe WP (in regular, bold, semi-bold,

semi-light and black variants), as shown in Figure 1-2.

6 PART I Building Blocks

FIguRE 1-2 Segoe WP is the standard font on Windows Phone.

The FontSize values for the standard theme fonts are listed in Table 1-1.

TABlE 1-1 Standard Theme Font Sizes

Resource name size in Points size in Pixels

PhoneFontSizeSmall 14 18.667

PhoneFontSizeNormal 15 20

PhoneFontSizeMedium 17 22.667

PhoneFontSizeMediumLarge 19 25.334

PhoneFontSizeLarge 24 32

PhoneFontSizeExtraLarge 32 42.667

PhoneFontSizeExtraExtraLarge 54 72

PhoneFontSizeHuge 140 186.667

In addition to the design guidelines, two further UI/UX guidance resources are available from

MSDN at http://msdn.microsoft.com/en-us/library/ff637515(VS.92).aspx.

 ■ The Windows Phone Design system—Codename Metro A visual explanation of the

inspiration behind the Windows Phone design system, including the Red Threads principles

(Personal, Relevant, Connected).

 ■ Design Templates for Windows Phone 7 A collection of 28 layered Photoshop templates

that help designers to maintain a consistent look and feel across applications.

The focus is on building applications that can take part in a holistic UX. This extends beyond the

visuals to include all aspects of the application. Navigation, for example, is deliberately enforced to be

very simple, very linear, and predictable. The user can quickly become familiar with the standard navi-

gation model, and all applications follow this model. Thus, the user can quickly become familiar with

any new application. There are constraints on what your application can do to avoid interfering with

this predictability. The user must be able to trust the hardware, so all the hardware buttons always

behave the same way, and you cannot override this in a damaging way. The Start button always goes

to the Start page. The Back button always goes back in navigation (both within an application’s pages,

and between applications in the backstack). When the user backs up to the beginning of the back-

stack, he always ends up at the Start page.

http://msdn.microsoft.com/en-us/library/ff637515(VS.92).aspx

 ChAPTER 1 Vision and Architecture 7

Adhering to Metro design principles is not a burden: it actually frees you to concentrate on making

your application the best it can be, because you don’t have to spend time on inventing a new design

paradigm. Instead, you can focus on making your application truly useful, compelling, and delightful,

such that it offers a beneit to the user’s daily life. Note that Metro is also being applied within Micro-

soft for Windows 8 and for Xbox. It will be the dominant design aesthetic for the next several years.

Developer Guidelines
If you want to build an ecosystem in which the inhabitants co-exist in harmony to their mutual ben-

eit, then there must be rules and guidelines. Rules in Windows Phone development are enforced by
the operating system, the application platform, and the platform API. There are certain programming

techniques that might be appropriate in a desktop development environment, but you simply cannot

do them in Windows Phone. You cannot currently build a Windows Phone application using native

code. You also cannot use COM or RPC, or indeed, any kind of inter-process communication. Every

application is strictly “sandboxed” and has no access to any other application. You cannot consume

CPU cycles (and battery power) when you’re not running in the foreground. However careless you

might be in handling exceptions, you cannot bring down the entire system. Clearly, these rules have

been put in place to optimize the stability of the phone and the overall UX.

Then there are guidelines. These are recommendations for how your application should look and

behave, but they are not explicitly enforced by the phone itself. Rather, they are enforced by the mar-

ketplace: if you build a bad application, users will quickly uninstall it and give it a bad review. You’re

not forced to use Metro in your design, but if you don’t, you might end up with an application that

clashes with the ecosystem. You’re not constrained in how much disk space you use up with applica-

tion data, but if you use too much, the user will soon realize your application is making it dificult to
run or install other applications. You can use more than 90 MB of memory at runtime, but sooner or

later the system will run up against a memory cap, and then your application will crash. The Windows

Phone marketplace publishes a comprehensive set of certiication requirements, and the developer
has a lot of support (especially in Windows Phone SDK 7.1) in preparing applications for publication.

However, the marketplace performs only a small set of automated and manual tests; consequently, it

is entirely possible to publish a bad application which then fails at runtime. Users typically have very

low tolerance for things that crash, so this is very much a self-policing system.

In the market today, there is a spectrum of application models from iOS at one end (for which

there’s really only one logical device, and applications are severely constrained as to what they can

and cannot do), to Android at the other (where there’s a very wide and heterogeneous range of

devices, and applications have very wide latitude to do all kinds of things, which might or might

not function well, or at all, on every device). Windows Phone sits somewhere in the middle, offering

the best of both worlds: there is a small set of supported devices, with a tightly controlled hardware

requirements speciication to which they must minimally adhere, and an application platform that
offers a wide range of features, yet enforces some reasonable constraints in the interests of maintain-

ing a consistent UX as well as overall device health.

8 PART I Building Blocks

Windows Phone Architecture

Apart from a few applications provided by Microsoft, the device manufacturer, or the service pro-

vider, Windows Phone 7 applications are developed in managed code, using either the Windows

Phone version of the Microsoft Silverlight runtime or the Windows Phone version of the XNA runtime

(or some combination). These are slightly modiied, phone-speciic versions of the standard Silver-
light/XNA libraries. The phone application platform includes a set of standard controls and wrap-

per classes to the phone services. A high-level view of the architecture is shown in Figure 1-3. The

underlying operating system is Windows CE, with the Microsoft .NET Compact Framework and the

Silverlight or XNA runtime layered on top.

Silverlight/XNA Application

host Process

Native Application Platform

Operating System Kernel

Install/Update
Manager

Security Networking Storage Direct3D

Window Manager execution Manager

Managed runtime

Native Application runtime

Phone Controls & Services

NetCF

Platform Interop
Managed

runtime host
execution

Manager Proxy

Silverlight/XNA runtime

DB

FIguRE 1-3 The Windows Phone application architecture has managed and native layers.

The application model exposed to marketplace developers is very robust. An important principle is

that the core services of the phone must continue to function at all times, regardless of what custom

applications might be installed or running.

 ChAPTER 1 Vision and Architecture 9

From a UX perspective, this means that the user can rely on the following behavior:

 ■ The user is always able to get back to the Start menu, lock the phone, and turn the phone off.

She is always able to make and receive calls, navigate to hubs, and so on. The phone protects

itself mainly by its application isolation/security model.

 ■ A new application installs cleanly and cannot break any existing core feature of the phone or

any other installed application. The same applies to updates. The architecture ensures that

there can be no versioning conlicts with shared components, because applications cannot
install shared components.

 ■ There is no mechanism for inter-application communication or custom shared libraries. This

removes the opportunity for a new application or update to destabilize any other application

on the system.

 ■ Uninstalling an application is always reliable and complete; nothing remains behind (with the

exception of pictures that the application might have added to the picture gallery).

 ■ The application platform manages application install/uninstall in a very controlled way, so it

always knows what applications are installed and displays the list to the user. It’s also not pos-

sible to have ”hidden” or ”uninstallable” applications on the phone—even applications from

the carrier or mobile operator are visible to the user and can always be uninstalled. While you

can deploy applications to a developer-unlocked phone directly, you cannot deploy to a retail

phone without publishing to the marketplace.

Comparison of Silverlight and XNA
You can build applications for Windows Phone by using either Silverlight or XNA or a constrained

combination of both, as described in Table 1.2.

TABlE 1-2 Comparison Between Silverlight and XNA Applications

Feature silverlight xnA

Primary target app N-tier business applications, tools. Games.

Developer
experience

XAML-driven, using Microsoft Expression and
Microsoft Visual Studio, very similar to Windows
Presentation Foundation (WPF) and desktop
Silverlight development.

Visual Studio–code-driven. Also similar
to Xbox console and Windows games
development.

Typical artifacts Built-in support for controls, data binding, web
services, and text.

Models, meshes, sprites, textures.

Execution model Event-driven (via UI controls or external events),
and application-focused.

Gaming loop, display-focused.

Graphics Retained mode graphics (application code up-
dates an in-memory model of the graphics, which
the OS renders later on), with 2D and limited 3D
(PlaneProjection). Cannot use XNA graphics in 7.

Immediate mode graphics (application
code causes direct rendering of graphics),
with full 3D support.

Audio Focused on simple media playback (music and
video); can use XNA sounds and recording.

Multichannel audio, including recording.

Screen Standard Silverlight visual tree model, with a
hierarchy of controls.

The game always uses the full screen.

10 PART I Building Blocks

Feature silverlight xnA

Controls Rich set of standard controls. None.

Data binding Built in to the standard controls. None.

Regardless of whether you choose Silverlight or XNA as the primary framework, you can also use

some features from the other framework. In Windows Phone 7, a Silverlight application can use any

of the XNA classes, except those in Microsoft.Xna.Framework.Games and Microsoft.Xna.Framework.

Graphics. A common scenario is for a Silverlight application to use the advanced audio playback and

recording support in XNA. Conversely, an XNA application can use some of the Silverlight features,

but is more restricted; it cannot use any of the controls, data, messaging, input, media, browser, navi-

gation, or threading features. Windows Phone 7.1 introduced signiicant support for combining the
two runtimes in a seamless manner.

Developer Tools

The primary reference for Windows Phone platform APIs is MSDN, which is kept up to date online at

http://msdn.microsoft.com/en-us/library/ff402535(VS.92).aspx. Another great resource is the AppHub,

which you can access at http://create.msdn.com. This is a development portal for Windows Phone and

Xbox 360 development, including links to download the core WP7 tools. The primary tools are listed

in Table 1-3. Further ancillary tools and early-release frameworks are also mentioned in each chapter

of this book, where appropriate.

TABlE 1-3 The Primary Windows Phone Development Tools are available from the AppHub.

Tool Description

Windows Phone
Developer Tools

This is the 7 version of the tools: you only need these if you want to use the 7 emulator.
Otherwise, you can use the 7.1 or 7.1.1 SDK for developing both version 7 applications
and version 7.1 applications. Available at http://www.microsoft.com/download/en/details.
aspx?id=13890.

Windows Phone
Developer Tools January
2011 Update

An update to the version 7 tools. Available at http://www.microsoft.com/download/en/
details.aspx?id=23854.

Windows Phone SDK 7.1 This is the 7.1 version of the tools. You can use this to target both versions 7 and 7.1.
Available as a free download from http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=27570.

The SDK includes the following features:

 ■ Microsoft Visual Studio 2010 Express for Windows Phone

 ■ Windows Phone Emulator

 ■ Windows Phone SDK 7.1 Assemblies

 ■ Silverlight 4 SDK and DRT

 ■ Windows Phone SDK 7.1 Extensions for XNA Game Studio 4.0

 ■ Microsoft Expression Blend SDK for Windows Phone 7

 ■ Microsoft Expression Blend SDK for Windows Phone OS 7.1

 ■ WCF Data Services Client for Window Phone

 ■ Microsoft Advertising SDK for Windows Phone

http://msdn.microsoft.com/en-us/library/ff402535(VS.92).aspx
http://www.microsoft.com/download/en/details.aspx?id=13890
http://www.microsoft.com/download/en/details.aspx?id=13890
http://www.microsoft.com/download/en/details.aspx?id=23854
http://www.microsoft.com/download/en/details.aspx?id=23854
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=27570
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=27570

 ChAPTER 1 Vision and Architecture 11

Tool Description

Windows Phone SDK 7.1.1
Update

An incremental update to the existing Windows Phone SDK 7.1. This update adds sup-
port for developing applications that are optimized to run on 256 MB devices. It includes
an updated version of the standard (512 MB) emulator, plus a new 256 MB emulator. For
details, see Chapter 16, “Enhanced Phone Services.” With version 7.1.1 installed, you can
target all versions: 7, 7.1, or 7.1.1. Available for download at http://www.microsoft.com/
download/en/details.aspx?id=29233.

Windows Phone
7 Training Kit for
Developers

A set of hands-on labs for all the core features of Windows Phone 7. Available at
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=1678.

Windows Phone 7.5
Training Kit

Hands-on labs for the Windows Phone 7.5 application platform. Available at
http://www.microsoft.com/download/en/details.aspx?id=28564.

Windows Azure Toolkit
for WP7

Visual Studio templates for Windows Phone projects that connect with cloud services run-
ning in Windows Azure. Available at http://watwp.codeplex.com.

Windows Phone
Developer Guide

Patterns & Practices guide to Windows Phone development. Available at
http://wp7guide.codeplex.com.

Silverlight Media
Framework

Includes Windows Phone 7 support for video playback, live/smooth streaming. Available
at http://smf.codeplex.com.

Note The online MSDN documentation covers version 7.1. If you need to see documenta-

tion that’s speciic to version 7, you can download the 7 ofline documentation from
http://www.microsoft.com/download/en/details.aspx?id=20558.

The Windows Phone 7.1 SDK is a complete replacement for the version 7 SDK. You cannot run

these side by side on the same computer, but you can use the version 7.1 SDK to target both 7

applications and 7.1 applications. The one and only reason why you might want to keep a computer

with only the version 7 tools on it is because the version 7.1 SDK uses the 7.1 emulator; the version

7.1 emulator will run version 7 applications in backward-compatibility mode on top of the version 7.1

platform. Although this has a very high degree of compatibility, you should always run on a real ver-

sion 7 device (or emulator) to ensure that your application will work on the version 7 OS. Therefore, if

you want to be able to test your application on a version 7 emulator, you need to have an installation

of the version 7 tools. In all other respects, the version 7.1 tools are preferred.

http://www.microsoft.com/download/en/details.aspx?id=29233
http://www.microsoft.com/download/en/details.aspx?id=29233
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=1678
http://www.microsoft.com/download/en/details.aspx?id=28564
http://wp7guide.codeplex.com
http://smf.codeplex.com
http://www.microsoft.com/download/en/details.aspx?id=20558

12 PART I Building Blocks

Development Cycle
Developing and publishing applications for Windows Phone is very straightforward, as shown in

Figure 1-4.

Visual Studio,
expression Blend

Apphub
Portal

Developer

User

retail
Phone

emulator

Dev-
unlocked

Phone

Develop Submit

Analytics

Review,
Feedback

Test, Sign,
Certify

Test

1

2

3

Use,
Uninstall

Download,
install

Update,
Revoke

6

5

8

7

4

Payments,
Ratings/Reviews,

Crash Report

9

Marketplace
Catalog

FIguRE 1-4 The develop-publish-feedback cycle is very straightforward.

You can download the free tools and get started building applications straight away. As part of the

development phase, you will typically test irst on the emulator that is part of the SDK and then also
on a physical device. To deploy unpublished applications to a phone, that phone must be developer-

unlocked. To do this, you must irst register with the AppHub as a developer. Each developer account

allows you to unlock up to three physical devices. These devices will be registered with your AppHub

account.

When you’re ready to submit your application for publication, there is a simple set of forms to ill
out on the AppHub. This is a front-end to the Windows Phone marketplace. The marketplace inges-

tion process will test your application against the certiication requirements and then rebuild and sign
the inal XAP, making it available publicly in the marketplace catalog.

Customers can then download and install your application onto their retail phones. They can also

subsequently update the application (if you publish an update to marketplace), provide a review and

feedback, and uninstall/reinstall whenever they choose. You can track payments, feedback, and pur-

chase analytics in the AppHub portal.

 ChAPTER 1 Vision and Architecture 13

The Anatomy of a Basic Windows Phone Application

When you build a Windows Phone application, the output of the build process is a XAP ile. XAP
(pronounced “zap”) is the ile extension for a Silverlight-based application package (.xap). This is a zip-
format compressed ile that contains all your assemblies, your manifest, and any loose image iles or
other data iles that you chose not to embed in your assemblies. When the user installs your applica-

tion on his phone, the XAP is deployed to an install folder on the ilesystem, as shown in Figure 1-5.
Each application gets its own install folder. The exact location is opaque—there is no supported way

to examine the phone ilesystem and no good reason to do so.

XAP

XAP

Phone Filesystem

In-Memory

Security Sandbox

host Process

Application DLLs

MyApp

Start Menu

OtherApp

App 3

Application
Install Folder

Application
Isolated
Storage

Installed
Applications

DB

MyApp.dll
MyClassLib.dll

WMAppManifest.xml

Image & data
files

Install
Application

Extract Application Metadata,
Configure Sandbox

1

2

Load
Assemblies6

Launch

Update
App List

Construct Sandbox,
Create Process

4

3

5

FIguRE 1-5 Components from your XAP are loaded into memory at runtime.

14 PART I Building Blocks

At install time, the installer service extracts critical metadata from your WMAppManifest.xml and

stores it in the phone’s database. Information about all installed applications is entered in this data-

base. Standard parts of the phone UI such as the Start page and the installed application list gather

the information they need from this database, including application name, icon, and background tile

image. Your application manifest includes details of the capabilities that your application requires,

and these are used to conigure the correct security sandbox for your application. This coniguration
is also stored in the application database.

When the user chooses to launch your application, the system reads the database to construct the

security sandbox within which your application will run. Then, the platform loads your application

assemblies into memory, performs security checks, and instantiates the class that you’ve marked as

the entry point to the application. Once your application is running, it has implicit access to any of the

loose data iles that were in the original XAP and deployed at install time to the application’s install
folder. Any reference in your code to such iles is assumed to be relative to the root of the applica-

tion’s install folder. The application also has exclusive read/write access to its own private isolated

storage area on the ilesystem. This is in a different location than the install folder, both for security
reasons and to aid in the application update process.

XAP Contents
A Windows Phone XAP is essentially the same as a regular desktop Silverlight XAP—a zip ile that
contains all the application’s local DLLs, resources, and the AppManifest.xaml, plus an additional ile
named WMAppManifest.xml. The AppManifest.xaml ile is a regular Silverlight artifact: it contains a
list of “deployment parts” (typically, assemblies local to the application), and the name of the class

(and its containing assembly) to be instantiated as the entry point for the application. It also contains

information about localized resources (if any), and thus the languages that the application supports.

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment" xmlns:x="http://schemas.

microsoft.com/winfx/2006/xaml" EntryPointAssembly="WindowsPhoneApplication1" EntryPointType="Win

dowsPhoneApplication1.App" RuntimeVersion="3.0.40624.0">

 <Deployment.Parts>

 <AssemblyPart x:Name="WindowsPhoneApplication1"

 Source="WindowsPhoneApplication1.dll" />

 <AssemblyPart x:Name="WindowsPhoneClassLibrary1"

 Source="WindowsPhoneClassLibrary1.dll" />

 </Deployment.Parts>

</Deployment>

The WMAppManifest.xml includes a list of phone capabilities that the application needs to use, the

default main page, the application’s icon and background images, and the title to use in the applica-

tion listings on the device. Capabilities are used to conigure the security context under which the
application will run, and the identiiers listed in the WMAppManifest correspond to deined sets of
platform APIs. So, for example, if you use any network capabilities (including web service calls, web

browser, and so on), then you will need the ID_CAP_NETWORKING capability.

www.allitebooks.com

http://www.allitebooks.org

 ChAPTER 1 Vision and Architecture 15

The capability names listed in the following code are reasonably self-explanatory:

<Deployment xmlns="http://schemas.microsoft.com/windowsphone/2009/

deployment" AppPlatformVersion="7.0">

 <App xmlns="" ProductID="{692d41b5-0d98-4dce-93c6-5485be20bf18}" Title="WindowsPhone

Application1" RuntimeType="Silverlight" Version="1.0.0.0" Genre="apps.normal" Author="Windows

PhoneApplication1 author" Description="Sample description" Publisher="WindowsPhoneApplication1">

 <IconPath IsRelative="true" IsResource="false">ApplicationIcon.png</IconPath>

 <Capabilities>

 <Capability Name="ID_CAP_GAMERSERVICES"/>

 <Capability Name="ID_CAP_IDENTITY_DEVICE"/>

 <Capability Name="ID_CAP_IDENTITY_USER"/>

 <Capability Name="ID_CAP_LOCATION"/>

 <Capability Name="ID_CAP_MEDIALIB"/>

 <Capability Name="ID_CAP_MICROPHONE"/>

 <Capability Name="ID_CAP_NETWORKING"/>

 <Capability Name="ID_CAP_PHONEDIALER"/>

 <Capability Name="ID_CAP_PUSH_NOTIFICATION"/>

 <Capability Name="ID_CAP_SENSORS"/>

 <Capability Name="ID_CAP_WEBBROWSERCOMPONENT"/>

 </Capabilities>

 <Tasks>

 <DefaultTask Name ="_default" NavigationPage="MainPage.xaml"/>

 </Tasks>

 <Tokens>

 <PrimaryToken TokenID="WindowsPhoneApplication1Token" TaskName="_default">

 <TemplateType5>

 <BackgroundImageURI IsRelative="true" IsResource="false">

 Background.png</BackgroundImageURI>

 <Count>0</Count>

 <Title>WindowsPhoneApplication1</Title>

 </TemplateType5>

 </PrimaryToken>

 </Tokens>

 </App>

</Deployment>

In Windows Phone 7, there is only one possible task in your application: this will be named

“_default”, and deines the page in your application that the system will create and to which it will
navigate upon startup. There must also be an arbitrarily named token identiier that maps to your
default task. The remaining elements of this manifest are discussed in the following sections.

Standard Project types
The Windows Phone 7 SDK offers ive Silverlight project templates in Visual Studio: a standard phone

application, databound application, phone class library, panorama application, and a pivot applica-

tion. There is also a set of XNA templates, but these are not covered in this book. The version 7.1 SDK

adds four more project types: a combined Silverlight and XNA application, audio playback agent,

audio streaming agent, and a scheduled task agent, as shown in Figure 1-6.

16 PART I Building Blocks

FIguRE 1-6 Visual Studio offers a range of phone-speciic project types.

The version 7.1 project types will be examined in later chapters. For now, the focus is on the core

project types available in version 7. There is one class library project, and four application projects.

The application projects are summarized as follows:

 ■ Application A simple, one-page application that includes a title block and an empty grid.

 ■ Data-Bound Application An application consisting of two pages. The ”main” page offers

a list of items. When the user selects an item, the application navigates to the ”details” page,

which displays more comprehensive information for that item. The application uses data bind-

ing (discussed in Chapter 4, “Data Binding”) to bind the source data to the UI.

 ■ Panorama Application The main page uses a Panorama control (discussed in Chapter 3,

“Controls”) to display a list of items. This application also uses data binding.

 ■ Pivot Application Very similar to the Panorama Application, except that it uses a Pivot con-

trol instead of a Panorama control.

For version 7, the iles generated by each project type are described in Table 1-4.

 ChAPTER 1 Vision and Architecture 17

TABlE 1-4 The Application Files for Each Project Type

Project Type Files Description

Application App.xaml, App.xaml.cs The Silverlight application entrypoint class, which includes
handlers for application lifecycle events.

WMAppManifest.xml The Windows Phone marketplace application manifest,
which speciies the required capabilities, the starting page,
and background image. This is built as a loose content ile
in the XAP.

AppManifest.xml A regular Silverlight application manifest that is used dur-
ing build. The built version lists dependent assemblies,
and is embedded in the XAP.

MainPage.xaml, MainPage.xaml.cs The start page for your application.

ApplicationIcon.png, Background.png,
SplashScreenImage.jpg

Default image iles. These are built as a loose content ile
in the XAP.

Data-Bound
Application

Same as Application, plus:

DetailsPage.xaml, DetailsPage.xaml.cs

The MainPage deinition includes a ListBox. When the user
selects an item from the list, the application navigates to
the DetailsPage, passing through the selected item.

MainViewModel.cs The App class has a property that is an instance of the
MainViewModel class. This represents a simple object
model for the data in the application. The MainPage is
data-bound to this MainViewModel object.

ItemViewModel.cs The DetailsPage is data-bound to the MainViewModel.
Items collection object. These Items are represented by
the ItemViewModel class.

MainViewModelSampleData.xaml Sample data used only at design time. This is set in
XAML as the DataContext for both the MainPage and
DetailsPage.

Panorama
Application

Same as Databound Application, except:

No DetailsPage

The MainPage has a Panorama control that contains
a ListBox, which itself is data-bound to items in the
MainViewModel class.

PanoramaBackground.png A 1024x768–pixel image used for the panorama
background.

Pivot
Application

Same as Panorama Application, except
that it uses a Pivot control instead of a
Panorama control

The MainPage has a Pivot control. This contains two
PivotItem controls, each with a ListBox that is data-bound
to items in the MainViewModel class.

Class Library Class1.cs A regular .NET class library project, with an empty class
deinition.

themes and Accent Colors
A theme is a set of style resources that lend consistency to your UI elements by providing comple-

mentary default colors, fonts, sizes, thicknesses, and so on. The standard controls are all theme-aware,

so they will match the user’s selected theme. Windows Phone offers 2 standard themes (dark or light)

and 10 standard accent colors (plus, possibly, an additional eleventh color supplied by the phone

hardware manufacturer or mobile operator). The themes and accent colors are applied to standard UI

elements by default, as shown in Figure 1-7.

18 PART I Building Blocks

FIguRE 1-7 The dark and light themes and accent colors are applied to standard UI elements.

The values for each accent color are deined in Table 1-5. The most useful column is the Hex col-
umn; this is the format for the value that you would deine in XAML if you needed to match one of
the accent colors explicitly.

Note The deinitions for the lime and magenta accent colors changed between Windows
Phone 7 and 7.1. Also, teal is named viridian in the Microsoft SDKs\Windows Phone\v7.0\

Design folder.

TABlE 1-5 The Ten Standard Accent Colors

Color name ARgB hex hsv

magenta 7.0 255,255,0,151 #FFFF0097 324,100,100

magenta 7.1 255,216,0,115 #FFD80073 328,100,84

purple 255,162,0,255 #FFA200FF 278,100,100

teal (viridian) 255,0,171,169 #FF00ABA9 179,100,67

lime 7.0 255,140,191,38 #FF8CBF26 80,80,74

lime 7.1 255,162,193,57 #FFA2C139 73,70,75

brown 255,160,80,0 #FFA05000 30,100,62

pink 255,230,113,184 #FFE671B8 323,50,90

orange (mango) 255,240,150,9 #FFF09609 36,96,94

blue 255,27,161,226 #FF1BA1E2 199,88,88

red 255,229,20,0 #FFE51400 5,100,89

green 255,51,153,51 #FF339933 120,66,60

 ChAPTER 1 Vision and Architecture 19

You are encouraged to use the predeined theme resources. These themes use the naming struc-

ture, Phone<Feature><Type>; for example, PhoneForegroundBrush or PhoneFontSizeLarge. You can

ind documentation for this at http://msdn.microsoft.com/en-us/library/ff769552(VS.92).aspx. These

theme resources are injected into your application at startup (before Application.InitializeComponent

is called), and are available in XAML at compile-time at %ProgramFiles%\Microsoft SDKs\Windows

Phone\v7.0\Design\ThemeResources.xaml. Under the covers, the XAML theme deinitions live in a
resource dictionary which is added to the ApplicationResources.MergedDictionaries as the irst item in
the collection so that it is searched last, and so that other items in the Application resources collection

can refer to it.

The accent colors were introduced speciically for Windows Phone 7. They are the result of
considerable design effort, usability studies, and so on. They are not the same as the standard

Silverlight/.NET/HTML colors.

Theming is applied at startup: there is no event that informs you that the theme has changed—

after all, your application will have been suspended when the user switched to the Settings applica-

tion. If you want to determine the current theme, you can check to see if either the PhoneDarkTheme

Visibility or PhoneLightThemeVisibility resource value is visible (that is, set to Visibility.Visible, as

opposed to Visibility.Collapsed). Alternatively, you can check the value of PhoneBackgroundColor, but

this is not recommended because the precise value of a given color might change in future releases.

To determine the current accent color, you can check the PhoneAccentColor resource value (and if you

want actually to use the accent color in code, you would use the PhoneAccentBrush resource, because

most uses of the color would typically involve a brush). The ThemeAccent sample illustrates this, as

shown in Figure 1-8.

FIguRE 1-8 The ThemeAccent sample determines the theme and lists the accent colors.

http://msdn.microsoft.com/en-us/library/ff769552(VS.92).aspx

20 PART I Building Blocks

The accent colors are rendered in a ListBox, which uses data binding and a custom DataTemplate.

Both of these will be discussed in Chapter 3. For now, the interesting code to consider is that which

determines the current theme and accent color. First, take a look at the theme. The recommended

way to determine this is to examine the Visibility of the PhoneDarkThemeVisibility or PhoneLight

ThemeVisibility; whichever of these is visible indicates the current theme.

Visibility v = (Visibility)Resources["PhoneDarkThemeVisibility"];

String theme = (v == System.Windows.Visibility.Visible) ? "dark" : "light";

Checking the current accent color is also very straightforward: this is provided in the PhoneAccent

Color resource value. The default ToString method in the Color class returns a hex string that corre-

sponds to the ARGB values. It’s a simple matter to look these up with the known set of accent color

values.

Color accent = (Color)Resources["PhoneAccentColor"];

String accentText = String.Empty;

switch (accent.ToString())

{

 case "#FFFF0097":

 accentText = "magenta 7.0";

 break;

 case "#FFD80073":

 accentText = "magenta 7.1";

 break;

 case "#FFA200FF":

 accentText = "purple";

 break;

 case "#FF00ABA9":

 accentText = "teal";

 break;

 case "#FF8CBF26":

 accentText = "lime 7.0";

 break;

 case "#FFA2C139":

 accentText = "lime 7.1";

 break;

 case "#FFA05000":

 accentText = "brown";

 break;

 case "#FFE671B8":

 accentText = "pink";

 break;

 case "#FFF09609":

 accentText = "orange (mango)";

 break;

 case "#FF1BA1E2":

 accentText = "blue";

 break;

 ChAPTER 1 Vision and Architecture 21

 case "#FFE51400":

 accentText = "red";

 break;

 case "#FF339933":

 accentText = "green";

 break;

 default:

 accentText = "custom";

 break;

}

A marginally more elegant approach—and the one used in this sample to populate the ListBox—is

to set up a collection of Color objects. Using this approach, you create a Dictionary collection, wherein

each key is a string representing the color name, and each value is a Brush initialized with a corre-

sponding Color value.

private Dictionary<string, SolidColorBrush> colors =

 new Dictionary<string, SolidColorBrush>();

private void InitializeColorList()

{

 colors.Add("magenta 7.0", new SolidColorBrush(Color.FromArgb(255, 255, 000, 151)));

 colors.Add("magenta 7.1", new SolidColorBrush(Color.FromArgb(255, 216, 000, 115)));

 colors.Add("purple", new SolidColorBrush(Color.FromArgb(255, 162, 000, 255)));

 colors.Add("teal", new SolidColorBrush(Color.FromArgb(255, 000, 171, 169)));

 colors.Add("lime 7.0", new SolidColorBrush(Color.FromArgb(255, 140, 191, 038)));

 colors.Add("lime 7.1", new SolidColorBrush(Color.FromArgb(255, 162, 193, 057)));

 colors.Add("brown", new SolidColorBrush(Color.FromArgb(255, 160, 080, 000)));

 colors.Add("pink", new SolidColorBrush(Color.FromArgb(255, 230, 113, 184)));

 colors.Add("orange (mango)", new SolidColorBrush(Color.FromArgb(255, 240, 150, 009)));

 colors.Add("blue", new SolidColorBrush(Color.FromArgb(255, 027, 161, 226)));

 colors.Add("red", new SolidColorBrush(Color.FromArgb(255, 229, 020, 000)));

 colors.Add("green", new SolidColorBrush(Color.FromArgb(255, 051, 153, 051)));

 ColorList.ItemsSource = colors;

}

With the collection set up, you can now query it to ind the matching accent color:

Color accent = (Color)Resources["PhoneAccentColor"];

string accentText = "custom";

var pair = colors.FirstOrDefault(x => x.Value.Color == accent);

if (!string.IsNullOrEmpty(pair.Key))

{

 accentText = pair.Key;

}

As pointed out earlier, be aware that some hardware manufacturers and mobile operators install

an eleventh accent color to their phones. You should therefore allow for the possibility that there are

11 colors, not just 10. The preceding code either uses a default case or sets the default value of the

color name to allow for this.

22 PART I Building Blocks

Standard Application Images
A Windows Phone application uses at least three images, all with the build action set to Content, as

summarized in Table 1-6.

TABlE 1-6 Requirements for the Three Standard Application Images.

Default Image File
name

size in
Pixels Description

Acceptable File name
and location Format

Required
or
optional

ApplicationIcon.png 62x62 Used to identify your
application in the
installed applications
list on the phone.

Any name, must be at the
root of the project. Must
be set in the application
properties.

JPG or PNG Required

Background.png 173x173 Used as your ap-
plication’s tile back-
ground, if the user
pins your application
to his home screen.

Any name, any location in
the project. Must be set in
the application properties.

JPG or PNG Required

SplashScreenImage.jpg 480x800 The application’s
splash screen. This
is optional if your
application loads its
irst page within 5
seconds of launch.

Must be named
SplashScreenImage.jpg,
and must be at the root of
the project.

JPG only Optional

To be technically accurate, you could omit the application icon image altogether by selecting

“(default)” in the properties for the app. This will select the default star icon and set the following

value into your WMAppManifest.xml; however, note that this is not recommended behavior:

<IconPath IsRelative="true" IsResource="true">

 res://StartMenu!AppIconGeneric.png

</IconPath>

The same is not true for the background image. The relevant entry in the WMAppManifest.xml is

shown in the code that follows. You cannot omit the <BackgroundImageURI> element or the ile will
fail validation and the application will fail to build. If you omit the value (for example, Background.

png), the application will build, but there will be no background image. So, if the user pins your appli-

cation to the Start page, there will be a tile with no image. This will fail marketplace certiication.

<TemplateType5>

 <BackgroundImageURI IsRelative="true" IsResource="false">

 Background.png

 </BackgroundImageURI>

 <Count>0</Count>

 <Title>NoImages</Title>

</TemplateType5>

Notice how there are two Title entries in the manifest: one is an attribute of the application ele-

ment, the other is a subelement of the Tokens element. The application element Title attribute is used

for the application’s listing in the list of installed applications. The Tokens element Title is used for the

tile when the application is pinned to the start page.

 ChAPTER 1 Vision and Architecture 23

<App xmlns="" ProductID="{692d41b5-0d98-4dce-93c6-5485be20bf18}"

 Title="WindowsPhoneApplication1" RuntimeType="Silverlight" Version="1.0.0.0"

 Genre="apps.normal" Author="WindowsPhoneApplication1 author" Description="Sample

 description" Publisher="WindowsPhoneApplication1">

If you specify a background (tile) image that is larger or smaller than 173x173, it will be cropped or

scaled up; in this scenario, the upper-left corner is referenced as the origin.

The image SplashScreenImage.jpg can be omitted. This is the splash screen that is displayed briely
while the application is starting up. The splash screen remains visible until your application receives

the PhoneApplicationFrame.Navigated event. If you don’t provide a splash screen image, the system

simply displays a blank screen during application startup. If you do provide one, it must be named

SplashScreenImage.jpg.

As always, you should follow the Metro guidelines in composing application images. In this exam-

ple, the same raw image (with a transparent background) was used to create all three image iles.
Using transparency requires saving the iles in PNG format, and it has the advantage that transparent
areas of the image will show the phone’s current accent color (for the all-applications list on version 7

devices, it will be gray). This technique helps to make your application integrated as a seamless part of

the overall phone ecosystem. Figure 1-9 shows an application that uses Metro-compliant images for

the application icon, the tile, and the splash screen.

FIguRE 1-9 You should use Metro-compliant application images.

The application icon and background image can be set in the properties window in Visual Stu-

dio, as shown in Figure 1-10. You could set these by editing the WMAppManifest.xml, but this is not

recommended, because Visual Studio caches this information and will overwrite your manual edits

without warning whenever you read or edit the properties in the properties dialog.

24 PART I Building Blocks

FIguRE 1-10 Use the Application properties to set the default images.

Although some of the applications that ship with the phone itself use the current theme for the

application icon, this is not true of third-party (that is, marketplace) applications. For these, only the

tile can use the current theme. If you want to use the theme for your tile, you simply set the tile back-

ground to transparent. Note that this behavior changes in version 7.1, for which marketplace develop-

ers can now use transparency in their application icon in addition to the tile.

version 7 vs. version 7.1

There is a high degree of backward compatibility built into the platform, so Windows Phone 7.1 is

effectively a complete superset of Windows Phone 7. All version 7 applications should work without

change in version 7.1, with the single exception of photo extensibility (covered in detail in Chapter

9, “Phone Services,” and Chapter 16, “Enhanced Phone Services”). Of course, version 7.1 introduces

some new features that will only work on 7.1 phones. You can use the 7.1 SDK to build applications for

either version 7 or 7.1, and if you want to target the largest possible consumer base, you should build

applications for version 7. Table 1-7 summarizes the differences between the two versions.

www.allitebooks.com

http://www.allitebooks.org

 ChAPTER 1 Vision and Architecture 25

TABlE 1-7 Additional Features Provided by Windows Phone 7.1

Feature 7 Behavior 7.1 Behavior

Advertising You can use the Microsoft Advertising
SDK, which is a separate download.

The Advertising SDK is now fully integrated in
Visual Studio.

Alarms and
reminders

Not available. Your application can create alarms and reminders
that are displayed at some later time, whether your
application is running or not.

Application bar You can set the visibility and/or opacity
programmatically.

You can additionally switch between normal and a
new minimized size.

Background agents Not available. Your application can create an agent that can run
either on a periodic schedule or when certain con-
ditions are met, regardless of whether your appli-
cation is running at the time.

Background audio
playback

Not available. Your application can provide audio playback fea-
tures that allow audio to continue playing in the
background, even when the user navigates to
another application.

Background ile
transfers

Not available. Your application can initiate ile uploads or down-
loads that continue after the user has navigated
away from your application.

Backstack You can navigate forward to an arbitrary
page URL or backward to the immediately
preceding page in the backstack.

You can remove items from the backstack so that
you can effectively navigate backward to any pre-
viously visited page that’s still in the backstack.

Camera You can programmatically invoke the
camera launcher to allow the user to take
photos.

You can work with the camera data pipeline
directly, which allows you to build augmented
reality applications.

Clipboard Not available programmatically. You can set the clipboard contents
programmatically.

Contacts and
calendar

Not available programmatically. Read-only programmatic access is introduced.

Cryptography API support for encrypting data locally on
the phone, but no support for encrypting
passwords or secure credential storage.

Data Protection API (DPAPI) support for encryp-
tion and secure storage of passwords and other
credentials on the phone.

Data binding
enhancements

n/a You can use the StringFormat attribute to format
data-bound strings, group and sort data-bound
collections, and use asynchronous validation.

Device information You can use the DeviceExtendedProperties
API to report information about the
device and current memory usage.

DeviceExtendedProperties has been superseded
by the DeviceStatus API, which should be used
instead.

Emulator Supports most application scenarios, but
not sensors.

Support for simulating accelerometer and location
events, map support, and screenshot capability.

Fast Application
Switching

When the user navigates away from an
application, that application is generally
tombstoned, meaning it is terminated and
removed from memory. If the user subse-
quently navigates back to the application,
it is restarted and initialized with the pre-
vious context.

When the user navigates away from an application,
it typically remains in memory but cannot execute
any code. If the user subsequently navigates back
to the application, it is simply reactivated, not re-
started from scratch.

26 PART I Building Blocks

Feature 7 Behavior 7.1 Behavior

Image rendering 16 bits per pixel (bpp) only. 16 bpp or 32 bpp, on a per-application basis.

JPEG decoding Executes on the UI thread, which can slow
down user responsiveness.

Can be set to execute on a background thread.

Launchers and
Choosers

The platform provides 10 Launchers and
6 Choosers for invoking standard features
from your application.

The platform adds a further ive Launchers and
four Choosers.

Local database Not available. You can create a database in isolated storage,
and perform standard create/read/update/delete
(CRUD) operations on it via LINQ-to-SQL.

Marketplace
preparation

Use the Capability Detection tool to
identify the capabilities required by your
application.

Use the Marketplace Test Kit to identify capabili-
ties, validate marketplace images, automatically
test critical publication requirements, and manu-
ally track certiication test cases.

Multi-tasking An application can only execute actions
while it is active in the foreground.

An application can deploy agents which can run
in the background even when the user is doing
something else in the foreground. These include
background agents, and background audio play-
back. An application can also set up alarms and
reminders as well as background ile transfers to
run in the background.

OData client Your application can invoke remote data
web services that return data in OData
format, and you can generate client-
side proxies by using the DataSvcUtil
command-line tool.

OData client proxy generation is now built in to
Visual Studio, and generates code that is more
robust and lexible.

Photo extensibility You can add your application to the ex-
tras menu in the standard photo/picture
library on the phone.

You can add your application to the apps menu in
the standard photo/picture library on the phone,
to the new apps pivot on the pictures hub, and to
the share link in the individual picture viewer. Note
that this is the one breaking change from version
7 to 7.1.

Proiler Not available. Analyze your application’s performance, use of
CPU and memory, use of UI and background
threads, and frame rendering behavior—so that
you can identify memory leaks and performance
issues, and take corrective action.

Push notiications You can use the Microsoft Push
Notiication Service to send raw, toast,
or tile notiications to your phone
application.

Toast notiications can now deep-link to speciic
pages in your application and supply custom pa-
rameters. Tile notiications now support both a
back and a front.

Search extensibility Not available. You can extend the Bing search experience with
custom behavior, integrating your application with
the search results.

Sensors The platform provides API support for the
accelerometer sensor only.

The platform adds API support for the compass
and gyroscope as well as an aggregated virtual
sensor called motion.

Silverlight and XNA
integration

Not available. You can build an application that uses both
Silverlight and XNA together.

Silverlight runtime Uses a modiied version of Silverlight 3.0. Uses a modiied version of Silverlight 4.0.

Sockets Not available. Your application can use TCP and UDP sockets for
two-way communication with remote services.

Standard controls Support for 21 platform controls, plus 10
more in the Silverlight toolkit.

Three additional platform controls, and ive addi-
tional Silverlight toolkit controls.

 ChAPTER 1 Vision and Architecture 27

Feature 7 Behavior 7.1 Behavior

System tray You can set the visibility, background and
foreground color.

You can additionally set the opacity and a built-in
progress bar.

Tiles The user can pin your application tile to
the Start menu.

Your application can programmatically pin one or
more secondary tiles to the Start menu, in addition
to the user-pinned main application tile. Tiles also
now have a back side, with customizable back-
ground image and text.

UI commands You can hook up handler methods for UI
command events such as button clicks.

You can data-bind to commands, which increases
the decoupling between view and viewmodel.

WebBrowser control Supports Internet Explorer 8 and HTML 4. Supports Internet Explorer 9 and HTML5.

XAML styles You can create named styles, which you
then apply explicitly to selected elements.

You can also create unnamed styles, which are
automatically applied to all elements of the target
type implicitly.

summary

In this chapter, you learned how the overarching vision for Windows Phone is a signiicant departure
from traditional mobile device development. The importance of a holistic UX and of applications

that contribute in a meaningful way to the user’s daily life should inform the way you make decisions

about functionality and design. It should guide you to build applications that are compelling, beauti-

ful, and truly useful to the user. From a more technical viewpoint, the Windows Phone architecture

involves many moving parts, with a complex interaction between native and managed code, and

between the runtime, the application platform, and your code. That having been said, the API surface

exposed for your application to use has been very thoughtfully put together; it makes it easy to build

sophisticated applications that integrate seamlessly with standard phone features.

 29

C h A P T E R 2

UI Core

W indows Phone development with Microsoft Silverlight has a lot in common with Silverlight

desktop development, notwithstanding some subtle differences and a few phone-speciic
quirks. The extreme physical constraints of a mobile device also impose some challenges for applica-

tion developers. This chapter will examine the fundamental user interface (UI) infrastructure in the

Windows Phone application platform, and how that platform exposes signiicant support for mobile
developers. You’ll also look at how Metro principles translate into standard UI layout, how to custom-

ize that layout, and the various options for incorporating graphical resources in an application.

Phone uI Elements

In the following sections, you will be introduced to the primary elements that make up the Windows

Phone UI.

Standard UI elements
The Windows Phone 7 chassis requirements are based on extensive market research and discus-

sions with hardware manufacturers. The requirements specify that all Windows Phone 7 phones have

WVGA screens at 800x480 pixel resolution. They must also support both portrait and landscape

display orientations. All screens must support multi-touch, include a light sensor that improves power

consumption (by adjusting screen brightness according to ambient conditions), and incorporate a set

of proximity sensors that turn off the touch screen when the device is held close to the head during

phone calls or when it is in a pocket or handbag. The screen physical size must be 3.5" to 4.4", and

render 16 bits of color per pixel minimum. There will always be three hardware buttons on the front

of the phone at the bottom of the screen for Back, Start, and Search. The graphics processing unit

(GPU) supports Direct3D 10 Level 9, and includes driver-level support for GDI and DirectDraw.

The fact that there is just one chassis speciication with relatively few variations permitted is a sig-

niicant beneit for developers. Developers don’t need to worry about different form factors and can
write and test applications geared to a well-deined target.

The Windows Phone shell layers a couple of standard elements on top of the chassis: the System

Tray and the Application Bar, both of which are optional for use in your applications. The standard

application UI model for Silverlight applications is to use an outermost Frame which represents the

entire screen. On top of this, the application itself deines one or more Page objects, each Page

30 PART I Building Blocks

typically occupies the whole Frame (allowing for System Tray and Application Bar). Only one Page is

visible at a time.

The System Tray (or Status Bar) runs across the top of the screen (the top 32 pixels in portrait

mode, 72 pixels in landscape) and provides indicators for cell/wireless/bluetooth strength, data con-

nection, roaming, battery level, and the system clock. This is represented by the SystemTray object

in code—it cannot be modiied programmatically, although it can be hidden. In Windows Phone 7.1,

you can also set its opacity.

The Application Bar is 72 pixels in height in portrait mode; it is also 72 pixels wide in landscape

mode. It is always displayed on the same edge as the device hardware buttons—at the bottom in por-

trait, on the left or right in landscape. Your application can use this space to provide up to four icon

buttons, plus a short menu. You can use standard icons or custom icons, but these are constrained

to be white only in a 26x26 pixel area within the overall 48x48 icon area. The Application Bar is not a

conventional Silverlight element—it is rendered by the phone shell—so it is not part of your applica-

tion’s visual tree, and there are signiicant constraints on what you can do with it.

The Frame is the top-level UI container for a Windows Phone app, represented in code by the

PhoneApplicationFrame type, which will always be 800x480.

Within that, your application can have one or more Page elements, represented by the Phone

ApplicationPage type, whose size varies according to how you’re showing the System Tray and

Application Bar. These sizes are summarized in Table 2-1.

TABlE 2-1 Page Sizes

orientation systemTray AppBar Page ContentPanel

Portrait Visible and Opacity==1 Visible and Opacity==1 696x480 517x444

Portrait Hidden or Opacity <1 Visible and Opacity==1 728x480 549x444

Portrait Visible and Opacity==1 Hidden or Opacity <1 768x480 589x444

Portrait Hidden or Opacity <1 Hidden or Opacity <1 800x480 621x444

Landscape Visible and Opacity==1 Visible and Opacity==1 480x656 301x620

Landscape Hidden or Opacity <1 Visible and Opacity==1 480x728 301x692

Landscape Visible and Opacity==1 Hidden or Opacity <1 480x728 301x692

Landscape Hidden or Opacity <1 Hidden or Opacity <1 480x800 301x764

Just to give an indication of how much real estate you have to play with in your app, the Microsoft

Visual Studio templates generate code that provides for a standard TitlePanel, composed of a Text

Block for the application title, and another TextBlock for the page title, both using predeined Style

resources. You don’t have to stick to this model, but it helps to maintain consistency across applica-

tions. If you adopt the Visual Studio–generated starter code (which is, of course, based on the Metro

guidelines), with an ApplicationBar.Opacity=1, ApplicationBar.IsVisible=true, SystemTray.IsVisible=true,

and SystemTray.Opacity=1 (settable in 7.1 only), then the general shape of the real estate you’ll have

at your disposal is as shown in Figure 2-1.

 ChAPTER 2 UI Core 31

Systemtray: 32x480
Page (Layoutroot): 696x480

titlePanel: 116x456

ContentPanel: 517x444

ApplicationBar: 72x480

FIguRE 2-1 The Visual Studio template generates a standard real estate layout.

From the XAML that follows, you can see that the TitlePanel is offset 12 pixels from the left and 17

pixels from the top. The PageTitle is offset 9 pixels from the left and –7 pixels from the top. PageTitle is

the second child of a StackPanel, which lays out its children one after the other, in the order declared.

The next child is positioned by default immediately after the previous child. So, the PageTitle position

depends on the position and size of the ApplicationTitle. The ApplicationTitle uses a default PhoneText

NormalStyle, which includes a 20 pixel (15 pt) font size.

<phone:PhoneApplicationPage>

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,17,0,28">

 <TextBlock

 x:Name="ApplicationTitle" Text="MY APPLICATION"

 Style="{StaticResource PhoneTextNormalStyle}"/>

 <TextBlock

 x:Name="PageTitle" Text="page name" Margin="9,-7,0,0"

 Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"></Grid>

 </Grid>

</phone:PhoneApplicationPage>

32 PART I Building Blocks

You’re also given an inner Grid named ContentPanel as a suggested starting point for your content.

You’re free to replace anything and everything on the page, according to the requirements of your

application. However, the starter template layout is an excellent Metro-compliant guideline, so you

are encouraged to adopt this whenever possible.

Visual tree
The normal state of affairs is that most or all of the visual aspects of your UI are deined in XAML,
with only UI logic in the code-behind. As with Silverlight generally, the XAML for a Windows Phone

application is hierarchical in nature. At the root is a PhoneApplicationFrame, set as the RootVisual

property in the Application base class. Each PhoneApplicationPage in the application is a child of the

RootVisual—or rather, it becomes a child of the RootVisual when the user navigates to that page and

the corresponding page class is instantiated. A page typically has children of its own. Figure 2-2 shows

a simple page with three obvious controls: two TextBlock controls and a Button. This is the Simple

VisualTree solution in the accompanying sample code. However, there are actually more visual ele-

ments, some are visible, some not. If you think for a moment, you’ll realize there are at least two

more: the Page and the Frame.

FIguRE 2-2 Some visible and non-visible visual elements.

The XAML deinition of this UI is shown in the following code snippet. From this, you can see that,
in addition to the three visible and two non-visible controls that we’ve identiied thus far, there are
at least three additional controls: two Grid controls and a StackPanel, which now brings the total to

eight.

 ChAPTER 2 UI Core 33

<phone:PhoneApplicationPage

... namespace and style declarations omitted for brevity

>

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <StackPanel x:Name="TitlePanel" Grid.Row="0">

 <TextBlock Text="CONTOSO"/>

 <TextBlock Text="visual tree"/>

 </StackPanel>

 <Grid x:Name="ContentPanel" Grid.Row="1">

 <Button Content="press me"/>

 </Grid>

 </Grid>

</phone:PhoneApplicationPage>

At runtime, the layout engine parses the XAML and creates a set of objects to help correctly con-

struct and maintain the UI. Some of these objects are visual, some are not—some are merely helper

objects that have no visual representation. For example, a ListBox holds a collection of ListBoxItems,

but the collection object itself has no visual representation. The visual hierarchy, or tree, is that subset

of the object hierarchy that has a visual representation. This applies regardless of whether the object

is actually visible. The Grid controls and StackPanel in this example are not visible, but they determine

the visual layout of their respective child objects, so they do have an impact on the composition of

the screen image. So, the Grid controls and the StackPanel are all part of the visual tree.

Quite often, visual objects that are not directly deined in the application’s XAML are created
as part of the tree. For example, a Button is actually made up of a number of other elements. You

can see this if you examine the default template for the Button control. The default template is in

the System.Windows.xaml ile, which you can ind in the install folder for the Windows Phone SDK
(typically: %ProgramFiles%\Microsoft SDKs\Windows Phone\v7.x\Design\System.Windows.xaml). An

abstract of this template is listed in the following code:

<ControlTemplate TargetType="ButtonBase">

 <Grid Background="Transparent">

 <Border x:Name="ButtonBackground">

 <ContentControl x:Name="ContentContainer"/>

 </Border>

 </Grid>

</ControlTemplate>

You can see that the Button is made up of a Grid, a Border, and a ContentControl. This brings our

total number of controls so far to 10. Now, the derivation hierarchy for the Button control includes the

Control class. The Control class has a Content ield of type object, which means it can hold anything.

34 PART I Building Blocks

In the case of the Button control, the default Content type is a TextBlock. The total now is 11. In fact,

in this simple page, there are 16 visual elements. To see them all, you can use the VisualTreeHelper

class to walk the tree. What follows is some simple code to do just that. This example deines a custom
method, PrintVisualTree, which is used recursively, starting at the RootVisual. For each visual element,

it prints the type name to the debug console. It tracks the current tree level and indents three spaces

for each level. So, starting at the top, it prints out the RootVisual data, and then calls VisualTreeHelper.

GetChildrenCount to get a count of the RootVisual control’s children. If there are any, it gets each child

with VisualTreeHelper.GetChild, and then recurses to print the data and ind any further child levels.

private int elementCount = 0;

private void MainPage_Loaded(object sender, RoutedEventArgs e)

{

 PrintVisualTree(App.Current.RootVisual, 0, 0);

}

private void PrintVisualTree(DependencyObject obj, int level, int indent)

{

 elementCount++;

 String indentString = String.Empty;

 for (int i = 0; i < level; i++)

 {

 indentString += " ";

 }

 String name = String.Empty;

 if (obj is FrameworkElement)

 {

 name = (obj as FrameworkElement).Name;

 Debug.WriteLine(String.Format("{0} {1}{2} \"{3}\"",

 elementCount, indentString, obj, name));

 }

 int childCount = VisualTreeHelper.GetChildrenCount(obj);

 if (childCount > 0)

 {

 level++;

 int childIndent = 0;

 for (int i = 0; i < childCount; i++)

 {

 DependencyObject child = VisualTreeHelper.GetChild(obj, i);

 PrintVisualTree(child, level, childIndent);

 }

 }

}

www.allitebooks.com

http://www.allitebooks.org

 ChAPTER 2 UI Core 35

The debug output for this simple page is listed below. You can map this to the application XAML

and to the default Button template to more clearly see the 16 visual elements on this page.

1 Microsoft.Phone.Controls.PhoneApplicationFrame ""

2 System.Windows.Controls.Border "ClientArea"

3 System.Windows.Controls.ContentPresenter ""

4 SimpleVisualTree.MainPage ""

5 System.Windows.Controls.Grid "LayoutRoot"

6 System.Windows.Controls.StackPanel "TitlePanel"

7 System.Windows.Controls.TextBlock ""

8 System.Windows.Controls.TextBlock ""

9 System.Windows.Controls.Grid "ContentPanel"

10 System.Windows.Controls.Button ""

11 System.Windows.Controls.Grid ""

12 System.Windows.Controls.Border "ButtonBackground"

13 System.Windows.Controls.ContentControl "ContentContainer"

14 System.Windows.Controls.ContentPresenter ""

15 System.Windows.Controls.Grid ""

16 System.Windows.Controls.TextBlock ""

The VisualTreeHelper class also includes a useful GetParent method so that you can walk the tree

in reverse order, if you like. Printing out the tree is instructive, but it’s not a common requirement for

a real application. What is quite common is walking the tree to ind a particular element. If you have
declared the element in XAML, then you can also declare a name for it, which means you’ll have a

ield that you can use in code. However, it should be clear from the foregoing that sometimes you
have visual elements that you might want to work with but which were implicit in some composite

control—and for which, therefore, you have no opportunity to deine a ield. If the implicitly deined
(well, actually, explicitly deined—just not explicitly in your application code) element is exposed as a
property of one of your code elements, there’s also no problem. Sometimes, however, such a non-

explicit element is also not exposed as an accessible property of any of your explicit elements.

One scenario for which the VisualTreeHelper technique is useful is when you want to access ele-

ments in a dynamic visual collection, such as a ListBox. In this scenario, you don’t necessarily have

ields deined for the controls within the ListBoxItem template. Another scenario is when you want to

carry out some common processing for multiple elements of the same type all at once, even though

you might or might not have ields for each element, and the elements might be in arbitrary control
hierarchies on your page. Here’s a simple example to illustrate this scenario. The following applica-

tion (the GlobalElementChange solution in the sample code), which is shown in Figure 2-3, has three

TextBlock controls and three TextBox controls. The Button at the bottom toggles the IsReadOnly state

of all three TextBox controls.

36 PART I Building Blocks

FIguRE 2-3 One use of the visual tree is to manipulate multiple, unnamed elements.

The code-behind deines a GetChildren method, which uses the VisualTreeHelper to get an enu-

meration of all children of the LayoutRoot control. Next, the IEnumerable<T>.OfType<T> method

ilters the list to the TextBox controls. As it happens, all three TextBox controls are children of the same

parent panel, but this technique would work regardless of the layout, so long as you start walking the

tree at a high enough level.

private void ChangeElements_Click(object sender, RoutedEventArgs e)

{

 GetChildren(LayoutRoot).OfType<TextBox>().ToList().ForEach(

 t => t.IsReadOnly = !t.IsReadOnly);

}

private IEnumerable<DependencyObject> GetChildren(DependencyObject obj)

{

 int count = VisualTreeHelper.GetChildrenCount(obj);

 for (int i = 0; i < count; i++)

 {

 var child = VisualTreeHelper.GetChild(obj, i);

 yield return child;

 foreach (var descendent in GetChildren(child))

 yield return descendent;

 }

}

 ChAPTER 2 UI Core 37

Wrapping the VisualTreeHelper methods like this is a common enough requirement that many

developers ind themselves building a library of such wrappers. Given the reusability of such a library,
it makes sense to implement such wrappers as extension methods. For example, you could rewrite

(and reuse) the GetChildren method as an extension method. Extension methods are a standard C#
feature; by deinition these are implemented as static methods in a static class, and the irst parameter
is an object of the type that you’re extending.

private void ChangeElements_Click(object sender, RoutedEventArgs e)

{

 //GetChildren(LayoutRoot).OfType<TextBox>().ToList().ForEach(

 // t => t.IsReadOnly = !t.IsReadOnly);

 LayoutRoot.GetChildren().OfType<TextBox>().ToList().ForEach(

 t => t.IsReadOnly = !t.IsReadOnly);

}

public static class VisualTreeExtensions

{

 public static IEnumerable<DependencyObject> GetChildren(

 this DependencyObject obj)

 {

 int count = VisualTreeHelper.GetChildrenCount(obj);

 for (int i = 0; i < count; i++)

 {

 var child = VisualTreeHelper.GetChild(obj, i);

 yield return child;

 foreach (var descendent in GetChildren(child))

 yield return descendent;

 }

 }

}

A inal enhancement that’s worth making is to provide a templatized layer on top of the custom
methods. You can essentially move the behavior of the OfType<T> ilter into the method itself by
using a Language-Integrated Query (LINQ) expression, and then expose this by changing the signa-

ture to GetChildren<T>.

private void ChangeElements_Click(object sender, RoutedEventArgs e)

{

 //GetChildren(LayoutRoot).OfType<TextBox>().ToList().ForEach(

 // t => t.IsReadOnly = !t.IsReadOnly);

 //LayoutRoot.GetChildren().OfType<TextBox>().ToList().ForEach(

 // t => t.IsReadOnly = !t.IsReadOnly);

 LayoutRoot.GetChildren<TextBox>().ToList().ForEach(

 t => t.IsReadOnly = !t.IsReadOnly);

}

public static class VisualTreeExtensions

{

 public static IEnumerable<T> GetChildren<T>(

 this DependencyObject obj) where T : DependencyObject

 {

 return GetChildren(obj).Where(child => child is T).Cast<T>();

 }

38 PART I Building Blocks

 public static IEnumerable<DependencyObject> GetChildren(

 this DependencyObject obj)

 {

 int count = VisualTreeHelper.GetChildrenCount(obj);

 for (int i = 0; i < count; i++)

 {

 var child = VisualTreeHelper.GetChild(obj, i);

 yield return child;

 foreach (var descendent in GetChildren(child))

 yield return descendent;

 }

 }

}

Note The Silverlight Toolkit contains a rich set of VisualTreeExtensions, which you are encour-

aged to use rather than crafting your own. See Chapter 1, “Vision and Architecture,” for details

about how to get the Toolkit.

Screen Layout
The Silverlight layout system supports three standard types of layout: absolute, relative, and dynamic.

These are actually fairly arbitrary categorizations, but they do map to the layout characteristics of the

primary control container types (Panels). With absolute layout, you specify absolute values for the size

and position of all the visual elements. With relative layout, you specify some values for elements, rel-

ative to each other. With dynamic layout, you specify very little; instead, you allow the system to size

and position elements based on calculations of the elements’ contents. In all cases, you can specify

explicit values in the application XAML or the code-behind, and/or values that are speciied elsewhere
in style resources. Per Metro guidelines, you are encouraged to use the standard style resources for

elements such as fonts, font sizes, margins, padding, and stroke thicknesses. Note that you’re also free

to specify your own custom layouts by using whatever behavior you like.

The three types of layout are represented by three container controls, all derivatives of the base

Panel class:

 ■ Canvas, for absolute layout

 ■ Grid, for relative layout

 ■ StackPanel, for dynamic layout

The screenshots in Figure 2-4 show the SimpleLayout solution in the accompanying sample code.

This is an application that uses all three standard types of layout. Note that the two Grid controls on

the MainPage have their ShowGridLines property set to True, which is a useful visual aid during devel-

opment, although you would usually remove this prior to publication.

 ChAPTER 2 UI Core 39

FIguRE 2-4 An application with Grids and StackPanels on Page 1, and a Canvas on Page 2.

The MainPage uses relative layout overall and is divided into three areas vertically: the top area

uses dynamic layout, the middle area uses relative, and the bottom area uses dynamic layout again.

Page2 uses absolute layout. The MainPage XAML has an outer Grid (named LayoutRoot), within which

it deines three areas: one represented by a StackPanel, the second by a Grid, and the third by another

StackPanel.

<Grid x:Name="LayoutRoot" ShowGridLines="True">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="300"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <StackPanel x:Name="TitlePanel" Grid.Row="0">

 <TextBlock x:Name="ApplicationTitle" Text="CONTOSO"/>

 <TextBlock x:Name="PageTitle" Text="simple layout"/>

 </StackPanel>

 <Grid x:Name="ContentPanel" Grid.Row="1">

 <Grid.RowDefinitions>

 <RowDefinition Height="80"/>

 <RowDefinition Height="2*"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="100"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

40 PART I Building Blocks

 <TextBlock Grid.Row="0" Grid.Column="0" Text="name"/>

 <TextBlock Grid.Row="1" Grid.Column="0" Text="email"/>

 <TextBlock Grid.Row="2" Grid.Column="0" Text="phone"/>

 <TextBox Grid.Row="0" Grid.Column="1"/>

 <TextBox Grid.Row="1" Grid.Column="1"/>

 <TextBox Grid.Row="2" Grid.Column="1"/>

 </Grid>

 <StackPanel Grid.Row="2">

 <TextBlock TextWrapping="Wrap" Text="Sed ut perspiciatis unde omnis iste

atus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa

uae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo

nim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur

agni dolores eos qui ratione voluptatem sequi nesciunt. "/>

 <Button Content="go to page 2" x:Name="Page2" Click="Page2_Click"/>

 </StackPanel>

</Grid>

StackPanel controls use dynamic layout, in the sense that the Silverlight runtime computes the

layout for each element based on the size of the contents. The two TextBlock controls in the irst Stack

Panel contain different text values and use different fonts and sizes. The default stacking mode in a

StackPanel is vertical, so the second TextBlock starts wherever the irst one left off. As it happens, the
second Grid starts wherever the irst StackPanel (and the second TextBlock) left off, but for a different

reason. The StackPanel and Grid are both children of an outer Grid, and the outer Grid speciies row
heights. In this example, the irst row height is set to Auto, so it takes up whatever space is needed by

the child StackPanel. This is why the second Grid effectively starts where the StackPanel ended. Using

the same mechanism, the Button in the second StackPanel is pushed down by the size of the Text

value above it. So, the Button positioning is relatively arbitrary, and the result might or might not end

up being aesthetically pleasing.

In contrast, grids use relative layout, with which you have more explicit control over the sizes and

relative positions of each child element. Consider the irst Grid, which speciies three RowDeinitions,
each with their heights set to Auto, 300, and *, respectively:

<Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="300"/>

 <RowDefinition Height="*"/>

</Grid.RowDefinitions>

 ■ Auto speciies that the row height will be whatever it needs to be for the height of the content.
In this case, the content is a StackPanel made up of two TextBlock controls, with their heights,

margins, and padding determined by the style resources deined for them.

 ■ 300 is the height in pixels of the second grid row, which is occupied by an inner Grid. This will

be constrained to 300 pixels, regardless of the sizes of its children.

 ■ * indicates that this row will be allocated whatever height is left after the irst two rows. That is,
(Page Height – (ApplicationTitle + PageTitle + Margins) – 300).

 ChAPTER 2 UI Core 41

The inner Grid (named ContentPanel), is divided into three rows and two columns:

<Grid.RowDefinitions>

 <RowDefinition Height="80"/>

 <RowDefinition Height="2*"/>

 <RowDefinition Height="*"/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="100"/>

 <ColumnDefinition Width="*"/>

</Grid.ColumnDefinitions>

Row 0 is 80 pixels high. Rows 1 and 2 are allocated heights using a weighting of 2 and 1, respec-

tively. This is a 2:1 ratio of the remaining space; that is, 300 – 80 = 220, yielding values of 147 and 73.

Finally, Page2 has the traditional outer Grid and inner StackPanel for the ApplicationTitle and

PageTitle. Beyond that, however, the remaining space is taken up by a simple Canvas. The Ellipse is

positioned by using absolute values for the X and Y coordinates, speciied as values for the Canvas.

Left and Canvas.Top properties. The upper-left corner of the phone screen is X,Y coordinate 0,0. Note

that these are attached properties (discussed later in this chapter).

<Canvas x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Ellipse Width="80" Height="80" Fill="Green" Canvas.Left="50" Canvas.Top="100"/>

</Canvas>

A Canvas clearly gives you absolute control over the layout of the child elements. The corollary is

that you must specify layout values explicitly, because nothing is done for you. If none of the standard

Panel classes give you the layout control you want, you can consider creating a custom panel.

UserControl vs. Custom Control

The difference between UserControls and Custom Controls is a common source of confusion. Both are

control types that you deine; both are based on a standard type in the base class library; both are
supported in Silverlight; and you can use either or both in a Windows Phone application. So much for

the commonalities; the major differences are listed in Table 2-2.

TABlE 2-2 UserControl vs. Custom Control

Feature userControl Custom Control

Derivation You typically derive a class from UserControl.
Visual Studio will only generate a type de-
rived from UserControl, but you can derive
from another type such as ChildWindow
or PhoneApplicationPage (which is itself a
UserControl), by manually editing the gener-
ated XAML and code iles.

You can derive a class from any Control-
based class, and for complete freedom, you
would derive from the base Control class
itself. You can derive from ItemsControl
if you’re building a custom control for a
collection (think, ListBox). Derive from
ContentControl if your custom control
will have only one piece of content (think,
Button). Derive from Panel if your control
will be used as a layout container (think,
StackPanel).

42 PART I Building Blocks

Feature userControl Custom Control

Tool support Visual Studio provides a project item template
for a Windows Phone UserControl.

Visual Studio provides a project item tem-
plate for a class.

Starter code Visual Studio generates the same code as for a
desktop Silverlight UserControl, there’s noth-
ing phone-speciic about it in the starter code.

Visual Studio generates the same code as for
a desktop Silverlight class, there’s nothing
phone-speciic about it in the starter code.

Designer support You get a XAML ile and a standard code-
behind code ile. This means you get XAML
visual designer support.

You get only a code ile. There is no visual
designer support. Note that you can create
the template visually in Microsoft Expression
Blend.

Canonical use case Use when you want a composite control that
contains other controls, which you can declare
in XAML (or programmatically).

Use when you want completely custom be-
havior that might or might not include any
other controls. Typically used to extend the
behavior of a standard control via subclass-
ing. Also required if you want to support
retemplating.

Developer experience Rapid application development (RAD). Requires more work, and a better under-
standing of Silverlight.

Figure 2-5 is a screenshot of an application that uses a custom layout control (Panel). This is the

CustomPanel solution in the sample code.

FIguRE 2-5 A custom layout panel.

 ChAPTER 2 UI Core 43

The behavior of this control becomes more apparent if you examine the XAML for the application

in which it is being consumed.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <local:MyCustomPanel Background="Transparent" Width="456" Height="500">

 <Rectangle Fill="#FFFF0097"/>

 <Rectangle Fill="#FFA200FF"/>

 <Rectangle Fill="#FF00ABA9"/>

 <Rectangle Fill="#FF8CBF26"/>

 </local:MyCustomPanel>

</Grid>

You can see that the custom control, named MyCustomPanel, contains four Rectangle objects.

None of the children deine a value for Width or Height, yet the control lays out the children using a

scaling factor so that they decrease in size toward the right. If you want this kind of full control over

layout, you must override the MeasureOverride and ArrangeOverride methods. These are called in

sequence. First MeasureOverride is called—and this is your opportunity to specify the size available

for each of the control’s children. If a child already has a width and height deined, then it is common
to specify the smaller of the deined size and the available size. Of course, this is only a guideline;
there’s nothing to stop you from specifying any arbitrary size you like, including a zero size. If you

specify a zero size for any child, then that child will not be displayed. It might even be appropriate

to specify a size that is larger than the available size, if the intended purpose of the control is, for

example, to provide a viewport onto a larger item. Finally, you return the overall size available for

the control itself, which, of course, should be equal to or less than the available size that the system

passes in to MeasureOverride. It should be greater than or equal to the total size of all the children.

After the measure pass is complete, the system calls ArrangeOverride. This is your opportunity

to specify the position and size of each child, and the inal size of the control itself. During this call,
you would typically calculate the position of the children by using their desired sizes as a factor. The

desired sizes were set previously in the MeasureOverride. You are free to lay out your children in any

way you like, including overlapping, off the screen, and not at all.

In this custom control, you deine a scale factor, which is applied in the MeasureOverride to the size

of the irst child and progressively reduced for each subsequent child. In the ArrangeOverride, you

simply lay out all the children in a single row.

public class MyCustomPanel : Panel

{

 private Size maxSize;

 private double baseScaleFactor = 0.9;

 protected override Size MeasureOverride(Size availableSize)

 {

 if (Children.Count > 0)

 {

 double childWidth = Width / Children.Count;

 double childHeight = Width / Children.Count;

44 PART I Building Blocks

 maxSize = new Size(childWidth, childHeight);

 int i = 0;

 double currentScaleFactor = 1.0;

 foreach (FrameworkElement child in Children)

 {

 child.Width = maxSize.Width;

 child.Height = maxSize.Height;

 currentScaleFactor *= baseScaleFactor;

 child.Measure(new Size(

 childWidth * currentScaleFactor, childHeight * currentScaleFactor));

 i++;

 }

 }

 return new Size(Width,Height);

 }

 protected override Size ArrangeOverride(Size finalSize)

 {

 for (int i = 0; i < Children.Count; i++)

 {

 double dw = Children[i].DesiredSize.Width;

 double dh = Children[i].DesiredSize.Height;

 Children[i].Arrange(new Rect(maxSize.Width * i, 0, dw, dh));

 }

 return new Size(Width,Height);

 }

}

Note One drawback of this implementation is that it uses the panel’s Width and Height prop-

erty values inside both methods. However, this requires that these are set in XAML—and they

might not be, if the developer chooses to specify size and position by HorizontalAlignment/

VerticalAlignment, for example.

routed events
UI events in Silverlight are represented by the RoutedEvents class. This is slightly confusing because it

covers both events that are routed and events that are not routed. Or, perhaps more strictly, it covers

events that are fully routed and events that are only partially routed. If you take the perspective of

events that are surfaced for the application code to handle, then a good example of a “routed” event

is the MouseLeftButtonDown event. A good example of a “non-routed” event is the Click event on

a Button. In fact, as you’ll see shortly, the events surfaced to application code are often a façade for

other events.

www.allitebooks.com

http://www.allitebooks.org

 ChAPTER 2 UI Core 45

Figure 2-6 is a screenshot of a simple application (the SimpleEvents solution in the sample code) that

responds to tap events. The page has a standard “starter” layout. That is to say, it consists of a hierar-

chical structure, as shown and described here:

 ■ An unnamed PhoneApplicationPage at the base (outermost) level of the visual tree, which

contains

• A Grid named LayoutRoot, which in turn contains

• A StackPanel named TitlePanel (with two TextBlock controls that are not interesting for

this exercise)

• A StackPanel named ContentPanel (with a green background), and inally

• A Button named MyButton

FIguRE 2-6 This simple application demonstrates event routing and the visual tree.

If the user taps the Button, this raises a non-routed Click event. If the user taps anywhere else, it

raises a routed MouseLeftButtonDown event. On the emulator, of course, this will actually be a physi-

cal mouse left-button down, but on the device, it will be a tap touch event. Under the covers in fact,

for both the emulator and device—and for both the Button and non-Button areas—the initial event

raised as a result of user input is a MouseLeftButtonDown event. The Button class handles this inter-

nally and then raises the Click event as a result. The Click event is routed only as far as the class where

the Button instance is declared, and there is no automatic onward routing.

46 PART I Building Blocks

Contrast this with the raw MouseLeftButtonDown event raised when the user taps any of the other

visual elements. Unlike the Button class, neither the StackPanel, Grid, nor PhoneApplicationPage have

any special logic to handle this event.

In the page class in this example, there are event handlers at every level in the visual tree. However,

if you examine the debug output from these handlers, you’ll see that when the user taps the Button,

only the MyButton_Click handler is invoked. Conversely, if the user taps in the StackPanel outside the

Button, the event is irst handled in the ContentPanel’s handler. After that, it is automatically routed to

the next handler in the tree (the LayoutRoot); from there, it is routed to the outermost Page handler.

At any time, you could stop the routing by setting the Handled property of the MouseButtonEvent

Args to True. In contrast, the RoutedEventArgs that is passed in the Click event does not expose a

Handled property; there is no need to because the event is not automatically onward-routed.

private void MyButton_Click(object sender, RoutedEventArgs e)

{

 Debug.WriteLine("{0} - {1}: MyButton_Click\n",

 sender.GetType(), e.OriginalSource.GetType());

}

private void MyButton_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 Debug.WriteLine("{0} - {1}: MyButton_MouseLeftButtonDown",

 sender.GetType(), e.OriginalSource.GetType());

}

private void ContentPanel_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 Debug.WriteLine("{0} - {1}: ContentPanel_MouseLeftButtonDown",

 sender.GetType(), e.OriginalSource.GetType());

}

private void LayoutRoot_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 Debug.WriteLine("{0} - {1}: LayoutRoot_MouseLeftButtonDown",

 sender.GetType(), e.OriginalSource.GetType());

 //e.Handled = true;

}

private void PhoneApplicationPage_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 Debug.WriteLine("{0} - {1}: PhoneApplicationPage_MouseLeftButtonDown\n",

 sender.GetType(), e.OriginalSource.GetType());

}

Also note that the event handler signature follows the Microsoft .NET standard. The irst parameter
is an object that represents the current source of the event—that is, the current source in the routing

path. The second parameter is the EventArgs (or EventArgs-derived) object that carries any interesting

payload. In the case of routed events, it exposes the Handled property. To be clear, although Mouse

ButtonEventArgs derives indirectly from RoutedEventArgs, it is the MouseButtonEventArgs where the

Handled property is deined, not in the RoutedEventArgs class. The only additional information that

the RoutedEventArgs provides over and above its base EventArgs type is the OriginalSource property,

which is the original source of the event.

 ChAPTER 2 UI Core 47

So, if the user taps within the ContentPanel outside the Button, the OriginalSource is always the

ContentPanel, and the sender will be the object in which the event is being handled. This will vary,

depending on where in the routing path the event has reached.

It is also interesting to note that you have choices about how to connect event handlers. So far, this

example has hooked up the MouseLeftButtonDown event at the level of the ContentPanel in XAML, as

shown in the following:

<StackPanel Background="#FF339933"

 x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0" Height="300"

 MouseLeftButtonDown="ContentPanel_MouseLeftButtonDown">

Instead, you could hook it up in code, as shown in the snippet that follows, which would achieve

exactly the same behavior:

ContentPanel.MouseLeftButtonDown +=

 new MouseButtonEventHandler(ContentPanel_MouseLeftButtonDown);

However, hooking up events in code gives you one further option: you could use the explicit

AddHandler method instead of the += approach, and if you do so, you can then pass an additional

parameter:

ContentPanel.AddHandler(UIElement.MouseLeftButtonDownEvent,

 new MouseButtonEventHandler(ContentPanel_MouseLeftButtonDown), true);

The difference this makes is in the inal parameter; if this is true, the framework will invoke the han-

dler for routed events that have already been marked as handled by another element along the event

route, for example, the MouseLeftButtonDown event that was “handled” by the Button to produce the

Click event.

It is important to note that the routing path follows the visual tree, from the most local (leaf-node)

object to the outermost (root-node). As a performance optimization, therefore, it makes sense to

set Handled=true when you’re sure that you have in fact handled the event and want to prevent any

unnecessary onward routing. Also remember that some visual elements in an application are not part

of the visual tree (Popups, and the Application Bar are the common examples), so they will not be

involved in event routing. Another quirk to note is that if you don’t explicitly set a Background on a

Panel (including StackPanel and Grid), then the event is not routed to the Panel. A Transparent Back-

ground is suficient—it doesn’t need to be visible—but you do also need IsHitTestVisible set to True

(which is the default). In this sample, the ContentPanel has an explicit background and receives events,

but the TitlePanel does not.

Resources

An application typically consists of code plus data. The data can include image iles, media iles (audio
or video), and text iles—indeed, any kind of ile in any format. All of these are considered to be
resources. In addition, the term “resource” has two more speciic meanings in the context of Windows
Phone development. One meaning relates to the way in which you package the resource in your

48 PART I Building Blocks

application’s .xap ile. The other meaning relates speciically to code resources, which will be incorpo-

rated within the application’s XAML. In the following sections, you’ll see the different ways of packag-

ing your resource iles, and your options for deining XAML resources.

Content vs. resource
There are two ways to include resources in a Windows Phone project: either with the build action

set to Content, or with the build action set to Resource. The key differences are listed in Table 2-3,

using as an example an image resource named “MyImage.jpg” in the folder “Images,” at the root of

a project with the assembly name “MyAssembly.” Note that Visual Studio and Expression Blend have

varying defaults for when you add different types of content, so you should always double-check that

you have the value that you want. Also, you can select multiple items in the Visual Studio Solution

Explorer and set the value for all of them in one go. Finally, there are several other build actions avail-

able, as listed in the Visual Studio property grid, but none of the other actions are relevant for phone

applications.

TABlE 2-3 Content vs. Resource

Issue Content Resource

Location in the XAP Loose in the XAP, in the speci-
ied folder

Embedded in the assembly itself

Source path (current assembly) /Images/MyImage.jpg (the
leading slash is optional)

Images/MyImage.jpg (note no leading
slash)

Source path (external assembly) n/a /MyAssembly;component/Images/
MyImage.jpg (note the leading slash)

Performance Faster startup, slower to load
the image

Slower startup, faster to load the image

Performance (media) Faster startup, faster to play
the media

Slower startup, slower to play the media

Assembly size Smaller Bigger

Loading behavior Asynchronous Synchronous

XAP size (Same) (Same)

Optimal use case Application Library

Used for system UI (Application Bar,
SplashScreen, LiveTile, and so on)

Must use Content Cannot use Resource

The following XAML shows valid syntax for loading both Content and Resource images from the

current assembly, and a Resource image from an external assembly:

<!-- Content resource -->

<Image

 Width="200" Height="150"

 Source="/Images/Palms1.jpg"/>

<!-- Internal Resource resource -->

<Image

 Width="200" Height="150"

 Source="Images/Palms2.jpg"/>

 ChAPTER 2 UI Core 49

<!-- External Resource resource -->

<Image

 Width="200" Height="150"

 Source="/ImageLibrary;component/Images/Coconuts.jpg"/>

Once a resource has been read into memory, it can be cached—this is especially true of image

resources. So, if you have only a few small resources, it might be worth taking the load-time perfor-

mance hit incurred when you embed them as resources in the assembly. You need to balance this

against the marketplace certiication requirement that your application must show its irst screen
within 5 seconds of launch, and be responsive to user interaction within 20 seconds. If you embed

too many resources, you can easily exceed these startup limits. There’s an additional twist in the case

of media (audio and video) resources: if these are embedded in the assembly, they will nevertheless

be copied out to iles in isolated storage before they are played back. The underlying reason for this
is because the media functionality on the phone is optimized for playback from network streaming

and from disk ile, but not from memory. In general, therefore, you should never mark audio/video as
Resource.

resource Dictionaries
In Windows Phone development, there are two different concepts of resources:

 ■ Data resources, such as images, text iles, and audio and video iles (discussed above).

 ■ Reusable XAML or code resources, such as styles, templates, brushes, colors, animations, and

so on.

For example, consider the case for which you deine a Brush for the Foreground in a TextBlock. The

simple approach is to deine this Brush inline with the deinition of the TextBlock. You can see this at

work in the SimpleResources solution in the sample code. The XAML that follows results in the irst
piece of text, “Monday”, in Figure 2-7.

<TextBlock Text="Monday">

 <TextBlock.Foreground>

 <LinearGradientBrush>

 <GradientStop Color="#FF339933" Offset="0"/>

 <GradientStop Color="#FFF09609" Offset="1"/>

 </LinearGradientBrush>

 </TextBlock.Foreground>

</TextBlock>

If, however, you ind that you’re using the same Brush for multiple TextBlock controls, then it makes

sense to abstract the deinition to a resource. Typically, you would deine this in a Resources section at

the page level. When you deine a resource it must have a Key name. It is common to use the explicit

“x:” preix, where “x” is deined in the application as the namespace for the standard Silverlight XAML

schema. A resource can have a Name instead of or in addition to a Key. If Key is not speciied, then
Name is used as the key. The reason for this is that Name is a legacy resource syntax that is main-

tained for backward compatibility to support existing Silverlight usage. This is not strictly relevant for

Phone applications, and the preferred approach is to use Key for resource identiiers. Moreover, recall
that when you declare a Name for an element in XAML, this generates a corresponding class member,

50 PART I Building Blocks

plus code in the Initialize method to call FindName to match up the named element with the code

variable. In the case of a resource, it is unlikely that you’ll want to use this class member in code, so

that’s all a waste of time.

<phone:PhoneApplicationPage.Resources>

 <LinearGradientBrush x:Key="MyGradientBrush">

 <GradientStop Color="#FF339933" Offset="0"/>

 <GradientStop Color="#FFF09609" Offset="1"/>

 </LinearGradientBrush>

</phone:PhoneApplicationPage.Resources>

Having deined the resource, you would then consume it by using the {StaticResource} syntax. The

following code consumes the Brush resource, and also consumes two other resources: a Margin and a

FontSize. This is the second piece of text, “Tuesday”, in Figure 2-7.

<TextBlock

 Text="Tuesday" Foreground="{StaticResource MyGradientBrush}"

 Margin="{StaticResource PhoneMargin}"

 FontSize="{StaticResource PhoneFontSizeExtraExtraLarge}"/>

The two standard resources used here are deined in the standard theme resources.

<Thickness x:Key="PhoneMargin">12</Thickness>

<!--54pt-->

<System:Double x:Key="PhoneFontSizeExtraExtraLarge">72</System:Double>

Note that PhoneApplicationPage.Resources is of type ResourceDictionary. A ResourceDictionary is a

DependencyObject that implements IDictionary, so it contains a regular collection of key-value pairs.

The key is an arbitrary string that the application deines. The value is the resource itself. There is a
inite list of types that can be put into a resource dictionary. For an object to be deined in a resource
dictionary, it must be shareable. This is required because when the object tree of an application is

constructed at runtime, any given object cannot exist at multiple locations in the tree. So, it must exist

at one location in the tree, and therefore be shareable from that location to all its consumers in the

tree. The following types are supported:

 ■ Styles and templates

 ■ Brushes and colors

 ■ Animation types, including storyboards

 ■ Transforms, Matrix, Matrix3D, and Point structure values

 ■ Custom types deined in the application code and instantiated in XAML as a resource, includ-

ing resource and value converters

 ■ Strings and basic numeric values such as double and int

It’s worth mentioning that any type of UIElement (such as a Control) is not supported.

 ChAPTER 2 UI Core 51

Although you typically deine such resources at the page level, you can in fact deine resources
for any FrameworkElement—that is to say, for any element in the logical tree. For example, you could

deine the resource at the level of the StackPanel that contains the TextBlock. Just to illustrate the

point, the following deinition uses different colors:

<StackPanel.Resources>

 <LinearGradientBrush x:Key="MyGradientBrush">

 <GradientStop Color="#FFA200FF" Offset="0"/>

 <GradientStop Color="#FF00ABA9" Offset="1"/>

 </LinearGradientBrush>

</StackPanel.Resources>

Note, however, that this deinition speciies the same Key name. If a different Key name is used,

then the consuming code could choose to use either of the two resources. If the same resource (that

is, with the same Key name) is deined at two or more different levels in the tree, then the system uses
the one that is most local to the consuming element. In the current example, the visual tree is essen-

tially Page➝StackPanel➝TextBlock. So, if the same resource is deined at both Page and StackPanel

levels, the system will use the more local StackPanel version.

In addition to FrameworkElements, you can also deine resources for the Application class.

Application-level resources are clearly available to all pages within the application. The example that

follows deines a Brush resource with the key “MyAppGradientBrush”. In the page code, you consume

this on a third TextBlock. In the screenshot in Figure 2-7, this is the third piece of text (“Wednesday”).

<Application.Resources>

 <LinearGradientBrush x:Key="MyAppGradientBrush">

 <GradientStop Color="#FFE671B8" Offset="0"/>

 <GradientStop Color="#FF8CBF26" Offset="1"/>

 </LinearGradientBrush>

</Application.Resources>

To resolve a resource reference, the Silverlight runtime walks the logical tree outward in scope,

from child to parent, starting with the consuming element. So, it will start with the object where the

actual usage is applied and that object’s own Resources property. If that resource dictionary is not

null, then the system searches in that dictionary for the speciied resource, based on its key. If it is
found, the lookup stops and the resource is applied. Note that it is not generally useful to deine a
resource within the object where it is consumed; the value is only accessible within that object, thus

you might as well deine the values inline, instead of taking the performance hit of resource reso-

lution. If the resource is not found in the immediate object’s resource dictionary, the lookup then

proceeds to the next outer (parent) object in the tree and searches there. This sequence continues

until the root element of the XAML is reached, exhausting the search of all possible immediate (that

is, page or frame-level) resource locations. If the requested resource is not found in the page-level

resources, then the runtime checks the Application resources. If the resource is not found there, you’ll

get a XAML parse error.

Clearly, you would deine your resources at a level that provides the reuse you want. Typically, this
means at the page level if the resource is used by multiple elements on that page, or at the applica-

tion level if it is used across multiple pages. In addition, you can deine resources in external iles, and

52 PART I Building Blocks

then merge those iles into your application-level or page-level resource dictionaries. For example,
you could add a new XML ile to the project, naming it perhaps MyResources.xaml. The default build

action for a XAML ile is Page, which is what you need in order to have the external resources built

into the assembly. In this ile, you can deine one or more resources in a ResourceDictionary. The fol-

lowing example deines a Brush resource with the key “MyOtherBrush”:

<ResourceDictionary

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <LinearGradientBrush x:Key="MyOtherBrush">

 <GradientStop Color="#FFFF0097" Offset="0"/>

 <GradientStop Color="#FFA05000" Offset="1"/>

 </LinearGradientBrush>

</ResourceDictionary>

In the application, you instruct the XAML parser to merge this resource dictionary into any of the

resource dictionaries in the application, either for any FrameworkElement or at the Application level.

<Application.Resources>

 <ResourceDictionary>

 <LinearGradientBrush x:Key="MyAppGradientBrush">

 <GradientStop Color="#FFE671B8" Offset="0"/>

 <GradientStop Color="#FF8CBF26" Offset="1"/>

 </LinearGradientBrush>

 <ResourceDictionary.MergedDictionaries>

 <ResourceDictionary Source="MyResources.xaml" />

 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>

</Application.Resources>

Then, you can consume this just like any other accessible resource in the project. This results in the

text “Thursday” in Figure 2-7.

<TextBlock

 Text="Thursday" Foreground="{StaticResource MyOtherBrush}"

 Margin="{StaticResource PhoneMargin}"

 FontSize="{StaticResource PhoneFontSizeExtraExtraLarge}"/>

Note that using merged resource dictionaries affects both the lookup sequence and also the key

uniqueness requirements. In the lookup sequence, a merged resource dictionary is checked only after

checking all the resources of the local resource dictionary.

You can specify more than one ResourceDictionary within MergedDictionaries. Once the lookup

behavior exhausts the search in the main dictionary and reaches the merged dictionaries, each item

in MergedDictionaries is checked, but in the inverse order that they are declared in the Merged

Dictionaries property—that is, in last-in, irst-out (LIFO) order. Why is this? You might expect that
a more logical sequence would be irst-in, irst-out (FIFO), in the order in which dictionaries are
declared. The order is reversed to allow for dynamic additions to the collection. The classic scenario

for which this is used is user preferences. These would be known only at runtime, and would need to

take precedence over any static resources. For this reason, you must search the user preferences irst,
and for that to happen, the search order must be LIFO.

http://msdn.microsoft.com/en-us/library/system.windows.resourcedictionary.mergeddictionaries(VS.95).aspx

 ChAPTER 2 UI Core 53

Also, the key uniqueness requirement does not extend across merged dictionaries. This means that

you could deine the same key in multiple merged dictionaries. As always, the search for keys stops
when a match is found, so any duplicate keys later in the search sequence are irrelevant.

A resource can reference another resource, but only if that other resource has already been

encountered in the lookup sequence. Forward references are illegal; thus, you need to understand the

lookup sequence in order to avoid forward references. So, any resources that will be referenced by

other resources need to be deined at an earlier point in the lookup sequence—which translates to a
wider scope.

Finally, you can consume resources that are deined in an external assembly. This takes the
reuse aspect of resource dictionaries to its logical conclusion. Beyond deining resources in an
external XML ile, you can build that ile (or multiple such iles) into a separate library assembly.
The deinition of the resources doesn’t change; you could build the exact same MyResources.xaml

ile into a separate assembly. The consumption of these resources does change: you must use the
“/<AssemblyName>;component/<path-to-resource-XAML>” syntax:

<Application.Resources>

 <ResourceDictionary>

 <ResourceDictionary.MergedDictionaries>

 <ResourceDictionary

 Source="/ResourceLibrary;component/MyLibraryResources.xaml" />

 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>

</Application.Resources>

In the SimpleResources solution (in the sample code), this last resource is used for the ifth Text

Block (“Friday”). The resulting UI from all the foregoing resource approaches is shown in Figure 2-7.

FIguRE 2-7 Using XAML resources and resource dictionaries.

54 PART I Building Blocks

Dependency and Attached Properties

The Common Language Runtime (CLR) supports a code design in which a class can expose properties.

Silverlight adds two additional features on top of CLR properties: dependency properties and attached

properties. You can use these features to make your classes interoperate more seamlessly with the

Silverlight runtime, and they’re especially useful if you have highly customized UI requirements.

Dependency Properties
Dependency properties are part of the Silverlight infrastructure. They are designed to augment basic

CLR properties with features such as visual inheritance, animation, and data binding. They provide

a structured way to give properties a default, inherited, or animated value, and to provide callbacks

that are invoked when the value of the property changes. Almost all Silverlight class properties are

dependency properties. If you want to create a custom control that exposes properties—and you

want those properties to be settable in styles, templates, transforms, data bindings, or as targets of

animation—then they must be set up as dependency properties.

In this example, you implement a custom Button that exposes a Direction property. This Direction

property is used internally to govern which one of two different images to use for the Button content.

Any class that implements dependency properties must derive (directly or indirectly) from

DependencyObject. The custom class derives from Button, which has DependencyObject in its hierar-

chy. Your class has a regular property, Direction (of type Direction, which might be a little confusing

to humans, but not to the compiler), which uses the DependencyObject.GetValue/SetValue methods.

The regular property is not backed by a private ield; instead, it is backed by a Silverlight-maintained
property repository. A dependency property has a public static ield of type DependencyProperty,

which has the same name as the underlying regular property but with “Property” appended to it. You

set up a dependency property by registering its property name, type, the type of the enclosing class,

the default value, and the callback to be invoked when the property value changes, as demonstrated

in the following:

public enum Direction { Up, Down }

public class CustomButton : Button

{

 private static Image arrowUp;

 private static Image arrowDown;

 public Direction Direction

 {

 get { return (Direction)GetValue(DirectionProperty); }

 set { SetValue(DirectionProperty, value); }

 }

 public static readonly DependencyProperty DirectionProperty =

 DependencyProperty.Register("Direction",

 typeof(Direction),

 typeof(CustomButton),

 new PropertyMetadata(Direction.Up, OnDirectionChanged));

 }

 ChAPTER 2 UI Core 55

In the constructor, you initialize two alternative Image objects that correspond to the two possible

Direction property values.

public CustomButton()

{

 arrowUp = new Image();

 BitmapImage bmp = new BitmapImage(new Uri(

 "/Images/black_arrow_up.png", UriKind.Relative));

 arrowUp.Source = bmp;

 arrowDown = new Image();

 bmp = new BitmapImage(new Uri(

 "/Images/black_arrow_down.png", UriKind.Relative));

 arrowDown.Source = bmp;

 this.Content = arrowUp;

}

In the OnDirectionChanged callback, you fetch the new Direction property value from the

EventArgs provided in the call and switch the Content to the up or down image, accordingly.

static void OnDirectionChanged(

 DependencyObject sender, DependencyPropertyChangedEventArgs e)

{

 CustomButton button = sender as CustomButton;

 Direction d = (Direction)e.NewValue;

 if (d == Direction.Up)

 {

 button.Content = arrowUp;

 }

 else

 {

 button.Content = arrowDown;

 }

}

In the XAML, set up a namespace for the current assembly so that you can access the types in the

XAML itself.

<phone:PhoneApplicationPage

...

 xmlns:local="clr-namespace:TestDependencyProps"

>

There are various ways you can use your custom dependency property. One is to set up a Style

resource, as shown here:

<phone:PhoneApplicationPage.Resources>

 <Style x:Key="DownButtonStyle" TargetType="local:CustomButton">

 <Setter Property="Direction" Value="Down"/>

 </Style>

</phone:PhoneApplicationPage.Resources>

56 PART I Building Blocks

You can also set the property directly at the point where you declare an instance of the custom

button. In the following example, the irst Button has its Direction property set directly, the second

one falls back on the default value (Up), and the third one uses the custom style:

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <local:CustomButton Width="100" Direction="Down"/>

 <local:CustomButton Width="300"/>

 <local:CustomButton Width="150" Style="{StaticResource DownButtonStyle}"/>

</StackPanel>

Figure 2-8 shows the results of these three custom buttons. This is the TestDependencyProps solu-

tion in the sample code. This might seem like a lot of work to expose a property, but it does allow

the property to be used in ways that are not possible for a standard CLR property. For example, you

cannot use a standard CLR property in the Setter element of a Style, nor can you reference a standard

CLR property in the XAML attributes for an element instance (unless you construct a custom object as

part of a ResourceDictionary). Plus, of course, you cannot use it directly in data binding or animation.

FIguRE 2-8 A demonstration of dependency properties.

Attached Properties
Earlier in this chapter, you learned how to create a custom Panel type that lays out its child controls

by using a decreasing scale factor. It is often useful to be able to deine the value of a parent control’s
property in the deinition of the child. This is especially applicable to custom Panel types. To continue

the earlier example, suppose that instead of having a ixed scaling factor, you want to allow each child to
specify its own scale factor. Figure 2-9 shows the desired effect (see the CustomPanel_Attachable

Property solution in the sample code).

 ChAPTER 2 UI Core 57

FIguRE 2-9 An application with a custom panel, using attached properties.

The listing that follows shows how you want to use the modiied custom Panel in the application

code. In this scenario, you don’t want to specify a scaling factor for the control itself, because then

it would apply to all children. Instead, you want to specify a different scaling factor for each child. In

XAML, you can provide a value for the ScaleFactor for each child as though it were a property of the

child itself. You’re effectively attaching the ScaleFactor property of the parent control to the child element.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <local:MyCustomPanel Background="Transparent" Width="456" Height="500">

 <Rectangle Fill="#FFFF0097" local:MyCustomPanel.ScaleFactor="0.25"/>

 <Rectangle Fill="#FFA200FF" local:MyCustomPanel.ScaleFactor="0.5"/>

 <Rectangle Fill="#FF00ABA9" local:MyCustomPanel.ScaleFactor="0.75"/>

 <Rectangle Fill="#FF8CBF26" local:MyCustomPanel.ScaleFactor="1.0"/>

 </local:MyCustomPanel>

</Grid>

To use this scale factor value in the control’s layout computations, you can make a simple change

to the MeasureOverride: use the ScaleFactor dependency property for the child instead of the previ-

ous ixed value.

protected override Size MeasureOverride(Size availableSize)

{

 if (Children.Count > 0)

 {

 double childWidth = Width / Children.Count;

 double childHeight = Height / Children.Count;

58 PART I Building Blocks

 maxSize = new Size(childWidth, childHeight);

 int i = 0;

 double currentScaleFactor = 1.0;

 foreach (FrameworkElement child in Children)

 {

 child.Width = maxSize.Width;

 child.Height = maxSize.Height;

 currentScaleFactor =

 //baseScaleFactor;

 (double)child.GetValue(ScaleFactorProperty);

 child.Measure(new Size(

 childWidth * currentScaleFactor, childHeight * currentScaleFactor));

 i++;

 }

 }

 return new Size(Width, Height);

}

To make the property attachable in the irst place, you need to enhance the custom control class
with an additional public static ield of type, DependencyProperty. For a regular dependency property,

you would invoke the Register method to register this with the runtime. For an attachable depen-

dency property, you instead invoke the RegisterAttached method. Also, instead of a regular CLR prop-

erty backing this dependency property, you need to specify a pair of GetXXX and SetXXX methods.

public static readonly DependencyProperty ScaleFactorProperty =

 DependencyProperty.RegisterAttached(

 "ScaleFactor", typeof(double), typeof(MyCustomPanel), null);

public static double GetScaleFactor(DependencyObject obj)

{

 return (double)obj.GetValue(ScaleFactorProperty);

}

public static void SetScaleFactor(DependencyObject obj, double sf)

{

 obj.SetValue(ScaleFactorProperty, sf);

}

Note that passing null as the last parameter to RegisterAttached means that the panel will show

items as zero width and height if you omit the attached property. This might be acceptable, but it is

generally more useful to provide a non-zero default value, especially where the property relates to

some size variable. So, a better registration would be the following:

public static readonly DependencyProperty ScaleFactorProperty =

 DependencyProperty.RegisterAttached(

 "ScaleFactor", typeof(double), typeof(MyCustomPanel), new PropertyMetadata(1.0));

With this updated registration, the following two lines of XAML would then be effectively identical:

<Rectangle Fill="#FF8CBF26" local:MyCustomPanel.ScaleFactor="1.0"/>

<Rectangle Fill="#FF8CBF26"/>

 ChAPTER 2 UI Core 59

The model of attachable properties allows you to extend existing controls with custom character-

istics. In the preceding example, you could use any control type (Button, CheckBox, ListBox, and so on)

as a child within the custom Panel and deine a value for the attached property. In fact, you could use
any DependencyObject type. But what is the thinking behind this slightly unusual model? You want

a property of some parent control to be attached to its children and deinable in the deinition of
the child instances. How else could this be achieved? Consider the alternatives. Inheritance wouldn’t

work because you’d have to deine the required property in some base class so that all children would
inherit it. For example, perhaps provide the property in the base Control class. This might serve the

purpose where child controls such as Button and CheckBox would inherit it. It would not work for

Panels or shapes such as Rectangle, because Panel and Shape derive from FrameworkElement not

Control. One problem is that the parent-child visual relationship has nothing to do with the parent-

child inheritance relationship. For inheritance to be a suitable solution, you’d have to ensure that all

properties you want to include in the model are deined on all base classes of all types that could be
used as visual children. You’d end up with an inverted hierarchy, where base classes are stuffed with

properties that are used only by some subset of children. Worse, the system would not be extensible.

In addition to the logical perspective, attachable properties are actually physically attached to the

object for which they’re deined. So, in the example, the memory for the Rectangle objects includes

their attached properties. However, the attached properties do not form part of the object type. To

illustrate this, you could declare the XAML that follows, in which the ScaleFactor property is attached

to a Rectangle, but that Rectangle does not live in the context of a MyCustomPanel. This will compile

and run quite happily, but there might be nothing that will ever read the attached property value.

<Grid Grid.Row="2" Margin="12,0,12,0" Width="456" Height="200">

 <Rectangle Fill="#FFA05000" local:MyCustomPanel.ScaleFactor="0.25"/>

</Grid>

This is validation of the extensibility of the model: to attach a property, you don’t have to make

any changes to the target type, and nothing breaks if you attach a property, regardless of whether it

is actually used.

summary

This chapter explored the basic UI infrastructure on the phone and looked at the similarities and dif-

ferences between Windows Phone development and Silverlight desktop development as well as the

various options for layout, controls, resources, and coding approaches to building the UI. You saw

some of the subtleties involved in using resource dictionaries and dependency properties, both of

which make it easier for designers and developers to work on the same project.

 61

C h A P T E R 3

Controls

Chapter 2, “UI Core,” illustrated how you can create your own custom controls when necessary.

However, the Windows Phone application platform includes a set of standard controls that are

based on the standard Microsoft Silverlight controls. In addition, the SDK includes three additional

controls, which, for all intents and purposes, you can treat as if they were a part of the platform. If

that’s not enough, you can also use the set of controls that are in the Silverlight Toolkit, which is a

separate download. All of these standard controls conform to the Metro design and usability prin-

ciples, so you should use them in preference to custom controls wherever possible. The UI model, in

conjunction with the phone-speciic UI controls, not only make phone development easier, but also
allow developers to build applications that are more engaging, user-friendly, and actually perform

better than desktop applications.

standard Controls

There is a rich set of standard controls that meet the requirements of most applications, avoiding the

need to build custom controls. The full set of standard controls includes the controls in the Windows

Phone platform itself, plus the controls in the Windows Phone SDK and the controls in the Silverlight

Toolkit, as described in the following sections.

Platform, SDK, toolkit
Table 3-1 presents the three categories of “standard” libraries that implement controls used in Win-

dows Phone applications.

TABlE 3-1 Standard, SDK, and Toolkit Control Assemblies

source Assembly Compile-Time Reference location

Platform System.Windows.dll, Microsoft.Phone.
dll

%ProgramFiles%\Reference Assemblies\Microsoft\
Framework\Silverlight\v4.0\Proile\WindowsPhone\

SDK Microsoft.Phone.Controls.dll,
Microsoft.Phone.Controls.Maps.dll

%ProgramFiles%\Microsoft SDKs\Windows Phone\v7.x\
Libraries\Silverlight\

Toolkit Microsoft.Phone.Controls.Toolkit.dll %ProgramFiles%\Microsoft SDKs\Windows Phone\v7.x\
Toolkit\<release-date>\Bin\

62 PART I Building Blocks

Note that the Standard and SDK controls are part of the Windows Phone SDK, but the Toolkit is a

separate download (see Chapter 1, “Vision and Architecture,” for details). Table 3-2 provides a list of

controls that are available in each category.

TABlE 3-2 Platform, SDK, and Toolkit Controls

source Controls

Standard Border, Button, Canvas, CheckBox, Grid, HyperlinkButton, Image, ListBox, MediaElement, PasswordBox,
ProgressBar, RadioButton, ScrollViewer, Slider, StackPanel, TextBlock, TextBox, WebBrowser

SDK Map, Panorama, Pivot

Toolkit AutoCompleteBox, ContextMenu, DatePicker, GestureService, ListPicker, LongListSelector, PageTransitions,
TimePicker, ToggleSwitch, WrapPanel

Apart from the inal assemblies where the controls are implemented, the supported controls can
also be categorized slightly differently, based on how they are implemented under the covers:

 ■ Customization of Existing silverlight Controls Many controls have a corollary in Silver-

light; for example, the Button family contains Push, Radio, and Checkbox. These are based on

the existing Silverlight control in the System.Windows.Controls namespace, enhanced with a

new control template to give them the Metro look and feel.

 ■ new Controls In some cases, there was no existing Silverlight control suitable for skin-

ning. For these, a new control was built in the Microsoft.Phone.Controls namespace. The best

examples of these new controls are Pivot and Panorama. Note that they were not built from

scratch. Silverlight has a rich control infrastructure that emphasizes reuse. All but the most

basic Silverlight controls are composed of reusable primitives. For example, the ListPicker is

based on the Silverlight ItemsControl that is the heart of all Silverlight list controls.

To implement the Metro user experience (UX) in Silverlight, Microsoft performed the following

additional work across the Silverlight control set:

 ■ software Input Panel (sIP) and Input Method Editor(IME) IME is the feature with which

users can add characters or symbols that are not on the keyboard/SIP. These were both inte-

grated for TextBox.

 ■ Touch/gesture enabling Silverlight enabled this off the UIElement class, which is very high

up in the Silverlight framework hierarchy, thereby enabling this support for any visual element.

 ■ scrolling To support the Metro scrolling behavior and visual indicator, Silverlight updated

the ScrollViewer and Scrollbar.

 ChAPTER 3 Controls 63

SDK Controls: Pivot
The Pivot control is designed to provide a delightful way for the user to switch between alternate

views in an application or to ilter large datasets on the small screen of a mobile device. The control’s
experience is optimized for the following uses:

 ■ Filtering large datasets, where it is typically used in conjunction with a ListBox. Data from the

same data set can be presented in different ways (for example, a collection of songs iltered by
title, artist, genre, and so on).

 ■ Displaying related content from different data sets (for example, viewing different segments of

information about the same contact).

 ■ Switching application views without the use of multiple pages (to provide a sub-page-level

transition experience).

The Pivot control is designed to behave in a fast, luid fashion, and to be enjoyable to use. In addi-
tion to standard touch gesture support, it is highly responsive and incorporates carefully designed

animations and transitions. It participates in the device orientation experience and includes smart

relow of the UI when a device is rotated.

Note Usability studies arrived at the conclusion that the Pivot control should not contain

more than seven pages. This is intended to prevent cognitive overload to the user. While

the developers of the Pivot have not put any hard limit on the number of PivotItems a Pivot

can contain, there was no extra effort expended to support scenarios that use more than

seven items.

Conceptually, the Pivot control is divided into the following three logical panes, as deined in the
XAML for the Pivot control itself:

 ■ A title, which is the same as any other page title, represented in code by the Pivot.Title property

 ■ A header for each item, represented by the PivotItem.Header property

 ■ A “content pane” represented by the PivotItem itself

 ■ These three panes are animated in different ways, and the user will therefore understand that

there are three panes. However, in the application code where a Pivot is used, these three

panes are represented by two entities (in XAML and code-behind): the Pivot control and the

PivotItem control. The Pivot exposes a Title property, and the PivotItem exposes a Header

property. As far as application code is concerned, the Header is part of each PivotItem, although

at runtime the Header is processed as part of the collection of headers within the Pivot control.

A page can contain one or more Pivot controls, but you are encouraged to restrict yourself to

one per page, and to make your Pivot the full height and width of the page. A Pivot control

may in turn contain an arbitrary number of PivotItem controls. The basic elements of a Pivot

are shown in Figure 3-1.

64 PART I Building Blocks

title

headers

PivotItem

FIguRE 3-1 The fundamental elements of the Pivot control, using the standard project template.

Note that if you supply header text that is too long, it is simply cut off at the end of the screen. If

this happens, the user will not be able to tap on another Header to transition out of the current item.

Instead, she would have to pan or lick the current Header or PivotItem body. Also note that the Pivot

Item Header is a ixed height across all PivotItems in the same Pivot control.

The Pivot control supports the following special animations and transitions:

 ■ Initial ly in, with the title and headers appearing irst, followed by the content for the irst (or
last visited) PivotItem.

 ■ When transitioning between items, the new header and any new headers to the right or left

are rendered irst, followed by a custom animation on the PivotItem content, and lastly, the old

header in the case where this has wrapped to the end.

 ■ When moving to a different item, both the PivotItem Header and PivotItem itself visually

update simultaneously.

 ■ When the user licks left/right from one pivot item to another, the display always comes to rest
locked on one whole pivot item.

 ■ When the user licks right beyond the last item, the display wraps to the irst item.

 ChAPTER 3 Controls 65

By default, user input is irst handled by the PivotItem if the input starts in the PivotItem, and by

the Header if started in the header area. If the input is not handled by the PivotItem, it is passed to the

Pivot control. If the Pivot control does not handle it, it is passed to the parent. Touch input is deined
for the entire Pivot control, unless speciied otherwise. Table 3-3 assumes that the PivotItem did not

handle the input—that is, the input was passed to the Pivot control.

TABlE 3-3 Pivot Control Behavior

gesture header/PivotItem Behavior

Tap, Double-Tap, or
Press-and-Hold

Header If the currently active item is tapped, nothing happens. If a different
header is tapped, this moves to the tapped item.

PivotItem Handled by the content of the item.

Pan Right/Left Both Moves to the next item.

Pan Up/Down Header Nothing.

PivotItem Handled by the content of the item.

Flick Right/Left Both Moves to next item.

Flick Up/Down Header Nothing.

PivotItem Handled by the content of the item.

Pinch-and-Stretch Header Nothing

PivotItem Handled by the content of the item.

The following example (the TestPivot solution in the sample code) shows the barest minimum use

of a Pivot control so that you can focus on the key features. The page has one Pivot control, which in

turn has three PivotItem elements. Each PivotItem has a simple shape (Ellipse, Rectangle, or Path).

<controls:Pivot Title="CONTOSO">

 <controls:PivotItem Header="one">

 <Ellipse Width="100" Height="100" Fill="#339933"

 VerticalAlignment="Top" HorizontalAlignment="Left"

 Margin="{StaticResource PhoneHorizontalMargin}"/>

 </controls:PivotItem>

 <controls:PivotItem Header="two">

 <Rectangle Width="100" Height="100" Fill="#F09609"

 VerticalAlignment="Top" HorizontalAlignment="Left"

 Margin="{StaticResource PhoneHorizontalMargin}"/>

 </controls:PivotItem>

 <controls:PivotItem Header="three">

 <Path Fill="#1BA1E2" Data="M 50,0 L 100,100 L 0,100 Z"

 Margin="{StaticResource PhoneHorizontalMargin}"/>

 </controls:PivotItem>

</controls:Pivot>

The three PivotItems are shown in Figure 3-2.

66 PART I Building Blocks

FIguRE 3-2 A basic pivot application with three pivot items.

Note that the standard text styles all use a left and right margin of 12 pixels, deined as the Phone

HorizontalMargin resource. (That’s why the shapes in this example are set to this same margin.) You

can also set a background image on a Pivot. This should be between 480x696 and 480x800 in size,

depending on your coniguration of the SystemTray and ApplicationBar (see Table 2-1, in Chapter 2). If

you supply a different size, the image will be scaled to one screen, which does not change as the user

licks from one pivot item to another.

<controls:Pivot Title="My Pivot App">

 <controls:Pivot.Background>

 <ImageBrush ImageSource="PivotBackground.jpg"/>

 </controls:Pivot.Background>

It is possible to create a page that has more than one Pivot control on it; however, this is a tech-

nique that you should use judiciously. No matter how big the emulator looks on your huge desktop

monitor, never forget the extreme constraints of the real phone device screen. With that caveat, it is

actually very simple to create a multi-Pivot page. No technical restriction was imposed here, because

it was felt that there were legitimate scenarios in which this might be useful. It comes under the head-

ing of “things we let the developer do, even though he could shoot himself in the foot with it if he’s

not very careful.”

Figure 3-3 illustrates such an application (the TwoPivots solution in the sample code). There are two

Pivot controls on the main page, each with two PivotItem elements. The top Pivot displays simple lists

of strings (people names and city names). The irst PivotItem in the bottom Pivot displays a “details”

page of text for the currently selected item in the people list in the top Pivot. The second PivotItem

in the bottom Pivot displays a collection of photos associated with the selected person. The user can

interact with each Pivot independently.

 ChAPTER 3 Controls 67

FIguRE 3-3 A page with two linked Pivot controls.

The item-level viewmodel is a simple PersonViewModel type that represents a person, with prop-

erties exposed for ID, Name, Email, Phone, and City. A set of these items is created in the LoadData

method. In addition to the simple string ields, each PersonViewModel has a collection of photos,
which are identiied by a string path value.

List<string> photos = new List<string>();

photos.Add("/Images/Coconuts.jpg");

photos.Add("/Images/Palms.jpg");

photos.Add("/Images/Sea.jpg");

People.Add(new PersonViewModel()

{

 ID = 1,

 Name = "roger harui",

 Email = "rogerh@contoso.com",

 Phone = "123 7890",

 City = "Seattle",

 Photos = photos

});

... etc for the other PersonViewModel items.

From the XAML, you can see that the default Grid is replaced with a StackPanel. This is done to

simplify positioning of the child elements. Then, two Pivot controls are stacked up, one on top of

the other, each with its own collection of PivotItem elements. The top Pivot has its ItemsSource set

to the collection of PersonViewModel items in the MainViewModel, and the two PivotItem elements

each have a simple ListBox with data bound to the Name and City of the respective item. The bottom

PivotItem elements bind to the Name, Pivot, Phone, and Photos collection items.

68 PART I Building Blocks

<StackPanel x:Name="LayoutRoot" Background="Transparent">

 <controls:Pivot Height="380">

 <controls:PivotItem Header="people">

 <ListBox

 x:Name="PeopleListBox" ItemsSource="{Binding People}"

 SelectionChanged="PeopleListBox_SelectionChanged">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock Text="{Binding Name}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </controls:PivotItem>

 <controls:PivotItem Header="cities">

 <ListBox

 x:Name="CitiesListBox" ItemsSource="{Binding People}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock Text="{Binding City}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </controls:PivotItem>

 </controls:Pivot>

 <controls:Pivot>

 <controls:PivotItem Header="details" x:Name="DetailsPivot">

 <Grid>

 <TextBlock Text="name "/>

 <TextBox Text="{Binding Name}"/>

 <TextBlock Text="email " />

 <TextBox Text="{Binding Email}" />

 <TextBlock Text="phone " />

 <TextBox Text="{Binding Phone}" />

 </Grid>

 </controls:PivotItem>

 <controls:PivotItem Header="photos" >

 <ListBox x:Name="PhotosList">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel>

 <Image Source="{Binding}" Height="150"/>

 <Grid Height="8"/>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </controls:PivotItem>

 </controls:Pivot>

</StackPanel>

 ChAPTER 3 Controls 69

To ensure that the bottom Pivot correctly populates its elements, the SelectionChanged handler on

the PeopleListBox sets the current item as the DataContext for the “details” PivotItem in the bottom

Pivot, and sets the ItemsSource of the photos ListBox to the Photos collection of that item.

private void PeopleListBox_SelectionChanged(

 object sender, SelectionChangedEventArgs e)

{

 PersonViewModel pe = (PersonViewModel)((ListBox)sender).SelectedItem;

 DetailsPivot.DataContext = pe;

 PhotosList.ItemsSource = pe.Photos;

}

SDK Controls: Panorama
The Panorama control is essentially a wide horizontal canvas, which hosts arbitrary child controls. It

is intended to be beautiful and engaging, and is primarily for use in high-visibility areas like the entry

point page of an application. Figure 3-4 illustrates the logical user experience of an application with a

Panorama that has three PanoramaItem children. You can see this behavior at work in the TestPanorama

solution in the sample code.

FIguRE 3-4 The Panorama control provides an engaging user experience.

70 PART I Building Blocks

The Panorama is provided to support parts of the application that are inspired by user experiences

such as:

 ■ Casual browsing in a magazine, where the user is encouraged to explore content in a non-

task-directed way.

 ■ More data-dense information hubs for which the bigger logical real estate of a Panorama

enables the user to achieve more targeted goals such as looking for a speciic contact or game
to play.

The Panorama contains the following attributes that distinguish it from a standard view:

 ■ It is wider than the normal 800x480 screen window to facilitate smooth left/right panning, as

opposed to the discrete jumps offered by the Pivot control. The width is variable, so it will be

different from one Panorama to another.

 ■ Speciic use of background and foreground animation layers while panning. The layers pan at
different speeds, similar to parallax (depth of ield) effects but with a somewhat different phys-
ics model.

Table 3-4 summarizes the gestures and navigational effects supported in the Panorama control.

Note that these all follow the standard Metro gesture rules.

TABlE 3-4 Panorama Control Behavior

gesture Description

horizontal pan Draggable space is anywhere on the screen even if assigned as the hit area of a hosted control.

horizontal lick Flick can span hosted controls and even (with suficient velocity) section boundaries.

vertical pan or lick Vertical scrolling is triggered according to the content of the Panorama, such as when the ges-
ture falls over a list or grid that has more vertical items than will it in the visible screen area.

If a Panorama hosts a vertically scrolling control, the Panorama only scrolls the hosted control

contents plus the control label, not the Panorama headers, other labels, or controls. The horizon-

tal Panorama canvas therefore remains in focus at all times around the edges. It never scrolls up or

down, only the list itself moves, cropping under the Panorama header.

The Panorama never scrolls both vertically and horizontally at the same time. There is no diago-

nal motion; rather, the Panorama locks to either vertical or horizontal as soon as it computes the

direction, angle, and location span of the gesture. The baseline UX is that the Panorama itself scrolls

horizontally, while hosted list controls scroll vertically. This can be made more complex if the Panorama

hosts controls such as a horizontal WrapPanel, which can scroll horizontally within the broader

Panorama horizontal scrolling.

A Panorama is made up of four layers, each with its own animation logic, as described in Table 3-5.

 ChAPTER 3 Controls 71

TABlE 3-5 Panorama Animation Logic

layer Description Animation Rules

Background Image ■ Optional. Spans the entire Pan-
orama. Must be at least 480 pixels
wide, and can be much wider—
up to 1024 is recommended. Full
bleed top to bottom.

 ■ Has a ~30 percent transpar-
ent black or white opacity ilter
applied (depending on the active
theme), to aid in text legibility.

The rate of motion relative to the panning gesture
is determined by the total width of the (top) content
layer compared to the width of the background art. In
other words, the narrower the background, the slower
the motion across it. When wrapping end-to-end, it
animates completely off and then back onto the visible
area.

Panorama Title ■ Optional. This is the name of the
entire Panorama screen, which
spans all sections of the
Panorama (via motion).

Left-aligned, and stretched across the full Panorama
width, such that some part of it is always visible, re-
gardless of how many PanoramaItem child items there
are. If there are very few items (perhaps only one), then
the Title will extend beyond the item(s), as they wrap
beneath it. The Title tends to move slowly in relation to
the top content layer, but faster than the Background
Image. It animates completely off and then back onto
the visible area when wrapping end-to-end.

PanoramaItem
Header

 ■ Optional, on a per-item basis.
Spans the individual section (via
motion).

Left-aligned across the item width. The Header ani-
mates in sync with the item content, and completely
off when user navigates to a new item.

Content ■ Optional, on a per-item basis. The rate of motion matches inger drag as closely as
possible.

The standard SystemTray would interfere with the immersive parallax effect of the Panorama, so

this is not displayed on a Panorama in Windows Phone 7. In version 7.1, The SystemTray exposes an

Opacity property, so the guidance here is to keep it visible but set its Opacity to 0 so that the user can

see the critical SystemTray information while minimizing interference with the Panorama. It is pos-

sible to use an Application Bar on a Panorama, but the effect is suboptimal, so this is discouraged in

version 7 projects. This guideline is consistent with other fullscreen views such as “video now playing,”

browser, or maps. If you must show an Application Bar on a Panorama, you should set its Opacity to

about 50 percent. Also, version 7.1 introduces a new Application Bar minimized mode, which you can

use instead. Notiications and other SystemTray activity such as low battery are gracefully unfolded

as they arise, but they are then put away again so as not to interfere with the layer motion effects (so

long as the SystemTray is set to visible).

Note There is no support for a landscape mode for Panorama controls, although this might be

introduced in a later version of Windows Phone.

Individual Panorama designers can choose to include arbitrary items and controls as best it the
needs of the user in that context. They can also put their items in any order they see it. That said,
you’re strongly encouraged to avoid controls that need horizontal gestures—such as ToggleSwitch,

Slider, WebBrowser, or Map controls—because this will result in gesture conlicts with the underlying
Panorama.

72 PART I Building Blocks

To provide the rich “magazine cover” feel in the panoramas, designers/developers are encouraged

to use full bleed background images behind all of the other title and content layers. However, if not

chosen well, this art could become an unwelcome distraction. Here are some guidelines to keep in

mind for background images in panoramas.

 ■ You don’t always need to use it. If the content doesn’t suggest appropriate art, then don’t

simply insert random images there; background images should be contextually appropri-

ate. The People Hub is a good example of this, where a neutral background that respects the

phone’s color theme is the most appropriate choice.

 ■ Branding can override content. It is reasonable to use colors or graphics that are brand

appropriate, but that don’t actually represent speciic content. The Games Hub is a good
example of this, employing the Xbox color scheme.

 ■ Photographic backgrounds work well. If your Panorama is all about music, then by all

means use band images; if it is all about the photo experience then use photos from the user’s

collection. Illustrations can potentially work, but photos look good.

 ■ Don’t include embedded text and logos. Because we have so many typographic and

iconic elements overlaying the backgrounds, all moving at different speeds, any text or icons

or logos embedded in the background image can be visually overwhelming.

 ■ use dark, soft, and low-contrast images. Darker images with soft edges and lower con-

trast will generally work better as panorama backgrounds than the opposite.

 ■ Avoid composite images. A background image that is made up from smaller images will

tend to look odd as the parallax effect forces the edges to get out of sync with the content

layers in the front. On the other hand, it is common to use Image child controls—for example,

album art in a ListBox—in a PanoramaItem.

You set up a Panorama in a very similar way to a Pivot, but it behaves more like a scrolling canvas.

In addition, the title stretches across the width of the panorama space (and therefore uses a big-

ger font size). From a user’s perspective, it behaves as if the phone screen is panning across a wide

background, bringing each item into view. As with Pivot, the Panorama wraps in a loop. However, as

the user licks left/right, while the display will always come to rest with one PanoramaItem aligned to

the left, the next item will be partially visible. The following XAML deines a Panorama set up with the

same content as the earlier Pivot example. You can see this at work in the SimplePano solution in the

sample code.

<controls:Panorama Title="My Panorama App">

 <controls:PanoramaItem Header="One">

 <Ellipse

 Width="100" Height="100" Fill="#339933"

 VerticalAlignment="Top" HorizontalAlignment="Left"

 Margin="{StaticResource PhoneHorizontalMargin}"/>

 </controls:PanoramaItem>

 <controls:PanoramaItem Header="Two">

 <Rectangle

 Width="100" Height="100" Fill="#F09609"

 VerticalAlignment="Top" HorizontalAlignment="Left"

 ChAPTER 3 Controls 73

 Margin="{StaticResource PhoneHorizontalMargin}"/>

 </controls:PanoramaItem>

 <controls:PanoramaItem Header="Three">

 <Path Fill="#1BA1E2" Data="M 50,0 L 100,100 L 0,100 Z"

 Margin="{StaticResource PhoneHorizontalMargin}"/>

 </controls:PanoramaItem>

</controls:Panorama>

Compare Figure 3-5 with the screenshots of the earlier Pivot example to see the similarities and

differences between a Panorama and a Pivot that are set up with the same content.

FIguRE 3-5 A panorama application with three items.

If you specify a background image for a Panorama, the image should be between 480x800 pixels

and 1024x800 pixels to ensure good performance, minimal load time, and minimal scaling. The image

is resized to 1024x800 (by stretching rather than scaling), although, curiously, the Microsoft Visual

Studio Panorama Application template generates an image sized 1024x768. This size is wider than the

screen, so part of the image scrolls into view only as the user licks the Panorama. This scale is applied

regardless of how many items you have in the Panorama.

<controls:Panorama Title="My Panorama App">

 <controls:Panorama.Background>

 <ImageBrush ImageSource="PanoramaBackground.jpg"/>

 </controls:Panorama.Background>

The Panorama control is intended to be used in a way that entices users to explore further in your

application. There should be a lot of empty space, which is why the heading is quite large, deliber-

ately leaving little leeway for cluttering the space with a lot of small items. The Panorama control

itself is nominally 480x800, and the usable space on the individual items will be 432x618. The parallax

effect of the Panorama is achieved by manipulating the foreground item content and the background

image independently, within a logical view that is the size of all the items. So, if you have three items,

74 PART I Building Blocks

each 432x618 (totaling 1306 pixels wide), and a background image at 1024x800, then clearly the

image is panned at a different rate from the individual items. Figure 3-6 illustrates the mechanism.

Logical width

Background
image

Pano items

FIguRE 3-6 A breakdown of the panorama panning behavior.

You can also create a wide Panorama item, by setting the item Orientation property to Horizontal.

The following example constructs an item with eight rectangles, each 100x100 pixels, stacked hori-

zontally (in the TestPanorama_WideItem solution in the sample code):

<phone:PhoneApplicationPage.Resources>

 <Style x:Key="RectangleStyle" TargetType="Rectangle">

 <Setter Property="Width" Value="100"/>

 <Setter Property="Height" Value="100"/>

 <Setter Property="VerticalAlignment" Value="Top"/>

 <Setter Property="HorizontalAlignment" Value="Left"/>

 <Setter Property="Fill" Value="#F09609"/>

 <Setter Property="Margin"

 Value="{StaticResource PhoneHorizontalMargin}"/>

 </Style>

</phone:PhoneApplicationPage.Resources>

<controls:Panorama Name="MyPano" Title="My Panorama App">

 <controls:Panorama.Background>

 <ImageBrush ImageSource="PanoramaBackground.jpg"/>

 </controls:Panorama.Background>

 ChAPTER 3 Controls 75

 <controls:PanoramaItem Header="One" Name="Item1">

 <Ellipse

 Width="100" Height="100" Fill="#339933"

 VerticalAlignment="Top" HorizontalAlignment="Left"

 Margin="{StaticResource PhoneHorizontalMargin}"/>

 </controls:PanoramaItem>

 <controls:PanoramaItem Header="Two" Name="Item2" Orientation="Horizontal">

 <StackPanel Orientation="Horizontal">

 <Rectangle Style="{StaticResource RectangleStyle}"/>

 <Rectangle Style="{StaticResource RectangleStyle}"/>

 <Rectangle Style="{StaticResource RectangleStyle}"/>

 <Rectangle Style="{StaticResource RectangleStyle}"/>

 <Rectangle Style="{StaticResource RectangleStyle}"/>

 <Rectangle Style="{StaticResource RectangleStyle}"/>

 <Rectangle Style="{StaticResource RectangleStyle}"/>

 <Rectangle Style="{StaticResource RectangleStyle}"/>

 </StackPanel>

 </controls:PanoramaItem>

 <controls:PanoramaItem Header="Three" Name="Item3">

 <Path Fill="#1BA1E2" Data="M 50,0 L 100,100 L 0,100 Z"

 Margin="{StaticResource PhoneHorizontalMargin}"/>

 </controls:PanoramaItem>

</controls:Panorama>

Figure 3-7 shows the result; the user will pan a longer distance across the second item. The back-

ground image, as always, pans at a different rate to cover the full logical width.

FIguRE 3-7 A wide horizontal PanoramaItem.

76 PART I Building Blocks

When the user navigates away and then back to a page with a Panorama, the Panorama will be

positioned on the item she was last viewing, with the Title aligned to start with that item. You can see

this behavior in action, using the standard pictures hub on the phone:

1. Open the pictures hub, and note that the page title and background are aligned at the left,

and the default item is the irst item (with the menu).

2. Pan across to the “what’s new” item, and note that the page title and background are offset.

3. Tap Start and then tap Back. Note that you return to the same “what’s new” item, but that the

page title and background are reset to align to the left.

The default item is normally the irst item, but you can change this behavior. The Panorama control

exposes a DefaultItem property. This can be used to get or set the item that is displayed by default

when you navigate to the Panorama. The default value is 0—that is, the irst PanoramaItem in the

collection—but as shown in the code snippet that follows, you can set it to a different value, if that

makes sense in your application. Figure 3-8 illustrates how the DefaultItem is now the second item in

the collection.

MyPano.DefaultItem = MyPano.Items[1];

FIguRE 3-8 You can specify a value for the DefaultItem property of the Panorama control.

You are strongly encouraged to follow the Metro guidelines. This includes adopting the fonts and

styles used in the panorama Title and item Headers. If you explicitly set a FontSize for either of these,

it will be ignored. However, it is possible to retemplate them, instead.

 ChAPTER 3 Controls 77

The following code provides a custom DataTemplate for the panorama Title, using a stacked Image

and TextBlock, with custom text attributes:

<controls:Panorama Name="MyPano" Title="My Panorama App">

 <controls:Panorama.TitleTemplate>

 <DataTemplate>

 <StackPanel Orientation="Horizontal" Margin="12,80,0,0">

 <Image

 Source="/Images/rocket-logo.png" Height="190" Width="190"/>

 <TextBlock

 Text="corporate app"

 FontSize="{StaticResource PhoneFontSizeHuge}"

 VerticalAlignment="Center"/>

 </StackPanel>

 </DataTemplate>

 </controls:Panorama.TitleTemplate>

... irrelevant code omitted for brevity.

</controls:Panorama>

Figure 3-9 shows the result (see the TestPanorama_Template solution in the sample code). The idea

here is to build a custom Title—in this example, using a corporate logo—while still maintaining faith

with Metro.

FIguRE 3-9 The retemplated panorama Title.

78 PART I Building Blocks

toolkit Controls
While the standard Silverlight ComboBox is available, it is not Metro-styled, and is hidden in the Visual

Studio toolbox. So, although you could add it manually to your XAML, you should probably avoid

using it. A suitable alternative is the ListPicker control in the Silverlight Toolkit. This offers both the

same developer experience and a very similar user experience.

The standard ListBox is suitable for short lists. If the list contains a lot of items, you should con-

sider using the LongListSelector from the Toolkit, instead. Exactly how many is “a lot” depends on the

complexity of each item, where you’re getting the data from, and any processing (IValueConverter, for

example) that you do on the data before rendering in the UI. If you want group headers with a jump

list (like the People Hub or a long Start menu), then you should consider using the LongListSelector.

Even then, you should probably only use it if you have at least 45 or so items.

The LoopingSelector is a good representative example of a custom control from the Toolkit. When

you set an alarm on the phone, using the standard Alarms application, you can spin a virtual dial for

hours and minutes. The LoopingSelector in the Toolkit implements much the same thing. Figure 3-10

shows a simple example (the TestLoopingSelector solution in the sample code), which displays the

alphabet in a LoopingSelector. The user can spin the list in an endless loop. When the list comes to rest

on a letter, that letter is placed into the TextBlock at the top.

FIguRE 3-10 An example of a LoopingSelector.

The page deines a TextBox and a LoopingSelector, as follows:

<Grid x:Name="ContentPanel">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 ChAPTER 3 Controls 79

 <RowDefinition Height="20"/>

 <RowDefinition Height="480"/>

 </Grid.RowDefinitions>

 <TextBox

 Grid.Row="0" Name="currentAlpha"

 Height="150" Width="150" Text="*"

 FontSize="{StaticResource PhoneFontSizeExtraExtraLarge}"

 Foreground="{StaticResource PhoneAccentBrush}"/>

 <toolkit:LoopingSelector

 Grid.Row="2" x:Name="selector"

 ItemMargin="3" ItemSize="74,74"

 FontSize="{StaticResource PhoneFontSizeExtraLarge}"/>

</Grid>

You sink the SelectionChanged event such that when the user selects an item from the Looping

Selector, you copy the value into the TextBox.

public partial class MainPage : PhoneApplicationPage

{

 AlphaLoopingDataSource data;

 public MainPage()

 {

 InitializeComponent();

 data = new AlphaLoopingDataSource();

 data.SelectionChanged +=

 data_SelectionChanged;

 this.selector.DataSource = data;

 }

 private void data_SelectionChanged(object sender, SelectionChangedEventArgs e)

 {

 this.currentAlpha.Text = (String)this.data.SelectedItem;

 }

}

For most collection controls—that is, controls derived from ItemsControl—such as the ListBox and

ListPicker, you set the ItemsSource property to any collection type (including simple arrays, List<T>,

ObservableCollection<T>, and so on). On the other hand, to use the LoopingSelector control, you

must deine a class that implements ILoopingSelectorDataSource, and set it as the DataSource for the

LoopingSelector control. Here’s how that interface is declared:

public interface ILoopingSelectorDataSource

{

 object SelectedItem { get; set; }

 event EventHandler<SelectionChangedEventArgs> SelectionChanged;

 object GetNext(object relativeTo);

 object GetPrevious(object relativeTo);

}

In this example, a custom AlphaLoopingDataSource class is deined. This contains a list of strings
corresponding to the letters of the alphabet (plus “*”). GetNext returns the item after the one sup-

plied, or the irst item (“*”) if you’re supplied with the last item in the list (“Z”). GetPrevious does the

same in reverse. Next, SelectedItem returns the new selected item, and also raises a SelectionChanged

80 PART I Building Blocks

event—this is what the consuming application uses to determine that the user has changed the selec-

tion in the list. Note that the previously selected item is saved before setting the new value, so that

you can use it to construct the EventArgs for the SelectionChanged event.

public class AlphaLoopingDataSource : ILoopingSelectorDataSource

{

 private static List<String> alphabet = new List<string>

 { "*", "A", "B", "C", "D", "E", "F", "G", "H",

 "I","J", "K", "L", "M", "N", "O", "P", "Q",

 "R","S", "T", "U", "V", "W", "X", "Y", "Z" };

 private static int count = alphabet.Count;

 private object selectedItem;

 public AlphaLoopingDataSource()

 {

 this.SelectedItem = alphabet[0];

 }

 public object GetNext(object relativeTo)

 {

 int currentIndex = alphabet.IndexOf((String)relativeTo);

 return alphabet[(currentIndex + 1) % count];

 }

 public object GetPrevious(object relativeTo)

 {

 int currentIndex = alphabet.IndexOf((String)relativeTo);

 return alphabet[(currentIndex - 1 + count) % count];

 }

 public object SelectedItem

 {

 get

 {

 return this.selectedItem;

 }

 set

 {

 if (this.selectedItem != value)

 {

 object previousSelectedItem = this.selectedItem;

 this.selectedItem = value;

 this.OnSelectionChanged(

 previousSelectedItem, this.selectedItem);

 }

 }

 }

 public event EventHandler<SelectionChangedEventArgs> SelectionChanged;

 protected virtual void OnSelectionChanged(

 object oldSelectedItem, object newSelectedItem)

 {

 if (this.SelectionChanged != null)

 {

 this.SelectionChanged(this, new SelectionChangedEventArgs(

 new object[] { oldSelectedItem },

 ChAPTER 3 Controls 81

 new object[] { newSelectedItem }));

 }

 }

}

Transient Panels

In addition to using controls on a page, you can also create transient panels—that is, popups, child

windows, and other visual elements that are transient in nature, can take up the whole screen (but

typically merely obscure part of it), and can all be dismissed in a consistent manner.

First, why is there no Dialog class in Windows Phone, or indeed in Silverlight? The main reason for

this is that Silverlight was designed originally for use in web browsers, and in that context responsive-

ness is very important. Much of Silverlight is fundamentally asynchronous. This becomes even more

important on the Phone, where it is critical not to block the UI thread; therefore, asynchronous opera-

tion is the default. When developers think of traditional dialog boxes, they are generally thinking of

modal dialog boxes. A modal dialog is anathema in the Silverlight/Windows Phone world because

modal equals blocking. In Windows Phone, the use of dialog-like visuals is even more critical. Even

if the dialog is not modal, there’s a problem with real estate. The phone’s small form factor simply

doesn’t accommodate the pattern by which an application shows the arbitrary dialog-like visuals that

are so common in desktop applications.

That being said, there is one obvious modal dialog in Windows Phone: the MessageBox. This blocks

until the user dismisses the dialog via one of its buttons, presses the hardware Back key, or switches

away from the application. Again, we see that the Back key is used in a consistent manner to back out

of a situation that the user doesn’t want to be in. The system MessageBox can be used for prompts,

warnings, informational dialogs, error reports, and the like. However, you should never call it inside

the startup of your application or during any navigation sequences; otherwise, the system might

terminate the application for being unresponsive. It supports arbitrary text and a restricted set of

buttons. If the application needs something similar to a MessageBox, but with more scope for custom-

izing the visual controls, there are at least three other choices:

 ■ Popup A standard class used for hosting arbitrary content, typically composed in custom

UserControls.

 ■ system.Windows.visibility Any visual (including UserControls) that is part of the page, but

with its Visibility toggled conditionally at runtime.

 ■ ChildWindow A standard Silverlight class (in System.Windows.Controls.dll) that can be used

in place of UserControl to develop custom visuals.

The following application (the TestPopup solution in the sample code) illustrates all three

approaches, plus MessageBox, as shown in Figure 3-11. All approaches attempt to end up with a very

similar experience, which is one that is similar to the standard MessageBox. This serves to highlight the

differences in how you code each technique.

82 PART I Building Blocks

FIguRE 3-11 Using the TestPopup solution to test transient panels.

The irst approach is the MessageBox. This is about as simple as it gets. In the MainPage code-behind,

the Click handler for the “message box” button simply displays a MessageBox, as shown in Figure 3-12.

private void ShowMessageBox_Click(object sender, RoutedEventArgs e)

{

 MessageBox.Show("hello message box");

}

FIguRE 3-12 A standard, simple MessageBox.

 ChAPTER 3 Controls 83

The message box appears at the top of the screen, overlaying the previous page (which is also

grayed-out), and is modal. It also has an elegant transition effect and plays a brief sound on entry (the

sound was removed in version 7.1). To dismiss it, the user can tap OK (or whatever other buttons you

initialize the MessageBox with), or he can press Back.

The second approach utilizes a Popup. This typically hosts a custom UserControl. So, you add a

UserControl item to the project, and deine its visual elements in XAML. To make this as close to
the standard MessageBox as possible, simply provide a TextBlock and a Button. Obviously, if that’s

all you want, you would use the MessageBox, instead; the point of a UserControl is that you can put

any custom visuals you want on it. However, for this illustration, it should be similar to the standard

MessageBox.

<UserControl x:Class="TestPopup.PopupControl"

...

 <StackPanel

 Width="480" Height="226"

 Background="{StaticResource PhoneChromeBrush}" >

 <TextBlock

 Text="hello popup" Margin="22,110,0,0"

 Style="{StaticResource PhoneTextTitle3Style}"/>

 <Button

 x:Name="PopupClose" Content="close"

 Margin="12,0,0,0" Width="150" HorizontalAlignment="Left"/>

 </StackPanel>

</UserControl>

To use this control, declare a Popup, instantiate the control, and set it as the child of the Popup.

Then show the Popup by setting IsOpen to true. The position of the Popup defaults to 0,0—that is, the

upper-left corner of the parent page. In this example, that is exactly what you want, because that is

what most closely resembles the standard MessageBox.

There are two ways to close this transient visual: the obvious technique is to set IsOpen to false in

the Click handler for the button. To make the user experience consistent, ensure that the hardware

Back button also dismisses the Popup. To do this, override the OnBackKeyPress for the page, and if

the Popup is open, set IsOpen to false. It is important to be careful when handling the Back key, and

to ensure that the behavior is always consistent with the standard behavior. Dismissing a modal dialog

is one case for which it is legitimate to handle this key. It is absolutely not appropriate to handle the

Back key to prevent the user backing out of an application.

private Popup p = new Popup();

private void ShowPopup_Click(object sender, RoutedEventArgs e)

{

 if (p.Child == null)

 {

 PopupControl pup = new PopupControl();

 pup.PopupClose.Click += new RoutedEventHandler(PopupClose_Click);

 p.Child = pup;

 }

 p.IsOpen = true;

}

84 PART I Building Blocks

private void PopupClose_Click(object sender, RoutedEventArgs e)

{

 if (p != null)

 {

 p.IsOpen = false;

 }

}

protected override void OnBackKeyPress(CancelEventArgs e)

{

 if (p != null && p.IsOpen)

 {

 p.IsOpen = false;

 e.Cancel = true;

 }

}

The third approach, a transient window with its Visibility property toggled, is illustrated in Figure

3-13. Again, this could be a UserControl, or it could simply be some parent control (Grid, Panel, and

so forth) on the page itself. In this example, you want to make it a child of the Grid on the MainPage.

One of the reasons a developer might want to take this approach instead of using a MessageBox is

that this kind of visual can easily be animated. To implement this, you need a couple of Storyboards:

one for animating the visual as it opens, and the other for animating it as it closes. In both cases, the

target property is RotationX, which means that the visual will be rotated on its X axis.

<phone:PhoneApplicationPage.Resources>

 <Storyboard x:Name="AnimatedPanelOpenStory">

 <DoubleAnimation

 Storyboard.TargetName="AnimatedPanelPlaneProjection"

 Storyboard.TargetProperty="RotationX"

 From="-80" To="0" Duration="0:0:0.4"/>

 </Storyboard>

 <Storyboard x:Name="AnimatedPanelCloseStory">

 <DoubleAnimation

 Storyboard.TargetName="AnimatedPanelPlaneProjection"

 Storyboard.TargetProperty="RotationX"

 From="0" To="-80" Duration="0:0:0.4"/>

 </Storyboard>

</phone:PhoneApplicationPage.Resources>

<Grid x:Name="LayoutRoot" Background="Transparent">

...

 <StackPanel

 x:Name="AnimatedPanel" Visibility="Collapsed"

 Width="480" Height="226" VerticalAlignment="Top"

 Background="{StaticResource PhoneChromeBrush}">

 <StackPanel.Projection>

 <PlaneProjection x:Name="AnimatedPanelPlaneProjection" />

 </StackPanel.Projection>

 <TextBlock

 Text="hello animated panel" Margin="22,110,0,0"

 Style="{StaticResource PhoneTextTitle3Style}"/>

 <Button

 x:Name="AnimatedClose" Content="close"

 Margin="12,0,0,0" Width="250"

 ChAPTER 3 Controls 85

 HorizontalAlignment="Left"/>

 </StackPanel>

</Grid>

The actual declaration of the StackPanel must be at the bottom of the XAML so that it sits above

everything else in the Z-order. Note that you should set the VerticalAlignment to position the visual

at the top of the page, and set the background to the same brush that the MessageBox uses. This is

represented in user-code by the PhoneChromeBrush resource. Also note that the control’s Visibility is

set to Collapsed initially.

FIguRE 3-13 Using up an animated panel to closely mirror the standard message box behavior.

To show this control, irst set its Visibility to Visible, hook up the “close” button Click event, and

then start the “opening” animation. When the user taps the “close” button, you hook up the Completed

event on the “closing” animation and start that animation. Only when the animation has completed

do you make the control Collapsed again.

private bool isAnimatedConnected;

private bool isAnimatedOpen;

private void ShowAnimatedPanel_Click(object sender, RoutedEventArgs e)

{

 AnimatedPanel.Visibility = Visibility.Visible;

 AnimatedClose.Click +=

 new RoutedEventHandler(AnimatedClose_Click);

 AnimatedPanelCloseStory.Completed +=

 new EventHandler(popupCloseStory_Completed);

 AnimatedPanelOpenStory.Stop();

 AnimatedPanelOpenStory.Begin();

 isAnimatedOpen = true;

}

86 PART I Building Blocks

private void AnimatedClose_Click(object sender, RoutedEventArgs e)

{

 ClosePanel();

}

private void ClosePanel()

{

 AnimatedPanelOpenStory.Stop();

 AnimatedPanelCloseStory.Begin();

 isAnimatedOpen = false;

}

private void popupCloseStory_Completed(object sender, EventArgs e)

{

 AnimatedPanel.Visibility = Visibility.Collapsed;

}

To replicate the Back button behavior, you must ensure that the same close method is called in the

override of OnBackKeyPress.

protected override void OnBackKeyPress(CancelEventArgs e)

{

...

 if (isAnimatedOpen)

 {

 ClosePanel();

 e.Cancel = true;

 }

}

The fourth and inal approach is the ChildWindow. This is a class in the Silverlight Toolkit. Recall

that this is not part of the Windows Phone SDK; rather, it is a separate download. Having installed the

Toolkit, you need to add a reference to the System.Windows.Controls.dll assembly, which will typi-

cally be in a location such as %ProgramFiles%\Microsoft SDKs\Silverlight\v3.0\Libraries\Client\System.

Windows.Controls.dll.

Next, add a namespace declaration for this in the XAML as shown in the following:

xmlns:sltk="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"

Then, add another UserControl to the project, but this time, change the deinition to ChildWindow.

That is, change the following (where TestPopup is the name of the project, and ChildControl is the

name of the custom UserControl).

<UserControl x:Class="TestPopup.ChildControl"

to this:

<sltk:ChildWindow x:Class="TestPopup.ChildControl"

 ChAPTER 3 Controls 87

The whole of the XAML ile is listed in the code that follows. Note that the Width, Height, Back

ground and Margin of the control itself is set, rather than the child StackPanel. The StackPanel offers

the same TextBlock and Button, but this time, you handle the button Click event in the control itself

rather than in the parent page.

<sltk:ChildWindow x:Class="TestPopup.ChildControl"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 xmlns:sltk="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"

 mc:Ignorable="d"

 FontFamily="{StaticResource PhoneFontFamilyNormal}"

 FontSize="{StaticResource PhoneFontSizeNormal}"

 Foreground="{StaticResource PhoneForegroundBrush}"

 d:DesignHeight="480" d:DesignWidth="480"

 Width="480" Height="226"

 Background="{StaticResource PhoneChromeBrush}"

 Margin="0,-576,0,0"

>

 <StackPanel>

 <TextBlock

 Text="hello childwindow" Margin="22,80,0,0"

 Style="{StaticResource PhoneTextTitle3Style}"/>

 <Button

 x:Name="ChildClose" Content="close" Click="ChildClose_Click"

 Margin="12,0,0,0" Width="150" HorizontalAlignment="Left"/>

 </StackPanel>

</sltk:ChildWindow>

The code-behind also deines the inheritance to be ChildWindow, not UserControl. The only other

thing we need do is to set the control’s DialogResult to true when the user presses the “close” button:

public partial class ChildControl : ChildWindow

{

 public ChildControl()

 {

 InitializeComponent();

 }

 private void ChildClose_Click(object sender, RoutedEventArgs e)

 {

 DialogResult = true;

 }

}

88 PART I Building Blocks

Back in the MainPage code-behind, you display this control by instantiating it and calling its Show

method. You also set a lag so that you can determine whether or not it is open. Thus, you need the
following in the OnBackKeyPress override:

private ChildControl cc = new ChildControl();

private bool isChildOpen;

private void ShowChildWindow_Click(object sender, RoutedEventArgs e)

{

 cc.Show();

 isChildOpen = true;

}

protected override void OnBackKeyPress(CancelEventArgs e)

{

...

 if (isChildOpen)

 {

 cc.DialogResult = false;

 isChildOpen = false;

 e.Cancel = true;

 }

}

For all three types of custom transient visual, instead of overriding OnBackKeyPress, an alternative

approach is to deine a handler for the BackKeyPress event on the page.

<phone:PhoneApplicationPage

...

 BackKeyPress="PhoneApplicationPage_BackKeyPress">

Adding this to the XAML in the designer will add a stub for the handler in the code-behind (if you

use Tab to invoke auto-complete; otherwise, you need to right-click and select Navigate To Event

Handler). This could be implemented to execute exactly the same code as the previous override of

OnBackKeyPress. If the application were to implement both methods (which would be unnecessary),

the OnBackKeyPress is called irst, and then the event handler. Note that neither method is ever called
when the user presses Back to dismiss a simple MessageBox.

That’s it; four ways to offer dialog-like behavior in an application. The two principles to keep in

mind here are:

 ■ Use a transient visual, employing whichever technique makes sense for the given scenario,

instead of using a page. This avoids polluting the page backstack with visuals to which the user

will not expect to return.

 ■ Maintain consistency across all transient visuals by overriding OnBackKeyPress or handling the

BackKeyPress event so that the user can always dismiss a “dialog” by using the Back key.

 ChAPTER 3 Controls 89

Note that while you can achieve MessageBox-like behavior up to a point, there are two key reasons

that make MessageBox so different from the other approaches:

 ■ MessageBox blocks the caller until the user makes a selection; all the other mechanisms are

asynchronous.

 ■ MessageBox offers very limited scope for customization, unlike all the other approaches.

The MessageBox also implements an interaction guard—that is, it grays out the rest of the appli-

cation UI and suppresses touch input. You could implement this in any of the custom approaches

described earlier by simply overlaying a full-screen rectangle illed with the PhoneSemitransparent

Brush. Also note that in an XNA application, there’s an alternative: BeginShowMessageBox. This is

more conigurable than the Silverlight MessageBox, although it does not block the way MessageBox

does, and it should not be used in a non-XNA application unless you’re already pulling in some XNA

types for other reasons. Integration between Silverlight and XNA is streamlined in version 7.1, so it

becomes more appropriate to use this approach in version 7.1 projects. The following code shows

how this is used (demonstrated in the TestXnaMBox solution in the sample code):

private void XnaMessageBox_Click(object sender, RoutedEventArgs e)

{

 List<string> buttons = new List<string>();

 buttons.Add("foo");

 buttons.Add("bar");

 int? retval = null;

 Guide.BeginShowMessageBox(

 "xna", // Title.

 "hello world", // Text.

 buttons, // Buttons.

 1, // Index of the button with the focus.

 MessageBoxIcon.Warning, // Icon.

 result => // Async callback invoked on closing the message box.

 {

 retval = Guide.EndShowMessageBox(result);

 Debug.WriteLine("return value = {0}", retval);

 },

 123); // Arbitrary payload for this message.

}

summary

This chapter examined the developer’s choices for standard controls, including the built-in applica-

tion platform controls, the SDK controls, and the Silverlight Toolkit controls. These are all conformant

to the Metro design and usability guidelines, and should always be preferred over custom controls,

wherever possible. In particular, you can use the Pivot and Panorama controls to build compelling,

user-friendly applications that can seem to escape the bounds of the physical platform. Most of the

UI in your application will be part of a page, but you can also use transient panels where those make

sense, and you can choose from a range of different techniques when using them.

 91

C h A P T E R 4

Data Binding and Layer
Decoupling

At some point, almost any non-trivial application will present data to the user. Most modern

programming frameworks support this in a variety of ways to make it easier, quicker, and more

robust to render data in the UI. At the same time, these frameworks promote better engineering

practices by cleanly separating the data from the UI, establishing standard mechanisms for con-

necting the data and UI in a loose fashion, and ensuring that components consuming the data are

conveniently notiied of any changes (either by the UI or from the underlying data source) so that the
application can take appropriate action. This chapter examines the data binding support in Microsoft

Silverlight for Windows Phone, the rationale for its existence, and the various ways that it supports

both the functionality of mapping data and UI, and the engineering excellence of loose coupling

between layers.

life without Data Binding

A common scenario is to have some data (either originating in a back-end data repository, or com-

puted dynamically in the application) that you want to display in the UI. It is also common to allow the

user to modify the data in the UI and for any changes to be propagated back to the data repository.

It is perfectly possible to do this without data binding. Indeed, the traditional programming model is

to do just that. Figure 4-1 and the ensuing code present a simple example of a phone application that

manually propagates data changes back and forth between the data source and the UI. This is the

NoDatabinding solution in the sample code.

92 PART I Building Blocks

FIguRE 4-1 A simple application without data binding.

The XAML that follows is straightforward, offering two rows, each made up of a TextBlock, a

TextBox, and a Button:

<TextBlock

 Text="id"

 FontSize="{StaticResource PhoneFontSizeMedium}"

 VerticalAlignment="Center"/>

<TextBox

 Name="viewID"

 FontSize="{StaticResource PhoneFontSizeMedium}"/>

<Button

 Height="Auto" Content="Update"

 Name="updateID" Click="updateID_Click" />

<TextBlock

 Text="name"

 FontSize="{StaticResource PhoneFontSizeMedium}"

 VerticalAlignment="Center"/>

<TextBox

 Name="viewName"

 FontSize="{StaticResource PhoneFontSizeMedium}"/>

<Button

 Height="Auto" Content="Update"

 Name="updateName" Click="updateName_Click" />

 ChAPTER 4 Data Binding and Layer Decoupling 93

The data is represented in code by a trivial Employee class which exposes a couple of public ields.

public class Employee

{

 public string ID;

 public string Name;

}

In the MainPage code-behind, you initialize an Employee and manually set this data into the ele-

ments in the view. At runtime, the user can edit either of the TextBox controls. When she clicks the

updateID Button, the code simulates a change originating at the underlying the data source and

then propagates that change forward to the UI. Conversely, when she clicks the updateName Button,

any changes they made to the Name data are propagated manually back to the data source. The

MessageBox simply serves to verify that the data source was changed.

public partial class MainPage : PhoneApplicationPage

{

 private Employee data;

 public MainPage()

 {

 InitializeComponent();

 data = new Employee { ID = "12345", Name = "Pilar Ackerman" };

 viewID.Text = data.ID;

 viewName.Text = data.Name;

 }

 private void updateID_Click(object sender, RoutedEventArgs e)

 {

 data.ID = "98765";

 viewID.Text = data.ID;

 }

 private void updateName_Click(object sender, RoutedEventArgs e)

 {

 data.Name = viewName.Text;

 MessageBox.Show(data.Name);

 }

}

That’s all very well, and for such an extremely simple data class, the work is not too onerous

or dificult to maintain. However, with more complex data, and a higher volume of it, this manual
back-and-forth data propagation will rapidly become a burden. It will also involve a lot of manual

code, which inevitably increases the chance of introducing bugs. Furthermore, the data is very tightly

coupled to the UI. If application requirements change over time that include modiications to the data
model, this will require corresponding changes to the UI. Additionally, it will entail changes to all the

code that’s doing the manual value-change propagation. Similarly, even if only the UI changes, you

will still need to change the propagation code. Such tight coupling makes the whole application very

inlexible and fragile in the face of onging requirements changes.

94 PART I Building Blocks

Fortunately, Silverlight—and indeed, Windows Presentation Foundation (WPF)—includes support

for automatically initializing the UI from backing data and for automatically propagating changes, in

both directions. This support is called data binding.

simple Data Binding and INotifyPropertyChanged

Data binding is supported as a standard feature in Silverlight. The goals of Silverlight data binding

include:

 ■ Enable a range of diverse data sources to be connected (web service calls, SQL queries, busi-

ness objects, and so on). The underlying data sources are represented in the application code

by a set of one or more Common Language Runtime (CLR) objects.

 ■ Simplify the connection and synchronization of data so that the developer does not need to

maintain manual value propagation code.

 ■ Maintain the separation between the UI design and the application logic (and therefore

between design tools such as Microsoft Expression Blend, and development tools such as

Microsoft Visual Studio).

One way to think of data binding is as a pattern with which you can declare the relationship

between your application’s data and the UI that displays the data without hard-coding the specif-

ics of how and when the data is propagated to the UI. This allows you to maximize the Separation of

Concerns (SoC), ensuring that the UI code is as decoupled as possible from the business logic, and yet

further decoupled from the underlying data source. Figure 4-2 illustrates the pattern.

Property 1

Data Object

Property 2

Property 3

Property 1

UI

Data bind

Map data
to classes

Web
Services

Database

UI element 2

UI element 1

Property 1

Property 2

FIguRE 4-2 The data binding pattern.

In addition to separating concerns, the declarative relationship also takes advantage of change

notiications. That is, when the value of the data changes in the underlying data source, the applica-

tion does not need to render the change in the UI explicitly. Instead, it relies on the class that repre-

sents the data source raising a change notiication event, which the Silverlight runtime picks up and

 ChAPTER 4 Data Binding and Layer Decoupling 95

uses to propagate the change to the UI. The same happens in reverse; when the user changes the

data interactively in the UI, that change is propagated back to the data source.

You’ll adapt the previous application to use data binding. In this version (the SimpleDataBinding

solution in the sample code), the two TextBox controls are each data-bound to properties of the data

class. One TextBox is set to the ID; the other is set to the Name. First, the UI declarations in the XAML

need to be updated to specify the binding for each TextBox. You do this by using the {Binding} syntax.

In this example, the ID has a one-way binding, which means that the data is pulled from the data class

into the UI only. Any changes made to the underlying data will be propagated to the UI. However,

any changes made to the value in the UI will not be propagated back to the data source. On the other

hand, the Name TextBox has a two-way binding. This means that changes are propagated in both

directions. Note that OneWay mode is the default; thus it’s unnecessary to specify it (the listing that

follows only include it to emphasize that the two TextBox controls have different binding modes). Also

note that the TextBox names are no longer required because you no longer access them directly in

code. This also saves a little memory and initialization time.

<TextBox

 FontSize="{StaticResource PhoneFontSizeMedium}"

 Text="{Binding ID, Mode=OneWay}"/>

<TextBox

 FontSize="{StaticResource PhoneFontSizeMedium}"

 Text="{Binding Name, Mode=TwoWay}"/>

To connect the data object to the UI, you instantiate the data object class, and assign it to the

DataContext of the FrameworkElement that you want to data-bind. You can specify an individual

FrameworkElement such as a single control or some containing parent control. At its simplest, this

FrameworkElement might even be the main page itself, as in this example. Setting the DataContext at

the page level is a common strategy. All child elements of the page will inherit the same DataContext;

however, it can also be overridden at any level if required.

Note that the DataContext property is typed as object, which is why you can assign an object of

a custom type such as Employee—you can, of course, assign anything to an object. Assigning the

Employee object to the DataContext of the page is how the data binding system resolves the refer-

ences to ID and Name in the binding declarations of the individual elements, because these elements

inherit the DataContext of the page. The target (UI element) of the binding can be any accessible

property or element that is implemented as a DependencyProperty (the DependencyProperty mecha-

nism is described in Chapter 2, “UI Core”). The source can be any public property or public ield of any
type.

Note One of the most common binding errors is to forget to make your properties public.

96 PART I Building Blocks

In the Click handler for the updateID Button, you merely display the value of the underlying data.

Because one-way data binding is deined, this will not change, regardless of any changes the user
makes in the UI for this ield. On the other hand, the Click handler for the updateName Button irst
displays the current value of the underlying Name. If the user has made any changes in the UI, this will

automatically be relected in the underlying data. Once you have veriied that any such change were
indeed propagated (using a message box), you then go on to change the underlying data program-

matically to an arbitrary value. The point of this is to propagate the change automatically to the UI.

public partial class MainPage : PhoneApplicationPage

{

 private Employee data;

 public MainPage()

 {

 InitializeComponent();

 data = new Employee { ID = "12345", Name = "Pilar Ackerman" };

 // viewID.Text = data.ID;

 // viewName.Text = data.Name;

 DataContext = data;

 }

 private void updateID_Click(object sender, RoutedEventArgs e)

 {

 // data.ID = viewID.Text;

 MessageBox.Show(data.ID);

 }

 private void updateName_Click(object sender, RoutedEventArgs e)

 {

 // viewName.Text = data.Name;

 MessageBox.Show(data.Name);

 data.Name = "David Pelton";

 }

}

If you want the system to propagate changes in data values for you, your data class needs to

implement INotifyPropertyChanged. This deines one member: an event of type PropertyChanged

EventHandler. For data binding to work, the public ields you had previously are no longer suficient.
They must be deined as public properties, not ields. You implement your property setters to raise
this event, specifying by name the property that has changed. The invocation of the Property

ChangedEventHandler can also be usefully factored out to a custom method. This will be especially

appropriate if there are many properties in the data class. Note that this is still a relatively simple

design—you’re supporting simple data binding, but the SoC could be better (see the MVVM section,

later in this chapter). Also, although it looks like more code than before, it is very cookie-cutter code

and there is nothing complex or risky about it. As your data becomes more complex, so you shall reap

ever greater return on investment with the INotifyPropertyChanged approach.

public class Employee : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 ChAPTER 4 Data Binding and Layer Decoupling 97

 private string id;

 public string ID

 {

 get { return id; }

 set

 {

 id = value;

 NotifyPropertyChanged("ID");

 }

 }

 private string name;

 public string Name

 {

 get { return name; }

 set

 {

 name = value;

 NotifyPropertyChanged("Name");

 }

 }

 private void NotifyPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (null != handler)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

}

Notice also that the custom method declares a local PropertyChangedEventHandler variable

instead of using the PropertyChanged ield directly. Why is this? The reason is to make the code more
robust in the face of multi-threaded calls. This code does not explicitly instantiate the PropertyChanged

event; rather, this is done for you by the C# compiler. By the same token, removing event handler
sinks is also done for you. When the last event sink is removed, the handler ield becomes null, as a
housekeeping strategy. Declaring a local variable doesn’t protect against the ield becoming null
before or after you assign it—but it does protect against it being non-null before you assign it and

then null after you assign it, but before you invoke it. Of course, “more robust” doesn’t mean “per-

fect.” For a more comprehensive discussion of threading issues, refer to Chapter 14, “Go to Market.”

The ability to specify data binding in XAML confers signiicant beneits, but it is also possible to
specify data binding in code. This might be appropriate if the binding is conditional upon some run-

time behavior. For example, you could remove the {Binding} speciiers in your XAML and replace them
with calls to BindingOperations.SetBinding.

public MainPage()

{

 InitializeComponent();

 data = new Employee { ID = "12345", Name = "Pilar Ackerman" };

 DataContext = data;

98 PART I Building Blocks

 Binding b = new Binding("ID");

 b.Mode = BindingMode.OneWay;

 BindingOperations.SetBinding(viewID, TextBox.TextProperty, b);

 b = new Binding("Name");

 b.Mode = BindingMode.TwoWay;

 BindingOperations.SetBinding(viewName, TextBox.TextProperty, b);

}

Data Binding Collections

It is very common to have collections of items to which you want to bind data. For example, multiple

rows from a data set are commonly bound to some ItemsControl such as a ListBox or ListPicker. To

bind to a collection, at a minimum, you need to do the following:

 ■ Provide a data source that is a collection of some object type

 ■ Use an ItemsControl (or derivative) element as the display container for your list, such as the

ListBox control

 ■ Set the ItemsSource property of the ItemsControl to the collection object

The example that follows (the CollectionDataBinding solution in the sample code) demonstrates a

ListBox bound to a simple collection of strings, as shown in Figure 4-3.

FIguRE 4-3 Data binding to a collection.

 ChAPTER 4 Data Binding and Layer Decoupling 99

The XAML deinition of the ListBox is very simple; apart from position and size, all you need to
deine is a name so that you can refer to it in code:

<StackPanel x:Name="ContentPanel" Margin="12,0,12,0">

 <ListBox

 x:Name="daysList" Width="300" Height="200"

 VerticalAlignment="Top" />

</StackPanel>

The code-behind is also very simple. There is a collection of strings in a List<T>, initialized in the

MainPage constructor, and set as the ItemsSource of the ListBox:

public partial class MainPage : PhoneApplicationPage

{

 private List<string> myDays;

 public MainPage()

 {

 InitializeComponent();

 myDays = new List<string>();

 myDays.Add("Monday");

 myDays.Add("Tuesday");

 myDays.Add("Wednesday");

 myDays.Add("Thursday");

 myDays.Add("Friday");

 daysList.ItemsSource = myDays;

 }

}

Note that there is no need to assign the DataContext in this case, because you are explicitly assign-

ing the collection data to the ItemsSource. Typically, you might do both, because typically, you would

be data binding one or more collections (with explicitly assigned ItemsSource properties) and also

individual items (which would rely on the DataContext to resolve their bindings). It is also possible to

assign a more speciic DataContext on a per-element basis (at any level in the visual tree). However, it

is more common to set the DataContext at a page level, allowing each element in the page to inherit

this, and then simply assign individual ItemsSource collections, as required.

Note Data binding large collections has a negative effect on performance because of all the

housekeeping that the runtime’s data binding framework does in the background. Chapter 14

discusses mitigation strategies for this.

100 PART I Building Blocks

Data templates
The previous example works because each item in the collection is a simple string. By default, the

ListBox will render a string representation of its items, calling ToString if necessary. Suppose, however,

that your collection items were not simple strings, but items of a more complex data type. Even a

trivially more complex type such as our simple Employee class would cause problems here.

public class Employee

{

 public string ID { get; set; }

 public string Name { get; set; }

}

Let’s add a collection of Employee objects to our MainPage, and a second ListBox:

<StackPanel x:Name="ContentPanel" Margin="12,0,12,0">

 <ListBox

 x:Name="daysList" Width="300" Height="200"

 VerticalAlignment="Top" />

 <ListBox

 x:Name="employeesList" Width="300" Height="200"

 VerticalAlignment="Top" />

</StackPanel>

private List<Employee> myEmployees;

public MainPage()

{

... previously listed code omitted for brevity

 myEmployees = new List<Employee>();

 myEmployees.Add(new Employee { ID = "12345", Name = "Pilar Ackerman" });

 myEmployees.Add(new Employee { ID = "13344", Name = "David Pelton" });

 myEmployees.Add(new Employee { ID = "15566", Name = "Jay Hamlin" });

 myEmployees.Add(new Employee { ID = "17788", Name = "Lori Penor" });

 myEmployees.Add(new Employee { ID = "12299", Name = "Yun-Feng Peng" });

 employeesList.ItemsSource = myEmployees;

}

The result is shown in Figure 4-4.

 ChAPTER 4 Data Binding and Layer Decoupling 101

FIguRE 4-4 An example of collection items using the default ToString method.

Clearly, the ListBox is using the base object ToString to represent the Employee. There are two ways

you could ix this:

 ■ Provide an override of ToString, if all you want is a simple string

 ■ Provide a data template, with which you can provide a more complex UI.

A ToString override is the minimum you could do—this would do the job, but it is very inlexible,
because you still end up with just one single string for each item:

public override string ToString()

{

 return ID + " - " + Name;

}

The better approach is to provide a data template. This affords much greater control in formatting

the UI. For example, you could have two columns—one for the ID, and one for the Name—and you

could use different fonts, colors, styles, backgrounds, and so on for each column, for each row, and so

forth. Figure 4-5 illustrates this approach. This is the SimpleDataTemplate solution in the sample code.

102 PART I Building Blocks

FIguRE 4-5 You can use a DataTemplate to control formatting.

The data template is deined in XAML, and assigned to the ItemTemplate property of the ListBox. In

this example, the template is made up of a Grid that contains two TextBlock controls, each formatted

slightly differently. These use the same {Binding} as before but don’t need a DataContext because it is

inherited from the current item in the list.

<StackPanel x:Name="ContentPanel" Margin="12,0,12,0">

 <ListBox

 Name="myItemsControl" VerticalAlignment="Top">

 <ItemsControl.ItemTemplate>

 <DataTemplate>

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="100"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <TextBlock

 Grid.Column="0" Text="{Binding ID}"

 FontSize="{StaticResource PhoneFontSizeMedium}"

 FontWeight="Bold"/>

 <TextBlock

 Grid.Column="1" Text="{Binding Name}"

 FontSize="{StaticResource PhoneFontSizeMedium}"

 FontStyle="Italic"/>

 </Grid>

 </DataTemplate>

 </ItemsControl.ItemTemplate>

 </ListBox>

</StackPanel>

 ChAPTER 4 Data Binding and Layer Decoupling 103

Dynamic Data-Bound Collections
With simple data binding, you want a class that implements INotifyPropertyChanged so that changes

in value can be notiied. When binding to collections, you should use a collection that implements
INotifyCollectionChanged so that additions and deletions to the collection can be notiied. If you want
to be notiied of changes both to the collection and to the values of the properties of the items within
the collection, then you need something like this: CollectionThatImplementsINotifyCollectionChanged

<ItemThatImplementsINotifyPropertyChanged>.

The following example uses such a collection. The individual items are a variation on the Employee

class that has two string properties: a Name and a Timestamp. The Employee class implements INotify

PropertyChanged so that it can be used in two-way data binding. Employee items are collected in a

custom collection class that derives from ObservableCollection<T>, which itself implements INotify

CollectionChanged. This custom class contains an arbitrary pool of names and exposes an Add

Employee method, which adds a new Employee to the underlying collection by using a random

name from the pool and the current DateTime.

public class Employees : ObservableCollection<Employee>

{

 private string[] names =

 { "Sally", "Ajith", "Peter", "Ethel", "Doris", "Mike", "Raza" };

 Random rand = new Random();

 public void AddEmployee()

 {

 int i = rand.Next(0, names.Length - 1);

 Employee emp = new Employee

 { Name = names[i], Timestamp = DateTime.Now.ToLongTimeString() };

 this.Add(emp);

 }

}

The collection is bound to a ListBox, and the UI provides two Button controls to change the data.

The Add Item button adds an item to the collection, which triggers the NotifyCollectionChangedEvent.

The Change Item button updates the Timestamp on the currently selected item, which triggers the

NotifyPropertyChangedEvent. The inished application (the DynamicCollectionBinding solution in the

sample code) is shown in Figure 4-6.

104 PART I Building Blocks

FIguRE 4-6 Data binding works with collections that change dynamically.

The MainPage code-behind, initializes the collection with a couple of Employee objects and binds

it to the ListBox. It’s also worth noting that you can retrieve a strongly typed object from the ListBox’s

IEnumerable collection of data-bound items. For example, in the changeButton_Click handler, you

retrieve the currently selected item and cast it to an Employee object.

public partial class MainPage : PhoneApplicationPage

{

 private Employees emps;

 public MainPage()

 {

 InitializeComponent();

 emps = new Employees();

 emps.AddEmployee();

 emps.AddEmployee();

 myList.ItemsSource = emps;

 }

 private void addButton_Click(object sender, RoutedEventArgs e)

 {

 emps.AddEmployee();

 }

 ChAPTER 4 Data Binding and Layer Decoupling 105

 private void changeButton_Click(object sender, RoutedEventArgs e)

 {

 if (myList.SelectedIndex != -1)

 {

 Employee emp = (Employee)myList.SelectedItem;

 emp.Timestamp = DateTime.Now.ToLongTimeString();

 }

 }

}

That is all you have to do. You have already implemented INotifyPropertyChanged in the individual

item class, and the ObservableCollection<T> has an implementation of INotifyCollectionChanged that

you’re using under the covers.

template resources
As with other things such as styles, you can deine a data template as a resource. This is useful if it’s
the kind of template that lends itself to reuse. The mechanism is straightforward. First, you deine
the template just as you would normally. The only difference is that you must declare a Key for each

resource. The resource deinition resides in the Resources section of the XAML element where you

want it to be visible. This could be in the App.xaml, if you want to use the template across multiple

pages, or locally in the XAML for the page in which it will be used, either at the page level or at the

level of any child element at or above the level where it will be used.

<phone:PhoneApplicationPage.Resources>

 <DataTemplate x:Key="template1">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="100"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <TextBlock

 Grid.Column="0" Text="{Binding ID}"

 FontSize="{StaticResource PhoneFontSizeMedium}"

 FontWeight="Bold"/>

 <TextBlock

 Grid.Column="1" Text="{Binding Name}"

 FontSize="{StaticResource PhoneFontSizeMedium}"

 FontStyle="Italic"/>

 </Grid>

 </DataTemplate>

</phone:PhoneApplicationPage.Resources>

Next, in the element to which you want this template to apply, specify it by its Key name. You can

see this at work in the TemplateResource solution in the sample code.

<ListBox

 x:Name="myList" VerticalAlignment="Top"

 ItemTemplate="{StaticResource template1}"/>

106 PART I Building Blocks

Type/value Converters

You have seen that data binding makes it easy to associate data with the UI in a loosely coupled man-

ner. You have also seen that you have a great degree of control over the UI formatting of data-bound

data. In fact, it is even possible to convert a data value from one type to another as part of the data

binding process. For example, suppose that you have a collection of Employee objects that expose

two properties: Name and Gender. You want to bind the Name property in the conventional way (to

a TextBlock.Text element). However, you want to bind the Gender property in a different way: rather

than displaying a string representation of the Gender, you want to render the text for Name differently,

depending on the value of Gender. Figure 4-7 shows two alternative implementations. In one example

(on the left), you convert the Gender value to a Brush of a particular Color and render the name in Red

for female, Blue for male. In the other example (on the right), you convert the Gender value to a Font

Weight and render the name as Light for female, Bold for male. These screenshots are taken from the

BindingConverters_Color and BindingConverters_FontWeight solutions in the sample code.

FIguRE 4-7 You can write value converters to customize your data-bound UI.

The Employee data object type simply exposes two properties. You also declare a simple collection

to hold objects of this type. The only interesting code is the class that implements IValueConverter.

This interface declares two methods: Convert and ConvertBack. If you want only one-way binding, you

need only to implement the Convert method. For two-way binding, you would also need to imple-

ment ConvertBack.

The irst example implements the Convert method to return a Color whose value is computed

based on the incoming value parameter. This will be used in the data binding for the Gender property.

In this way, you convert a Gender (that is, a string) value into a Color value.

 ChAPTER 4 Data Binding and Layer Decoupling 107

public class GenderBrushConverter : IValueConverter

{

 public object Convert(

 object value, Type targetType, object parameter, CultureInfo culture)

 {

 if ((char)value == ‘F’)

 return new SolidColorBrush(Color.FromArgb(255,229,20,0));

 else

 return new SolidColorBrush(Color.FromArgb(255,27,161,226));

 }

 public object ConvertBack(

 object value, Type targetType, object parameter, CultureInfo culture)

 {

 // Implement this for two-way binding.

 throw new NotImplementedException();

 }

}

Note that the deined Red and Blue colors are part of the accent colors for the phone, which are

different from the standard Color.Red/Color.Blue values. The converter is implemented within the

application code, and you want to use it in the XAML for the same application. To make the converter

accessible in the XAML, you need to declare a new XML namespace for this assembly, as part of the

PhoneApplicationPage declaration, alongside all the other namespace declarations. Then, specify an

ItemsControl (in this case, a ListBox), with a GenderBrushConverter resource. Bind the TextBlock.Text to

the Employee.Name in the normal way. The interesting piece is binding the TextBlock.Foreground to

the Employee.Gender via the converter, as shown here:

<phone:PhoneApplicationPage

...

 xmlns:local="clr-namespace:BindingConverters"

>

...

 <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <ListBox

 Name="empList" HorizontalAlignment="Left">

 <ListBox.Resources>

 <local:GenderBrushConverter x:Key="myConverter"/>

 </ListBox.Resources>

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock Text="{Binding Name}"

 FontSize="{StaticResource PhoneFontSizeExtraLarge}"

 Foreground=

 "{Binding Gender,

 Converter={StaticResource myConverter}}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </Grid>

</phone:PhoneApplicationPage>

108 PART I Building Blocks

This listing places the converter resource within the ListBox itself—which is appropriate if you’re

not intending to use it anywhere else. However, it is more common to declare converters at the page

(or even application) level.

<phone:PhoneApplicationPage.Resources>

 <local:GenderBrushConverter x:Key="myConverter"/>

</phone:PhoneApplicationPage.Resources>

Finally, set the ListBox.ItemsSource property to the collection of Employee objects.

public MainPage()

{

 InitializeComponent();

 empList.ItemsSource = new EmployeeCollection();

}

The second example uses an almost identical approach, substituting a FontWeight for a Color,

and is included mainly for the beneit of folks reading the paper version of this book, where differ-
ent colors might not be so easily distinguishable. It also serves to illustrate how easy and lexible this
technique is. The Convert method and the use of the converter in the item template are listed in the

following snippet:

public object Convert(

 object value, Type targetType, object parameter, CultureInfo culture)

{

 if ((char)value == ‘F’)

 {

 return FontWeights.Light;

 }

 else

 {

 return FontWeights.Bold;

 }

}

<TextBlock Text="{Binding Name}"

 FontSize="{StaticResource PhoneFontSizeExtraLarge}"

 FontWeight =

 "{Binding Gender, Converter={StaticResource myConverter}}"/>

Element Binding

In addition to binding to data from a data source, you can also bind across elements in the UI. Here is

an example that binds the Text property of a TextBlock to the value of a Slider. As the user moves the

Slider, the value is propagated to the TextBlock. Note that this also uses a simple double-to-int value

converter, which takes the double values of the Slider position and displays them as simple integer

values in the TextBlock.

public class DoubleToIntConverter : IValueConverter

{

 public object Convert(

 ChAPTER 4 Data Binding and Layer Decoupling 109

 object value, Type targetType, object parameter, CultureInfo culture)

 {

 return System.Convert.ToInt32((double)value);

 }

 public object ConvertBack(

 object value, Type targetType, object parameter, CultureInfo culture)

 {

 throw new NotImplementedException();

 }

}

The critical syntax in the XAML is to associate the ElementName property in the TextBlock with the

name of the Slider element, and to specify that the name of the property on the source element to

which you want to bind is the Value property (set to the Path property on the TextBlock). The result is

shown in Figure 4-8 (screenshot taken from the ElementBinding solution in the sample code). It is also

critical that you do not perform forward references—the ElementName must already be deined in
the tree before you reference it, or else it won’t work.

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Slider x:Name="mySlider" Maximum="100"/>

 <TextBlock

 Text="{Binding ElementName=mySlider,

 Path=Value, Converter={StaticResource myConverter}}"

 Style="{StaticResource PhoneTextTitle1Style}"

 Foreground="{StaticResource PhoneAccentBrush}"/>

</StackPanel>

FIguRE 4-8 You can also bind data to UI elements. Here, the Text property of a TextBlock is
bound to the value of a Slider.

110 PART I Building Blocks

Data validation

Silverlight supports a simple level of data validation in two-way bindings. To make use of this valida-

tion, the simplest approach is to have your data class throw an exception in its property setter when

it encounters invalid data (see the BindingValidation solution in the sample code). This variation of the

Employee class throws an exception in the ID property setter if the string entered cannot be con-

verted to an integer. There is no validation on the Name property in this example.

public class Employee

{

 private string id;

 public string ID

 {

 get { return id; }

 set

 {

 int tmp;

 if (Int32.TryParse(value, out tmp))

 {

 id = value;

 }

 else

 {

 throw new ArgumentOutOfRangeException();

 }

 }

 }

 public string Name { get; set; }

}

In the XAML for the MainPage, you set the NotifyOnValidationError and ValidatesOnExceptions

properties of the Binding for the ID TextBox to true. This directs the binding engine to raise a Binding

ValidationError event when a validation error is added to or removed from the Validation.Errors col-

lection. To handle this event, you need to create an event handler either in the TextBox, or on any of

its parents in the hierarchy. It is common to handle validation errors on a per-page basis so that you

can handle errors from multiple controls in a consistent manner for the whole page. Reading between

the lines, it should be clear that this relies on the fact that the BindingValidationError is a routed event,

which will bubble up the hierarchy from the control where the error occurs to the irst parent that
handles it.

In this example, however, you handle the event halfway up the hierarchy, in the parent Grid. The

point being that you can short-circuit the routing and improve performance slightly, because you

know that you have no controls outside the Grid that have any validation which could trigger a

BindingValidationError.

<Grid

 x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 BindingValidationError="ContentPanel_BindingValidationError">

 <Grid.RowDefinitions>

 <RowDefinition Height="80" />

 ChAPTER 4 Data Binding and Layer Decoupling 111

 <RowDefinition Height="80"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="120"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <TextBlock

 Grid.Row="0" Grid.Column="0" Text="ID: "

 Style="{StaticResource PhoneTextTitle3Style}"

 VerticalAlignment="Center"/>

 <TextBox

 x:Name="idText" Grid.Row="0" Grid.Column="1" >

 <TextBox.Text>

 <Binding

 Mode="TwoWay" Path="ID"

 NotifyOnValidationError="true"

 ValidatesOnExceptions="true"/>

 </TextBox.Text>

 </TextBox>

 <TextBlock

 Grid.Row="1" Grid.Column="0" Text="Name: "

 Style="{StaticResource PhoneTextTitle3Style}"

 VerticalAlignment="Center"/>

 <TextBox

 Grid.Row="1" Grid.Column="1"

 Text="{Binding Name, Mode=TwoWay}"/>

</Grid>

The implementation of the event handler is in the MainPage class. If an error has been added

to the collection, the TextBox background displays Red. When the error is corrected, and therefore

removed from the collection, the standard background for a Phone TextBox is restored.

private void ContentPanel_BindingValidationError(

 object sender, ValidationErrorEventArgs e)

{

 TextBox t = (TextBox)e.OriginalSource;

 if (e.Action == ValidationErrorEventAction.Added)

 {

 t.Background = new SolidColorBrush(Colors.Red);

 }

 else if (e.Action == ValidationErrorEventAction.Removed)

 {

 t.ClearValue(TextBox.BackgroundProperty);

 }

 e.Handled = true;

}

Note also the use of the Control.ClearValue method to reset the Background Brush. This is called on

the BackgroundProperty in this case. An alternative would be to determine manually which Brush you

should use (as shown in the following)—for example, if you know you’re using a standard PhoneText

BoxBrush resource—but that would clearly be less elegant.

t.Background = (Brush)Resources["PhoneTextBoxBrush"];

112 PART I Building Blocks

Figure 4-9 shows how the application looks in action. In this scenario, the user has typed in an

invalid character and then moved the focus to another control. This triggers the validation engine in

the data binding framework, which then invokes the error handler.

FIguRE 4-9 An invalid character triggers the validation engine in the data binding framework.

Note that it is also not uncommon to have multiple handlers at different levels in the visual tree.

For example, you might have a complex set of visual elements, perhaps several Grid controls each

containing multiple children, for which you want to handle validation errors for each Grid in a differ-

ent fashion. You might also want to have a catch-all handler at the page level.

<phone:PhoneApplicationPage

...

 BindingValidationError="PhoneApplicationPage_BindingValidationError">

 <Grid

 x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0"

 BindingValidationError="ContentPanel_BindingValidationError">

...

 </Grid>

 </Grid>

</phone:PhoneApplicationPage>

To ensure that the event does not continue routing up the tree, you simply need to set Handled to

true in any handler where you have in fact completely handled the event.

private void ContentPanel_BindingValidationError(

 object sender, ValidationErrorEventArgs e)

{

 Debug.WriteLine("ContentPanel_BindingValidationError");

 ChAPTER 4 Data Binding and Layer Decoupling 113

 TextBox t = (TextBox)e.OriginalSource;

 if (e.Action == ValidationErrorEventAction.Added)

 {

 t.Background = new SolidColorBrush(Colors.Red);

 }

 else if (e.Action == ValidationErrorEventAction.Removed)

 {

 t.ClearValue(TextBox.BackgroundProperty);

 }

 e.Handled = true;

}

private void PhoneApplicationPage_BindingValidationError(

 object sender, ValidationErrorEventArgs e)

{

 Debug.WriteLine("PhoneApplicationPage_BindingValidationError");

}

Given this code, the handler at the page level would never be called, unless some other element

outside the Grid also triggers a validation error.

separating Concerns

So far, you’ve used simple collections of data that are part of the MainPage itself, and have been

focused on functionality. Now it’s time to pay a little more attention to engineering. In a more real-

istic application, you would want to further separate the code that represents data from the code

that represents UI—at a minimum, by abstracting the collection object from the page code out to

a separate class. You can adapt the earlier DataTemplate example to improve the SoC. This will be a

irst attempt to improve decoupling, and it will reap some beneits. Later, you’ll see how to evolve this
into the more standardized approach taken by the Visual Studio templates. Figure 4-10 illustrates the

simple architecture that you’re aiming for. You can see this at work in the CollectionDataBinding_xaml

solution in the sample code.

employees

Code

MainPage

XAML

Employee

FIguRE 4-10 An example of simple separation of concerns.

114 PART I Building Blocks

First, create a new Employees class to represent the collection of Employee items. For the purposes

of this example (for which you are not interested in collection changes), you can use a simple List<T>.

public class Employees

{

 public List<Employee> Items { get; set; }

 public Employees()

 {

 Items = new List<Employee>();

 Items.Add(new Employee { ID = "12345", Name = "Pilar Ackerman" });

 Items.Add(new Employee { ID = "13344", Name = "David Pelton" });

 Items.Add(new Employee { ID = "15566", Name = "Jay Hamlin" });

 Items.Add(new Employee { ID = "17788", Name = "Lori Penor" });

 Items.Add(new Employee { ID = "12299", Name = "Yun-Feng Peng" });

 }

}

Note It’s common to deine the property setter as private, so that clients can mutate the
list but not completely replace it. However, in this example, you’ll need to replace it later.

Having abstracted the data items from the UI, you can now streamline the MainPage class. All it

needs now is for you to create an instance of the Employees collection, and then assign this to the

DataContext for the page. This doesn’t even need to be a class ield, because the DataContext will

keep the reference alive as long as it is needed. This one line of code is now the only connection in

the UI code to the data code, providing much cleaner separation.

public MainPage()

{

 InitializeComponent();

 DataContext = new Employees();

}

One obvious advantage of separating concerns, even in this simple manner, is that the ItemsSource

value can now be assigned declaratively in XAML, instead of in code, as demonstrated here:

<ListBox

 x:Name="employeesList" Width="300" Height="200"

 VerticalAlignment="Top"

 ItemsSource="{Binding Items}">

You could take this a step further, and assign the DataContext in XAML, also. To do this, you irst
need to add a namespace in the page’s XAML for the current assembly so that you can subsequently

refer to the Employees collection class. Second, declare a keyed resource for the Employees class.

Third, set the DataContext to this resource in either the ListBox itself or in any of its parents.

<phone:PhoneApplicationPage

...

 xmlns:local="clr-namespace:CollectionDataBinding"

 >

 ChAPTER 4 Data Binding and Layer Decoupling 115

 <phone:PhoneApplicationPage.Resources>

 <local:Employees x:Key="myDataContext"/>

 </phone:PhoneApplicationPage.Resources>

 <Grid

 x:Name="LayoutRoot" Background="Transparent"

 DataContext="{Binding Source={StaticResource myDataContext}}">

...

 <StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <ListBox

 x:Name="employeesList" Width="300" Height="200"

 VerticalAlignment="Top"

 ItemsSource="{Binding Items}">

 </ListBox>

 </StackPanel>

...

 </Grid>

</phone:PhoneApplicationPage>

Design-time Data
Another beneit of separating concerns is that this promotes the separation of work between the
design team and the development team. You can now easily set up dummy data for use by the

designers, which is only used at design-time and does not form part of the inal application. This gives
the designers greater support in laying out the visual interface, based on realistic sample data. Here is

how you do this.

First, declare the dummy data in a XAML ile. In the following example, this is named DesignTime

Data.xaml, but the name is arbitrary. This needs a namespace to reference the current assembly,

which is where the Employees and Employee types are deined. In the XAML, deine some Employee

items that will be in the Items collection in the Employees object. Following is the entire contents of

the ile:

<local:Employees

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="clr-namespace:CollectionDataBinding"

 >

 <local:Employees.Items>

 <local:Employee ID="22334" Name="Dummy Name 1"/>

 <local:Employee ID="22445" Name="Dummy Name 2"/>

 <local:Employee ID="22556" Name="Dummy Name 3"/>

 <local:Employee ID="22667" Name="Dummy Name 4"/>

 <local:Employee ID="22778" Name="Dummy Name 5"/>

 </local:Employees.Items>

</local:Employees>

116 PART I Building Blocks

Note This is one of the development tasks in Silverlight that is much more easily done in

Expression Blend rather than Visual Studio, and that is the primary environment in which design-

time data will be used.

In the Properties window for this ile, set the build action to DesignData. Finally, in the MainPage.

xaml, declare this as design-time data by using the design-time namespace d that has already been

deined (as http://schemas.microsoft.com/expression/blend/2008):

d:DataContext="{d:DesignData DesignTimeData.xaml}"

You will see this data rendered in the Design view in Visual Studio (and also in Expression Blend), as

shown in Figure 4-11. This is the CollectionDataBinding_DTData solution in the sample code.

FIguRE 4-11 Design-time data in Visual Studio.

http://schemas.microsoft.com/expression/blend/2008

 ChAPTER 4 Data Binding and Layer Decoupling 117

the Model-View ViewModel Pattern
The Model-View ViewModel (MVVM) pattern is extensively used in Silverlight (and therefore Sil-

verlight applications for Windows Phone). This is an evolution of the Model-View Controller (MVC)

pattern. One primary reason is to separate design from code. This supports the scenario where

application UI designers work in Expression, whereas code developers work in Visual Studio—both

working on the same application. It also makes testing a lot easier, in that you can build automated

testing independently for each logical layer (UI, business logic, data layer, etc). The three parts of our

application are decoupled:

 ■ view This is the UI, represented by our XAML, and at a simple level by mainpage.xaml.

 ■ Model These are the data objects, representing our connection to the underlying data

source.

 ■ viewModel This is the equivalent to the controller in MVC, which mediates between model

and view. Typically, the view’s DataContext is bound to an instance of the viewmodel. The

viewmodel, in turn, typically instantiates the model (or the model graph).

Silverlight also uses Dependency Injection (DI), which is one form of Inversion of Control (IoC).

With DI, when a component is dependent on another component, it doesn’t hard-code this depen-

dency; instead, it lists the services it requires. The supplier of services can be injected into the compo-

nent from an external entity, such as a factory or a dependency framework. In Silverlight, DI is used to

provide the glue between the view, the viewmodel, and the model.

Instead of hard-coding the connections between the model, view, and viewmodel, you rely on

the Silverlight runtime’s DI capabilities. For example, you’ve seen several examples wherein you set

the DataContext or ItemsSource of an element to some concrete object or collection, such as that

illustrated here:

DataContext = new Employees();

empList.ItemsSource = new EmployeeCollection();

d:DataContext="{d:DesignData DesignTimeData.xaml}"

DataContext is of type object, and ItemsSource is of type IEnumerable. These afford extremely

loose coupling—you can pretty much assign anything to a DataContext, and a very wide range of

collection objects to an IEnumerable. You inject the speciic concrete dependency that you want at
some point, either at design-time or during unit testing with some mocked-up data, or at runtime in

the inal product with real data from the production source.

A high-level representation of the general case is shown in Figure 4-12. Not only is there separa-

tion between the model, viewmodel, and view, but there is also further decoupling between the

viewmodel and view. Given the page-based UI model of Windows Phone applications, this is impor-

tant to ensure that you can use the same viewmodel in multiple pages. For this reason, no view (page)

is responsible for creating the viewmodel. Rather, the App creates the viewmodel and exposes it as a

property, which is therefore accessible from any page.

118 PART I Building Blocks

View 1Model 1

Code XAMLData Source

Model 2
Web

Services

Database
ViewModel

View 2

App

FIguRE 4-12 An overview of the MVVM layers.

Silverlight contains a dependency framework, whereby changes in the underlying model are

propagated by the viewmodel to the view via INotifyPropertyChanged. The MVVM approach is

encouraged in user code, and several of the Visual Studio project templates generate MVVM-based

starter code.

Figure 4-13 illustrates a simple example (the MvvmDataBinding solution in the sample code). Note

that this sample is kept deliberately simple; the limitations are discussed in the following:

 ■ The view is represented by a ListBox.

 ■ The viewmodel consists of a collection type that implements INotifyCollectionChanged and an

item type that implements INotifyPropertyChanged.

 ■ The model is represented by a simple class that offers just one piece of data: a Name string.

COLLECTION VIEWMODEL:
Employees Collection

MainPage

DataContext

TextBlock

DataTemplate

VIEW: ListBox

ITEM VIEWMODEL:
Employee Item

Name

MODEL:
Employee Item

Name

FIguRE 4-13 A simple MVVM application.

Working from the top down, in the MainPage, there is a ListBox in which each item is a TextBlock

that is data-bound to the Name property in the DataContext.

 ChAPTER 4 Data Binding and Layer Decoupling 119

<ListBox Name="empList" >

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock Text="{Binding Name}"

 Style="{StaticResource PhoneTextLargeStyle}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

In the MainPage constructor, you set the DataContext for the whole page to an instance of the col-

lection viewmodel (EmployeesViewModel).

public MainPage()

{

 InitializeComponent();

 empList.ItemsSource = new EmployeesViewModel();

}

The collection viewmodel is an ObservableCollection of EmployeeViewModel items. The collection

exposes a GetData method, with which you fetch the underlying data (represented in code by the

EmployeeModel items) and use that data to initialize a set of EmployeeModel items. It might seem

somewhat redundant to set up an array of EmployeeModel items only then to use them to create a set

of EmployeeViewModel items to add to the collection. However, the point here is that you would more

realistically fetch the data from some underlying data source (database, web service, and so on), so

there would normally be an additional step to take each data (model) item and map it into an item-

level viewmodel item, before adding it to the collection viewmodel.

public class EmployeesViewModel : ObservableCollection<EmployeeViewModel>

{

 public EmployeesViewModel()

 {

 GetData();

 }

 private void GetData()

 {

 List<EmployeeModel> data = new List<EmployeeModel>();

 data.Add(new EmployeeModel { Name = "humberto acevedo" });

 data.Add(new EmployeeModel { Name = "alfons parovszky" });

 data.Add(new EmployeeModel { Name = "yael peled" });

 foreach (EmployeeModel employee in data)

 {

 Add(new EmployeeViewModel(employee));

 }

 }

}

The EmployeeViewModel (item viewmodel) class implements INotifyPropertyChanged, which is

critical for data binding. You separate the model from the viewmodel—this example illustrates one

reason why it is useful to do this. The viewmodel is not just a straight pass-through of the data from

the model to the view. Instead, you take in a model (EmployeeModel) item and perform some pro-

cessing on the raw data to initialize the viewmodel (in this example, this ensures initial capital letters

120 PART I Building Blocks

for each word in the raw data). You should also take care to use the Name property when assigning

the modiied data, because the property has additional validation (checking for null, in this case) of
which you want to take advantage. Finally, of course, the property setter only actually changes the

data and raises the event if the incoming value is in fact different from the current value.

public class EmployeeViewModel : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 private string name;

 public string Name

 {

 get { return name; }

 set

 {

 if (name != value)

 {

 name = TitleCase(value);

 if (PropertyChanged != null)

 {

 PropertyChanged(

 this, new PropertyChangedEventArgs("Name"));

 }

 }

 }

 }

 public EmployeeViewModel(EmployeeModel e)

 {

 Name = e.Name;

 }

 private static String TitleCase(String name)

 {

 string s = Regex.Replace(name, @"\w+", (n) =>

 {

 string tmp = n.Value;

 return

 char.ToUpper(tmp[0]) + tmp.Substring(1, tmp.Length - 1).ToLower();

 });

 return s;

 }

}

The raw data is represented by a simple EmployeeModel class. It is important to note that this is a

true model class and not a viewmodel class—it has no code that has anything to do with UI at all. This

example, therefore, has all three pieces of the MVVM architecture. Even in this very simple applica-

tion, you can see a case for having all three pieces.

public class EmployeeModel

{

 public string Name { get; set; }

}

 ChAPTER 4 Data Binding and Layer Decoupling 121

Note, however, that it will not always be strictly necessary (or even desirable) to follow this model

to the letter. In many applications, it is suficient to have separation between view and viewmodel,
and there can well be no separate code representation of the model. Consider, for example, the very

irst example of a data-bindable Employee class you looked at earlier in this chapter. That version

implemented INotifyPropertyChanged, which implies that it will take part in databinding to the UI.

That makes it strictly a viewmodel class, not a model class.

The preceding example was kept deliberately simple, but you should now consider the gaps. You

can also see the changes in the MvvmDataBinding_Model solution in the sample code. First, no refer-

ence was kept to the original EmployeeModel object when constructing each EmployeeViewModel.

This effectively breaks the change propagation chain between the model and the viewmodel; thus,

any changes made in the model directly would not get surfaced in the viewmodel, and vice-versa.

Suppose that you want two-way data binding in the view, with an updated XAML declaration for the

ListBox items, to use a TextBox instead of a TextBlock, such as in the following:

<ListBox x:Name="empList" >

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBox

 Text="{Binding Name, Mode=TwoWay}"

 FontSize="{StaticResource PhoneFontSizeLarge}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

Then, when the user changes any of the employee values in the UI, these will be changed in the

EmployeeViewModel, as well, due to the two-way binding. To ensure that these are further propa-

gated to the underlying EmployeeModel, you’d need to keep a reference to the model in the viewmodel.

private EmployeeModel model;

public EmployeeViewModel(EmployeeModel e)

{

 model = e;

 name = e.Name;

}

You’d also need to update the property setter to change the underlying model value.

public string Name

{

 get { return name; }

 set

 {

 if (name != value)

 {

 name = TitleCase(value);

 model.Name = value;

 if (PropertyChanged != null)

 {

122 PART I Building Blocks

 PropertyChanged(

 this, new PropertyChangedEventArgs("Name"));

 }

 }

 }

}

That would be enough to maintain the propagation chain from view through viewmodel to model.

To ix the link in the other direction—from model to viewmodel—you’d need to expose some kind of
change event from the model, and sink this in the viewmodel. Note that this should probably not be

an INotifyPropertyChanged event, because that type implies a viewmodel-view relationship. Instead,

you could deine a custom event, as follows:

public class EmployeeModel

{

 public event EventHandler<EventArgs> NameChanged;

 private string name;

 public string Name

 {

 get { return name; }

 set

 {

 if (name != value)

 {

 name = value;

 if (NameChanged != null)

 {

 NameChanged(this, new EventArgs());

 }

 }

 }

 }

}

Then, you’d sink this event in the viewmodel to update the viewmodel property value.

public EmployeeViewModel(EmployeeModel e)

{

 model = e;

 model.NameChanged += model_NameChanged;

 name = TitleCase(e.Name);

}

private void model_NameChanged(object sender, EventArgs e)

{

 Name = ((EmployeeModel)sender).Name;

}

Note that it’s important that the property setter veriies that the value is actually different from the
current value of the ield. If you don’t do this, you run the risk of an ininitely looping event sequence

for any change notiication. Finally, you should consider the case in which the viewmodel needs to
be accessed from within multiple pages. So far, you’ve constructed the viewmodel in the MainPage

constructor, which couples these two entities rather more tightly than they need to be. To improve

 ChAPTER 4 Data Binding and Layer Decoupling 123

this, you should abstract a ViewModel property to a location shared by all pages—speciically, the
App class.

public partial class App : Application

{

 private static EmployeesViewModel viewModel = null;

 public static EmployeesViewModel ViewModel

 {

 get

 {

 if (viewModel == null)

 {

 viewModel = new EmployeesViewModel();

 }

 return viewModel;

 }

 }

}

It’s worth emphasizing that you’re exposing the ViewModel as a property. Previously, consum-

ers (the pages) had to instantiate the viewmodel via its constructor. Now, instead, they access the

property. The point here is that, under the covers, the property is returning a singleton object—and

consumers no longer use the constructor, making them even less tightly coupled than before. Having

made these changes, you can now update the view (MainPage) code to refer to the ViewModel via the

App class:

private EmployeesViewModel emps = App.ViewModel;

public MainPage()

{

 InitializeComponent();

 this.empList.ItemsSource = emps;

}

There’s one more potential problem with the design: you might want the TitleCase behavior to

take place purely between the viewmodel and the view—that is, as a UI-only artifact. You might not

want title case changes to be propagated back to the model. For instance, although you might display

a name as “Pilar Ackerman,” it might actually be acceptable for it to be stored in the backing database

as “pilar ackerman” or “PILAR ACKERMAN.” In this scenario, you’d want to perform an additional check

to ensure that you don’t propagate TitleCase changes back to the model, but still propagate other

data changes. The same would apply for any changes that are UI or “cosmetic” only, as opposed to

meaningful changes to the data itself.

MVVM is the pattern adopted in the Databound Application project template in Visual Studio. It’s

reasonable to assume that a Visual Studio template will generate code that follows best practices. This

is almost entirely true—with one minor exception, as you shall see in the following section.

124 PART I Building Blocks

The visual studio Databound Application Project

The Databound Application template in Visual Studio generates a simple MVVM project (providing

the view and viewmodel, but not the model). This is illustrated in Figure 4-14 (the DataBoundApp

solution in the sample code). Take a moment to examine the anatomy of this project type. The Main

Page includes a ListBox whose items are made up of two TextBlock controls. The DetailsPage includes

two independent TextBlock controls.

MainViewModel

DataContext

Application

Linethree

Linetwo

LineOne

Item

ItemViewModel

ObservableCollection

MainViewModel MainPage

ListBox

Datatemplate

textBlock2

textBlock1

DetailsPage

textBlock2

textBlock1

DataContext

FIguRE 4-14 The Visual Studio Databound Application project template.

The DataTemplate for the ListBox contains two TextBox controls, which are bound to the LineOne

and LineTwo properties in the ItemViewModel.

<ListBox

 x:Name="MainListBox" Margin="0,0,-12,0"

 ItemsSource="{Binding Items}" SelectionChanged="MainListBox_SelectionChanged">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="0,0,0,17" Width="432">

 <TextBlock

 Text="{Binding LineOne}" TextWrapping="Wrap"

 Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock

 Text="{Binding LineTwo}" TextWrapping="Wrap"

 Margin="12,-6,12,0"

 Style="{StaticResource PhoneTextSubtleStyle}"/>

 ChAPTER 4 Data Binding and Layer Decoupling 125

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

The individual items of data are modeled by the ItemViewModel class, which of course implements

INotifyPropertyChanged. This class exposes the LineOne, LineTwo properties to which the ListBox items

are bound.

public class ItemViewModel : INotifyPropertyChanged

{

 private string _lineOne;

 public string LineOne

 {

 get { return _lineOne; }

 set

 {

 if (value != _lineOne)

 {

 _lineOne = value;

 NotifyPropertyChanged("LineOne");

 }

 }

 }

 private string _lineTwo;

 public string LineTwo

 {

 ...

 }

 private string _lineThree;

 public string LineThree

 {

 ...

 }

 ...

}

The MainViewModel class contains an ObservableCollection of ItemViewModel items, and at run-

time it creates an arbitrary set of items in its LoadData method (which you would typically replace

with real data from your own model).

public class MainViewModel : INotifyPropertyChanged

{

 public MainViewModel()

 {

 this.Items = new ObservableCollection<ItemViewModel>();

 }

 public ObservableCollection<ItemViewModel> Items { get; private set; }

 public bool IsDataLoaded

 {

126 PART I Building Blocks

 get;

 private set;

 }

 public void LoadData()

 {

 this.Items.Add(new ItemViewModel() { LineOne = "runtime one", LineTwo = "Maecenas pr

esent accumsan bibendum", LineThree = "Facilisi faucibus habitant inceptos interdum lobortis

nascetur pharetra placerat pulvinar sagittis senectus sociosqu" });

...//etc

 this.IsDataLoaded = true;

 }

 ...

}

The App class has a ield that is an instance of the MainViewModel class.

public partial class App : Application

{

 private static MainViewModel viewModel = null;

 public static MainViewModel ViewModel

 {

 get

 {

 if (viewModel == null)

 viewModel = new MainViewModel();

 return viewModel;

 }

 }

 private void Application_Activated(object sender, ActivatedEventArgs e)

 {

 if (!App.ViewModel.IsDataLoaded)

 {

 App.ViewModel.LoadData();

 }

 }

}

At runtime, the DataContext of the MainPage is set to refer to the MainViewModel in the App

class. When the page is loaded, it ensures that there is data, loading it if necessary. The resulting list

is shown in Figure 4-15 (on the left). Also, when the user selects an item from the ListBox, the appli-

cation navigates to the DetailsPage, passing the selected item in the QueryString. Figure 4-15, right,

shows an instance of the DetailsPage.

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

 InitializeComponent();

 DataContext = App.ViewModel;

 this.Loaded += new RoutedEventHandler(MainPage_Loaded);

 }

 ChAPTER 4 Data Binding and Layer Decoupling 127

 private void MainPage_Loaded(object sender, RoutedEventArgs e)

 {

 if (!App.ViewModel.IsDataLoaded)

 {

 App.ViewModel.LoadData();

 }

 }

 private void MainListBox_SelectionChanged(

 object sender, SelectionChangedEventArgs e)

 {

 NavigationService.Navigate(new Uri(

 "/DetailsPage.xaml?selectedItem="

 + MainListBox.SelectedIndex, UriKind.Relative));

 }

}

Down in the DetailsPage class, when the user navigates to the page, the code sets its DataContext

to the item in the MainViewModel.Items collection that is speciied in the QueryString.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 string selectedIndex = "";

 if (NavigationContext.QueryString.TryGetValue(

 "selectedItem", out selectedIndex))

 {

 int index = int.Parse(selectedIndex);

 DataContext = App.ViewModel.Items[index];

 }

}

FIguRE 4-15 The MainPage and DetailsPage of the standard Databound Application project.

128 PART I Building Blocks

Note that at design time, in the XAML, the page’s DataContext is set to a design-time data ile
(MainViewModelSampleData.xaml).

d:DataContext="{d:DesignData SampleData/MainViewModelSampleData.xaml}"

The standard Visual Studio template-generated Pivot and Panorama projects use the same MVVM

approach. The Pivot project is especially interesting because it illustrates a good pattern for iltering
data-bound data; all pivot items are bound to the same data source, but each one has a different

“column ilter” applied. This is represented in Figure 4-16, which you can see at work in the PivotFilter

solution in the sample code.

MainViewModel

DataContext

Application

Linethree

Linetwo

LineOne

Item

ItemViewModel
PivotObservableCollection

MainViewModel

MainPage

PivotItem1

ListBox

Datatemplate

textBlock2

textBlock1

PivotItem2

ListBox

Datatemplate

textBlock2

textBlock1

FIguRE 4-16 The Visual Studio Pivot application.

The column iltering is done in the XAML. The irst PivotItem has a ListBox whose two TextBlock

controls are bound to LineOne and LineTwo in the ViewModel. The second PivotItem has a ListBox

whose two TextBlock controls are bound to LineOne and LineThree.

<controls:Pivot Title="MY APPLICATION">

 <controls:PivotItem Header="first">

 <!--Double line list with text wrapping-->

 <ListBox

 x:Name="FirstListBox" Margin="0,0,-12,0"

 ItemsSource="{Binding Items}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="0,0,0,17" Width="432" Height="78">

 <TextBlock

 Text="{Binding LineOne}" TextWrapping="Wrap"

 Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock

 Text="{Binding LineTwo}" TextWrapping="Wrap"

 Margin="12,-6,12,0"

 Style="{StaticResource PhoneTextSubtleStyle}"/>

 </StackPanel>

 ChAPTER 4 Data Binding and Layer Decoupling 129

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </controls:PivotItem>

 <controls:PivotItem Header="second">

 <ListBox

 x:Name="SecondListBox" Margin="0,0,-12,0"

 ItemsSource="{Binding Items}">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel Margin="0,0,0,17">

 <TextBlock

 Text="{Binding LineOne}" TextWrapping="NoWrap"

 Margin="12,0,0,0"

 Style="{StaticResource PhoneTextExtraLargeStyle}"/>

 <TextBlock

 Text="{Binding LineThree}" TextWrapping="NoWrap"

 Margin="12,-6,0,0"

 Style="{StaticResource PhoneTextSubtleStyle}"/>

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </controls:PivotItem>

</controls:Pivot>

You could obviously take this further and represent the UI of each pivot item differently, according

to the nature of the data that is bound to the elements in that item. You could also pivot on the data

via row iltering. For example, suppose the ItemViewModel class also provided an integer ID property.

Then, you could easily ilter the PivotItem contents based on the value of this ID. Instead of simply

allowing the two ListBox controls to pick up the complete data set from the ViewModel, you could

explicitly set each itemsSource to some iltered subset of the data, as illustrated in the following listing:

private void MainPage_Loaded(object sender, RoutedEventArgs e)

{

 if (!App.ViewModel.IsDataLoaded)

 {

 App.ViewModel.LoadData();

 }

 FirstListBox.ItemsSource =

 (from i in App.ViewModel.Items where i.ID % 2 != 0 select i);

 SecondListBox.ItemsSource =

 (from i in App.ViewModel.Items where i.ID % 2 == 0 select i);

}

Given this code, the irst PivotItem would only list odd-numbered items (Figure 4-17, left), and the

second would only list even-numbered items (Figure 4-17, right).

130 PART I Building Blocks

This will work ine for simple read-only data, which is all you have in the initial Databound Applica-

tion project. However, for read-write data, you’d want to continue to take advantage of two-way data

binding, including both INotifyPropertyChanged and INotifyCollectionChanged. To achieve iltering
with these requirements, you’d need to change the simple Language-Integrated Query (LINQ) ilters
to use CollectionViewSource objects, instead. You can see this modiied version in the PivotFilter_

CollectionViewSource solution in the sample code.

FIguRE 4-17 The irst PivotItem (left) lists odd-numbered items, while the second PivotItem lists
even-numbered items.

This class allows you to build a collection view on top of the binding source collection that you’re

using in the view—that is, a layer between the view and the viewmodel. This allows you to navigate

and display the collection, based on sort, ilter, and grouping queries, all without the need to manipu-

late the underlying source collection itself, and with propagation of INotifyPropertyChanged and

INotifyCollectionChanged events.

private CollectionViewSource odds;

private CollectionViewSource evens;

private void MainPage_Loaded(object sender, RoutedEventArgs e)

{

 if (!App.ViewModel.IsDataLoaded)

 {

 App.ViewModel.LoadData();

 }

 //FirstListBox.ItemsSource =

 // (from i in App.ViewModel.Items where i.ID % 2 != 0 select i);

 //SecondListBox.ItemsSource =

 ChAPTER 4 Data Binding and Layer Decoupling 131

 // (from i in App.ViewModel.Items where i.ID % 2 == 0 select i);

 odds = new CollectionViewSource();

 odds.Source = App.ViewModel.Items;

 odds.Filter += (s, ev) =>

 {

 ItemViewModel ivm = ev.Item as ItemViewModel;

 ev.Accepted = ivm.ID % 2 != 0;

 };

 FirstListBox.ItemsSource = odds.View;

 evens = new CollectionViewSource();

 evens.Source = App.ViewModel.Items;

 evens.Filter += (s, ev) =>

 {

 ItemViewModel ivm = ev.Item as ItemViewModel;

 ev.Accepted = ivm.ID % 2 == 0;

 };

 SecondListBox.ItemsSource = evens.View;

}

As a footnote, if you look closely, you might notice that the Visual Studio Databound Applica-

tion template is not as optimal as it could be. Speciically, the code to test for loaded data in the
ViewModel is duplicated—it’s in the Application_Activated handler and also in the MainPage_Loaded

handler. Not only that, but the code is also identical, using the App object reference in both places,

even within the App’s Application_Activated handler where the App reference is clearly superluous.
Worse, it means that you’re straining the decoupling somewhat, because the View now has a little

more knowledge of the lifetime of the data than perhaps it should.

if (!App.ViewModel.IsDataLoaded)

{

 App.ViewModel.LoadData();

}

Why does the template generate this code? The reason is to accommodate the fact that the entry-

point to the application varies, depending on circumstances. This arises from navigation and appli-

cation lifecycle behavior—issues which are discussed thoroughly in Chapter 6, “Application Model.”

The lifecycle aspect that is relevant here is that the application might start on the MainPage, and it

might start on the DetailsPage. In normal circumstances, the user launches the application, and the

Application_Launching event is raised, but not the Application_Activated event. Shortly after that, the

MainPage_Loaded event is raised. It’s for this code path that you need the loading code in either the

Application_Launching or the MainPage_Loaded handlers.

The second scenario is where the user runs the application, navigates to the DetailsPage, and then

navigates forward out of the application to another application. When he comes back to the irst
application, the Application_Activated event is raised, and the system navigates to the DetailsPage.

The key point is that in this scenario, the DetailsPage is typically created before the MainPage. This is

why you need the data loading code in either the Application_Activated handler or in a PageLoaded or

NavigatedTo handler for the DetailsPage.

132 PART I Building Blocks

One improvement would be to remove the MainPage_Loaded handler (which is otherwise unused),

and localize the code to the App class, which is in the Application_Launching and Application_Activated

handlers. This would at least put it all in one class, and it would afford you the ability to remove the

superluous App object reference. An even more elegant solution would be to remove the duplica-

tion altogether. You could achieve this by simply putting the loading code in the ViewModel property

getter. This would guarantee that any time the ViewModel is accessed, it will always have loaded data,

regardless of the application’s launch context, and regardless of how many pages need to access the

data. The slight disadvantage is the very small performance cost of doing the IsDataLoaded test on

each access. You can see these changes in the DataBoundApp_modiied solution in the sample code.

public static MainViewModel ViewModel

{

 get

 {

 if (viewModel == null)

 {

 viewModel = new MainViewModel();

 }

 // Code ported from MainPage_Loaded and Application_Activated.

 if (!viewModel.IsDataLoaded)

 {

 viewModel.LoadData();

 }

 return viewModel;

 }

}

Or, if you assume that you always want to load the data on irst initialization of the ViewModel

object, you could perform both operations at the same time. To be safe, you could do this inside a

lock, as shown in the following:

private static readonly object myLock = new object();

public static MainViewModel ViewModel

{

 get

 {

 lock(myLock)

 {

 if (viewModel == null)

 {

 viewModel = new MainViewModel();

 viewModel.LoadData();

 }

 }

 return viewModel;

 }

}

 ChAPTER 4 Data Binding and Layer Decoupling 133

Note If your data comes in an asynchronous manner (for example, from the web), you

would probably want to raise an event when you’ve received new data, and have the data

consumers (ViewModels) subscribe to this event. You’d then have to implement a way to

trigger loading, based perhaps on the irst access to that event.

Note that while the MVVM pattern offers a number of beneits and is suitable for most applica-

tions that render data in the UI, it is not without its drawbacks. For a very small application, it can be

overkill in terms of the additional effort required to set up and maintain additional Model and View

Model classes and connections. The counter-argument from an engineering perspective is that once

a developer (or developer organization) has gone to the effort of setting up the MVVM framework,

development effort after that point for interoperating between data and UI is measurably reduced.

This is typically true, and clearly the beneits increase as the complexity of the application increases,
and can be only marginal or negative in a small application.

Developers should also consider the additional overhead: as is often the case, whereas a reusable

framework such as MVVM—or indeed Silverlight data binding itself—tends to make development

more RAD-like in the long run, this comes at the cost of runtime complexity and performance costs.

Under the covers, the Silverlight runtime is doing work to handle NotifyPropertyChanged and Notify

CollectionChanged events, and then route them appropriately, including doing relection to get the
required data values (which is always a costly operation). It is also maintaining internal caches related

to the data-bound objects. It’s theoretically possible for the additional bookkeeping required for data

binding an object even to exceed the memory consumption and processing for the object itself.

As in many other areas, developers should carefully consider the size and performance costs of

any technique—the threshholds at which these might become critical are generally much lower on a

mobile device than in a desktop application.

summary

This chapter examined the data binding support in Silverlight for Windows Phone, the beneits it
brings, and the various approaches you can take to customize the behavior by taking part in the data

binding pipeline. Data binding works very well in combination with the MVVM pattern. This pattern

helps to ensure clean SoC, such that the discrete functional parts of the application—the data, the

view and the viewmodel—can be loosely coupled, and therefore, independently versioned.

 135

C h A P T E R 5

touch UI

This chapter looks at all the touch-related aspects of the phone UI, including the user’s view of the

logical gestures, and the various levels of real and virtual touch events and method overrides.

You might be surprised to learn that some of the touch events use the term ”mouse” in their names,

but this is just another artifact of porting desktop Microsoft Silverlight to the phone. After a detailed

examination of the touch events, the chapter then focuses on the keyboard, including both software

and hardware versions. Finally, you’ll see how to handle orientation behavior and the phone’s applica-

tion bar.

logical Touch gestures

Windows Phone supports a range of touch gestures. Table 5-1 provides the list of logical gestures

from a user’s perspective.

TABlE 5-1 Logical Touch Gestures

gesture Description

Tap A inger touches the screen and then releases with minimal movement.

DoubleTap Two taps in quick succession.

Hold A inger touches the screen and holds it in place for some minimum period of time.

Pan/Drag A inger touches the screen and then moves in any direction. Dragging moves some recognizably
discrete content around the screen. Panning is really the same as dragging, except that the content
is larger than the screen.

Flick A inger drags across the screen and then lifts up without stopping the movement.

Pinch Two ingers press on the screen and are then moved toward each other.

Stretch Two ingers press on the screen and are then moved apart, relative to each other.

136 PART I Building Blocks

The Windows Phone chassis speciication used by phone manufacturers dictates that all Windows
Phones must support a true multi-touch input system capable of sensing and reporting a minimum of

4 and a maximum of 10 distinct touch points simultaneously. The baseline for a inger touch is a
7 mm diameter circle. There’s also a recommendation that the touch screen should not support

touches by objects that are not shaped like a inger (especially a palm touch), or which are greater
than 30x30 mm. These measurements represent the boundary limits for any touch targets that you

might include in your application.

Microsoft provides comprehensive guidelines on the use and usability of touch gestures, which are

summarized in the following:

 ■ Design and build your application so that the user can access as much functionality as possible

using the simplest gestures. That is, opt for single-touch operations rather than multi-touch

wherever possible; for example, choose single-tap over double-tap, and so on.

 ■ Don’t build excessive processing into touch event handlers. This ensures the minimum latency

between the user touching the screen and your application carrying out the designated

operation, with the appropriate visual feedback.

 ■ If a user’s touch gesture kicks off an operation that will take a noticeable amount of time to

complete, you should provide immediate feedback that the gesture has been recognized and

is being acted upon, and then present subsequent incremental feedback that the operation is

in progress.

 ■ When designing your visual UI, keep in mind that touch targets (controls, shapes, and so on)

should not be smaller than 9x9 mm or 34x34 pixels. You should also provide at least 2 mm or

8 pixels between touch targets. For elements that are frequent touch targets in your appli-

cation, you should actually make them larger—for these, a minimum size of 72x72 pixels is

recommended. Controls smaller than 34 pixels are not categorically forbidden, although you

might make it dificult for your application to pass certiication testing. In any event, no touch
target should ever be smaller than 7x7 mm or 26x26 pixels in area. For those touch targets for

which hitting the wrong target by mistake would have a severe negative effect, you should

make them even bigger.

 ■ It is acceptable to make the touch target larger than the touch element, but you should not

exceed 40 percent larger, and it should not be smaller. If you make it larger, don’t forget that

the minimum 8-pixel gap should be maintained between touchable targets, not between the

elements. For standard controls, the touch target size relative to the control size is set and

non-conigurable; this guideline is only relevant if you’re building custom controls or retem-

plating existing controls.

 ChAPTER 5 Touch UI 137

Note that the standard controls, such as ListBox and Panorama, also obey a set of Metro-inspired

rules of motion, and you are encouraged to use the same rules when building your own controls and

pages:

 ■ When dragging, you should always track the element under the user’s inger. In general, this
means that the element that was under the user’s inger when the gesture started must remain
at the position currently under the user’s inger as it moves around.

 ■ When panning, the main element should move with the inger, but any minor elements on top
of the main element can either remain stationary or move at a different rate. In the case of

Pivot and Panorama controls, the main content moves around with the inger, whereas non-
main elements, such as the title and headers, move at a different rate.

 ■ When licking, the user’s expectation is that the movement continues on its own, so the appli-
cation should identify a velocity and direction for that movement. The motion should continue

with the same direction and speed as the gesture to give the perception that the visual ele-

ment is a real object with a non-zero mass. The motion should decelerate gradually over time,

eventually coming to a stop. In the case of composite controls (such as a Panorama), if a new

lick gesture begins while a previous element is still in animation, then the previous anima-

tion should be immediately interrupted, and the most recent position of the previous element

should be set as its inal position. This does not apply, of course, for scenarios in which you
have multiple, independent elements (for instance, multiple shapes on a canvas) that have no

structural relationship with each other.

 ■ Often, elements are restricted to some maximum limit of movement, which is typically

dependent on the size of the element. For example, a standard ListBox can scroll only a certain

distance, based on the number of items in the list and the minimum amount of items that

must be visible at any time. On the other hand, a LoopingSelector control can scroll ininitely
because it loops its contents. For some controls, it is reasonable to lock the elements so that

they can move only along the X axis (for example, the Panorama control) or along the Y axis

(for example, the ListBox control).

 ■ Metro guidelines indicate that an out-of-bounds feedback effect should be applied whenever

a user attempts to move the contents of a scrollable item past a ixed boundary, either by
dragging or by licking. Once the content encounters a boundary, the content is compressed
in the direction of the motion, based on its velocity at the time it hits the boundary, and then

decompressed to its original size. This behavior is evident in the standard ListBox, ScrollViewer,

and related control types, and you should adopt it if you’re building a custom list control of

some kind.

You can handle the logical user gestures at any of six levels by handling four types of event and

two types of virtual methods. These are summarized in Table 5-2, presented from the lowest level to

the highest. Only the highest-level abstraction provides a close mapping to the logical gestures. In all

other cases, the application is responsible for determining which touch gestures the user is perform-

ing by tracking the number, timing, and permutation of events. Note that internally, the platform

takes the raw input messages and converts them to low-level ManipulationXXX events. Next, these

are used to synthesize higher-level events such as the MouseXXX events and FrameReported events.

138 PART I Building Blocks

TABlE 5-2 Touch Events and Overrides

Event Type Description

Low-level ManipulationXXX events,
raised for each element, individually.

These are typically the irst events to be raised, so handling them is the fast-
est approach. They are most useful for composite gestures—that is, pinch and
stretch, drag and lick—rather than single Tap or DoubleTap gestures. They can
be scoped to individual elements or set page-wide.

OnManipulationXXX virtual methods
(not events).

If you override these, they are called before the corresponding
ManipulationXXX event handlers (if any). You would typically override these
in your Page class, so they will be used for all such events on the page rather
than being scoped to any individual element or panel. Using these overrides is
typically quicker than the event handlers; internally, if no event handler is con-
nected in the delegate, then it is null and that set of work is skipped.

Slightly higher-level mouse events
such as MouseLeftButtonDown
and MouseLeftButtonUp that all
UIElement types support.

These are routed events, so you need to be aware of the way routing works
and know when to prevent onward routing and when not to. You should use
these events only if you’re building a cross-platform (for example, desktop
Windows and/or web, plus phone) application.

Virtual methods (not events) such
as OnMouseLeftButtonDown and
OnMouseLeftButtonUp.

If you override these, they are always called after the lower-level MouseXXX
event is raised. As with the OnManipulationXXX overrides, you would typically
override these in your Page class. You should use these events only if you’re
building a cross-platform application.

Higher-level FrameReported events,
which are raised for touch anywhere
in the frame.

This is an application-wide event that cannot be more inely scoped. It is useful
for handling multiple touch points, but not useful for individual elements or
individual pages.

The Silverlight Toolkit provides an
even higher-level abstraction via its
GestureService.

This handles the lower-level MouseXXX events internally and uses them to
synthesize higher-level abstractions that map directly to user gestures. Very
easy to use, but comes at a price. Partially superseded in version 7.1 for tap,
double-tap, and hold, but not for drag or lick.

Note that Windows Phone 7.1 introduces three additional events, exposed from the UIElement

class (and all derivatives—which means all standard controls and UI elements in the platform), for Tap,

DoubleTap, and Hold.

Manipulation Events: single Touch (Tap)

At the lowest level exposed to applications, you can handle the ManipulationXXX events. You can use

these events for all the Windows Phone manipulation types, both single-touch and multi-touch. You

would typically handle a group of ManipulationStarted, ManipulationDelta, and Manipulation

Completed events.

First, let’s examine a ManipulationXXX event-based, single-touch application (this is the Test

Manipulation solution in the sample code). Figure 5-1 shows the application displaying a TextBlock.

For this application, when the user touches the TextBlock, you’ll increase the font size; when he

touches anywhere else on the page, you’ll decrease the font size.

 ChAPTER 5 Touch UI 139

FIguRE 5-1 A sample application to demonstrate manipulation events.

You handle the ManipulationStarted event on the TextBlock and implement this to increment the

FontSize. You also override the OnManipulationStarted method on the page itself and implement this

to decrement the FontSize.

<Grid x:Name="ContentPanel">

 <TextBlock

 Name="helloText" Text="Hello World"

 ManipulationStarted=" helloText_ManipulationStarted" />

</Grid>

private void helloText_ManipulationStarted(object sender, ManipulationStartedEventArgs e)

{

 this.helloText.FontSize++;

 e.Complete();

 e.Handled = true;

}

protected override void OnManipulationStarted(ManipulationStartedEventArgs e)

{

 this.helloText.FontSize--;

 e.Complete();

 base.OnManipulationStarted(e);

}

140 PART I Building Blocks

Calling the Complete method directs the system not to process any more events for this manipu-

lation. Without this, if the user holds the touch and then moves, this would raise one or more

ManipulationDelta events. In this application, you don’t care about these, so instruct the system

that once you have the initial ManipulationStarted event, you don’t care about anything else in this

manipulation group. As always, setting Handled to true instructs the system not to continue routing

this event up the visual tree. Note that the OnManipulationXXX override is always called before any

ManipulationXXX event for that element.

Manipulation Events: single Touch (Flick)

The next application offers a simple bouncing ball, whose movement is controlled by the user by

means of lick and tap gestures, as shown in Figure 5-2. This is the BallManipulation solution in the

sample code. When the user licks the ball, you start it moving; when she taps the ball, you stop it.

FIguRE 5-2 A sample application to demonstrate the lick gesture.

Recall that the standard Microsoft Visual Studio template generates a layout with an outer Grid. In

this application, you change that to a Canvas, instead. This is because you want to render the bounc-

ing ball anywhere on the screen, with absolute control over its position. The usual title panel is in a

Grid inside this Canvas, and the Canvas contains an Ellipse to represent the ball. The Ellipse includes an

event handler for the ManipulationCompleted event.

<Canvas x:Name="MainCanvas">

 <Ellipse

 x:Name="ball" Canvas.Left="368" Canvas.Top="200" Width="80" Height="80"

 ManipulationCompleted="ball_ManipulationCompleted">

 <Ellipse.Fill>

 <RadialGradientBrush GradientOrigin="0.25,0.25" Center="0.25,0.25">

 <RadialGradientBrush.GradientStops>

 <GradientStop Color="White" Offset="0"/>

 <GradientStop Color="#FF339933" Offset="1"/>

 </RadialGradientBrush.GradientStops>

 </RadialGradientBrush>

 </Ellipse.Fill>

 </Ellipse>

</Canvas>

 ChAPTER 5 Touch UI 141

Note that the initial position of the ball is centered on the canvas. To do this, you use absolute val-

ues for Left and Top that rely on having set the orientation to landscape for the application. To keep

things simple, this application does not support portrait orientation. When the user licks the ball, you
handle the event by updating the horizontal and vertical velocity (which can be positive or negative);

this gives you the new X,Y position to which to move the ball. You then start a DispatcherTimer. The

timer has a 33 ms tick, which equates to 30 frames per second. In the Tick event handler, you move

the ball by getting and setting its Canvas.Left/Top properties. If the ball hits the bounding box, it

reverses direction. Note that you factor the size of the ball into the calculation, to make sure no part

of it can go beyond the bounding box. When the user taps the ball, you stop it from moving by stop-

ping the timer.

private double ballSize = 80;

private int horizontalVelocity;

private int verticalVelocity;

private DispatcherTimer timer;

public MainPage()

{

 InitializeComponent();

 timer = new DispatcherTimer();

 timer.Interval = new TimeSpan(0, 0, 0, 0, 33);

 timer.Tick += timer_Tick;

}

private void timer_Tick(object sender, EventArgs e)

{

 double xPos = (double)ball.GetValue(Canvas.LeftProperty);

 double yPos = (double)ball.GetValue(Canvas.TopProperty);

 if (xPos >= (MainCanvas.ActualWidth - ballSize) || xPos <= 0)

 {

 horizontalVelocity = -horizontalVelocity;

 }

 if (yPos >= (MainCanvas.ActualHeight - ballSize) || yPos <= 0)

 {

 verticalVelocity = -verticalVelocity;

 }

 xPos += horizontalVelocity;

 yPos += verticalVelocity;

 ball.SetValue(Canvas.LeftProperty, xPos);

 ball.SetValue(Canvas.TopProperty, yPos);

}

142 PART I Building Blocks

private void ball_ManipulationCompleted(object sender, ManipulationCompletedEventArgs e)

{

 if (e.IsInertial)

 {

 horizontalVelocity = (int)(e.FinalVelocities.LinearVelocity.X / 100);

 verticalVelocity = (int)(e.FinalVelocities.LinearVelocity.Y / 100);

 timer.Start();

 }

 else

 {

 timer.Stop();

 }

}

The only manipulation event you need to handle is ManipulationCompleted. You’ll get this event

for all kinds of touch gestures. In this application, you care only about lick and tap. Identifying a lick
in this example is a simple matter of testing the IsInertial property of the ManipulationCompleted

EventArgs. Of the different ManipulationXXXEventArgs types, only ManipulationCompletedEventArgs

provides the IsInertial property. This is set to true in the case of a lick gesture. If this was a lick ges-
ture, you can extract the linear velocity from the FinalVelocities property. Note that IsInertial will also

be true in the context of a drag or pinch manipulation involving inertia, but you’re not interested in

that context in this example.

You stop the ball animating for any other event, but this is clearly a lazy and incomplete approach

to handling just the tap event. If you really want to properly distinguish other non-inertial gestures,

you need to do a little more work. Speciically, to distinguish pinch/stretch and pan/drag gestures,
you additionally handle the ManipulationDelta event. To distinguish single-tap from double-tap or

hold, you watch sequential ManipulationStarted and ManipulationCompleted events, and the elapsed

time between them.

Manipulation Events: Multi-Touch

Figure 5-3 shows the next example (the PinchAndStretch solution in the sample code), which is an

application that displays an image on the page that the user can shrink and enlarge via pinch and

stretch gestures. He can also drag the image around the screen.

 ChAPTER 5 Touch UI 143

FIguRE 5-3 This application illustrates manipulation events for pinch-and-stretch and drag gestures.

The application handles pinch and stretch by applying a ScaleTransform to the image. It handles

pan/drag by applying a TranslateTransform. The touch event of interest here is the ManipulationDelta.

This event is raised when the touch input changes position during a manipulation.

<Image HorizontalAlignment="Center" VerticalAlignment="Center"

 Name="myImage" Source="TestImage.jpg"

 ManipulationDelta="myImage_ManipulationDelta">

 <Image.RenderTransform>

 <TransformGroup>

 <ScaleTransform x:Name="myScaleTransform" />

 <TranslateTransform x:Name="myTranslateTransform" />

 </TransformGroup>

 </Image.RenderTransform>

</Image>

Then, in the code, the ManipulationDelta event handler sets the scale of the ScaleTransform or the

X/Y positions of the TranslateTransform. You can determine whether the user is pinching/stretching or

panning/dragging by the values of the DeltaManipulation object: if the Scale.X and Scale.Y are non-

zero, he must be pinching/stretching; if the Translation.X and Translation.Y are non-zero, he must be

panning/dragging. In fact, the user could be doing both types of operation at the same time, so they

are not treated as mutually exclusive in the code.

144 PART I Building Blocks

private void myImage_ManipulationDelta(object sender, ManipulationDeltaEventArgs e)

{

 if (e.DeltaManipulation.Scale.X != 0 || e.DeltaManipulation.Scale.Y != 0)

 {

 myScaleTransform.ScaleX *= e.DeltaManipulation.Scale.X;

 myScaleTransform.ScaleY *= e.DeltaManipulation.Scale.X;

 }

 myTranslateTransform.X += e.DeltaManipulation.Translation.X;

 myTranslateTransform.Y += e.DeltaManipulation.Translation.Y;

}

The application uses only the X property to modify the scale factor, which ensures that you keep

the aspect ratio constant. However, there’s nothing in the code to prevent the user from shrinking

the image beyond the point at which he could get two ingers on it to enlarge it again; nor do you
prevent him from moving it off the screen such that he can’t get it back; nor do you prevent him

lipping the image around the X or Y axis. In a more sophisticated solution, you might also want to
accelerate the pan, based on the zoom factor. Finally, note that you could use a CompositeTransform

in place of the scale and translate transforms. This is a more streamlined approach, which offers the

same functionality.

<Image.RenderTransform>

 <!--<TransformGroup>

 <ScaleTransform x:Name="myScaleTransform" />

 <TranslateTransform x:Name="myTranslateTransform" />

 </TransformGroup>-->

 <CompositeTransform x:Name="myCompositeTransform" />

</Image.RenderTransform>

private void myImage_ManipulationDelta(object sender, ManipulationDeltaEventArgs e)

{

 if (e.DeltaManipulation.Scale.X != 0 || e.DeltaManipulation.Scale.Y != 0)

 {

 //myScaleTransform.ScaleX *= e.DeltaManipulation.Scale.X;

 //myScaleTransform.ScaleY *= e.DeltaManipulation.Scale.X;

 myCompositeTransform.ScaleX *= e.DeltaManipulation.Scale.X;

 myCompositeTransform.ScaleY *= e.DeltaManipulation.Scale.X;

 }

 //myTranslateTransform.X += e.DeltaManipulation.Translation.X;

 //myTranslateTransform.Y += e.DeltaManipulation.Translation.Y;

 myCompositeTransform.TranslateX += e.DeltaManipulation.Translation.X;

 myCompositeTransform.TranslateY += e.DeltaManipulation.Translation.Y;

}

Mouse Events

At a slightly higher level, simple one-inger user input can be handled by handling the MouseXXX

events: MouseEnter, MouseLeave, MouseLeftButtonDown, MouseLeftButtonUp, MouseMove, and

MouseWheel. On the emulator, these are typically raised as a result of mouse input, whereas on the

 ChAPTER 5 Touch UI 145

device, they are raised as a result of touch input. For each of these events, the handler is passed a

MouseEventArgs, which is a routed event (see Chapter 2, “UI Core,” for a discussion on routed events).

The following simple application exercises mouse events at various levels in the visual tree. The

application is a MouseXXX version of the earlier Manipulation example. It displays a TextBlock, which

when touched by the user causes the font size to increase; when she touches anywhere else on the

page, you’ll decrease the font size. This is the TestMouse solution in the sample code.

Examine the XAML for this application. At the innermost scope, you declare a MouseLeftButton

Down handler for the TextBlock itself. Working outward, there is another MouseLeftButtonDown

handler at the parent ContentPanel scope, and another at the Page scope. Note that if you want touch

gestures to be registered on Panel controls, you must remember to set the Background explicitly to

Transparent (or any other color). Both Grid controls in this example have this property set.

<phone:PhoneApplicationPage

...

 MouseLeftButtonDown="PhoneApplicationPage_MouseLeftButtonDown">

 <phone:PhoneApplicationPage.Resources>

 <SolidColorBrush Color="#FFF09609" x:Name="orangeBrush"/>

 <SolidColorBrush Color="#FF8CBF26" x:Name="limeBrush"/>

 </phone:PhoneApplicationPage.Resources>

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <StackPanel x:Name="TitlePanel">

 <TextBlock x:Name="ApplicationTitle" Text="CONTOSO"/>

 <TextBlock x:Name="PageTitle" Text="test mouse"/>

 </StackPanel>

 <Grid

 x:Name="ContentPanel" Background="Transparent"

 MouseLeftButtonDown="ContentPanel_MouseLeftButtonDown">

 <TextBlock

 Name="HelloText" Text="Hello World"

 MouseLeftButtonDown="HelloText_MouseLeftButtonDown"/>

 </Grid>

 </Grid>

</phone:PhoneApplicationPage>

The TextBlock-level handler is implemented to increment the FontSize, and the ContentPanel-level

handler is implemented to decrement the FontSize. In both cases, you set MouseButtonEventArgs.

Handled to true. If you don’t prevent onward routing, this event would be handled again by any han-

dler at the next outer scope. In this example, if you don’t set Handled=true in the TextBlock-scoped

handler, then the event would be onward routed to the ContentPanel handler. The net effect would

be that the text reverts to the previous size, which to the user would look as if it never changed.

private void HelloText_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 HelloText.FontSize++;

 e.Handled = true;

}

146 PART I Building Blocks

private void ContentPanel_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 HelloText.FontSize--;

 e.Handled = true;

}

The XAML also deines a couple of Brush resources—note that these are deined with a Name

instead of a Key. The advantage of this is that the XAML parser will generate class members for these

resources automatically. The TextBlock is initialized to use the orange brush. In the MouseLeftButton

Down handler deined at page scope, you toggle the brush.

public MainPage()

{

 InitializeComponent();

 HelloText.Foreground = orangeBrush;

}

private void PhoneApplicationPage_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 if (HelloText.Foreground == orangeBrush)

 {

 HelloText.Foreground = limeBrush;

 }

 else

 {

 HelloText.Foreground = orangeBrush;

 }

}

You’re effectively modeling the logical tap gesture with just one mouse event. To be more correct,

you should also handle the MouseLeftButtonUp event so that you can distinguish between differ-

ent manipulations. With a little effort, you could use the MouseLeftButtonDown, MouseMove, and

MouseLeftButtonUp events to model the user performing drag or lick gestures. These events are not,
however, suficient to model the pinch/stretch multi-touch gestures. Even for single-touch gestures,
you’d have to handle the relevant events both within the element of interest and outside of it, as well.

This is because although the mouse down/up and enter/leave events occur in pairs, a given visual

element doesn’t necessarily receive paired events. For example, when the user holds the touch over

the TextBlock, this raises a MouseEnter event, followed by MouseLeftButtonDown. If she continues to

hold the touch and move her inger, this will raise MouseMove events—another event every time she

moves more than a few pixels. If she leaves the area of the TextBlock (still keeping the touch on), this

will raise a MouseLeave event, but no further MouseMove events while she's outside of the Text

Block. If she moves back into the TextBlock area (still keeping the touch on), this will raise a Mouse

Enter, followed by further MouseMove events. If instead, she keeps the touch on and leaves the area,

but then releases the touch, there will be a MouseLeftButtonUp event—but for the ContentPanel (or

the page), not for the TextBlock—because this action happened outside of the TextBlock area.

Note that the Silverlight Control class (from which most visual elements derive) provides virtual

methods OnMouseEnter, OnMouseLeftButtonDown, and so on. So, instead of declaring event handlers

directly, you could instead override any of these methods. The OnMouseXXX methods will always be

 ChAPTER 5 Touch UI 147

called after the corresponding event handlers. Another difference is that while all the raw MouseXXX

events are cancelable routed events, only some of the OnMouseXXX overrides are cancelable events;

some are passed a MouseEventArgs parameter, which does not expose a Handled property because it

is not needed. In fact, the MouseButtonEventArgs type that the raw event handlers receive is actually

derived from MouseEventArgs, and the only additional feature it exposes is the Handled property.

Note Even though there is a raw MouseWheel event and an OnMouseWheel virtual method

in the Control class, you will never receive this event in a Windows Phone application. This

is one of those things in the Silverlight Control class that is a redundant artifact of adapting

desktop Silverlight for Windows Phone.

FrameReported Events

At a higher level, you can handle the FrameReported event. This is not applicable to individual visual

elements. Rather, it is application-wide; the name does not refer to the Phone ApplicationFrame but

instead to a discrete ”frame” of input in a sequence of events. It is therefore also not a routed event

and doesn’t traverse the visual tree. You handle this event anywhere in the application. You would

typically put the code in one or more of your pages, because although this is application-wide, the

subsequent processing is very much UI-related. The FrameReported event is exposed from the static

Touch class. If you want to handle this event, you must hook it up in code, not XAML, because the

XAML parser doesn’t support statics. The code that follows (the TestFrameReported solution in the

sample code) is for an application that performs the same behavior as the previous mouse event

example; that is, incrementing/decrementing the size of a TextBlock, and changing its foreground

color.

In this version, you implement the FrameReported event handler to obtain the collection of touch

points. You’re actually not interested in multi-touch here, so you only care about the irst touch point
in the collection. You can examine the TouchDevice property of the TouchPoint to determine which

visual element the touch was directly over. Note that the TouchDevice does not refer to a physi-

cal device; rather, it refers to a touch gesture instance, for which each gesture instance consists of a

group that can include a touch-down operation, and possibly also includes one or more touch-move

operations and a touch-up operation.

public MainPage()

{

 InitializeComponent();

 Touch.FrameReported += new TouchFrameEventHandler(Touch_FrameReported);

}

private void Touch_FrameReported(object sender, TouchFrameEventArgs e)

{

 TouchPointCollection tpc = e.GetTouchPoints(this);

 TouchPoint tp = tpc.FirstOrDefault<TouchPoint>();

 if (tp.TouchDevice.DirectlyOver == HelloText)

148 PART I Building Blocks

 {

 HelloText.FontSize++;

 }

 else if (tp.TouchDevice.DirectlyOver == ContentPanel)

 {

 HelloText.FontSize--;

 }

 else

 {

 if (HelloText.Foreground == orangeBrush)

 {

 HelloText.Foreground = limeBrush;

 }

 else

 {

 HelloText.Foreground = orangeBrush;

 }

 }

}

Note that because this example cares only about the irst touch point in the collection, you could
use GetPrimaryTouchPoint instead of FirstOrDefault. However, although you don’t make use of it in

this application, you could examine multiple TouchPoints within the TouchPointCollection to work with

multi-touch operations. Also note that the TouchPoint exposes both a Position and Size property. The

Position provides the X,Y coordinates of the center of the TouchPoint, relative to the object passed in

to the GetXXXPoint method. This allows for changes in orientation. In Windows Phone, the Size will

always be 1x1 pixels—on the emulator, using a mouse, and on the device, regardless of how fat your

ingers are. Also note that the technique of using DirectlyOver works nicely with a TextBlock because

this is a primitive type; however, it won’t work with more complex templated types such as the Button

control.

Combining Manipulation and Mouse Events

It is appropriate to work with the different levels of touch event in different scenarios. It is not nor-

mally useful to combine events from more than one level. However, there’s nothing to prevent you

from doing this, and it is instructive to see how the various events at one level correspond to related

events at another level. In the following example (the MouseAndManipulation solution in the sample

code), you take the TextBlock-sizing application a step further by introducing handlers for both

ManipulationXXX events and MouseXXX events. For both ManipulationStarted and MouseLeftButton

Down on the TextBlock itself, you increment the FontSize. For the same events on the parent panel,

you decrement the FontSize.

private void HelloText_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 HelloText.FontSize++;

 e.Handled = true;

}

 ChAPTER 5 Touch UI 149

private void HelloText_ManipulationStarted(object sender, ManipulationStartedEventArgs e)

{

 HelloText.FontSize++;

 e.Complete();

 e.Handled = true;

}

private void ContentPanel_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

{

 HelloText.FontSize--;

 e.Handled = true;

}

private void ContentPanel_ManipulationStarted(object sender, ManipulationStartedEventArgs e)

{

 HelloText.FontSize--;

 e.Complete();

 e.Handled = true;

}

Both ManipulationStarted and MouseLeftButtonDown events are raised, in that order. Setting

e.Handled and/or calling Complete makes no difference to this. That is, Handled affects the onward

routing up the visual tree; it does not affect the way the system internally raises both Manipulation

XXX and MouseXXX events for the same physical touch input. As far as the application is concerned,

the two event schemes are independent of each other. Note also that this means that in this example,

the FontSize will be incremented or decremented twice for each tap. You can conirm this visually by
simply setting the value of the Text property to the current FontSize by using Self data binding.

<Grid

 x:Name="ContentPanel" Background="Transparent"

 MouseLeftButtonDown="ContentPanel_MouseLeftButtonDown"

 ManipulationStarted="ContentPanel_ManipulationStarted"

 >

 <TextBlock

 Name="HelloText"

 HorizontalAlignment="Center" VerticalAlignment="Center"

 FontSize="{StaticResource PhoneFontSizeExtraExtraLarge}"

 Foreground="{StaticResource OrangeBrush}"

 MouseLeftButtonDown="HelloText_MouseLeftButtonDown"

 ManipulationStarted="HelloText_ManipulationStarted"

 DataContext="{Binding RelativeSource={RelativeSource Self}}"

 Text="{Binding FontSize}"

 />

</Grid>

Instead of simple “hello world” text, you data-bind the Text property to the FontSize of the cur-

rent element. To do this, use the {Binding RelativeSource} syntax, specifying {RelativeSource Self}. Set

the Text to {Binding FontSize}. Be aware that this must be done after setting the FontSize itself, so the

ordering of attribute assignment in the XAML is important.

150 PART I Building Blocks

Click vs. Mouse/Manipulation Events

Many controls—such as Button, CheckBox, RadioButton, and so on—handle the MouseXXX events

internally and then surface them as Click events for the application to consume. This is part of the

package you buy into when you use any standard control: life is made easier for you but at the cost

of lexibility. If you use a standard Button, you can handle the Click event, but you will not receive

MouseXXX events, nor will your OnMouseXXX overrides be called. However, you can handle the

ManipulationXXX events for the Button (either instead of or in addition to the Click event). You can

always handle the FrameReported event, because this is application-wide and will be raised even for

controls that swallow the MouseXXX events. You can see this at work in the MouseClick solution in

the sample code. Also, you can use the AddHandler(…, true) approach to opt in to events that have

already been handled.

The silverlight Toolkit GestureService

The Silverlight Toolkit includes a GestureService. You use this service by attaching a GestureListener to

the element(s) for which you want to retrieve gesture events. The GestureListener exposes events that

map directly to the logical user gestures, as summarized in Table 5-3. The Event Sequence column

indicates how the lower-level MouseXXX events are handled internally by the GestureService to syn-

thesize higher-level user gestures.

TABlE 5-3 Silverlight Toolkit Gestures

gesture Event sequence notes

Tap ManipulationStarted
MouseLeftButtonDown
ManipulationCompleted
GestureBegin
MouseLeftButtonUp
Tap
GestureCompleted

Finger down and up again within 1.2 sec-
onds, without moving more than a few pixels.
The GestureService picks up the low-level
MouseLeftButtonDown event, signals that some
kind of gesture is beginning, and then recognizes
the MouseLeftButtonUp within the speciied time,
which signiies a Tap, completing the gesture.

DoubleTap ManipulationStarted MouseLeftButtonDown
GestureBegin
ManipulationCompleted
MouseLeftButtonUp
Tap
GestureCompleted
ManipulationStarted MouseLeftButtonDown
GestureBegin
DoubleTap
ManipulationCompleted
MouseLeftButtonUp
GestureCompleted

The irst Tap is recognized as a single Tap, but if
it is followed within one second by a second dis-
crete Tap, this is then modeled as a Double Tap.

 ChAPTER 5 Touch UI 151

gesture Event sequence notes

Flick ManipulationStarted MouseLeftButtonDown
GestureBegin
MouseMove
ManipulationDelta
DragStarted
DragDelta
MouseLeftButtonUp
Flick
DragCompleted
ManipulationCompleted
GestureCompleted

Finger down, inger move, and then inger up
while still moving. It is common to treat the Flick
as a natural extension of a Drag gesture. You can
get a Drag without a Flick, but it is unusual to get
a Flick without a previous Drag.

Hold ManipulationStarted MouseLeftButtonDown
GestureBegin
Hold

Finger down for >1.2 seconds.

GestureBegin,
GestureCompleted

Corresponds to the irst inger down, and the last
inger up. This pair of events will “book-end” all
other high-level gesture types.

DragStarted,
DragDelta,
DragCompleted

ManipulationStarted MouseLeftButtonDown
GestureBegin
ManipulationDelta MouseMove
DragStarted
DragDelta
ManipulationDelta
MouseMove
DragDelta
ManipulationDelta
MouseMove
...
ManipulationCompleted
MouseLeftButtonUp
DragCompleted
GestureCompleted

The sequence begins when the low-level events
are recognized as DragStarted—when the touch
moves beyond the threshold for a simple Tap.
This is then followed by one or more pairs of
MouseMove/ManipulationDelta/DragDelta
events. This continues so long as the drag
continues. Lifting the touch is recognized as
DragCompleted.

PinchStarted,
PinchDelta,
PinchCompleted

ManipulationStarted MouseLeftButtonDown
GestureBegin
MouseLeftButtonUp
Tap
GestureCompleted
ManipulationDelta
MouseLeftButtonDown
MouseMove
GestureBegin
PinchStarted
PinchDelta
MouseMove
PinchDelta
PinchDelta
PinchDelta
PinchDelta
PinchDelta
ManipulationDelta MouseMove
...
ManipulationCompleted PinchCompleted
GestureCompleted

Once pinching has started, there can be multiple
PinchDelta events for each MouseMove. As with
Flick, a Drag can sometimes evolve into a Pinch
(when a second inger touches down). Similarly, a
Pinch can turn into a Drag, if one of the ingers is
raised. Pinch and Drag never interleave, but can
run back to back.

152 PART I Building Blocks

Pinch and Drag
The following example is a variation on the earlier pinch-and-drag application, but instead of using

the ManipulationXXXEventArgs, you’re now working with more speciic Gesture events. This is the

TestGestureService solution in the sample code. To set this up, you irst attach a GestureListener to the

Image control in the page XAML.

<Image HorizontalAlignment="Center" VerticalAlignment="Center"

 Name="myImage" Source="TestImage.jpg">

 <Image.RenderTransform>

 <TransformGroup>

 <ScaleTransform x:Name="myScaleTransform" />

 <TranslateTransform x:Name="myTranslateTransform" />

 </TransformGroup>

 </Image.RenderTransform>

 <toolkit:GestureService.GestureListener>

 <toolkit:GestureListener x:Name="gl"

 PinchStarted="gl_PinchStarted"

 PinchDelta="gl_PinchDelta"

 DragStarted="gl_DragStarted"

 DragDelta="gl_DragDelta"/>

 </toolkit:GestureService.GestureListener>

</Image>

In the code-behind, you implement the selected event handlers as follows:

 ■ Implement the PinchStarted event by caching the initial X-scale value of the ScaleTransform

(that is, the Width of the Image before the user starts the pinch operation).

 ■ Implement PinchDelta by updating the ScaleX/ScaleY values of the ScaleTransform according

to the DistanceRatio value in the event arguments.

 ■ Implement DragStarted by caching the initial X/Y values of the TranslateTransform (that is, the

X/Y positions of the Image before the user starts the drag operation).

 ■ Implement DragDelta by updating the X/Y values of the TranslateTransform according to the

HorizontalChange provided in the event arguments.

public partial class MainPage : PhoneApplicationPage

{

 private double initialScale;

 private double initialPosX;

 private double initialPoxY;

 public MainPage()

 {

 InitializeComponent();

 }

 private void gl_PinchStarted(object sender, PinchStartedGestureEventArgs e)

 {

 initialScale = myScaleTransform.ScaleX;

 }

 ChAPTER 5 Touch UI 153

 private void gl_PinchDelta(object sender, PinchGestureEventArgs e)

 {

 myScaleTransform.ScaleX = initialScale * e.DistanceRatio;

 myScaleTransform.ScaleY = myScaleTransform.ScaleX;

 }

 private void gl_DragStarted(object sender, DragStartedGestureEventArgs e)

 {

 initialPosX = myTranslateTransform.X;

 initialPoxY = myTranslateTransform.Y;

 }

 private void gl_DragDelta(object sender, DragDeltaGestureEventArgs e)

 {

 myTranslateTransform.X += e.HorizontalChange;

 myTranslateTransform.Y += e.VerticalChange;

 }

}

Flick and tap
What follows is a GestureListener version of the earlier bouncing ball application, in which the ball’s

movement is controlled by the user with Flick and Tap gestures. This is the BouncingBall solution in

the sample code. But instead of hooking up a ManipulationCompleted event handler for the Ellipse,

you attach a GestureListener, with event handlers for the Flick and Tap events, as follows:

 <Ellipse

 x:Name="ball" Canvas.Left="368" Canvas.Top="200" Width="80" Height="80" >

 <Ellipse.Fill>

 <RadialGradientBrush GradientOrigin="0.25,0.25">

 <RadialGradientBrush.GradientStops>

 <GradientStop Color="White" Offset="0"/>

 <GradientStop Color="#FF339933" Offset="1"/>

 </RadialGradientBrush.GradientStops>

 </RadialGradientBrush>

 </Ellipse.Fill>

 <toolkit:GestureService.GestureListener>

 <toolkit:GestureListener

 x:Name="gl" Flick="gl_Flick" Tap="gl_Tap"/>

 </toolkit:GestureService.GestureListener>

 </Ellipse>

</Canvas>

The HorizontalVelocity and VerticalVelocity are exposed in a more convenient form from the

FlickGestureEventArgs.

private void gl_Flick(object sender, FlickGestureEventArgs e)

{

 horizontalVelocity = (int)(e.HorizontalVelocity / 100);

 verticalVelocity = (int)(e.VerticalVelocity / 100);

 timer.Start();

}

154 PART I Building Blocks

private void gl_Tap(object sender, GestureEventArgs e)

{

 timer.Stop();

}

A summary of the most interesting properties exposed by GestureListener events is shown in

Table 5-4.

TABlE 5-4 GestureListener Event Properties

origin and Angle velocity Direction

Most events expose an Origin
property. Flick and PinchXXX
expose an Angle, measured clock-
wise from 3 o’clock.

Flick and DragXXX expose
HorizontalVelocity and VerticalVelocity,
where positive horizontal is right from
the origin, and positive vertical is down.

Flick and DragXXX also expose a
Direction, where vertical is in the
ranges 45°–135° and 225°–315°, and
horizontal is in the ranges 135°–225°
and 315°–45°.

Problems with the GestureService
The Toolkit’s GestureService is very useful and plugs a few gaps in the application platform itself. Spe-

ciically, without the GestureService, it is dificult in version 7.0 to distinguish a tap touch gesture from
a tap-and-hold gesture, or from the start of a drag or other operation. The situation improves signii-

cantly in version 7.1, however. Also, although it is relatively easy to model drag and lick gestures with
the ManipulationXXX events, it is considerably more work to model pinch and stretch.

However, even though it is deinitely easier to work with the Toolkit’s GestureService, it is not with-

out its drawbacks.

 ■ The GestureService in the Toolkit is based on the XNA TouchPanel. In fact, XNA TouchPanel

provides a very good set of gesture support for XNA games. However, bringing in XNA code

means bringing in a very different model from the rest of the application that is using Silver-

light. The GestureService does not play well with the rest of the input system for a Silverlight

application and can cause performance issues.

 ■ The type GestureEventArgs is deined both in the standard Silverlight System.Windows.dll and
in the Toolkit’s Microsoft.Phone.Controls.Toolkit.dll. The main differences are that the Toolkit

version provides a richer API but is not a routed event, whereas the Windows version is simpler

 ChAPTER 5 Touch UI 155

and routed. What’s important here is that there is potential for a name clash, and you must

be sure to be explicit which version you’re using so as to avoid compiler errors—or worse,

runtime exceptions—if you implicitly use the wrong one.

 ■ There’s the size of the Toolkit to consider. The Toolkit assembly itself adds 116 KB to your

XAP size. This is acceptable if you’re using several pieces of the Toolkit (perhaps some of the

controls, in addition to the gesture service); if not, you should think hard about using it, if

all you want is the gesture support. Also, because the Toolkit GestureService is based on the

XNA TouchPanel, using the Toolkit also pulls in Microsoft.Xna.Framework.dll and Microsoft.

Xna.Framework.Input.Touch.dll at runtime, which is another 700 KB overhead. Although this

doesn’t affect your XAP size, it does affect your working set size in memory.

 ■ The Toolkit is unsupported and changes over time. Indeed, over time, pieces of the Tookit ind
themselves getting rolled into the application platform itself. This is a good thing, and it allows

Microsoft to gather feedback, use-cases, and priorities from users of the Toolkit as to what is

important and worthwhile to include in the product. Another beneit is that the Toolkit is sup-

plied in both binary and source-code format, so you can adapt the sources, if necessary. On

the other hand, all the usual caveats apply when considering the use of unsupported code in

production applications.

Behaviors

The behaviors feature in Expression Blend is primarily intended to support designers who want to add

functionality to XAML elements without coding. Typically, a developer would create some custom

behaviors in code, and then hand off the assembly (or just the source code) to the designer working

in Expression Blend. The custom behaviors would show up in the Blend environment, allowing the

designer to attach them to visual elements without touching the code.

So, if you want a high-level gesture abstraction, but you don’t want to use the Toolkit Gesture

Service, then one solution is to build custom behaviors that synthesize the high-level logical ges-

tures from low-level ManipulationXXX or MouseXXX events. Using behaviors is a deliberately simple

technique, but creating custom behaviors is a more advanced topic. In this section, you’ll see how to

create a custom behavior that mimics one of the standard Blend behaviors.

In this example (TestBehaviors in the sample code), the application displays an image in an Image

control and responds to only one gesture: the Drag gesture, which is a custom behavior attached

to the Image control in XAML. Recall that for the Toolkit GestureService, you can handle the drag

manipulations by hooking up the DragDelta and DragCompleted events.

<Image

 Name="myImage" Source="TestImage.jpg">

 <Image.RenderTransform>

 <TranslateTransform x:Name="myTranslateTransform" />

 </Image.RenderTransform>

 <toolkit:GestureService.GestureListener>

156 PART I Building Blocks

 <toolkit:GestureListener

 x:Name="gl"

 DragDelta="gl_DragDelta"

 DragCompleted="gl_DragCompleted"

 />

 </toolkit:GestureService.GestureListener>

</Image>

You then implement the handler in the code-behind to perform the drag operation by applying

the TranslateTransform.

private void gl_DragDelta(object sender, DragDeltaGestureEventArgs e)

{

 myTranslateTransform.X += e.HorizontalChange;

 myTranslateTransform.Y += e.VerticalChange;

}

You want to achieve a similar developer experience with your custom behavior. To attach it in

XAML, you irst need to declare an XML namespace for the System.Windows.Interactivity.dll—this is
where the Behaviors types are deined.

xmlns:interact="clr-namespace:System.Windows.Interactivity;assembly=System.Windows.

Interactivity"

<Image

 Name="myImage" Source="TallPalms.jpg">

 <Image.RenderTransform>

 <TranslateTransform x:Name="myTranslateTransform" />

 </Image.RenderTransform>

 <interact:Interaction.Behaviors>

 <local:TouchGesture

 x:Name="DragBehavior"

 Drag="DragBehavior_Drag"/>

 </interact:Interaction.Behaviors>

</Image>

The TouchGesture type that is attached to the Image control is a custom Behavior deined in
the application itself. Here’s how this is built up. First, you deine a class derived from Behavior<T>.

Behavior<T> is the generic version of the base class for providing attachable state and commands to

an object. The object to which this behavior is attached at runtime is provided in the AssociatedObject

property. In this example, you want to be able to attach this behavior to any UIElement or derivative,

so you derive from Behavior<UIElement>. You must override the OnAttached and OnDetaching meth-

ods to hook and unhook any necessary handlers from the AssociatedObject. In this example, you hook

and unhook the MouseLeftButtonDown, MouseMove, and MouseLeftButtonUp. You’ll need all three of

these to be able to synthesize a Drag operation.

public class TouchGesture : Behavior<UIElement>

{

 protected bool isMouseDown { get; set; }

 protected override void OnAttached()

 {

 base.OnAttached();

 AssociatedObject.MouseLeftButtonDown += AssociatedObject_MouseLeftButtonDown;

 ChAPTER 5 Touch UI 157

 AssociatedObject.MouseMove += AssociatedObject_MouseMove;

 AssociatedObject.MouseLeftButtonUp += AssociatedObject_MouseLeftButtonUp;

 }

 protected override void OnDetaching()

 {

 base.OnDetaching();

 AssociatedObject.MouseLeftButtonUp -= AssociatedObject_MouseLeftButtonUp;

 AssociatedObject.MouseMove -= AssociatedObject_MouseMove;

 AssociatedObject.MouseLeftButtonDown -= AssociatedObject_MouseLeftButtonDown;

 }

 private void AssociatedObject_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

 {

 lastPositionX = e.GetPosition(null).X;

 lastPositionY = e.GetPosition(null).Y;

 isMouseDown = true;

 }

 private void AssociatedObject_MouseLeftButtonUp(object sender, MouseButtonEventArgs e)

 {

 isMouseDown = false;

 }

... continued in the next code example.

}

You do nothing unless and until the mouse is down; at this point, you simply cache a lag to indi-
cate that the mouse is down. When the mouse is raised again, you toggle this lag. In the meantime, if
you get MouseMove events, you know the user must be dragging. All of the interesting work is done

in the MouseMove handler: here, you extract the position data from the incoming MouseEventArgs,

compute the change in position, and raise your custom Drag event (which you’re expecting the con-

suming application to hook up).

public class TouchGesture : Behavior<UIElement>

{

... previously-listed code omitted for brevity.

 public event EventHandler<DragEventArgs> Drag;

 private double lastPositionX;

 private double lastPositionY;

 private void AssociatedObject_MouseMove(object sender, MouseEventArgs e)

 {

 if (isMouseDown)

 {

 Point position = e.GetPosition(null);

 double hChange = position.X - lastPositionX;

 double vChange = position.Y - lastPositionY;

 lastPositionX = position.X;

 lastPositionY = position.Y;

 OnDrag(new DragEventArgs(hChange, vChange));

 }

 }

158 PART I Building Blocks

 private void OnDrag(DragEventArgs e)

 {

 if (Drag != null)

 {

 Drag(AssociatedObject, e);

 }

 }

}

In standard event form, the irst argument to the custom Drag event is the sending object (in this

case, the AssociatedObject property of this behavior). The second argument is a custom DragEvent

Args, which allows you to pass the horizontal and vertical change data. Note that the Drag event is

declared by using the generic EventHandler<T>, speciically so that you can deine it to use this cus-
tom DragEventArgs type.

public class DragEventArgs : EventArgs

{

 public double HorizontalChange { get; set; }

 public double VerticalChange { get; set; }

 public DragEventArgs(double h, double v)

 {

 HorizontalChange = h;

 VerticalChange = v;

 }

}

Finally, in the page code for the application, you implement the Drag event handler by apply-

ing the TranslateTransform in almost exactly the same way as you did previously with the Toolkit

GestureService.

private void DragBehavior_Drag(object sender, DragEventArgs e)

{

 myTranslateTransform.X += e.HorizontalChange;

 myTranslateTransform.Y += e.VerticalChange;

}

So, synthesizing your own high-level gesture events from lower-level MouseXXX or Manipulation

XXX events is a valid alternative to using the Toolkit GestureService. You should be aware that

although this example provides a custom implementation of drag manipulation handling, there is in

fact a standard behavior shipped with Expression Blend that performs the same functionality. You can

see this at work in the TestBehaviors_Standard solution in the sample code. To use this feature in a

Visual Studio project, you need to add a reference to Microsoft.Expressions.Interaction.dll and add a

corresponding XML namespace declaration.

xmlns:ilayout="clr-namespace:Microsoft.Expression.Interactivity.Layout;assembly=Microsoft.

Expression.Interactions"

Then, for the Image element in your XAML, in the Interaction.Behaviors child element, replace the

custom behavior with the standard MouseDrageElementBehavior, and then hook up a handler for the

Dragging event.

 ChAPTER 5 Touch UI 159

<interact:Interaction.Behaviors>

 <ilayout:MouseDragElementBehavior Dragging="MouseDragElementBehavior_Dragging" />

</interact:Interaction.Behaviors>

The Dragging event handler would then have effectively the same implementation as the previous

custom handler.

private void MouseDragElementBehavior_Dragging(object sender, MouseEventArgs e)

{

 myTranslateTransform.X += e.GetPosition(myImage).Y;

 myTranslateTransform.Y += e.GetPosition(myImage).X;

}

If there is a standard behavior that you can use, this would obviously save a lot of work. In fact, it

gets even easier: recall that the behaviors feature is a Blend feature, and therefore, it's intended for

use by designers, not developers. So, you can in fact use a standard behavior without any code. You

would use the Blend UI to generate the XAML for you, and that’s all you need to do. In Visual Studio,

you only need to add the declaration of the behavior itself; you do not need to specify events. Of

course, without a declared event, you also do not need an event handler in the code at all. So, all the

preceding work could be replaced with this one XAML declaration:

<interact:Interaction.Behaviors>

 <ilayout:MouseDragElementBehavior />

</interact:Interaction.Behaviors>

keyboard Input

A hardware keyboard is an optional component in the standard Windows Phone 7 chassis speciica-

tion. On the other hand, the Software Input Panel (SIP) is a part of the platform itself, and is there-

fore available on all Windows Phone 7 devices. The SIP was also previously known as the On-Screen

Keyboard (OSK). Just to complete the list of TLAs, the auto-correct and word suggestion features are

collectively known as the Input Method Editor (IME). The SIP is popped up at appropriate times on

your behalf—such as when the user taps an editable TextBox. When displayed, the SIP pushes your

visual elements up and off the top of the screen. Exactly how much space it takes up on the screen

depends on whether it is in portrait or landscape orientation, whether the word suggestions feature

is engaged, the speciic InputScope that you’re using, and whether there’s anything in the clipboard.

In landscape orientation, the SIP occupies more space horizontally but less space vertically (because

there is less vertical real estate overall in landscape). It’s also important to remember that even if you

detect that a hardware keyboard has been deployed, you can’t assume that there’s no SIP-related UI

on screen, because there might be something in the clipboard, and that requires SIP-related UI.

The Windows Phone SIP actually has a lot of very useful features, including auto-correction, word

suggestion, visual and audio feedback, accent key pickers, shift and shift-lock management, compen-

sation for inger shake, and so on. However, these are all user features rather than developer features.
Relatively little functionality is exposed to developers. This is partly because there is very little need

for developers to program the SIP directly, and partly it is to ensure a consistent user experience (UX)

by not enabling arbitrary programmatic manipulation.

160 PART I Building Blocks

You can conigure the input scope of the SIP by setting the InputScope property on the element

(for example, the TextBox) itself. There are 62 possible values for InputScope, but many of these are

synonyms, and they map to 11 distinct modes. Why is this? There are a couple of reasons:

 ■ To allow the developer to declare the intent of the scope. For example, the CurrencyAmount

InputScope is synonymous with the Number InputScope, but the developer can specify

CurrencyAmount to make his intentions clear.

 ■ To allow for future tuning of the input scopes. For example, right now Bopomofo is synony-

mous with Default, but in some future release there might be a distinct Bopomofo SIP.

The following application (the TestSip solution in the sample code) provides a ListBox of the full set

of input scopes, and data binds the TextBox InputScope to the selected item from that list. Figure 5-4

shows the Chat input scope on the left and the TelephoneNumber input scope on the right.

FIguRE 5-4 The SIP with Chat (left) and TelephoneNumber input scopes.

The ListBox declaration in XAML is trivial; the TextBox declaration includes data binding the Input

Scope property to the currently selected item in the ListBox element.

<StackPanel x:Name="ContentPanel">

 <ListBox x:Name="ScopeList" Height="300"/>

 <TextBox

 InputScope="{Binding ElementName=ScopeList, Path=SelectedItem}"/>

</StackPanel>

To populate the ListBox, you need to do a little relection. Internally, the input scope values are
declared as an enum named InputScopeNameValue in System.Windows.dll. You use Type.GetFields to

 ChAPTER 5 Touch UI 161

get each enum value, and extract the FieldInfo.Name to populate a simple list, which is then sorted

alphabetically and set as the ItemsSource of the ListBox, as demonstrated here:

public MainPage()

{

 InitializeComponent();

 List<string> inputScopeNames = new List<String>();

 FieldInfo[] inputScopeEnumValues = typeof(InputScopeNameValue).GetFields(

 BindingFlags.Public | BindingFlags.Static);

 foreach (FieldInfo fi in inputScopeEnumValues)

 {

 inputScopeNames.Add(fi.Name);

 }

 inputScopeNames.Sort();

 ScopeList.ItemsSource = inputScopeNames;

}

Note Tuning the SIP display to the keys that you want the user to use doesn’t prevent her

from using other keys. If she has a hardware keyboard, or if she uses the clipboard, she can

ignore the InputScope altogether.

You can emulate a hardware keyboard on the emulator by pressing the Pause key on the com-

puter keyboard. This toggles the keyboard to act as the hardware keyboard for the phone emulator;

it remains set until you press Pause again (or restart the emulator). The emulator window must have

focus before you do this—you need to click inside the emulated screen (not on the chrome) for the

keystroke to work (the same applies for other special keys such as F1 for back, F2 for start, and so

on). If you want to ilter out unacceptable keystrokes, you can handle the LostFocus event to remove

unwanted characters after they’ve been entered. For example, the following code removes anything

that’s not a numeric digit:

private void MyTextBox_LostFocus(object sender, TextChangedEventArgs e)

{

 MyTextBox.Text = Regex.Replace(MyTextBox.Text, "[^0-9]", "");

}

The design of the SIP was the result of collaboration between Microsoft Research and the Win-

dows Phone product team. The SIP has to work even if the application constrains itself to portrait

mode, wherein the SIP and its individual keys will be relatively small, and with small gaps between

keys. Moreover, because everything is so small, it is not possible to use classic “all-inger” typing on
a mobile device, and one or two-digit typing is slow and laborious. To mitigate this, users expect

predictive word-completion suggestions and auto-completion. Modern smartphones take this a step

further by dynamically sizing the keys—or, typically, the touch targets—according to their prediction

of the next character. For example, if you type “Targe”, the system will likely predict that the most

probable next character is “t”, and will make the touch target for the “t” key larger, and the surround-

ing keys’ touch targets correspondingly smaller. This helps the user to hit the right key.

162 PART I Building Blocks

In fact, the designers of the Windows Phone 7 keyboard took this yet another step further. They

found that although simple key-target resizing does improve typing accuracy in the general case,

there are scenarios for which it can be counter-productive. For example, suppose instead of “Target”,

you want to type “Targer” (someone’s name). Standard key-target resizing would increase the size of

the “t” and reduce the size of its neighbor, “r”, making it even more dificult to enter the key that you
want, not easier. What the Microsoft Research and the Windows Phone product team folks came up

with is an anchored key-sizing approach, wherein each key has a central anchor that is always included

in its target area regardless of predictions. Details of this approach are published in the paper Usabil-

ity Guided Key-Target Resizing for Soft Keyboards, which is available at http://research.microsoft.com/

apps/pubs/default.aspx?id=118375.

As part of its investigations and to ine-tune its design, the team published a game called Text Text

Revolution!, which is available on the Windows Phone Marketplace. This game serves a dual purpose

of helping users to train themselves to type more accurately and also to provide feedback data to

ine-tune the prediction model itself.

Note that a sophisticated application could take a similar approach to improve the usability of the

application’s touch input. This is not to suggest that you build your own SIP—that would be a bad

idea. Rather, you could use the approach for non-key input, perhaps if you have a number of small

buttons, or a number of game sprites positioned close together.

orientation

If you want to handle changes in device orientation, you irst need to set the application’s Supported

Orientations to PortraitOrLandscape (typically in the mainpage.xaml), as shown here:

<phone:PhoneApplicationPage

...

 SupportedOrientations="PortraitOrLandscape" Orientation="Portrait"

 >

In this simple example (TestOrientation in the sample code), you’ll add a series of image controls,

just to see what the UX is as the orientation changes. These are placed in a 2x2 Grid. The irst row of
the Grid contains one large image; the second row contains a StackPanel with two smaller images

stacked vertically. Note that the initial orientation of the application is Portrait and that the StackPanel

is initialized at row 1, column 0 in the Grid.

<Grid x:Name="ContentPanel" Margin="12,0,12,0">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

http://research.microsoft.com/apps/pubs/default.aspx?id=118375
http://research.microsoft.com/apps/pubs/default.aspx?id=118375

 ChAPTER 5 Touch UI 163

 <Image x:Name="Image1" Grid.Row="0" Grid.Column="0" Stretch="Fill"

 HorizontalAlignment="Center" Source="Images/TestImage.jpg"

 Height="310" Width="456"/>

 <StackPanel

 x:Name="imagePanel" Grid.Row="1" Grid.Column="0"

 HorizontalAlignment="Center" >

 <Image

 HorizontalAlignment="Center" Stretch="Fill"

 Height="125" Width="175" Source="Images/Coconuts.jpg"/>

 <Image

 HorizontalAlignment="Center" Stretch="Fill"

 Height="125" Width="175" Source="Images/PalmTrees.jpg"/>

 </StackPanel>

 </Grid>

The result is shown in Figure 5-5.

FIguRE 5-5 A layout in portrait orientation.

This looks acceptable in portrait mode. The problem is that when the user turns the phone side-

ways, you cannot see the images at the bottom, as illustrated in Figure 5-6.

164 PART I Building Blocks

FIguRE 5-6 The same layout in landscape orientation.

One solution is to put everything into a ScrollViewer, as follows:

<ScrollViewer x:Name="ContentGrid" Grid.Row="1" VerticalScrollBarVisibility="Auto">

 <Grid x:Name="ContentPanel" Margin="12,0,12,0">

 ...

 </Grid>

</ScrollViewer>

By doing this, you can scroll the controls into view, as demonstrated in Figure 5-7.

FIguRE 5-7 Landscape orientation and using ScrollViewer.

However, the layout is less aesthetically pleasing when the device is in landscape mode than it is

when in portrait. A common solution to this is to handle the OrientationChanged event to rearrange

the layout. You handle this event at the page level. If the user is changing to Portrait, you set the Grid

row/column values for the StackPanel to row 1, column 0. Conversely, if he is changing to Landscape,

you set them to row 0, column 1.

<phone:PhoneApplicationPage

...

 SupportedOrientations="PortraitOrLandscape" Orientation="Portrait"

 OrientationChanged="PhoneApplicationPage_OrientationChanged"

 >

 ChAPTER 5 Touch UI 165

private void PhoneApplicationPage_OrientationChanged(

 object sender, OrientationChangedEventArgs e)

{

 if ((e.Orientation & PageOrientation.Portrait) == (PageOrientation.Portrait))

 {

 Grid.SetRow(imagePanel, 1);

 Grid.SetColumn(imagePanel, 0);

 }

 else

 {

 Grid.SetRow(imagePanel, 0);

 Grid.SetColumn(imagePanel, 1);

 }

}

The inal result is shown in Figure 5-8.

FIguRE 5-8 Now you have a dynamically changing grid layout.

There are no hard guidelines on which orientation(s) to support in an application, except that if

your application includes keyboard input (via SIP or hardware keyboard), you should allow for the

user to switch to Landscape. The SIP in Portrait mode has very small keys and is therefore harder to

use than in Landscape mode. Conversely, the problem with Landscape mode is that it leaves very little

space for your TextBox and other controls, which makes multi-line editing especially problematic. Also

consider that the phone might have a hardware keyboard, which could be Portrait or Landscape, and

it would clearly be quite dificult for the user to use the Landscape hardware keyboard if your applica-

tion supports only Portrait mode. It is also rare to support only Landscape mode; the common excep-

tions to this are all games and video-based applications.

If you specify SupportedOrientations of Landscape only, but at the same time set Orientation to

Portrait, the SupportedOrientations is honored and the Orientation is ignored, and vice versa. Also,

there are actually two Landscape modes (LandscapeLeft and LandscapeRight), which function as you

would expect. There is no way to force or disable either one of these. There are also two Portrait

modes (PortraitUp and PortraitDown), but only PortraitUp is used—there is no “upside-down” Portrait

mode. Note that there is no programmatic way to switch orientations. You can do this to a degree by

updating your SupportedOrientations property in code. The device will comply with this, but you can-

not force Left or Right.

166 PART I Building Blocks

Another way to solve this type of layout problem might be to use a WrapPanel, which you can get

from the Silverlight Toolkit. This is most suitable if you have a list of items that are all the same size,

and you want them to re-arrange themselves according to orientation changes. The screenshots in

Figures 5-9 and 5-10 illustrate this. This is the WrapOrientation solution in the sample code. In Portrait

mode, the application displays two columns and three rows, whereas in Landscape mode, it lays out

the elements in three columns and two rows.

FIguRE 5-9 A WrapPanel in portrait mode.

FIguRE 5-10 The same WrapPanel in landscape mode.

The application has a list of photos that are displayed in a ListBox, which in turn is hosted in a

WrapPanel.

 ChAPTER 5 Touch UI 167

<ListBox

 Margin="{StaticResource PhoneHorizontalMargin}" x:Name="PhotoList">

 <ListBox.ItemsPanel>

 <ItemsPanelTemplate>

 <toolkit:WrapPanel x:Name="PhotoPanel"/>

 </ItemsPanelTemplate>

 </ListBox.ItemsPanel>

 <ListBox.ItemTemplate>

 <DataTemplate>

 <Image

 Width="200" Height="150"

 Source="{Binding}"

 Stretch="UniformToFill" HorizontalAlignment="Left" />

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

The Source data for each Image is set up as a simple string that refers to an Image resource in the

assembly, as presented in the following:

public partial class MainPage : PhoneApplicationPage

{

 private List<string> photos = new List<string>();

 public MainPage()

 {

 InitializeComponent();

 photos.Add("/Images/Coconuts.jpg");

 photos.Add("/Images/Forest.jpg");

 photos.Add("/Images/Mountain.jpg");

 photos.Add("/Images/Sea.jpg");

 photos.Add("/Images/SunnyTree.jpg");

 photos.Add("/Images/TallPalms.jpg");

 PhotoList.ItemsSource = photos;

 }

}

There is no need to handle OrientationChanged events manually, because the WrapPanel dynami-

cally adjusts its size according to the new Width and Height of the screen whenever the orientation

changes. It also lays out its child elements within the constraints of its overall size and doesn’t allow

any of them to be clipped or omitted.

The Application Bar

Windows Phone offers an application bar that performs the same role as a menu or toolbar in

a desktop application. This is represented by the ApplicationBar, ApplicationBarIconButton, and

ApplicationBarMenuItem classes. The Application Bar—more commonly known as the App Bar—is

only minimally customizable: you can use up to four buttons (with your own or standard images).

You can also have a single, lat menu. These should be short items in a short menu. There’s actually
no technical limit imposed on the number of items that you can have, but the menu slides up to show

168 PART I Building Blocks

only ive items completely. If you have more, the user would need to scroll to see the rest, and this
compromises the UX.

An ApplicationBar property is exposed from the PhoneApplicationPage class, so you can deine
App Bar items on a per-page basis. Note, however, that this is a virtualization on top of what under

the covers is really a singleton object, managed by the Phone shell frame.

Microsoft supplies a suitable set of icons for use in the App Bar, installed as a part of the Windows

Phone Developer Tools in %ProgramFiles%\Microsoft SDKs\Windows Phone\v7.0\Icons. You can use

these directly or as a base for your own images. Both light and dark-themed versions are provided.

You should use the dark-themed version (white images); the application platform will convert on

the ly, as needed, if the user changes the theme on the device. The light-themed versions (black
images) are provided, but not for use in the App Bar; they are available in case you want to use them

elsewhere in your application, outside of the App Bar. The total image size is 48x48 pixels, and the

customizable area within that is 26x26 pixels. The light-themed versions are shown in Table 5-6.

TABlE 5-6 Standard App Bar Icons

More Info Several third parties have also made icon sets available (both commercial and

free), including:

 ■ http://yankoa.deviantart.com

 ■ http://www.smartypantscoding.com/content/metro-icons-windows-phone-7

 ■ http://metro.windowswiki.info/

You can optionally set the opacity for the App Bar, and if you do so, you should limit yourself to

values of 0, 0.5 and 1. If opacity <1, the App Bar will overlay the UI. If opacity==1, the page size is

reduced by the 72-pixel size of the App Bar. If you don’t provide images, the application will work just

ine without images (showing the underlying default “x in a circle” image). If you attempt to provide
more than four buttons, or if your buttons do not have text speciied, the application will crash on
startup.

In the following example (AppBarAnimator in the sample code), there is a single TextBlock and two

App Bar buttons. Figure 5-11 shows that one button rotates the text on the X axis; the other rotates it

on the Y axis.

 ChAPTER 5 Touch UI 169

FIguRE 5-11 The App Bar buttons in portrait mode.

When the phone orientation is changed, the App Bar icons are animated so that the images are

always displayed in the same relative orientation. This is shown in Figure 5-12.

FIguRE 5-12 The same App Bar buttons in landscape mode.

The TextBlock speciies a PlaneProjection so that this can be the target of animation.

<TextBlock Name="helloText" Text="Hello"

 FontSize="{StaticResource PhoneFontSizeHuge}"

 HorizontalAlignment="Center" VerticalAlignment="Center">

 <TextBlock.Projection>

 <PlaneProjection x:Name="textPlane" />

 </TextBlock.Projection>

170 PART I Building Blocks

 <TextBlock.Foreground>

 <SolidColorBrush x:Name="textBrush" Color="Red" />

 </TextBlock.Foreground>

</TextBlock>

To achieve the animation, the application has two Storyboard objects, which target the RotationX/

RotationY properties of the named PlaneProjection.

<phone:PhoneApplicationPage.Resources>

 <Storyboard x:Name="rotateX">

 <DoubleAnimation Storyboard.TargetName="textPlane"

 Storyboard.TargetProperty="RotationX"

 From="0" To="360" Duration="0:0:3" />

 </Storyboard>

 <Storyboard x:Name="rotateY">

 <DoubleAnimation Storyboard.TargetName="textPlane"

 Storyboard.TargetProperty="RotationY"

 From="0" To="360" Duration="0:0:3" />

 </Storyboard>

</phone:PhoneApplicationPage.Resources>

The App Bar has two buttons, with suitable icons and text.

<phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">

 <shell:ApplicationBarIconButton

 IconUri="/Images/appBar.rotateX.png" Text="rotate X"

 x:Name=" appBarRotateX" Click=" appBarRotateX_Click"/>

 <shell:ApplicationBarIconButton

 IconUri="/Images/appBar.rotateY.png" Text="rotate Y"

 x:Name="appBarRotateY" Click="appBarRotateY_Click"/>

 </shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

In the main page, you implement the two Click handlers to start the corresponding storyboard, as

shown in the following:

private void appBarRotateX_Click(object sender, EventArgs e)

{

 rotateX.Begin();

}

private void appBarRotateY_Click(object sender, EventArgs e)

{

 rotateY.Begin();

}

The App Bar also supports menu items. The user accesses the menu via the ellipsis image in the

App Bar, or by licking up on the App Bar. In this example, you add a menu with two items, to change
the color of the text.

<phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar IsVisible="True" IsMenuEnabled="True">

 <shell:ApplicationBarIconButton

 IconUri="/Images/appBar.rotateX.png" Text="rotate X"

 x:Name="appBarRotateX" Click="appBarRotateX_Click"/>

 ChAPTER 5 Touch UI 171

 <shell:ApplicationBarIconButton

 IconUri="/Images/appBar.rotateY.png" Text="rotate Y"

 x:Name="appBarRotateY" Click="appBarRotateY_Click"/>

 <shell:ApplicationBar.MenuItems>

 <shell:ApplicationBarMenuItem

 x:Name="appBarRed" Text="Red" Click="appBarRed_Click"/>

 <shell:ApplicationBarMenuItem

 x:Name="appBarGreen" Text="Green" Click="appBarGreen_Click"/>

 </shell:ApplicationBar.MenuItems>

 </shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

private void appBarRed_Click(object sender, EventArgs e)

{

 this.textBrush.Color = Colors.Red;

}

private void appBarGreen_Click(object sender, EventArgs e)

{

 this.textBrush.Color = Colors.Green;

}

Figure 5-13 shows how the menu slides up from the bottom when the user taps the menu ellipsis.

FIguRE 5-13 The App Bar menu items appear when the user taps the menu ellipsis.

By default, if you try to access App Bar elements by name, they will be null. When you build a

Silverlight project, the build system produces an interim C# code ile for each XAML page, named
<page>.g.cs—for example, mainpage.g.cs. Note that the interim version of a page that deines App
Bar elements includes code in the InitializeComponent to retrieve XAML-declared objects into code

objects, including the App Bar buttons and menu items.

172 PART I Building Blocks

this.appBarRotateX = ((Microsoft.Phone.Shell.ApplicationBarIconButton)

 (this.FindName("appBarRotateX")));

this.appBarRotateY = ((Microsoft.Phone.Shell.ApplicationBarIconButton)

 (this.FindName("appBarRotateY")));

this.appBarRed = ((Microsoft.Phone.Shell.ApplicationBarMenuItem)

 (this.FindName("appBarRed")));

this.appBarGreen = ((Microsoft.Phone.Shell.ApplicationBarMenuItem)

 (this.FindName("appBarGreen")));

However, remember that the App Bar is not in the application’s visual tree, and you cannot

retrieve App Bar buttons or menu items by name, only by index, so the ields will still be null after
these assignments. The FindName method walks the visual tree to ind a UIElement with the speciied
name, and of course, it won’t ind any App Bar elements in the tree. Note that this applies only to the
App Bar controls; other ields will be successfully assigned in InitializeComponent. If you need pro-

grammatic objects for the App Bar buttons (for example, if you need to dynamically enable/disable

them), you need to fetch them from the collection by index.

public MainPage()

{

 InitializeComponent();

 // Assign fields by index, not name.

 appBarRotateX = this.ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 appBarRotateY = this.ApplicationBar.Buttons[1] as ApplicationBarIconButton;

}

So, why is the App Bar not in the application’s visual tree? The answer is that under the covers, the

App Bar is more closely aligned with the phone’s hardware buttons (such as the camera and lock-

screen buttons) than with anything in your application. The App Bar is really a part of the phone’s

shell. It’s just that the application platform provides convenient managed classes to represent it so

that you can work with it easily in your application code. It is also designed to bridge your application

and the standard phone chrome in a way that appears seamless to the user. Note that the Application

Bar class that you use in your code implements the IApplicationBar interface, which is used internally

and is not intended for you to use directly.

summary

Windows Phone supports a range of touch gestures, and the application platform provides a rich set

of choices for interacting with this, at six different levels. The Metro vision was factored into the selec-

tion and design of the underlying phone hardware, and this helped to solidify the precise numeric

limitations of various touch and UI elements. The Metro guidelines are very clear on what you should

do to optimize the user’s experience, in terms of sizing and positioning controls, speed of response to

touch input, and expected motion dynamics. The phone also has orientation sensors that are surfaced

to the application as orientation events, and you examined alternatives for handling these changes to

maintain the best UX. Finally, you looked at how you can work with the software App Bar, which is a

part of the system chrome.

 173

Part II

Application Model

ChAPTER 6 Application Model .175

ChAPTER 7 Navigation State and Storage199

ChAPTER 8 Diagnostics and Debugging243

This part examines the application's end-to-end user experi-

ence, focusing on how the user navigates between multiple

pages in an application, as well as across multiple applications.

This also includes the way an application should behave in the

face of lifecycle events, plus a look at how to build diagnostics

and debugging support in your application.

 175

C h A P T E R 6

Application Model

This chapter focuses on the application model and explores at depth an application’s lifecycle and

events. On a desktop computer, users can have multiple applications open, performing work at

the same time. Users can switch between running applications in any arbitrary order and can start

and explicitly stop applications at any time. A smartphone, however, has signiicant constraints in
terms of memory, processor capacity, disk storage, screen size, input capabilities, and even power. The

severity of these physical constraints mandates that the application platform imposes correspond-

ing constraints on applications. The application platform and the underlying operating system both

execute a number of services in the background, and several of these will be executing at any given

period of time. On the other hand, there will be only one application running in the foreground at

any one time. There may be additional background applications running at the same time, nota-

bly background tasks such as email sync, but these are allocated a signiicantly smaller resource set
(memory quota and CPU time). Despite this, users are presented with an experience by which they can

switch from one application to another and back again, seamlessly. This chapter considers how this

behavior is implemented, examines the hooks that an application developer can use to take a proac-

tive part in the application lifecycle, and offers some guidance on how best to take advantage of the

application model.

lifetime Events and Tombstoning

The application platform does an excellent job of presenting users with a seamless multi-tasking

application experience. For example, they can use the Start and Back buttons to launch new applica-

tions and switch back to previously running applications, which provides the illusion that multiple

applications are running at the same time. In fact, in Windows Phone, only one application at a time is

allowed to run in the foreground. The design of the application platform leads to a number of other

constraints, listed in the following:

 ■ Every launched application instance is either in an active or dormant state. The dormant state

(also known as “paused”) actually covers two different possible states: paused and tombstoned,

which is discussed a bit later on.

 ■ Windows Phone also distinguishes between the foreground and non-foreground states. In all

cases, the foreground application is also active. On the other hand, in only some cases is the

non-foreground application also dormant. Speciically, if the foreground application invokes
certain Launchers and Choosers, the Launcher/Chooser becomes the foreground application,

176 PART II Application Model

and the initial application becomes the non-foreground application; however, crucially, it is not

deactivated and remains in the active state, not dormant. Note that this is strictly a version 7

corner case. It was eliminated in version 7.1.

 ■ Apart from the aforementioned corner case, there can be only one active application at a

time, and only the active application (or the user) can initiate navigation from one page to

another in an application or from one application to another.

 ■ There can be only one active page at a time, and the only way to activate a page is to navigate

to it.

 ■ When an application is activated, the platform navigates to the page marked in the applica-

tion as its initial or default page. Therefore, every application must have at least one page.

If the user navigates away from an application, it will always be either deactivated or closed,

altogether. Speciically, if the user navigates away by pressing the Back key, it will be closed; if he
navigates away by any other mechanism, such as pressing Start or launching a chooser, it will be

deactivated. If the user subsequently navigates back to that application, it might be reactivated from

a dormant state, and it might in fact be relaunched after tombstoning. Note that, unlike desktop

Windows, the application lifetime is not a 1:1 mapping with the process lifetime. The platform main-

tains a backstack of previously running applications, implemented as a last-in-irst-out (LIFO) queue
as well as a minimal set of information about each application in the backstack so that it can quickly

reactivate an application, if called upon to do so.

Therefore, if a user navigates back to an application that was previously running—one that is still

on the backstack—then the system reactivates it. On the other hand, if the previously running appli-

cation is no longer on the backstack, then the user will not ind it by navigating backward through
the backstack. In this scenario, the only way to reach the application is to launch the process again.

Conversely, even if the previously running application is still on the backstack, but the user uses any

mechanism other than the Back key, such as launching the same application from the Start tiles, then

a new application instance will be started. All marketplace-downloadable applications are single-

instance, so starting a fresh copy of an application always removes any previous instance from the

backstack. However, this is not the case with certain built-in applications, such as email, for which you

can have multiple instances on the backstack.

This combination of the user interaction model and the resource constraints mentioned earlier

means that the platform can minimize the old application’s use of precious resources (mainly CPU and

memory) and reclaim these for use in the new application. To ensure a seamless, well-performing user

interface, the foreground application must be allocated the maximum amount of resources that the

platform can offer (after reserving required resources for indispensable system processes and ser-

vices). On a phone—which inherently has limited physical resources—the best way to ensure that this

happens is to reclaim resources from applications that are not currently the foreground application.

 ChAPTER 6 Application Model 177

When users navigate backward, even when the platform starts a process for a new application

instance, it appears to the users that they are merely navigating back to a running instance. This is

because the restart is often faster than the initial launch of the application, and also because the plat-

form keeps track of things such as which page the user was on in the application before she navigated

away. The application developer is offered the opportunity to take part in this behavior and to make

the task-switching or reactivation/restart even more seamless by responding to system lifecycle and

navigation events, bringing the application to the appropriate state at those points.

From an application developer’s perspective, there are really only two primary lifetime scenarios:

 ■ The Closing case, in which an application terminates and receives the Closing event. This is

unambiguous and simple to handle. This happens when a user presses the hardware Back but-

ton from the irst page in the application, which kills the process and application instance. This
is also the case with XNA games, using the XNA Exit functionality.

 ■ The Deactivated case, in which an application is deactivated. In this case, sometimes the pro-

cess is terminated, and sometimes it is not. This also varies according to the OS version, the

amount of free memory, whether you launched a particular type of chooser, and so on. The

key point to remember is that you never know which situation (deactived or terminated) will

occur, so your applications must be prepared for the worst possible case (process terminated).

If the application is reactivated, you can opportunistically take advantage of the case wherein

the process wasn’t terminated.

The unhandled exception case—an application terminates by crashing—is arguably a third lifetime

scenario, but by deinition, there is nothing the application can do to recover from this, so that sce-

nario is not germane for this discussion. For the cases that do matter, all the complexity arises in the

deactivated case. From a developer’s perspective, the details are almost irrelevant; you just need to

allow for the possibility that your application can be terminated after deactivation. That said, the fol-

lowing sections explore the internal behavior so that you can understand the reasoning behind this.

First, you can further divide the Deactivated case into two scenarios:

 ■ Tombstoning, in which the user navigates forward away from the application, the application is

deactivated, and the process is killed, but the application instance is maintained.

 ■ Fast reactivation (also known as the non-tombstone case), in which the application is deacti-

vated and then immediately reactivated, without being tombstoned in the interim.

For marketplace applications, it is not possible to have more than one instance of an application

running at the same time. The system will detect an attempt to launch a second instance of an appli-

cation that is already running and will remove the irst instance from the backstack. This restriction
applies to all Microsoft Silverlight and XNA applications, but it does not to certain built-in applications

such as the email client.

178 PART II Application Model

It is simple enough to conirm the order in which lifecycle events are raised and under what cir-
cumstances; just put Debug.WriteLine statements in each of the interesting methods of the App and

Page classes, as shown in the following (this is the TestActivation application in the sample code):

public partial class App : Application

{

 public App()

 {

 Debug.WriteLine("App.ctor");

... irrelevant code omitted for brevity.

 }

 // Code to execute when the application is launching (eg, from Start).

 // This code will not execute when the application is reactivated.

 private void Application_Launching(object sender, LaunchingEventArgs e)

 {

 Debug.WriteLine("Application_Launching");

 }

 // Code to execute when the application is activated (brought to foreground).

 // This code will not execute when the application is first launched.

 private void Application_Activated(object sender, ActivatedEventArgs e)

 {

 Debug.WriteLine("Application_Activated");

 }

 // Code to execute when the application is deactivated (sent to background).

 // This code will not execute when the application is closing.

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)

 {

 Debug.WriteLine("Application_Deactivated");

 }

 // Code to execute when the application is closing (eg, user hit Back).

 // This code will not execute when the application is deactivated.

 private void Application_Closing(object sender, ClosingEventArgs e)

 {

 Debug.WriteLine("Application_Closing"); }

}

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

 Debug.WriteLine("MainPage.ctor");

 }

 protected override void OnNavigatedFrom(NavigationEventArgs e)

 {

 Debug.WriteLine("MainPage.OnNavigatedFrom");

 }

 ChAPTER 6 Application Model 179

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 Debug.WriteLine("MainPage.OnNavigatedTo");

 }

}

In this example, the application has two pages: one named MainPage, and the other named

SecondPage. Upon application start, you see the following debug output, illustrating the sequence

of events, as the App object is constructed and the Launching event is raised. This is followed by the

MainPage construction and the OnNavigatedTo called for the MainPage.

App.ctor

Application_Launching

MainPage.Ctor

MainPage.OnNavigatedTo

Then, when the user navigates to the SecondPage, you will see the output shown below, as the

application constructs the SecondPage, navigates away from the MainPage, and navigates to the

SecondPage.

SecondPage.Ctor

MainPage.OnNavigatedFrom

SecondPage.OnNavigatedTo

When the user navigates back from the SecondPage to the MainPage, you see the debug output

that follows. Notice that the MainPage constructor is not called, because the page still exists.

SecondPage.OnNavigatedFrom

MainPage.OnNavigatedTo

If the user navigates from the MainPage of the application forward to another application via the

Start button, and then navigates back again through the application backstack to the irst application,
you’ll see the debug output that follows. Note that the Activated event is raised in this case, not the

Launching event.

App.ctor

Application_Activated

MainPage.Ctor

MainPage.OnNavigatedTo

If the user presses the Back key from the MainPage of the application, the application will termi-

nate. Just before the process is torn down, the Closing event is raised.

Note In version 7, it is not possible to determine when your process is terminated after it

was previously deactivated unless you have the debugger attached and look for the “pro-

cess TaskHost exited” debug output. This changed in version 7.1, in which you can check the

new IsAppInstancePreserved property.

180 PART II Application Model

Be aware that the precise behavior of the underlying application platform when managing the

backstack varies slightly between version 7 and 7.1. You can ind further details in Chapter 15, “Multi-
Tasking and Fast App Switching.”

Application Closing
This section explores the termination scenario in detail. The irst scenario is normal termination. The
only formal, direct way for users to terminate an application is to press the Back button from the irst
page of an application. When they do this, a Closing event is raised on the application, and its hosting

process—and the logical application instance—is then terminated. The normal termination sequence

is illustrated in Figure 6-1.

User Phone OS Application MainPage

Launch Application

Application Constructor

Application Launching

Back

Application Closing

(Use Running Application)

MainPage Constructor

MainPage OnNavigatedTo

MainPage OnNavigatedFrom

FIguRE 6-1 A diagram of the closing (normal termination) sequence.

Note that “Launch Application” in these diagrams is an abbreviated term that means launch appli-

cation by any means, including from the Start screen, the installed application list, via a toast notiica-

tion, and so on.

It is also important to understand why the application platform surfaces lifecycle events to the

application. The idea is to allow the application to take part in its own lifetime management, specii-

cally so it can save or load persistable state, and so it can make informed decisions about when to

 ChAPTER 6 Application Model 181

perform certain operations. For example, it is a marketplace certiication requirement that the appli-
cation must show its irst screen within 5 seconds of launch, and be responsive to user input within
20 seconds. Application initialization can be done in the App class constructor, but you should limit

this to only critical operations and defer as much as possible to a later point to provide the best user

experience (UX).

The system sends a Launching event, which you can handle to perform additional initialization.

However, given the startup time performance requirements, you should be careful to avoid doing any

lengthy operations when the Launching event is received. By the same token, you must also complete

activation, deactivation, and navigation within 10 seconds, or you will be terminated. So, the various

lifecycle events give you an opportunity to take action, but you should design your application so that

whatever you do in these events happens quickly. The time to do lengthy operations is during normal

running, not when you’re handling a lifecycle event. Due to the time-sensitive nature of these events,

techniques such as incrementally saving your data are critically important on the phone. Even if your

application’s data usage starts out small, if you design your application around a single load at startup

and a single close at shutdown, you will hit a brick wall when the complexity or data usage of your

application grows over time.

Application Deactivated
The second scenario is when the user brings some other application into the foreground. Typically,

this is done either by pressing the Start button or by accepting a notiication or other alert that
launches the new application, or when the phone locks. This is illustrated in Figure 6-2. Regardless

of how it’s triggered, when the user switches to a new application, a Deactivated event is raised on

the old application. The process is suspended and is a candidate for termination, but the applica-

tion instance is still valid as the platform keeps any saved state information such that it can quickly

reactivate the application (and send it an Activated event) if the user subsequently presses Back to go

back to the application. In the normal case in version 7, the platform will subsequently terminate the

process.

When an application is terminated in this manner, all the resources (CPU and memory) that it was

consuming are taken away from it and made available to other processes. The platform retains the

barest minimum it needs to be able to reactivate the application at a later point, should it be called

upon to do so. There will be an entry for the application in the application backstack, including a note

of the page within the application that the user was last viewing, the intra-application page backstack,

and some limited transient state stored by the application itself (such as the state of UI controls).

If the tombstoned application is later reactivated, the lifecycle events are almost identical to its

irst-time launch. The only difference is that after the App constructor is invoked, the platform sends

an Activated event, not a Launching event.

182 PART II Application Model

User Phone OS Application MainPage

Launch Application

Application Constructor

Application Launching

Back etc.

Application Constructor

Start etc.

Application Deactivated

(Use Running Application)

MainPage Constructor

MainPage OnNavigatedTo

(Use Running Application)

Application Activated

MainPage Constructor

MainPage OnNavigatedFrom

MainPage OnNavigatedTo

FIguRE 6-2 A typical tombstone sequence.

In this sequence, the appropriate actions that your application should take for each lifecycle event

(or virtual method override) are summarized in Table 6-1.

TABlE 6-1 Expected Behavior During Lifecycle Events

Class Event/override suitable Actions

Any Page OnNavigatedFrom Save transient page state in PhoneApplicationPage.State.

App Deactivated The app is being deactivated and is a candidate for tombstoning: save tran-
sient application state in PhoneApplicationService.State; save persistent state
to isolated storage.

App Activated Load application state from PhoneApplicationService.State. Avoid lengthy
operations.

Any Page OnNavigatedTo Load page state from PhoneApplicationPage.State.

 ChAPTER 6 Application Model 183

The diagram makes the simpliication that the user was on a page called MainPage when he navi-

gated away from the application. In fact, the behavior holds true regardless of which page he was on.

The platform keeps track of the page he was on, and then upon reactivation, constructs the page, if

necessary (that is, if the application was tombstoned), and invokes the OnNavigatedTo method.

In the interest of resource management, the platform retains only ive applications on the back-

stack, including the currently active one. As soon the user launches the sixth application, the appli-

cation at the beginning of the backstack is discarded completely. In this situation, the discarded

application will have received a Deactivated event just as the user navigated away from it. It does not

receive any further events, and there is no indication when it is discarded from the backstack.

It should be clear from the foregoing that there is often asymmetry in the lifecycle event sequence.

An application does not always receive a Closing event. Also, an application receives only a Launching

event when a fresh instance is launched. From a user’s perspective, she can “start,” “stop,” and “pause”

an application multiple times, but the application only ever receives the Launching event once. So,

in many cases, the application will not have symmetry in Launching and Closing, in Launching and

Activated, or in Deactivated and Closing. In fact, there are only two guarantees for a given application

instance: Launching always happens exactly once, and Activated is always preceded by Deactivated.

For a developer, this means that any code that performs lifecycle housekeeping should be done at

the appropriate time. For loading content, it should be done just in time. For saving content, it should

be done as soon as possible. That typically means loading only enough content for the current page

that you are on and saving that content when you navigate away. So, per-page lifecycle housekeeping

should be done in the OnNavigatedTo and OnNavigatedFrom overrides.

Application Deactivated (the Non-tombstone Case)
The third lifetime scenario, which is shown in Figure 6-3, is when the user runs an application and

then immediately after presses Start and then Back. This is known as the “fast reactivation” or “non-

tombstone” case. If this particular sequence of button presses happens fast enough, the application is

not tombstoned, the hosting process is not torn down, and the Deactivated and Activated events fol-

low in quick succession. This scenario also happens when certain Launchers or Choosers are invoked

while the application is running. In Windows Phone 7.1, this also happens in the Fast Application

Switching (FAS) feature (discussed in Chapter 15).

184 PART II Application Model

User Phone OS Application MainPage

Launch Application

Application Constructor

Application Launching

Back etc.

Non-Tombstone Action

Application Deactivated

(Use Running Application)

MainPage Constructor

MainPage OnNavigatedTo

(Use Running Application)

Application Activated

MainPage OnNavigatedFrom

MainPage OnNavigatedTo

FIguRE 6-3 This diagram portrays the non-tombstone sequence.

Why does this scenario receive special treatment? The answer is simple: usability tests show that

the sequence of Start | Back button presses almost always results from the user accidentally pressing

Start while working in an application. The team at Microsoft responsible for building the Windows

Phone application platform paid careful attention to this and many other user scenarios to ensure

that the user has the best possible overall experience. Speciically, the critical factor is performance—
it is not eficient for the application platform to terminate the process and bring up a new one if the
old one is still viable.

Note In this scenario, none of the constructors are called the second time (neither App

nor Page constructors), because the App and Page objects were never destroyed. Given

this, it should be clear that the developer should avoid any asymmetry in work done

during the various lifecycle events. Speciically, if the application destroys things in the
Deactivated handler, it should be careful to recreate them in the Activated handler, not in

the constructors.

 ChAPTER 6 Application Model 185

Unhandled exceptions
For circumstances in which the application throws an exception that is not handled, no lifecycle

events are raised at all. If there is an UnhandledException handler in place—which is something the

Microsoft Visual Studio templates insert by default—then code execution will jump there. The default

handler put in place by Visual Studio merely checks to see if the application is being debugged, and

if so, it invokes Debugger.Break to break into the debugger. If the application is not being debugged,

the exception is then handled in the application platform itself, and the application is immediately

terminated and removed from the backstack. Recall that the only legitimate way for an application to

terminate is when the user presses the Back button from the application’s irst page. Developers must

not be tempted to use unhandled exceptions as a means of exiting the application. It is important

that the user feels that the phone experience is predictable and consistent. Users know that they can

always leave an application and go somewhere else on the phone by pressing Start. They also know

that they can always exit an application by pressing Back from the application’s initial page. Exiting via

unhandled exceptions breaks consistency and leads to user confusion.

Worse, for those times when the user has agreed to send usage data back to Microsoft, it will trig-

ger a stack dump (which takes up CPU and battery power) and upload that dump to Microsoft (taking

up yet more CPU, more battery, and network bandwidth). In addition, an engineer at Microsoft will

have to examine the report to ensure that it is not a bug in the application platform. If all this is not

suficient to dissuade a developer from throwing unhandled exceptions, then consider also that an
application that does this will likely fail marketplace certiication.

Of course, it is possible to implement an UnhandledException handler and handle the exception.

If the handler sets the Handled property to true, the application will continue. You can experiment

with the runtime behavior by using the FatalError solution in the sample code. Even so, in prac-

tice, exceptions should be handled locally, and the model of a catch-all inal exception handler is a
universally bad technique. If an exception has propagated out of your code to such a handler, it is

extremely unlikely that you can actually do anything about it, especially as you will have lost some or

all of the context of where the exception was originally raised. It's better to have the exception crash

the application during development so that the bug can be identiied and ixed prior to publication.
If your testing is not thorough enough to unearth all exceptions (and no testing is ever 100 percent

foolproof), and you publish your application, only for it to throw an unhandled exception in produc-

tion, it’s not the end of the world, because the marketplace will provide crash information to you. That

is your opportunity to ix any unexpected bugs and publish an update. However, there is one excep-

tion to this rule (no pun intended), and that is for the rare exceptions that can be thrown as a result

of system-initiated navigations, such as the “cannot navigate when already navigating” case—such

exceptions can safely be ignored.

Marketplace certiication includes requirements about handling exceptions and memory con-

sumption. Speciically, an application must handle all managed exceptions. If it does not, and if this
is detected during marketplace ingestion, then the application will be rejected for publication. On

top of this, if you have an exception from which the application cannot recover and continue to make

forward progress, you should alert the user to this fact with a non-technical message. It is not accept-

able to fail silently, and it is not acceptable to display a cryptic error message, HRESULT, stack trace, or

other non–user-friendly message.

186 PART II Application Model

Why Is there No App.exit?
There is no Exit method for Silverlight applications for three main reasons:

 ■ There is very little need for this from a UX perspective. The user can always press Start at any

time to leave an application. He can also always press Back from an application’s initial page to

leave the application. The user is rightly not concerned with the implementation detail of how

this works. He doesn’t care whether the application is still technically running, whether some

underlying tombstoning mechanism is kicking in, or what the state of the hosting process is.

 ■ There is very little need for this from an application platform perspective. As soon as the user

navigates away (either forward or backward), most of the application’s resources are reclaimed

for use elsewhere. The application platform is extremely eficient at doing this. This ensures
that the new foreground application always offers the best possible UX.

 ■ Introducing application Exit functionality would increase the complexity of the UX. Instead

of two well-understood mechanisms for leaving an application—neither of which burden the

user with the need to know or decide whether to terminate a process or suspend it—there

would now be three. Moreover, the third mechanism would not be supported by a well-known

hardware button; instead, it would be invoked by application-speciic logic, which might or
might not even be visible to the user.

Given that, why does XNA provide Exit functionality? It is possible to build a non-game XNA appli-

cation, just as it is possible to build a non-XNA game. However, XNA is designed very speciically for
games, and not just on the Windows Phone platform, but also for Xbox and desktop Windows. There-

fore, there is a requirement for XNA to support mechanisms that make sense on Xbox and Windows,

even if those mechanisms make less sense on Phone. Plus, of course, XNA was ported to Phone long

after it was available on Xbox and Windows, and many XNA games, game frameworks, and middle-

ware were built to include the notion of a Game.Exit. It is generally a bad strategy to forcibly fork

software for different platforms unless there is a good case for it. XNA games for all three platforms

have the same Game.Exit functionality. Removing this just for Phone offers no real beneit and entails
considerable cost and risk. Games do not have the same page-based user navigation model as non-

game Phone applications, so users have different expectations for games than for non-game applica-

tions. On top of that, XNA game developers are strongly encouraged to invoke the Game.Exit method

only when the user presses the Back button. Most (if not all) of the games in the marketplace have

taken this advice, and do not have an explicit Exit button. Thus, you should do the same.

Obscured and Unobscured
Activation/Deactivation happens when the user navigates away from the app and when the applica-

tion invokes Launchers and Choosers. On the other hand, some external operations merely result

in the application becoming temporarily obscured. In this scenario, there is no NavigatedFrom or

Deactivated event. Instead, the system raises an Obscured event. A common example of such an exter-

nal operation is when a notiication for an incoming call or a reminder is received.

 ChAPTER 6 Application Model 187

Note An incoming SMS toast does not raise the Obscured event.

Obscuring does not cause navigation away from the application—the application continues to

run in the foreground—it’s just that some higher-priority UI is obscuring the application’s UI. This

does not cause a frozen application display; the application does actually continue running, executing

whatever operations it was performing when it was interrupted.

You can test this with some simple code in the App class, as shown in the code that follows (and

demonstrated in the TestObscured application in the sample code). In this example, the application

sets up a timer to print debug output, simply to conirm that the application continues running while
obscured. Note that you cannot test this on the emulator; you will have to run this on a physical

device, and then call that phone (or set up a reminder to ire while the application is running).

private DispatcherTimer timer;

private int count;

public App()

{

 UnhandledException += Application_UnhandledException;

 InitializeComponent();

 InitializePhoneApplication();

 timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromSeconds(1);

 timer.Tick += delegate(object sender, EventArgs e)

 {

 Debug.WriteLine(String.Format("count={0}", count++));

 };

 timer.Start();

 RootFrame.Obscured +=

 new System.EventHandler<ObscuredEventArgs>(RootFrame_Obscured);

 RootFrame.Unobscured +=

 new System.EventHandler(RootFrame_Unobscured);

}

private void RootFrame_Obscured(object sender, ObscuredEventArgs e)

{

 Debug.WriteLine("RootFrame_Obscured");

 if (e.IsLocked)

 {

 Debug.WriteLine("IsLocked == true");

 }

}

private void RootFrame_Unobscured(object sender, System.EventArgs e)

{

 Debug.WriteLine("RootFrame_Unobscured");

}

188 PART II Application Model

The Obscured event does not imply that the entire application UI is obscured. In many cases,

including for an incoming phone call, the UI is only partially obscured (at least until the call is

accepted). Another scenario in which this event is raised occurs when the phone lock screen is

engaged. An application can determine whether this is the cause of the obscuring by testing the

IsLocked property on the ObscuredEventArgs object passed in as a parameter to the Obscured event

handler, as shown in the preceding example.

Note that the application will not always receive a matching Unobscured event for every Obscured

event. For example, that’s true for the scenario in which a user navigates away from the applica-

tion by pressing the Start button. It’s also true in the case for which the Obscured event is the result

of the lock screen engaging. When the user later unlocks the screen, the application is not sent an

Unobscured event. So, if you get an Obscured event and then the lock screen engages, your applica-

tion will be deactivated (sent the Deactivated event) and then later reactivated.

If you disable the lock screen, you obviously won’t get any Obscured events for this case because

the screen will not lock. You can disable the lock screen by setting UserIdleDetectionMode to Disabled.

This statement is generated in the App constructor (and commented out) by the standard Visual

Studio project templates. The Visual Studio code generation is intended only for debugging scenarios.

In general, you should use this setting only after very careful consideration; it is legitimate only for

an application that absolutely must continue running, even when the user is not interacting with the

phone. An example of this is a run-tracker type application: the user starts the application before car-

rying out some other activity that the application would track in some way.

PhoneApplicationService.Current.UserIdleDetectionMode = IdleDetectionMode.Disabled;

If you actually need to use the feature in normal situations, you should not set it globally at

startup. Instead, you should turn it on only when the user is actively using the feature that requires

non-locking, and then turn it off again as soon as she is done with that activity. For example, in a

game, you should not disable lock while the user is on a menu screen or has already paused the

game; you would turn it on only while she is actively playing the game.

A related setting is ApplicationIdleDetectionMode. The platform’s normal assumption is that if an

application is running and the lock screen engages, it is reasonable to deactivate the application. By

disabling ApplicationIdleDetectionMode, the application can to continue to run under screen lock.

If you do disable ApplicationIdleDetectionMode, then the system does not deactivate idle applica-

tions. In this case, when the user eventually unlocks the screen again, the application will receive the

Unobscured event.

PhoneApplicationService.Current.ApplicationIdleDetectionMode = IdleDetectionMode.Disabled;

Although there are legitimate cases for using this, in version 7 it was unfortunately used as a hack

to improve the application resume performance. The legitimate cases include when you initiate large

downloads, which should be allowed to continue while the screen is off, for media to continue playing

in the background, or for location-based applications. In Windows Phone 7.1, this is largely redun-

dant because of the FAS and the support for background transfers and background audio. If you do

 ChAPTER 6 Application Model 189

disable ApplicationIdleDetectionMode, you should also do as much as possible to minimize battery

consumption. Speciically, you should stop all active timers, animations, use of the accelerometer, GPS,
FM radio, isolated storage, and network. You would then use the Unobscured event to reinstate them,

as appropriate.

Launchers/Choosers and tombstoning
Invoking most Launchers/Choosers will tombstone the application. However, in version 7 the follow-

ing do not trigger an automatic tombstone in the calling application (although the phone might still

tombstone if it runs low on resources):

 ■ PhotoChooserTask

 ■ CameraCaptureTask

 ■ MediaPlayerLauncher

 ■ EmailAddressChooserTask

 ■ PhoneNumberChooserTask

 ■ Multiplayer Game Invite

 ■ Gamer You Card

With Choosers, the expectation is that the Chooser will return some value back to the application.

This presents an interesting conundrum, given that the application will be deactivated in the interim.

The solution is to ensure that you connect to the Chooser in the application constructor. You should

be aware that the behavior of Launchers and Choosers changes with version 7.1, as is discussed in

Chapter 16, “Enhanced Phone Services.”

User expectations
There is no requirement for an application to handle lifecycle events, but you must ensure that your

app behaves in the manner that the user expects, especially when returning to the application via the

backstack. For simple applications, this happens “for free.” The lifecycle events are raised speciically
to allow an application to load and save state at key points as the user is navigating. So, it is gener-

ally in the application’s best interest to pay attention to those events and to understand the event

sequences that apply in different scenarios. Also, as an example, when the phone receives notiica-

tion of an incoming phone call, the active application receives an Obscured event. It is a certiication
requirement that the application must not stop responding at this time, must not terminate as a result

of this event, and must not do anything to prevent the user seeing the notiication or responding to it.

The application must also start up and render its irst screen within 5 seconds of launch, must be
responsive to the user within 20 seconds, and must maintain responsiveness such that the user does

not experience lack of response for more than 3 seconds at any time. These constraints govern the

kinds of operations the application can legitimately perform. For instance, developers need to pay

careful attention when loading large amounts of data, especially upon startup. In fact, any lengthy

190 PART II Application Model

operation should be avoided during startup, and the application should use a judicious combination

of idle-time loading and on-demand (or lazy loading) of data, so as to maintain a luid UX.

The developer should take advantage of the lifecycle and navigation events exposed by the plat-

form as positive opportunities to ensure that her application is resilient to the extreme resource con-

straints on the phone as well as the dynamic resource allocation that arises from normal phone usage.

Page Model

Windows Phone applications employ a page-based model, offering a UX that is similar in many

respects to the browser page model. The user typically starts the application at an initial landing page

and then navigates through other pages in the application. Each page typically displays different data

along with different visual elements. As the user navigates forward, each page is added to the in-

application page backstack (sometimes called the journal) so that they can always navigate backward

through the stack, eventually ending up back at the initial page. Although the inter-application back-

stack of application instances is limited to ive applications, there is no hard limit to the number of
intra-application pages that can be kept in the page backstack. However, in practice it is uncommon

to have more than six or so pages in the backstack; any more than that degrades the UX. Usability

studies show that the optimal number is somewhere between 4 and 10. That doesn’t mean that an

application can’t have dozens or even scores of pages—it just means that the navigation tree should

keep each branch relatively short. You should also remember to clean up unused resources on pages

in the backstack (such as images or large data context items), because they continue to consume

memory and can often be recreated cheaply.

The application can support forward navigation in a wide variety of ways: through HyperlinkButton

controls, regular Button controls, or indeed any other suitable trigger. An application can use the

NavigationService to navigate explicitly to a relative or absolute URL. Relative URLs are used for

navigation to another page within the application. Absolute URLs can be used to navigate to external

web pages via the web browser (Internet Explorer). Backward navigation should typically be done via

the hardware Back button on the device. If the user navigates back from the initial page, this must

terminate the application, as depicted in Figure 6-4.

Main
Page

Page 2

Launch Nav 1 Nav 2

BACK 3 BACK 2 BACK 1
Page 3

EXIT

FIguRE 6-4 Intra-application page navigation.

 ChAPTER 6 Application Model 191

Users can also navigate forward out of an application and into another application. This can be

achieved both from within the application via links with external URLs (which use the web browser) or

by directly invoking Launchers and Choosers. At any time, the user can navigate away from the appli-

cation by pressing the hardware Start button on the device. Whenever the user navigates forward

out of an application, that application is added to the system’s application backstack. As the user

navigates backward from within an application, he would move backward to that application’s initial

page, and then back out of the application to the previous application in the backstack. Eventually, he

would navigate back to the beginning of the backstack. Navigating backward from there takes him to

the Start screen.

The application platform—strictly, the shell in this context—maintains both the in-application

page backstack and the overall application backstack. Here’s a simple example. Suppose that a user

starts the phone, and launches two applications. In the second application, he navigates forward to

page three, and then presses Start, launching a third application. Pressing the Back button from the

initial page of application 3 will take him back to page 3 in application 2. Pressing Back again will take

him back to page 2 in application 2. He would continue to navigate backward within the in-applica-

tion page backstack until he gets to the initial page in application 2. After that, pressing Back again

takes him back to whatever page he was on in application 1, and so on. This behavior is illustrated in

Figure 6-5.

App 1 App 2

App 2
Main
Page

Launch
Nav 1

Nav 2

Nav 3

BACK 1

BACK 4

BACK 2
BACK 3 App 2

Page 2

App 3

Inter-Application Backstack

Intra-Application Page Backstack

EXIT

FIguRE 6-5 The inter and intra-application navigation model.

How does this model work in a more realistic scenario? What guidelines can an application devel-

oper use in the face of pivots or panoramas, with lists of items and subitems, with ancillary visuals

such as splash screens, logon screens, context-sensitive help, settings, feedback and support forms,

search pages, and so on? Just such a scenario is illustrated in Figure 6-6.

192 PART II Application Model

Splash
Screen

Menu

dogs
cats

snakes

FavoritesBACK 3

Launch

BACK 1

Nav 2

Nav 1

BACK 2

Settings

Login

Main Page (Panorama)

Feedback
&

Support

photosdetails

dogs
dog1
dog2
dog3
dog4

videos

dog3 (Pivot)

Exit

Context
Help

Search

FIguRE 6-6 The model becomes more complex when you consider pages and non-page visuals.

It turns out this is not as dificult a problem as it might seem. There are a couple of principles to
keep in mind that make the choices very simple. Let’s take each of these visual items in turn. First,

a splash screen is a transient visual; it is not a page, so it does not feature in the page navigation

backstack. Indeed, the application platform controls the window that displays the splash screen. The

developer’s only input here is to provide the image for this window. A logon screen is common, but

it has the potential for introducing complexity and confusion if not managed appropriately. This is

especially true because logon pages are not always appropriate to present on the initial page, and it

might be appropriate to present it in more than one place in the application. It would be a mistake to

implement a logon screen as a page. Instead, it should be a Panel or UserControl on whatever page or

pages that require its services. Alternatively, you could put it inside the Frame, but that would require

you to retemplate the Frame.

You can use exactly the same model for context-sensitive help. In both cases, the appropriate

design is to use a Popup or a UserControl, and to toggle its visibility when needed. If the application

provides extremely comprehensive help, this could conceivably be implemented as its own hierarchy

of pages, but that presupposes a very complex application that might not be appropriate for the

phone, at all.

In some cases, this design would also be appropriate for a search window; in other cases, the

search functionality might warrant a panel or control on a regular page. This approach reduces the

number of pages that the user has to deal with. You can provide a very simple, easy-to-understand

UX if you collect such ancillary UI elements together in one place. This leaves the application (and the

user) to focus on the more important domain data.

 ChAPTER 6 Application Model 193

In this example, the domain data relates to animals. The main page offers a menu of different

types of animals. When users select one type of animal—for example, dogs—the application navi-

gates to a list of all dogs. From that list, they can drill down to an individual dog. When they reach an

individual dog, you can supply rich information, grouped into meaningful categories, perhaps using

a Pivot control. Back in the main menu, if the user selects cats, does this imply that you should navi-

gate to a listing page for cats that is different from the listing page for dogs? Almost certainly it does

not. The various listing pages offer the same behavior, and they might even have the same or very

similar visual elements. This scenario is best served by using data binding. You would use one listing

page, and the display switches between dogs, cats, and snakes by simply switching the data binding

(probably by switching the DataContext). Similarly, the individual item page switches between each

individual dog as well as between an individual cat or snake via data binding.

Items such as the favorites, settings, and feedback (represented in the preceding example as

PanoramaItem controls) as well as details, photos, and videos (represented as PivotItem controls)

could all equally be implemented as individual pages, which would all typically be “dead-end” pages;

that is, pages from which there is no forward navigation option. Such dead-end pages would appear

in the page backstack; however, only one such page could be in the stack at a time, because by

deinition, users must navigate back from a dead-end page before they can navigate anywhere else.

Figure 6-7 illustrates an alternative approach to designing pages and non-page visuals. In this model,

even though there are many pages in the application, the backstack is never more than three pages

deep (plus the current page), which represents signiicant savings in memory.

Splash
Screen

Menu

dogs
cats

snakes

Favorites

BACK 3

Launch

BACK 1

Nav 2

Nav 1

BACK 2

Settings

Login

Main Page

Feedback
&

Support

Photos

Videos

details

dogs
dog1
dog2
dog3
dog4

dog3

Exit

Context
Help

Search

FIguRE 6-7 An alternative approach to dealing with pages and non-page visuals.

194 PART II Application Model

Note that Panorama and Pivot controls are child elements on a page. There are typically multiple

PanoramaItem or PivotItem controls, among which the user moves about, but this is not navigation;

the user does not change to a different page. The corollary of this is that even though a page that

contains a Panorama/Pivot is in the backstack, the individual items are not. Suppose that the user is

on PanoramaItem 3 and then presses Start. When she later presses Back, she will be returned to the

page in the application that she last visited, which in this case is the page that hosts the Panorama.

The question is to which PanoramaItem within the Panorama will she be returned? The behavior

changed between version 7 and 7.1. In version 7, the user is returned to the irst item of the Pan-

orama. In version 7.1, she is returned to the speciic item she last visited, and the title of the Panorama

is updated so that it is fully visible. This behavior is enforced in the implementation of the Panorama

and Pivot controls. The rationale for this is that it makes for a simpler UX: it is easier for the user to

recognize where she is if the start of the Panorama title is always visible while navigating back.

If this guidance is to be more than a question of subjective style preference, you need to distill

some deining characteristics of the visuals that you want to categorize in different ways. So, what
is the deining difference between a logon screen and a data listing page or a data detail page, or
between a context help dialog and a favorites page? Is it a question of whether these screens are

data-bound to underlying data? No, because you could data-bind almost anything (including settings

and context help in this example). Data binding is an implementation detail used to support good

engineering practices; it is not relevant (or visible) to the user. Even in this simple example, a number

of the screens could validly be implemented as either pages or pivot/panorama items, or as Popup or

UserControl objects.

What would make a developer want to implement a visual as a page that persists in the page

backstack? The question probably answers itself: you should promote a visual to a page if you want it

to appear in the backstack—both in-application, and therefore, potentially across applications. That

is, it is a meaningful location that the user might want to return to, that he might expect to return to

when navigating back through the application backstack, and that he might be confused about if it

doesn’t appear where he expects it to be in the backstack. From this example, which of the visuals

meets the requirements of a meaningful location? One interpretation is offered in Table 6-2.

TABlE 6-2 Pages, Controls, and Transient Panels

visual
Meaningful
location valid Implementation options

Splash screen No An application developer has almost no control over the splash screen, beyond
providing an image.

Logon screen No Popup or transient panel.

Context help No Popup or transient panel.

Error message No Popup or transient panel.

Main page Yes Page: an application will always have at least one page where the application
starts.

Favorites Yes Page or Pivot/Panorama item.

Data listing Yes Page or Pivot/Panorama item.

 ChAPTER 6 Application Model 195

visual
Meaningful
location valid Implementation options

Data item Yes Page or Pivot/Panorama item.

Search Sometimes (Dead-end) page or UserControl.

Settings Sometimes (Dead-end) page or UserControl.

Feedback Sometimes (Dead-end) page or UserControl.

Main help Sometimes (Dead-end) page or UserControl.

Note that this table provides some suggested guidelines. In many cases, the best choice will

depend on the context. For example, it makes sense for Search to be an explicit page in an online

shopping application because it is a core feature, but it might not make sense if your Search feature is

merely a ilter on a set of data.

From this, the guiding principle is to ask the question: is the visual a meaningful location that

should appear in the backstack? If the answer is yes, then it must be implemented as a Page. If the

answer is no, then it should be implemented as some kind of popup, child window, dialog, or other

transient panel. If the answer is sometimes, then it depends on the speciic behavior of this item in the
application; it might be best implemented as a page or as a control within a page, but it would never

be implemented as a popup or transient panel. Of course, these guidelines are merely advisory. Each

application developer is free to structure the application in whatever way is appropriate. That said,

remember that your application will fail marketplace certiication if the navigation patterns are not
obvious to the marketplace testers. Much like the Metro guidelines, developers are encouraged to

use a consistent, user-friendly model, but are free to deviate from this wherever it makes sense. Buy-

ing into an established navigation pattern is similar to buying in to Metro style guides. Keep in mind

that Windows Phone is perceived a user-focused experience rather than a wide-open platform for

experimentation.

Page Creation Order
As part of its backstack management, the system keeps track of which page (in a multi-page appli-

cation) the user was on when she navigated away. So, if the user is on the second page when she

navigates away from the application, and then goes back, she will end up going back to the second

page. In Windows Phone 7, this causes the page to be recreated. If she subsequently navigates back

to the main page from there, then at that point the main page will be recreated. So, the order of

page creation in the application can change according to circumstances. The main or initial page in

an application is not always constructed irst. In fact, if the user has navigated forward through the
in-application page hierarchy, and then forward to another application that uses a lot of memory

(causing the original application to be tombstoned), and then navigates back to the irst application,
then the pages will be constructed in reverse order. This is shown in Figure 6-8 for the tombstone

behavior (the normal case in version 7), and Figure 6-9 for the non-tombstone behavior (the normal

case in version 7.1). You can verify this behavior by using the PageCreationOrder application in the

sample code.

196 PART II Application Model

User Phone OS Application MainPage SecondPage

(Use Running Application)

Start etc.

SecondPage OnNavigatedFrom

Application Constructor

Back

SecondPage OnNavigatedFrom

SecondPage Constructor

Application Activated

Back etc.

Application Deactivated

MainPage OnNavigatedFrom

SecondPage OnNavigatedTo

MainPage OnNavigatedTo

MainPage Constructor

SecondPage OnNavigatedTo

SecondPage Constructor

In-App Navigation

FIguRE 6-8 Unexpected page creation ordering (tombstone case). Here, SecondPage is constructed before
MainPage.

 ChAPTER 6 Application Model 197

User Phone OS Application MainPage SecondPage

(Use Running Application)

Launcher*/Chooser*

SecondPage OnNavigatedFrom

Application Activated

Back

Back etc.

Application Deactivated

MainPage OnNavigatedFrom

SecondPage OnNavigatedTo

SecondPage OnNavigatedFrom

SecondPage Constructor

In-App Navigation

SecondPage OnNavigatedTo

MainPage OnNavigatedTo

FIguRE 6-9 Page creation ordering (non-tombstone case) with no fresh page construction.

One consequence of this is that the application should not rely on a hierarchical relationship

between pages, in terms of object lifetime. That is, don’t construct objects in Page X that are required

in Page Y. Instead, all pages should be responsible for maintaining their own private state, and any

state that is used across multiple pages should be held in the viewmodel (see Chapter 4, “Data Bind-

ing and Layer Decoupling,” for details on viewmodels). Furthermore, the viewmodel should be acces-

sible to all pages at all times, with predictable inite lifetime characteristics, which pretty much means
it should be held in the App class.

To ensure consistent state in the face of navigation requires that the developer understands the

navigation sequences, and to do work to persist state where necessary.

198 PART II Application Model

summary

This chapter examined the application model, and in particular, the application lifecycle and related

events. The tight resource constraints inherent in all mobile devices offer challenges for application

developers, particularly with regard to CPU, memory, and disk space. The Windows Phone platform

presents a seamless UX with reasonably fast switching between applications to provide an environ-

ment that appears to users as if multiple applications are running at the same time. More important,

the platform exposes just the right number and type of events so that an application developer can

hook into the system and use the opportunities presented to make the most of the phone’s limited

resources. If you pay attention to these events and take the recommended actions in your event han-

dlers, your application takes part in the overall phone ecosystem, gives users a great experience, and

cooperates with the platform to maintain system health.

 199

C h A P T E R 7

Navigation State and Storage

The application model presents a user experience (UX) of multiple applications running concur-

rently, and the navigation model supports this by providing a framework for the user to navigate

between pages within an application as well as between applications. At both the page level and

the application level, the platform raises navigation events to which you can listen to maintain your

application’s state. As the user navigates away from one of your pages, or from your application alto-

gether, you can persist any state you might need. Later, as the user navigates back to that page, or to

your application, you can restore that state from persisted storage. All of this helps to support the UX

of seamless switching between pages and between applications.

It is important to have a good understanding of the navigation model, so that your application can

integrate seamlessly with the phone's ecosystem and behave in a manner that is consistent with other

applications and with users’ expectations. This chapter examines the navigation model as well as the

events and methods with which you can take part in the model to provide the best possible UX.

navigation and state

In the context of application navigation (both intra-application and inter-application), application

state can be divided into three categories: transient page state, transient application state, and persis-

tent state, which are summarized in Table 7-1.

In all forward navigation, OnNavigatedFrom is called for the current page, and then the new

(destination) page is constructed from scratch and OnNavigatedTo is called for the new page. In

backward navigation, OnNavigatedFrom is called for the current page, and then OnNavigatedTo for

the destination page to which the user is returning (possibly with a page constructor call in between,

for situations in which you were tombstoned). So, OnNavigatedTo is always called for the new page,

just as the user navigates to it; OnNavigatedFrom is always called for the old page, just as the user

navigates away from it. This holds true both for page navigation within an application and for navi-

gation from one application to another, except, of course, that one application doesn’t receive the

events targeted for the other application. The situation with page constructors is more complicated.

In intra-application navigation, a page constructor is only called in forward navigation, just before

the OnNavigatedTo. In inter-application navigation, this is still technically true. The subtle distinction

is that, as the user navigates back to a previous application through the backstack, this might cause

fresh instances of a given page to be constructed. In reality, the previously tombstoned or terminated

application is recreated, and the appropriate page constructor is called. From the user’s perspective,

200 PART II Application Model

she is navigating back to a previously visited page; however, this is only logically the same page she

saw before. In reality, it’s a fresh instance. This behavior can be summarized as follows:

 ■ Navigating forward (through a hyperlink or a call to NavigationService.Navigate) always con-

structs the target page. Even if an existing instance of the page exists on the backstack, a new

one will be created (this differs from desktop Microsoft Silverlight, in which you can conigure
it to reuse instances).

 ■ Navigating backward (via the Back button or NavigationService.GoBack) will not construct the

target page if it already exists (for instance, the process has not been tombstoned since you

last visited that page). If the application has been tombstoned and the page instance does not

exist, it will be constructed.

It should be clear from this that the critical times to consider state management are in the On

NavigatedTo and OnNavigatedFrom handlers, not in the page constructor. Furthermore, it is some-

times useful to handle the Loaded event for a page, or even the LayoutUpdated event, but neither of

these are suitable places to perform state management. Both of these are called more often than you

might expect and are not intended for state management operations.

TABlE 7-1 Categories of Application and Page State

Type of
state Description guidelines

Transient
page state

State speciic to a page that does not need
to persist between runs of the application;
for example, the value of uncommitted
text changes or the visual state of a page.

Store this in the PhoneApplicationPage.State prop-
erty in the NavigatedFrom event, and retrieve it in the
NavigatedTo event.

Transient
application
state

State that applies across the application
that does not need to persist between
runs of the application.

Store this in the PhoneApplicationService.State property
when the application handles the Deactivated event, and
retrieve it in the Activated event.

Alternatively, store this in ields or properties of the App
object (or of the ViewModel object, which is itself a prop-
erty of the App object), and then serialize these.

Persistent
state

State of any kind that needs to persist
across runs of the application—essentially,
anything that would upset the user if you
didn’t save it.

Store this to isolated storage during both the Deactivated
and Closing events (the application might not return from
Deactivated, and will not return from Closing). Also per-
sist this during the OnNavigatedFrom call (for any state
modiied inside a page) or even periodically. Applications
should not defer all saving until the user switches from
the application; instead, they should incrementally save
throughout the application’s lifetime.

Application and Page State
The PhoneApplicationPage.State and PhoneApplicationService.State properties are IDictionary objects

that are saved by the OS in a tombstoning scenario. All you have to do is write to them (or read from

them) in the appropriate event handler. These dictionaries are not persisted across separate instances

of the application; that is, across fresh launches from the Start page, and so on.

You can use the phone’s NavigationService to navigate to another page. When the user navigates

back from the second page, however, the second page is destroyed. If he navigates to the second page

again, it will be recreated. The main page (that is, the entry point page) is not destroyed/recreated

 ChAPTER 7 Navigation State and Storage 201

during in-application navigation; however, it is destroyed/recreated if the user navigates away from

the application (always in version 7, sometimes in 7.1). The sequence of creation and destruction

across two pages in an application is shown in Figure 7-1.

If you were to implement a destructor in a page class, you could see more clearly that this would

be invoked some time after the OnNavigatedFrom for that page. However, there is no useful work

that you can do after the OnNavigatedFrom, and you cannot rely on the state of any objects after this

call, so it is not useful to implement a destructor in a real application. Equally, there is nothing useful

you can do in your App class after handling the Closing or Deactivated events. Finally, destructors can

be invoked in an indeterministic manner, and might not be invoked at all.

User Phone OS Application MainPage SecondPage

Application Launching

Launch Application

Application Constructor

In-App Navigation

SecondPage Constructor

Back

In-App Navigation

Application Closing

Application Destructor

SecondPage Destructor

MainPage Destructor

MainPage OnNavigatedTo

SecondPage OnNavigatedFrom

SecondPage OnNavigatedTo

MainPage OnNavigatedFrom

MainPage Constructor

MainPage OnNavigatedTo

FIguRE 7-1 The sequence of page construction and destruction, and navigation events.

202 PART II Application Model

Because the application pages can be dynamically destroyed/recreated, the application should

handle maintaining the state of each page itself. The following example illustrates this (this is the Test

Navigation solution in the sample code). The application has two pages: MainPage and Second

Page. Each page offers a TextBlock that displays the date and time at which the page was created.

Each page also displays a Button, with which the user can jump from one page to the other, and back

again.

<StackPanel>

 <TextBlock

 Name="txtCreated"

 Style="{StaticResource PhoneTextLargeStyle}"/>

 <Button

 Content="go to second page" Click="Button_Click"

 HorizontalAlignment="Left"

 FontSize="{StaticResource PhoneFontSizeLarge}"/>

</StackPanel>

The code-behind sets the TextBlock to the current DateTime at the time of construction. When the

user taps the Button, the application navigates to the second page.

private void Button_Click(object sender, RoutedEventArgs e)

{

 NavigationService.Navigate(new Uri("/SecondPage.xaml", UriKind.Relative));

}

The second page behaves in a similar way, with one subtle difference: the code in the Button Click

handler navigates backward to the MainPage, not forward. It will become apparent later why this

distinction is important.

private void Button_Click(object sender, RoutedEventArgs e)

{

 NavigationService.GoBack();

}

The sequence of screenshots in Figures 7-2, 7-3, 7-4, and 7-5 shows the user experience and

highlight the page creation behavior. The main page is created at 9:09:25; the second page is created

at 9:09:55. When you navigate back to the main page, it still displays 9:09:25, as expected. However,

when you navigate to the second page a second time, it now displays 9:10:33; the second page is not

retaining its state because it’s being recreated each time. Similarly, if the user navigates away from the

application (by using the Start button, for example), and then goes back to the application, the “cre-

ated” time of the main page will also change, because a new instance is created.

 ChAPTER 7 Navigation State and Storage 203

FIguRE 7-2 The main page is created. Note the “Created” time.

FIguRE 7-3 The user goes to the second page, which is created for the irst time.

204 PART II Application Model

FIguRE 7-4 The user revisits the main page; the time hasn’t changed.

FIguRE 7-5 A second visit to the second page, but notice that the “Created” time has changed.

It might be that this is exactly the behavior you want, but there is some inconsistency here. The

displayed time of the main page is the creation time, whereas the displayed time of the second page

is the “last visited” time. If the intention is to have the second page always show the same value (that

 ChAPTER 7 Navigation State and Storage 205

is, the time of irst creation, set once and never subsequently reset), then you need to do some work
to establish that behavior. To put this in a more realistic context, imagine that it takes some time to

compute and/or download the information needed for the second page. In this case, rather than

compute it each time the page is visited, you want to compute it once and then cache the value. The

next time the page is visited, you don’t need to perform the calculation again (saving battery and

time).

Here is how to ix this: in the SecondPage.xaml.cs, store the state of the page just before navigat-
ing away from it, and then restore it when the user navigates back to it. To do this, you need to over-

ride the virtual OnNavigatedFrom and OnNavigatedTo event handlers. In these methods, you save

and restore the state that you care about in the State collection for the application. The State prop-

erty is deined as an IDictionary, which is a very simple collection type. It includes a string indexer,

which is used both for writing data to the collection and as the key to retrieve it subsequently. The

string names used as the collection key for each state variable are completely arbitrary, although they

obviously have to be unique within the application. Note that we’re explicitly using the application

state dictionary, not the page state dictionary. Using the page state dictionary would not work in this

scenario, because it would be deleted when the user navigates back from the page.

public partial class SecondPage : PhoneApplicationPage

{

 private const String SECOND_CREATION_STATE = "SecondPageCreationTime";

...

 protected override void OnNavigatedFrom(NavigationEventArgs e)

 {

 PhoneApplicationService.Current.State[SECOND_CREATION_STATE] = txtCreated.Text;

 }

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 if (PhoneApplicationService.Current.State.ContainsKey(SECOND_CREATION_STATE))

 {

 txtCreated.Text = (string)

 PhoneApplicationService.Current.State[SECOND_CREATION_STATE];

 }

 }

 private void Button_Click(object sender, RoutedEventArgs e)

 {

 NavigationService.GoBack();

 }

}

Do exactly the same for the main page (using a different dictionary key, of course).

public partial class MainPage : PhoneApplicationPage

{

 private const String MAIN_CREATION_STATE = "MainPageCreationTime";

206 PART II Application Model

...

 protected override void OnNavigatedFrom(NavigationEventArgs e)

 {

 PhoneApplicationService.Current.State[MAIN_CREATION_STATE] = txtCreated.Text;

 }

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 if (PhoneApplicationService.Current.State.ContainsKey(MAIN_CREATION_STATE))

 {

 txtCreated.Text = (string)

 PhoneApplicationService.Current.State[MAIN_CREATION_STATE];

 }

 }

 private void Button_Click(object sender, RoutedEventArgs e)

 {

 NavigationService.Navigate(new Uri("/SecondPage.xaml", UriKind.Relative));

 }

}

For each individual item of state that you persist, you should test State.ContainsKey to ensure that

it is in the collection before attempting to access it. Also, if you have a large number of individual

items, you can test to ensure that there is some persisted state in the collection before testing for

each one individually, such as in the following example:

if (State.Keys.Count > 0) {// we have some state, now check for each item. }

You might wonder why this example uses PhoneApplicationService.State rather than PhoneApplica-

tionPage.State. The answer is that in this example, the main page stays alive so long as the application

is alive; however, the second page is destroyed and recreated each time a user navigates to or from

it. So, for situations in which you want to cache data to be reused on subsequent forward navigations

between pages (as in this example), you should use PhoneApplicationPage.State for the MainPage

(that is, the irst page in your application). For all other pages, you would use PhoneApplication

Service.State, and it is therefore reasonable to use PhoneApplicationService.State for all pages. In other

scenarios, it is common to use PhoneApplicationPage.State for maintaining all transient state that is

speciic to a page instance.

Note The application platform enforces limits on storing state. No single page is allowed to

store more than 2 MB of data, and the application overall is not allowed to store more than

4 MB. However, these values are far larger than anything you should ever use. If you per-

sist large amounts of state data, not only are you consuming system memory, but the time

taken to serialize and deserialize large amounts of data is going to affect your application’s

pause/resume time. The basic guidance should be to store only simple things in the state

dictionaries, and not, for example, the entire cache of a database.

 ChAPTER 7 Navigation State and Storage 207

Also, any object that you attempt to store in these dictionaries must be serializable. If the appli-

cation attempts to store an object that cannot be serialized, this will throw an exception during

debugging and fail silently during production runtime. Finally, note that there will be issues if you

have serialized a type in an assembly that isn’t loaded at startup. In this case, you need to load that

assembly artiicially in your App constructor; otherwise, you get a deserialization error.

Detecting resurrection
A consistent UX is very important, and there are a few guidelines to keep in mind when managing

state across the various application lifecycle events:

 ■ Whenever the user returns to an application after navigating away (including using a Launcher

or Chooser), it should appear to be in the same state as when she left it, not as a fresh instance.

 ■ Conversely, whenever the user launches an application from Start, it should behave like a fresh

instance.

 ■ Applications must complete all actions in the Deactivated event within 10 seconds. If the appli-

cation exceeds this time, it will be force-terminated and will not be available on the backstack.

You must also complete activation and navigation within 10 seconds or you will be termi-

nated. It is very hard to determine reliably how much work an application can get done in 10

seconds, as there will be many factors in play (how fast is the permanent storage, how much

CPU is available for the application at this time, how much data it wants to save, how com-

plex is it to serialize, and so on). To mitigate these factors, the application should save state

incrementally during normal running before it gets a Deactivated event, and aim to do as little

work as possible in the Deactivated event handler.

If an application wants to detect whether it’s being resurrected after tombstoning, one option is to

use simple lags, set at appropriate times. This technique can also be used to detect circumstances in
which the user pressed Start and immediately pressed Back. Note that Windows Phone 7.1 introduces

additional support for this scenario, which is discussed in Chapter 15, “Multi-Tasking and Fast App

Switching.” What follows is a technique that you can use for version 7.0 applications (demonstrated in

the Tombstoning solution in the sample code). In this simple approach, you irst deine an enum type,
as shown here:

public enum StartState { FreshStart, TombstoneResurrected, NonTombstoneReactivated }

In the App class, declare a ield of this enum type, and also a simple bool.

public static StartState StartState;

private static bool wasTerminated = true;

208 PART II Application Model

Then, set the values for these ields in the appropriate event handlers. First, the Launching event—

you will get this only in the event of a fresh start, not in either the tombstone or reactivation cases.

private void Application_Launching(object sender, LaunchingEventArgs e)

{

 // This is the fresh start case:

 // [Closing-->]Ctor-->Launching

 StartState = StartState.FreshStart;

}

Next, in the Deactivated event handler, set the bool lag to false.

private void Application_Deactivated(object sender, DeactivatedEventArgs e)

{

 wasTerminated = false;

}

In the Activated event handler, test the value of this lag. You get the Activated event only in the

case of tombstone resurrection or non-tombstone reactivation, not in the fresh start case. So, if this

handler is invoked and the lag is set to true, then this must be the tombstone resurrection case. If

the handler is invoked but the lag is false, then this must be the non-tombstone reactivation case

(because the lag is still set from the previous Deactivated call, which means the constructor was not

called), as demonstrated in the following:

private void Application_Activated(object sender, ActivatedEventArgs e)

{

 if (wasTerminated)

 {

 // This is the tombstone/resurrection case:

 // Deactivated-->Ctor-->Activated

 StartState = StartState.TombstoneResurrected;

 }

 else

 {

 // The non-tombstone case:

 // Deactivated-->Activated

 StartState = StartState.NonTombstoneReactivated;

 }

}

Finally, you can make use of the application’s state over in your UI classes; for example, you can use

it in the MainPage OnNavigatedTo override. This allows you to determine whether to try to retrieve

dictionary state.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 switch (App.StartState)

 {

 case StartState.FreshStart :

 Debug.WriteLine("FreshStart - no state to retrieve");

 break;

 case StartState.TombstoneResurrected :

 Debug.WriteLine("Resurrected - we can retrieve state");

 ChAPTER 7 Navigation State and Storage 209

 break;

 case StartState.NonTombstoneReactivated :

 Debug.WriteLine("Reactivated - no need to retrieve state");

 break;

 }

}

To make it easier to test/debug the non-tombstone reactivation scenario, you can simply pause

during deactivation. This provides a chance to press Start and then Back quickly enough to go

through the non-tombstone reactivation path in the code, as shown in the example that follows.

Observe how Sleep is surrounded with conditional directives, just to make sure that even if you forget

to remove this statement, it is never built in to the released application. Also note that this is not

required in version 7.1 projects, where there is a Microsoft Visual Studio project setting that you can

use to control tombstoning behavior under debugging.

private void Application_Deactivated(object sender, DeactivatedEventArgs e)

{

 wasTerminated = false;

#if DEBUG

 // Pause on deactivation, so we can test the non-tombstone case.

 System.Threading.Thread.Sleep(5000);

#endif

}

navigation options

The Windows Phone application platform offers a number of options for navigation, both within an

application and externally. In addition to the Navigate and GoBack methods on the Navigation

Service class, an application can use the NavigateUri property of a HyperlinkButton and can reroute

navigation by either runtime interception or static URI mapping. There are also issues to consider

with regard to navigation between pages across multiple assemblies, and options for passing data

between pages during navigation.

One question that developers often ask is, “When would you ever need to invoke the base.On

NavigatedTo/OnNavigatedFrom?” When you use auto-complete to create an override for these virtual

methods, Visual Studio generates a call to the base class version, which seems to imply that calling

the base version is useful sometimes or always. In fact, this is simply an artifact of how auto-complete

works; Visual Studio will always generate a base class call. With respect to Page.OnNavigatedTo and

OnNavigatedFrom, the developer never needs to invoke the base version, because the base version is

empty, so you can safely delete these calls.

Using NavigateUri
Instead of using a Button for navigation, it is common to use a HyperlinkButton. The HyperlinkButton

class exposes a Click event, which you can handle in exactly the same way as you would the Click

event on a regular Button. Alternatively—and more elegantly—you can specify the target URI in

210 PART II Application Model

XAML instead of in code. This removes the need for a Click handler in code. However, this technique

only supports forward navigation; there is no way to specify the equivalent of NavigationService.

GoBack. This means that you could use this technique for navigation from the MainPage forward to

the SecondPage but not for navigating back from SecondPage to MainPage. In fact, if you did use this

technique for both pages, navigation would appear to work (the user could successfully move from

MainPage to SecondPage and back again), but in fact it creates new instances. This is by design: if a

hyperlink could navigate backward, it would confuse the user, because the normal expectation is that

hyperlinks navigate forward.

Also, assuming that you have the creation time state persisted for both pages in both sets of

OnNavigatedTo and OnNavigatedFrom, then the TextBlock data displayed would also be correct.

However, under the covers, what is really happening here is that each time the user navigates back to

MainPage, a fresh instance of MainPage is created. This would be obvious if you remove the creation

time state persistence for MainPage (or if you include a Debug.WriteLine statement in the MainPage

constructor). The normal way to use a HyperlinkButton is to specify the NavigateUri in XAML, and not

to specify a Click event handler.

<HyperlinkButton

 Content="go to SecondPage"

 HorizontalAlignment="Left"

 FontSize="{StaticResource PhoneFontSizeLarge}"

 Click="HyperlinkButton_Click"

 NavigateUri="/SecondPage.xaml"/>

Calling NavigationService.GoBack from any page but the irst has exactly the same effect as the
user pressing the hardware Back button. From the irst page, pressing the hardware Back button exits
the application, whereas calling NavigationService.GoBack will throw an exception. You can use the

CanGoBack property to ensure that you don’t attempt to navigate back when there’s nothing left in

the backstack.

Pages in Separate Assemblies
From an engineering perspective, it is perfectly reasonable to divide a solution into multiple assem-

blies—possibly with different developers working on different assemblies. This model also works with

Phone pages; that is, one or more pages for an application could be built in separate assemblies. This

technique can also help with application startup performance, because the code for the second and

subsequent pages does not need to be loaded on startup, and the assembly load cost is deferred

until the point when the user actually navigates to the second and subsequent pages, if ever. How

does this affect navigation? Navigating back is always the same; NavigationService.GoBack takes no

parameters. However, navigating forward requires a URI (either in the NavigateUri property or in

the call to Navigate), and this URI must be able to be resolved. The simplest case is where the URI is

relative to the application root, indicated with a leading slash. If the URI identiies a page that is in
another assembly, the string format is as follows:

"/[assembly short name];component/[page pathname]"

 ChAPTER 7 Navigation State and Storage 211

So, for example, if you have Page2 in a separate class library project named PageLibrary, then to

navigate to Page2, you would use this syntax:

NavigationService.Navigate(new Uri(

 "/PageLibrary;component/Page2.xaml", UriKind.Relative));

You can see this at work in the NavigatingAssemblies solution in the sample code.

Fragment and QueryString
To pass state values between pages on navigation, an application can use PhoneApplicationService.

State, isolated storage, or state ields/properties on the App object. In addition, you can use Fragment

or QueryString. Note that you cannot use Fragment to navigate within a page; it can only be used

when navigating to another page. Here is an example (the NavigationQueryString solution in the

sample code) in which the main page offers a choice between Whisky and Gin. The user’s choice is

passed down to Page2 either via a Fragment or via a QueryString, depending on which button the

user clicks. This is illustrated in Figure 7-6.

FIguRE 7-6 The NavigationQueryString sample tests navigation by using Fragment and QueryString.

Page2 has a ListBox that is data-bound to one of two ObservableCollection objects.

private ObservableCollection<string> whiskies = new ObservableCollection<string>();

private ObservableCollection<string> gins = new ObservableCollection<string>();

public Page2()

{

 InitializeComponent();

212 PART II Application Model

 whiskies.Add("Lagavulin");

 whiskies.Add("Ardbeg");

 whiskies.Add("Talisker");

 whiskies.Add("Laphroaig");

 whiskies.Add("Caol Ila");

 gins.Add("Gordons");

 gins.Add("Plymouth");

 gins.Add("Beefeater");

 gins.Add("Tanqueray");

 gins.Add("Sipsmith");

}

To use a Fragment, you simply append a “#” (hash) character to the target URI, followed by the
fragment value.

private void buttonPage2Fragment_Click(object sender, RoutedEventArgs e)

{

 if ((bool)radioWhisky.IsChecked)

 {

 NavigationService.Navigate(new Uri(

 "/Page2.xaml#whisky", UriKind.Relative));

 }

 else

 {

 NavigationService.Navigate(new Uri(

 "/Page2.xaml#gin", UriKind.Relative));

 }

}

On the navigation destination page, you could override OnNavigatedTo, but the Fragment is not

accessible in that method. After OnNavigatedTo is called, the system calls OnFragmentNavigation, and

it is here that you can get the Fragment.

protected override void OnFragmentNavigation(FragmentNavigationEventArgs e)

{

 base.OnFragmentNavigation(e);

 switch (e.Fragment)

 {

 case "whisky" :

 listDrinks.ItemsSource = whiskies;

 break;

 case "gin" :

 listDrinks.ItemsSource = gins;

 break;

 }

}

Conversely, you can provide a conventional query string, by appending a “?” (question mark) to

the end of the URI, and then appending “key=value” pairs. Unlike Fragment, this allows you to pass

more than one value, in the format:

"/[pagename].xaml?[param1=value1]&[param2=value2]&[param3=value3]"

 ChAPTER 7 Navigation State and Storage 213

For example:

private void buttonPage2Querystring_Click(object sender, RoutedEventArgs e)

{

 if ((bool)radioWhisky.IsChecked)

 {

 NavigationService.Navigate(new Uri(

 "/Page2.xaml?drink=whisky", UriKind.Relative));

 }

 else

 {

 NavigationService.Navigate(new Uri(

 "/Page2.xaml?drink=gin", UriKind.Relative));

 }

}

If you use a query string, then in the receiving page, this is provided as an IDictionary property on

the NavigationContext, which itself is a property of the Page object. You can use both a query string

and a fragment in the same URL, but this is not likely to be useful: it would require you to handle

both, and to parse the URL in both cases to extract either one.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (NavigationContext.QueryString.ContainsKey("drink"))

 {

 try

 {

 switch (NavigationContext.QueryString["drink"])

 {

 case "whisky":

 listDrinks.ItemsSource = whiskies;

 break;

 case "gin":

 listDrinks.ItemsSource = gins;

 break;

 }

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.ToString());

 }

 }

}

Be aware that although the QueryString property will not be null, it might be empty, so you should

check for this before attempting to access its collection. Note also that, as with any Dictionary object,

if you attempt to use an indexer that does not exist in the collection, this will throw an exception. So,

rather than using the indexer, you can use the TryGetValue method, instead. That is, change this:

switch (NavigationContext.QueryString["drink"])

{

...

}

214 PART II Application Model

to this:

string drinkType;

if (NavigationContext.QueryString.TryGetValue("drink", out drinkType))

{

 switch (drinkType)

 {

 ...

 }

}

the NavigationMode Property
Overrides of OnNavigatedTo and OnNavigatedFrom are passed a NavigationEventArgs object. This

exposes two useful properties: Content, set to the instance of the destination page (always to, never

from); and Uri, which will be the URI of the destination page.

Windows Phone 7.1 exposes a NavigationMode property. Interestingly, if you have the version

7.1 tools (including the 7.1 Visual Studio components), then you would see NavigationMode in the

debugger even for a version 7 application where it is not available. The value of NavigationMode will

be either New or Back, which identiies the direction of navigation. That is, forward equals New, back-

ward equals Back. Forward equals New because navigating forward always creates a new instance

of the target page. Forward does not equal Forward (as it sometimes does in desktop Silverlight)

because Windows Phone has no notion of a forward stack, only a backward stack.

Without this, the developer needs to know the page hierarchy. That is, when you override On

NavigatedTo, are you arriving at the current page as the result of forward navigation or backward

navigation? Similarly, in OnNavigatedFrom, are you going forward to a new page or backward?

It would certainly be useful to be able to evaluate this property. It is not exposed in Windows

Phone 7, but it is exposed in version 7.1 for this very reason. If an application targets version 7, there

is a suitable workaround. The code generated by Visual Studio for the App class includes a handler

for the Navigated event on the RootFrame. This is a one-time handler that is implemented to assign

the RootVisual, and then is unhooked. This is not interesting in this discussion, except to point out

that there is another event that you can hook up in the App class for the RootFrame: the Navigating

event. The point here is that this event handler is passed a NavigatingCancelEventArgs object, and this

type does expose the NavigationMode property. It should be apparent from the name that this event

is raised before the Navigated event, and therefore, before the calls to the virtual OnNavigatedTo/

OnNavigatedFrom methods.

public App()

{

 UnhandledException += Application_UnhandledException;

 InitializeComponent();

 InitializePhoneApplication();

 RootFrame.Navigating +=

 new NavigatingCancelEventHandler(RootFrame_Navigating);

}

 ChAPTER 7 Navigation State and Storage 215

private void RootFrame_Navigating(object sender, NavigatingCancelEventArgs e)

{

 switch (e.NavigationMode)

 {

 case NavigationMode.Back :

 // Do something here.

 break;

 case NavigationMode.New :

 // Do something else here.

 break;

 }

}

It would be even more useful to declare a NavigationMode as a static ield or property on the App

class and simply set the value of this in the event handler. Then, this would be accessible from any-

where in the application.

private static NavigationMode navMode;

public static NavigationMode NavMode

{

 get { return navMode; }

}

public App()

{

...

 RootFrame.Navigating += new NavigatingCancelEventHandler(RootFrame_Navigating);

}

private void RootFrame_Navigating(object sender, NavigatingCancelEventArgs e)

{

 navMode = e.NavigationMode;

}

You can see this at work in the TestNavigationMode solution in the sample code.

rerouting Navigation and UrI Mappers
Another case for which it is useful to handle the Navigating event is when an application wants to

cancel a navigation. This is a rare scenario—the page to which the user should navigate, given any

known conditions, is normally predictable, and can be hard-wired (or dynamically determined) before

navigation happens. One situation for which this is used is in the Microsoft Outlook application, when

the user hits the Back button while composing a message. When this happens, Outlook asks the user

if he wants to save or cancel his message. If he responds that he wants to save, Outlook cancels the

navigation. For these rare scenarios, the platform allows an application to cancel a navigation in light.
Not only that, but it is possible to reroute a navigation from one target page to another at runtime,

and there are two distinct ways to achieve this.

216 PART II Application Model

The irst approach is navigation rerouting, as demonstrated in the ReRouting solution in the

sample code. Suppose that you have a requirement by which most days of the week, when the user

asks to navigate to Page2, you sent him to a default Page2a, but on Tuesdays, you send him instead to

Page2b. In the MainPage code-behind, on the UI trigger to go to Page2, you navigate to Page2:

private void GotoPage2_Click(object sender, RoutedEventArgs e)

{

 NavigationService.Navigate(new Uri("/Page2.xaml", UriKind.Relative));

}

However, the application does not in fact contain a Page2.xaml. Instead, it contains a Page2a.xaml

and a Page2b.xaml. In the App class, you hook the Navigating event on the RootFrame and perform

some navigation rerouting whenever you detect that the user is attempting to go to Page2.

private void RootFrame_Navigating(object sender, NavigatingCancelEventArgs e)

{

 if (e.Uri.ToString() == "/Page2.xaml")

 {

 Uri newUri = null;

 if (DateTime.Now.DayOfWeek == DayOfWeek.Tuesday)

 {

 newUri = new Uri("/Page2a.xaml", UriKind.Relative);

 }

 else

 {

 newUri = new Uri("/Page2b.xaml", UriKind.Relative);

 }

 RootFrame.Dispatcher.BeginInvoke(() => RootFrame.Navigate(newUri));

 e.Cancel = true;

 }

}

Note that the handler uses Dispatcher.BeginInvoke. This is because the Navigating event is being

handled during a navigation, and the platform does not allow overlapping navigations. Therefore,

you must ensure that the second navigation is queued up. Meanwhile, you terminate the current

navigation by setting NavigatingCancelEventArgs.Cancel to true.

The second technique you can use is URI Mapping (demonstrated in the TestUriMapping solu-

tion in the sample code). With this approach, instead of handling the Navigating event and manually

cancelling and rerouting the navigation, you can simply provide a mapping from the original URI

to a new URI. This can be either statically declared in XAML or dynamically determined in code. For

example, here is a static mapping from Page2 to Page2b:

<Application.Resources>

 <nav:UriMapper x:Name="mapper">

 <nav:UriMapping

 Uri="/Page2.xaml"

 MappedUri="/Page2b.xaml"/>

 </nav:UriMapper>

</Application.Resources>

 ChAPTER 7 Navigation State and Storage 217

This assumes that you have declared a nav namespace in the App.xaml.

xmlns:nav="clr-namespace:System.Windows.Navigation;assembly=Microsoft.Phone"

As this namespace indicates, the UriMapper and UriMapping types are declared in the System.

Windows.Navigation namespace in the Microsoft.Phone.dll. Having declared the mapper and at least

one mapping entry, you can use it in the application—typically after the standard initialization code.

UriMapper mapper = (UriMapper)Resources["mapper"];

RootFrame.UriMapper = mapper;

That would sufice for a static mapping. But if you need a dynamic mapping—as you do in this
example—then you need to modify the MappedUri property before using it.

Uri newUri = null;

if (DateTime.Now.DayOfWeek == DayOfWeek.Tuesday)

{

 newUri = new Uri("/Page2a.xaml", UriKind.Relative);

}

else

{

 newUri = new Uri("/Page2b.xaml", UriKind.Relative);

}

UriMapper mapper = (UriMapper)Resources["mapper"];

// dynamic mapping, overwrites any MappedUri set statically in XAML.

mapper.UriMappings[0].MappedUri = newUri;

RootFrame.UriMapper = mapper;

Nonlinear Navigation Service
Navigation in Windows Phone is strictly linear. That is, the user navigates from one page to the next,

with no loops, forks, skips, or hierarchy. An application can have a logical page hierarchy, but ulti-

mately all navigation is strictly either forward or back. Every page the user visits is stacked up in a line,

and if she wants to go back to a speciic page, she must step back through every page in the stack
between where she is and where she wants to go. The same model is used for both pages within an

application and for navigating between applications.

The Nonlinear Navigation Service (NLNS) is an unsupported library built by the Windows Phone

team to mitigate the problem of navigation loops. (You can access the library at http://create.msdn.

com/en-us/education/catalog/article/nln-serv-wp7.) Note that this solves a problem for Windows

Phone 7 applications, and that problem has been solved in the application platform itself for Win-

dows Phone 7.1 applications. This is discussed further in Chapter 19, “Framework Enhancements.” So,

this technique is strictly useful for version 7 applications only.

http://create.msdn.com/en-us/education/catalog/article/nln-serv-wp7
http://create.msdn.com/en-us/education/catalog/article/nln-serv-wp7

218 PART II Application Model

Suppose that the application’s main page acts like a “home” page. Suppose also that one or more

of the application’s subpages has a “go back to main page” button. A good example for why you want

to do this is a check-out experience on a shopping application. In this scenario, you don’t want all the

pages of the check-out (billing, address, conirmation, and so on) lying around on the backstack when
you’re done; you just want to be back at the beginning. Figure 7-7 distills the scenario with a simple

three-page application. In this example, if the user navigates from the main page to page 2, and from

there to a subpage of page 2, and then presses the “go back to main page” button, then what he

(probably) expects to happen is a navigation loop.

Store
Front

Nav 1 Selected
Item

Nav 2

Nav 3

Check-
out

FIguRE 7-7 An application can give the impression of a logical navigation loop.

Figure 7-8 shows what actually happens; there is no loop, navigation is always linear.

Store
Front

Nav 1 Selected
Item

Nav 2 Nav 3Check-
out

Store
Front

FIguRE 7-8 A navigation sequence perceived as looping is actually linear.

In other words, a new instance of MainPage is constructed. Furthermore, it is added to the applica-

tion’s backstack. So, if the user then presses the Back button from this second instance of MainPage,

he would have to go back multiple times to exit from the app, as shown in Figure 7-9.

Store
Front

BACK 3 Selected
Item

BACK 2 BACK 1BACK 4 Check-
out

Store
FrontExit

FIguRE 7-9 Introducing a logical navigation loop complicates the backstack.

The normal expected behavior when the user presses Back from the application’s main page is to

exit immediately. The NLNS prevents the application developer from adding perceived loops such as

this one (that is, perhaps adding another main page into the navigation backstack). Every time you do

a forward navigation, it determines if that page exists in the backstack, and if so, navigates back until

it inds it. To the user, the strictly linear navigation stack appears to be a non-linear loop or fork. So,
this is what the NLNS achieves, as shown in Figure 7-10.

 ChAPTER 7 Navigation State and Storage 219

Store
Front

Nav 1 Selected
Item

Nav 2 Nav 3Check-
out

Store
Front

BACK 1 Store
FrontExit

FIguRE 7-10 With the NLNS, your application can skip duplicate pages on navigation.

Of course, this is not restricted to the main page; the same behavior applies to any page. Regard-

less of any perceived forks or loops in page navigation, going back from a page always goes back to

the same place. The NLNS achieves this by keeping a history list of all navigated pages. When the user

navigates, the service checks to see if it needs to skip any intermediate pages, and if so, it recursively

issues a PhoneApplicationFrame.GoBack. While it’s doing this, it also makes the frame transparent so

that there is no licker as it navigates back.

This is demonstrated in the TestNlns application in the sample code. In this sample, the MainPage

provides a Button, and the Click handler is implemented to navigate to Page2.

public partial class MainPage : PhoneApplicationPage

{

 private void gotoPage2_Click(object sender, RoutedEventArgs e)

 {

 NavigationService.Navigate(new Uri(

 "/Page2.xaml", UriKind.Relative));

 }

}

Page2 has a similar Button, with which the user can navigate to Page2.1.

public partial class Page2 : PhoneApplicationPage

{

 private void gotoPage2_1_Click(object sender, RoutedEventArgs e)

 {

 NavigationService.Navigate(new Uri(

 "/Page2_1.xaml", UriKind.Relative));

 }

}

Page2.1 has a Button with which users can navigate explicitly to the MainPage.

public partial class Page2_1 : PhoneApplicationPage

{

 private void gotoMainPage_Click(object sender, RoutedEventArgs e)

 {

220 PART II Application Model

 NavigationService.Navigate(new Uri(

 "/MainPage.xaml", UriKind.Relative));

 }

}

This one line is added to the end of the App constructor, to set up the NLNS (add a reference to

the NLNS WindowsPhoneStateService.dll):

NonLinearNavigationService.Instance.Initialize(RootFrame);

More Info In Windows Phone 7, there were few scenarios for which a “home” button made

sense. However, the introduction of new features in version 7.1 has increased the number of

valid home scenarios. In particular, the use of secondary tiles can often make a home expe-

rience very useful. This is discussed more in Chapter 19.

Isolated storage

It is important for an application to maintain consistent state in the face of user navigation. This

inevitably means persisting state in some way. In Windows Phone 7, the only out-of-the-box form

of persistent storage available on the phone itself is isolated storage. Windows Phone 7.1 introduces

support for local databases (this is discussed in depth in Chapter 18, “Data Support”). Each application

can only access its own isolated storage. There are two ways an application can use isolated storage:

 ■ For application/user settings—typically, small pieces of data—via the IsolatedStorageSettings

dictionary class.

 ■ For anything else (as much data as you like, up to the limits of disk space on the device), via

the IsolatedStorageFile APIs.

The isolated storage for all applications is in a subfolder of \Applications\Data. Below that path,

there is a subfolder for each application, and each application’s isolated storage is in a further sub-

folder of \Data\IsolatedStore. The general path format is as follows:

\\Applications\\Data\\[Application ProductID]\\Data\\IsolatedStore\\[Arbitrary FileName]

For example:

\\Applications\\Data\\D48FD8D4-8B8A-45A2-81EC-17C35E7F4887\\Data\\IsolatedStore\\MyData.xml

Although this path will be visible in the debugger, all of these locations are strictly controlled from

a security perspective, and there is no way for an application to get any access (or even any visibility)

of any other application’s isolated storage. Indeed, an application cannot see anything outside of its

own isolated storage subfolder.

 ChAPTER 7 Navigation State and Storage 221

Simple Persistence
The following example (SimplePersistence in the sample code) illustrates the simple use of isolated

storage, both for IsolatedStorageSettings and for the IsolatedStorageFile APIs. In this example, you

offer the user two TextBox controls: one for a small piece of data (his name), and another for a bigger

piece of data (some arbitrary text). Although the second piece of data is still fairly small, the idea here

is to distinguish between relatively small and large pieces of data that you want to persist. You persist

the small data by using IsolatedStorageSettings; you persist the big data by using IsolatedStorageFile

APIs. The application UI is shown in Figure 7-11.

FIguRE 7-11 You can persist application data by using isolated storage.

When the user taps the Save button, you persist the data to a ile in the application’s isolated
storage. Upon saving, you open the ile, or create it if it doesn’t already exist, and then use a simple
StreamWriter to write out the text. In this example, you overwrite the contents each time. Note that

you should be careful to call Save on the IsolatedStorageSettings object, because writes to physical

storage are deferred by default—typically until the application closes. If you want to ensure that data

is persisted to disk at the point where you logically write to the dictionary, and for it to be robust in

the face of application exceptions, you should call Save proactively.

private const string fileName = "UserText.txt";

private void saveButton_Click(object sender, RoutedEventArgs e)

{

 IsolatedStorageSettings.ApplicationSettings["UserName"] = this.userName.Text;

 IsolatedStorageSettings.ApplicationSettings.Save();

222 PART II Application Model

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(fileName, FileMode.Create))

 {

 using (StreamWriter writer = new StreamWriter(isoStream))

 {

 writer.WriteLine(this.userText.Text);

 }

 }

 }

}

Conversely, upon startup, in the main page’s constructor, you attempt to retrieve both sets of data,

fetching the username from application settings, if it exists, and reading isolated storage to retrieve

the user’s text ile. Note that you would generally want to avoid doing I/O during the constructor
because I/O is a relatively slow operation, and you don’t want to risk an unacceptable UX. If you do

ind yourself loading a large amount of data at startup, and if you cannot divide it and defer it a later
point, then you should probably do this on a background thread, while showing a progress bar or

similar “loading…” indicator.

public MainPage()

{

 InitializeComponent();

 string userName;

 if (IsolatedStorageSettings.ApplicationSettings.TryGetValue<String>

 ("UserName", out userName))

 {

 this.userName.Text = userName;

 }

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (isoFile.FileExists(fileName))

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(fileName, FileMode.Open))

 {

 using (StreamReader reader = new StreamReader(isoStream))

 {

 this.userText.Text = reader.ReadToEnd();

 }

 }

 }

 }

}

 ChAPTER 7 Navigation State and Storage 223

An application can create its own directory structure within its private isolated storage, if required.

For example, you could create a folder named “Docs,” and save your text ile within that folder quite
simply by using CreateDirectory and specifying the appropriate path. This is demonstrated in the

SimplePersistence_directory solution in the sample code.

private const string storageDir = "Docs";

private const string fileName = @"Docs\UserText.txt";

private void saveButton_Click(object sender, RoutedEventArgs e)

{

 IsolatedStorageSettings.ApplicationSettings["UserName"] = this.userName.Text;

 IsolatedStorageSettings.ApplicationSettings.Save();

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (!isoFile.DirectoryExists(storageDir))

 {

 isoFile.CreateDirectory(storageDir);

 }

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(fileName, FileMode.Create))

 {

 using (StreamWriter writer = new StreamWriter(isoStream))

 {

 writer.WriteLine(this.userText.Text);

 }

 }

 }

}

Obviously, this example is very simple. Maintaining state across page navigation on the basis

of individual data items rapidly becomes unmanageable. A better approach is to encapsulate all

of the persitable items into a class, and then just save/load an instance of that class. This approach

allows the application to manage all of its state persistence entities and behavior in one place. This

will reduce the scope for bugs and for any increased complexity that might arise due to dependen-

cies between variables. It will also often provide performance beneits, especially if the application
typically uses a high proportion of the individual items. Disk I/O is a relatively expensive operation in

terms of time on the phone, and therefore, potentially in terms of the UX. Reducing disk read/write

calls to a more chunky, less chatty model is in general good practice, but you should balance this with

the need to avoid a high volume of read/writes at critical points in the application lifecycle. Specii-

cally, it is important to save state relatively often, so that you don’t have to do it all during deactiva-

tion, because you only have a limited amount of time to complete deactivating before the application

process is terminated.

In some cases, it is also appropriate to persist the entire viewmodel—not so much for intra-

application page navigation, but certainly for inter-application navigation. Recall that the application

and page State dictionaries have a 2 MB per-page and 4 MB per-application limit. However, there is

no such limit on an application’s use of isolated storage. Although parts of the phone’s physical stor-

age will be reserved for the system, there is a single logical quota allocated for application isolated

224 PART II Application Model

storage. The individual isolated storage for each application uses this same logical quota. When the

available storage space is reduced to 10 percent free, the system sends the user a notiication. This is
his opportunity to delete unwanted data, such as photos, videos, and music. This is also his opportu-

nity to uninstall applications that he suspects are consuming a lot of storage space. However, this is

speculative at best, because there is no indication on a per-application basis on the phone as to how

much storage any application is consuming. Indeed, it is possible for any one application to consume

the entire storage capacity, thus starving all other applications of storage.

This goes back to the notion discussed in Chapter 1, “Vision and Architecture,” of the dynamic

tension between an application platform that maintains overall device health, and a development

platform that gives developers the freedom—and responsibility—to self-police. At its simplest, an

application that consumes all available isolated storage space will not compromise system health

to the extent that it could prevent the user from making an emergency call. On the other hand, it is

very likely to prevent the user from installing more applications or even running some applications.

And it will almost certainly lead to the user removing the badly behaved application and giving it a

low rating on the marketplace. Unfortunately, there is no good way for a user to determine which

application(s) are behaving badly, beyond simple observation.

Here are a few issues to keep in mind when working with isolated storage:

 ■ During development, working with either the emulator or a physical device, when doing an

incremental build, the application’s isolated storage is left untouched by the build system. Any

usage of storage will be retained between executions and builds. This includes a rebuild if this

is not preceded by cleaning the project or solution. Note that the exact behavior of Visual Stu-

dio’s rebuild command depends on the build targets used in the current projects and solution.

For most project types, rebuild performs a clean and then a build, but for Windows Phone

projects, rebuild only builds if any of the source iles have changed since the last build. Clean-

ing the project itself also does not affect the application installed on the emulator/device, nor

its storage. However, cleaning and then building (or rebuilding) and then executing the appli-

cation will uninstall and then reinstall the application. Uninstall always completely removes all

isolated storage used by an application.

 ■ Something similar happens if an application is published to marketplace and later upgraded

or updated. If the application’s ProductId does not change, then an update will remove and

replace the application in the application’s install folder, but will not touch the application’s

isolated storage. If an application update includes changes to the stored data schema, or if the

update requires cleaning the storage for any other reason, then it would be the developer’s

responsibility to take action.

 ChAPTER 7 Navigation State and Storage 225

 ■ Wherever possible, for data that the application uses internally and never surfaces to the user,

the application should delete this data when it is no longer needed. The compromise here is

when you compute data dynamically and then want to cache it for performance reasons. You

can make a judgement call as to where is the optimal place to draw the line between consum-

ing disk space and consuming processor cycles at runtime.

 ■ If it is too dificult to make a good judgement call, developers are encouraged to follow the
same model that Internet Explorer uses: offer the user a mechanism by which she can delete

these iles whenever she wants to free up space on the phone. It is “good citizen” behavior for
an application to allow the user to delete unnecessary data, especially if there is a lot of it.

 ■ There is another reason why an application should provide this capability. Any data that an

application saves on behalf of the user that might be considered to be personal data should

also be able to be deleted by the user. The user should be in control of her data, and it is not

always obvious what kind of data any given user might consider to be personal. Most users

would consider personal data to include any personally identiiable information, but also items
such as photos, run logs of a “run-tracker” type application, to-do lists, any notes the user has

created, lists of favorites, and so on.

 ■ The documentation states that IsolatedStorageSettings for an application are saved when

the application exits. However, this is not always guaranteed. It depends on what work the

application does as it is terminated. If it tries to do too much work, the Save might not be

called. Internally, the Save is actually invoked in a inalizer, and inalizers might not be invoked
in some scenarios. Certainly, data is not actually written to the disk when the application

writes to IsolatedStorageSettings. For these reasons, the application can consider invoking Save

explicitly at a suitable point. As always, there is a trade-off. If Save is called too frequently, this

implies frequent disk I/O operations, which are time-consuming and costly in terms of battery

consumption. A suitable compromise would be to batch the work, and invoke Save during

OnNavigatedFrom.

Persisting the ViewModel
The following example shows the standard Visual Studio data-bound application project that is

enhanced to persist its viewmodel to isolated storage. Figure 7-12 shows the UI (this is the IsoData

Bound solution in the sample code). Three ApplicationBar buttons have been added to load the data

from storage, save the data to storage, and clear the data from the viewmodel in memory.

226 PART II Application Model

FIguRE 7-12 The IsoDatabound sample adds UI for saving, clearing, and restoring a persisted viewmodel.

When the application starts, it has no data in the viewmodel. To ensure this, you comment out the

Visual Studio–generated code in Activated event handler, which would otherwise load the data upon

startup.

private void Application_Activated(object sender, ActivatedEventArgs e)

{

 // Ensure that application state is restored appropriately

 //if (!App.ViewModel.IsDataLoaded)

 //{

 // App.ViewModel.LoadData();

 //}

}

For the same reason, you comment out the same code that Visual Studio provided in the Loaded

event handler in the MainPage. Conversely, you add that same code into the Click handler for the

“Load” ApplicationBar button. The other two buttons invoke new SaveData and ClearData methods,

which you will add to the viewmodel. As a result of these changes, the viewmodel (and therefore the

data-bound view) will only be populated with data on user control.

private void MainPage_Loaded(object sender, RoutedEventArgs e)

{

 //if (!App.ViewModel.IsDataLoaded)

 //{

 // App.ViewModel.LoadData();

 //}

}

 ChAPTER 7 Navigation State and Storage 227

private void Load_Click(object sender, EventArgs e)

{

 if (!App.ViewModel.IsDataLoaded)

 {

 App.ViewModel.LoadData();

 }

}

private void Save_Click(object sender, EventArgs e)

{

 App.ViewModel.SaveData();

}

private void Clear_Click(object sender, EventArgs e)

{

 App.ViewModel.ClearData();

}

In the viewmodel, the ClearData and SaveData methods are quite simple. ClearData removes all

the items from the collection. SaveData saves the in-memory collection to an arbitrary ile in isolated
storage by using the standard XmlSerializer.

private const string storageFile = "ViewModel.xml";

internal void ClearData()

{

 this.Items.Clear();

 this.IsDataLoaded = false;

}

internal void SaveData()

{

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(storageFile, FileMode.Create))

 {

 XmlSerializer xs = new XmlSerializer(

 typeof(ObservableCollection<ItemViewModel>));

 xs.Serialize(isoStream, Items);

 }

 }

}

Because you’re using XML serialization, the ile will end up with the format shown in the code
example that follows. Note that the Windows Phone 7 SDK did not provide any tools for examin-

ing isolated storage iles. However, the Windows Phone 7.1 SDK does include the Isolated Storage

Explorer Tool, which works for both versions 7 and 7.1 isolated storage. Further details on this are

available in Chapter 18.

<?xml version="1.0"?>

<ArrayOfItemViewModel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

mlns:xsd="http://www.w3.org/2001/XMLSchema">

228 PART II Application Model

 <ItemViewModel>

 <LineOne>runtime one</LineOne>

 <LineTwo>Maecenas praesent accumsan bibendum</LineTwo>

 <LineThree>Facilisi faucibus habitant inceptos interdum lobortis nascetur pharetra

lacerat pulvinar sagittis senectus sociosqu</LineThree>

 </ItemViewModel>

...

</ArrayOfItemViewModel>

Conversely, the LoadData method irst tries to load data from isolated storage. When it success-
fully opens the data ile, it deserializes it into the Items collection. If, after this, there are still no items

in the collection, then you create them in code, as in the original Visual Studio–generated version.

public void LoadData()

{

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (isoFile.FileExists(storageFile))

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(storageFile, FileMode.Open))

 {

 XmlSerializer xs = new XmlSerializer(

 typeof(ObservableCollection<ItemViewModel>));

 items = (ObservableCollection<ItemViewModel>)

 xs.Deserialize(isoStream);

 }

 }

 }

 if (this.Items.Count == 0)

 {

 this.Items.Add(new ItemViewModel() { LineOne = "runtime one", LineTwo = "Maecenas

raesent accumsan bibendum", LineThree = "Facilisi faucibus habitant inceptos interdum

obortis nascetur pharetra placerat pulvinar sagittis senectus sociosqu" });

...

 }

 this.IsDataLoaded = true;

}

In its current form, the application has a bug. The SaveData and ClearData methods work cor-

rectly, and the viewmodel items collection will be saved to isolated storage. The LoadData method

will open and read the saved ile and will read the data into the viewmodel collection. Unfortunately,

the fact that the collection now has new data is not communicated to the data-binding framework, so

the data will not be displayed in the view. There are two options for ixing this. The irst approach is
to read the data into a temporary collection, and then walk the collection manually, adding each item

to the Items collection. The consequence of adding items to the collection will raise the Notify

CollectionChanged event for each one, thereby alerting data-binding to fetch new data for the view.

 ChAPTER 7 Navigation State and Storage 229

using (IsolatedStorageFileStream isoStream = isoFile.OpenFile(storageFile, FileMode.Open))

{

 XmlSerializer xs = new XmlSerializer(

 typeof(ObservableCollection<ItemViewModel>));

 //items = (ObservableCollection<ItemViewModel>)

 var v = (ObservableCollection<ItemViewModel>) xs.Deserialize(isoStream);

 foreach (var i in v)

 {

 Items.Add(i);

 }

}

A more elegant (and faster) approach is to update the deinition of the Items property so that its

property setter raises a NotifyPropertyChanged event when the collection itself is changed.

//public ObservableCollection<ItemViewModel> Items { get; private set; }

private ObservableCollection<ItemViewModel> items;

public ObservableCollection<ItemViewModel> Items

{

 get { return items; }

 private set

 {

 if (items != value)

 {

 items = value;

 NotifyPropertyChanged("Items");

 }

 }

}

Note that this approach relies on assigning the ile data to the Items property, not directly to the

items ield that backs the property.

Items = (ObservableCollection<ItemViewModel>) xs.Deserialize(isoStream);

Serialization Options
There are three standard choices for serializing data in Windows Phone applications: XmlSerializer,

DataContractSerializer, and DataContractJsonSerializer. Along with these types, there are a set of sup-

porting DataContract and DataMember attribute types. There are pros and cons to each approach,

and this section summarizes the differences between them.

First, just to get this out of the way, the Serializable attribute and ISerializable interface are desktop

Microsoft .NET features, not available for Silverlight or Windows Phone.

230 PART II Application Model

xmlserializer:

 ■ The XmlSerializer does not require declaring any attributes on public members of the type to

be serialized. This is effectively an “opt-out” model; every public property will be serialized

unless explicitly excluded.

 ■ The type to be serialized must have an explicit or implicit default constructor, and all members

to be serialized must be public properties with both get and set methods.

 ■ The XmlSerializer does not use (nor understand) the DataContract attribute, which makes it

problematic for schema versioning.

 ■ It will generate default XML namespace references, and there is no option to change these.

 ■ It will include ields and properties with null values.

 ■ The XmlSerializer affords the developer considerable control over how a property is serialized,

including whether it is represented as a node or an attribute. This level of control means that it

is possible to devise a serialization format that results in signiicantly smaller output than when
using DataContractSerializer. The smaller data size with XmlSerializer can make it a better

choice, even though DataContractSerializer might be faster.

 ■ It requires adding a reference to System.Xml.Serialization.dll.

DataContractserializer:

 ■ The DataContractSerializer is the default mechanism in Windows Communication Foundation

(WCF) and is therefore supported directly by various tools and proxy-generators, including

Visual Studio.

 ■ The XmlSerializer has been part of the base class library since .NET 1.0, and its implementation

has not changed much in that time. By comparison, DataContractSerializer was introduced in

.NET 3.0, and considerable work went into optimizing its performance so that it will generally

be marginally faster than XmlSerializer. On the other hand, this optimization also means that

the developer has slightly fewer options for controlling the operation.

 ■ If no attributes are applied to the type being serialized, then all public members will be serial-

ized. In other words, if you don’t specify the DataContract attribute, this is an opt-out model.

The DataContract attribute can be applied to the type, and DataMember attribute can be

applied to members of that type to be serialized. If the DataContract atttribute is applied, then

by default no members will be serialized unless explicitly attributed with DataMember—that

is, if you do specify the DataContract attribute, then this is an opt-in model.

 ■ With DataContract, the developer can specify the name and namespace of each member, giv-

ing the developer more lexibility in conforming to contracts and resolving name clashes.

 ChAPTER 7 Navigation State and Storage 231

 ■ The IgnoreDataMember can be used to exclude a member from serialization for circumstances

in which the type itself is not attributed with DataContract.

 ■ The DataContractSerializer can serialize any data members, including ields, properties, and
internal members if you have the InternalsVisibleTo attribute on the assembly. A property to be

serialized does not need to have a set method, although if it doesn’t, then while the property

can be serialized, it cannot be deserialized. All serialized members will be serialized as ele-

ments, and there is no option to represent them as attributes.

 ■ It requires adding a reference to System.Runtime.Serialization.dll.

DataContractJsonserializer:

 ■ A simple variation on the DataContractSerializer, with all the same characteristics. The differ-

ence is that the data format will be JavaScript Object Notation (JSON) instead of XML. JSON

format data will be considerably smaller than the equivalent XML data, because it avoids the

overhead of opening and closing XML tags.

 ■ The DataContractJsonSerializer requires adding a reference to System.Servicemodel.Web.dll.

Figure 7-13 depicts an example application that can be used to exercise these options and com-

pare the performance and data size. This is the SerializeOptions solution in the sample code.

FIguRE 7-13 Applications have three main serialization options from which to choose.

232 PART II Application Model

The three TextBox controls are two-way data-bound to a simple Employee class. The user can

employ the four ApplicationBar buttons to save the data to isolated storage, clear the in-memory

data (and therefore the UI), load previously saved data from isolated storage, and delete any existing

isolated storage data ile for this data. For both load and save operations, the application uses the
XmlSerializer, DataContractSerializer, or DataContractJsonSerializer, depending on which RadioButton

is clicked. In each case, the application accesses its isolated storage and creates or opens the same

data ile. For example, the method invoked by the UI to save by using XmlSerializer is shown in the

following:

private void SaveXml()

{

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(storageFile, FileMode.Create))

 {

 XmlSerializer xs = new XmlSerializer(typeof(Employee));

 xs.Serialize(isoStream, emp);

 }

 }

}

The methods to invoke DataContractSerializer and DataContractJsonSerializer differ only in the

inal serialization calls. That is, the use of XmlSerializer and the Serialize method:

 XmlSerializer xs = new XmlSerializer(typeof(Employee));

 xs.Serialize(isoStream, emp);

is replaced with either DataContractSerializer and WriteObject:

 DataContractSerializer dcs =

 new DataContractSerializer(typeof(Employee));

 dcs.WriteObject(isoStream, emp);

or DataContractJsonSerializer and WriteObject:

 DataContractJsonSerializer dcjs =

 new DataContractJsonSerializer(typeof(Employee));

 dcjs.WriteObject(isoStream, emp);

The save operations are also broadly similar.

private void LoadXml()

{

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (isoFile.FileExists(storageFile))

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(storageFile, FileMode.Open))

 ChAPTER 7 Navigation State and Storage 233

 {

 XmlSerializer xs = new XmlSerializer(typeof(Employee));

 Employee e = (Employee)xs.Deserialize(isoStream);

 emp.ID = e.ID;

 emp.Name = e.Name;

 emp.Salary = e.Salary;

 }

 }

 }

}

private void LoadDataContract()

{

...

 DataContractSerializer dcs =

 new DataContractSerializer(typeof(Employee));

 Employee e = (Employee)dcs.ReadObject(isoStream);

...

}

private void LoadJson()

{

...

 DataContractJsonSerializer dcjs =

 new DataContractJsonSerializer(typeof(Employee));

 Employee e = (Employee)dcjs.ReadObject(isoStream);

...

}

Examples of the resulting data ile that is generated with each approach are listed in the example
that follows. In terms of size, it should be clear that the JSON format is always going to be smaller, and

the larger the data set (or strictly, the higher the number of elements), the bigger the size difference.

xmlserializer:

<?xml version="1.0"?>

<Employee

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <ID>876</ID>

 <Name>Andrew</Name>

 <Salary>123.45</Salary>

</Employee>

DataContractserializer:

<Employee

 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://schemas.datacontract.org/2004/07/SerializeOptions">

 <ID>876</ID>

 <Name>Andrew</Name>

 <Salary>123.45</Salary>

</Employee>

234 PART II Application Model

DataContractJsonserializer:

{"ID":876,"Name":"Andrew","Salary":123.45}

The serialization metadata is managed by the use of the DataContract attribute on the Employee

class, and the DataMember attribute on those members of the class that you want to serialize/

deserialize. For example, by default, the DataContract Name would be the same name as the class

type, and the Namespace would be the standard XML schema namespace: http://www.w3.org/2001/

XMLSchema. By the same token, the Name of each DataMember would be the name of the property

itself. You can change these values to suit your own requirements. Perhaps you want the Employee

to be persisted as the Person element, and the ID property to be persisted as the Code element, and

so on.

[DataContract(Name="Person", Namespace="http://www.contoso.com")]

public class Employee : INotifyPropertyChanged

{

 private int id;

 [DataMember(Name="Code")]

 public int ID

 {

 }

...

}

The listing that follows shows the ile as generated by the DataContractSerializer and the Data

ContractJsonSerializer, when the DataContract and DataMember attributes on the Employee type

specify additional parameters, and the Salary member is not attributed with DataMember (or is

attributed with IgnoreDataMember):

<Person

 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.contoso.com">

 <Code>876</Code>

 <Name>Andrew</Name>

</Person>

{"Code":876,"Name":"Andrew"}

From a functional perspective, the choices can be summarized as follows:

 ■ Use XmlSerializer if the application needs precise control over the data format.

 ■ Use DataContractSerializer for ease of development, especially when interoperating with WCF

web services. Even if you intend to use JSON for compactness, it is much easier to develop and

debug against XML.

 ■ Use DataContractJsonSerializer if compact data is the critical decision point.

Apart from differences in functionality, the different techniques also exhibit differences in perfor-

mance. This is a lot harder to pin down; the exact performance characteristics depend not only on

differences in functionality, but also on the data itself. For example, serializing a type that has a large

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

 ChAPTER 7 Navigation State and Storage 235

amount of small elements will exhibit a different performance proile from serializing a type that has
a small amount of large elements. Metrics for serialization will be different from deserialization for

the same payload, and so on. Figure 7-14 shows a variation on the previous application (Serialize

Options_Perf in the sample code), in which the user can serialize/deserialize multiple copies of a data

set, specify how many copies to work with, and report on the save and load times.

FIguRE 7-14 It’s useful to compare performance among the different serialization options.

As before, the user can choose one of the three serialization techniques. He can type in the num-

ber of items to serialize (deserialization, obviously, will simply read back however many items were

written). For each save/load operation, you surround the critical work with a simple timestamp, com-

pose a string from the time difference, and add that string to a list. This list is used as the ItemsSource

for a ListBox. For example, the serialization code for the XmlSerializer is shown in the following:

private long itemCount;

private ObservableCollection<string> results = new ObservableCollection<string>();

private void SaveXml()

{

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(storageFile, FileMode.Create))

 {

 DateTime start = DateTime.Now;

 XmlSerializer xs = new XmlSerializer(typeof(List<Employee>));

 xs.Serialize(isoStream, emps);

 DateTime end = DateTime.Now;

236 PART II Application Model

 TimeSpan diff = end - start;

 results.Insert(0,String.Format("{0} | {1} | {2}",

 itemCount, "X", diff.TotalMilliseconds));

 }

 }

}

The emps variable in the preceding code is a List<Employee>. When the user changes the number

of items to process, you fetch the text, parse it to a long integer, and add that number of Employees

to the list.

private List<Employee> emps = new List<Employee>();

private void numItems_LostFocus(object sender, TextChangedEventArgs e)

{

 itemCount = Int64.Parse(numItems.Text);

 if (emps != null)

 {

 emps.Clear();

 }

 else

 {

 emps = new List<Employee>();

 }

 for (int i = 0; i < itemCount; i++)

 {

 emps.Add(emp);

 }

}

With this very simple example and this particular data payload (working with 10,000 Employees

for each save/load operation), the results provided the averages shown in Table 7-2 over long runs.

The interesting anomaly is that XmlSerializer was unexpectedly the fastest to serialize this particular

payload. Apart from that, the igures follow commonly observed patterns.

TABlE 7-2 Anecdotal Serialization Performance Comparisons

Type save Msec load Msec File size kb

XmlSerializer 280 525 987

DataContractSerializer 351 420 508

DataContractJsonSerializer 319 220 284

Of course, this is by no means an exhaustive test, nor will it be representative of all payloads. That

said, it is reasonably common to ind that DataContractJsonSerializer involves not only a smaller pay-

load, but it also operates faster than the other techniques, in many cases. The real point is that you

can carry out similar tests yourself, with your own payloads and constraints, to determine the optimal

solution for your application.

 ChAPTER 7 Navigation State and Storage 237

Isolated Storage helpers
Working with isolated storage is a suficiently common activity that many developers take the oppor-
tunity to develop helper classes to streamline the operations and abstract them to a common library,

which can then be used within multiple applications. This becomes particularly useful when the

data that the application wants to read and write consists of more complex types rather than simple

strings. The application shown in Figure 7-15 is little more than a test harness for such a storage

helper utility class (demonstrated in the TestIsoStorage application in the sample code).

FIguRE 7-15 The TestIsoStorage application is a test harness for a storage helper utility.

This application presents three TextBox controls and a ListBox. The ListBox items are data-bound to

a list of Brush objects, initialized in the MainPage to the list of standard Phone accent colors. The idea

is that the user can type in values for their favorite cereal and number, and then select their favorite

color from a list. You use a Color ield in this application just to emphasize that serialization works
with complex types, not just simple strings.

public List<SolidColorBrush> BrushColors = new List<SolidColorBrush>();

public Favorites favs = new Favorites();

private int selectedColorIndex;

public MainPage()

{

 InitializeComponent();

238 PART II Application Model

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 255, 000, 151)));

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 162, 000, 255)));

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 000, 171, 169)));

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 140, 191, 038)));

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 160, 008, 000)));

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 230, 113, 184)));

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 240, 150, 009)));

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 027, 161, 226)));

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 229, 200, 000)));

 BrushColors.Add(new SolidColorBrush(Color.FromArgb(255, 051, 153, 051)));

 FavoritesPanel.DataContext = favs;

 ColorList.ItemsSource = BrushColors;

 ColorList.SelectedIndex = selectedColorIndex;

}

The user’s Name value is a simple string that is saved to, and subsequently read back from, Isolated

StorageSettings. The “favorite things” are represented in code by a simple Favorites data model class.

An instance of this model class serves as the DataContext for the view.

public class Favorites : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 private string cereal;

 public string Cereal

 {

 get { return cereal; }

 set

 {

 cereal = value;

 NotifyPropertyChanged("Cereal");

 }

 }

 private int number;

 public int Number

 {

 get { return number; }

 set

 {

 number = value;

 NotifyPropertyChanged("Number");

 }

 }

 private Color color;

 public Color Color

 {

 get { return color; }

 set

 {

 color = value;

 NotifyPropertyChanged("Color");

 }

 }

 ChAPTER 7 Navigation State and Storage 239

 private void NotifyPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (null != handler)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

}

The application uses a helper library for reading and writing isolated storage. There are four meth-

ods: two for working with IsolatedStorageSettings, and two for working with arbitrary iles by using
the IsolatedStorage APIs. The methods are generic, so they can be used with any data type. They are

also fairly simple, and the class could be extended to provide more functionality, such as generating

temporary ile names, reading and writing directory structures, enumerating storage contents, and
so on.

public class StorageHelper

{

 public static void SaveToSettings<T>(T setting, string name)

 {

 IsolatedStorageSettings.ApplicationSettings[name] = setting;

 IsolatedStorageSettings.ApplicationSettings.Save();

 }

 public static T ReadFromSettings<T>(string name)

 {

 T setting = default(T);

 IsolatedStorageSettings.ApplicationSettings.TryGetValue<T>(

 name, out setting);

 return setting;

 }

 public static void SaveToStorage<T>(T data, string fileName)

 {

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(fileName, FileMode.Create))

 {

 XmlSerializer xs = new XmlSerializer(typeof(T));

 xs.Serialize(isoStream, data);

 }

 }

 }

 public static T ReadFromStorage<T>(string fileName)

 {

 T data = default(T);

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (isoFile.FileExists(fileName))

240 PART II Application Model

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(fileName, FileMode.Open))

 {

 XmlSerializer xs = new XmlSerializer(typeof(T));

 data = (T)xs.Deserialize(isoStream);

 }

 }

 }

 return data;

 }

}

Using the storage helper class, you can trivially save data to either settings or storage.

private void saveButton_Click(object sender, RoutedEventArgs e)

{

 StorageHelper.SaveToSettings<string>(userName.Text, "UserName");

 StorageHelper.SaveToStorage<Favorites>(favs, "Favorites");

}

Loading data from settings and storage is also very simple with the helper class.

string tmp1 = StorageHelper.ReadFromSettings<string>("UserName");

if (tmp1 != null)

{

 this.userName.Text = tmp1;

}

Favorites tmp2 = StorageHelper.ReadFromStorage<Favorites>("Favorites");

if (tmp2 != null)

{

 favs = tmp2;

 for (int i = 0; i < BrushColors.Count; i++)

 {

 Color c = BrushColors[i].Color;

 if (c == favs.Color)

 {

 selectedColorIndex = i;

 break;

 }

 }

}

Note There is limited support for formal databases in version 7. The Windows Phone 7 OS

uses SQL-CE, but this is not exposed to applications. A number of third parties have built

database support for Windows Phone 7 on top of isolated storage. However, Windows

Phone 7.1 includes full-platform support for local databases, including LINQ-to-SQL. This is

examined in detail in Chapter 18.

 ChAPTER 7 Navigation State and Storage 241

summary

In this chapter, you looked in depth at the navigation model, including inter and intra-application

page navigation, and page/application state and storage. Although it is possible for you to provide a

navigation experience that is different from other applications on the phone, this would be a mistake.

Instead, you are strongly encouraged to take a proactive part in the standard navigation model, to

respond to the standard navigation events, and to maintain navigation behavior that is consistent

with users’ expectations. All but the simplest applications will have some state on both a page basis

and an application-wide basis that needs to be persisted across navigation. The application platform

on the phone provides targeted support for persisting limited volumes of page and application state,

and unlimited volumes of arbitrary application data. Although the core behavior in Windows Phone 7 is

maintained in Windows Phone 7.1, the later version also introduces some reinements, which you can
learn about in Chapter 15.

 243

C h A P T E R 8

Diagnostics and Debugging

Debugging is a critical part of development, and the Windows Phone SDK offers a rich set of tools

to support this effort, including the Microsoft Visual Studio debugger itself, and the emulator.

The application platform also provides some supporting metrics that can be useful in debugging.

There are also a few external tools that can be used to complement Visual Studio during develop-

ment. Run-time diagnostics and trace logging (whether during debugging or after release) present

particular problems in phone development. This chapter examines the landscape for debugging tool

support and how you can implement re-usable runtime diagnostics capabilities with your phone

applications.

visual studio Debugging

Visual Studio includes very rich debugging capabilities, most (but not all) of which are available for

Windows Phone development. You can debug Windows Phone applications the same way that you

debug any other project type in Visual Studio. When you press F5 on your keyboard, Visual Studio

starts the application in either the emulator or attached device, simultaneously starting the debug-

ger. You can then perform common tasks, such as setting breakpoints, stepping through code, and

examining the various debug windows, including the output, locals, watch, immediate, and call stack

windows.

Behind the scenes, considerable custom work is going on to establish the connection between

Visual Studio and the device or emulator. Figure 8-1 summarizes the key components in a Visual Stu-

dio debugging session for Windows Phone development. Note that the key connectivity component

is a set of DLLs that make up the Smart Device Core Connectivity feature, known as ”CoreCon.” Some

of the functionality of these components is exposed through an API for automation purposes, as you

will see later in this chapter.

244 PART II Application Model

Visual Studio IDe
(Devenv)

Device or emulator
(XDe)

clientdesktop

App host

App
Debug
engineManaged Debug

engine (CpDe)

Connectivity Channel (CoreCon)

FIguRE 8-1 The CoreCon components connect Visual Studio with the device or emulator.

simple Diagnostics

For diagnostic output, you can use the standard System.Diagnostics.Debug.WriteLine API for send-

ing diagnostics information to the debug output window in Visual Studio. You could also implement

some simple ”printf-style” diagnostics by outputting to the screen. The classic reason for adopting this

approach is to provide diagnostic output in a release build, where the Debug.WriteLine output does

not apply.

Setting Up a Diagnostics Pop-Up Window
One option that you can use for printf-style diagnostics output is to overlay a transparent or partially

transparent pop-up window on your main user interface (UI). Obviously, this would be too intrusive

for normal use in the released application, but it is a reasonable and simple approach during develop-

ment to supplement debug output in Visual Studio. It can also be reasonable to turn on this capability

even in a released application, for those scenarios in which you need to walk your user through some

operation in real time.

The screenshot in Figure 8-2 shows just such an application (FloatingDiagnostics in the sample

code). The diagnostics window is composed of a UserControl, which contains a ListBox, which itself is

hosted in a Popup window. The diagnostics output strings are pushed to the top of the list to ensure

that the most recent output is always immediately visible.

 ChAPTER 8 Diagnostics and Debugging 245

FIguRE 8-2 You can overlay a loating pop-up window for diagnostics reporting.

To increase reusability, the diagnostics control itself is built in to a separate library assembly,

which can then be consumed in any phone application. In the UserControl XAML, there is a Border

containing a ListBox. The Border represents the bounding box for the control. This is positioned at

an arbitrary offset. The ListBox contains TextBlock items, which will be data-bound to a collection of

strings that represent the diagnostics output. The TranslateTransform on the Border element will be

used to enable drag operations on the control, triggered by the ManipulationDelta events. By doing

this, the user can move the window around in case she wants to reveal some part of the page behind

the control.

<Border x:Name="DiagnosticsBox"

 BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="2" Height="300" Width="350" Margin="80,400"

 ManipulationDelta="DiagnosticsBox_ManipulationDelta">

 <Border.RenderTransform>

 <TransformGroup>

 <TranslateTransform x:Name="DragTransform" />

 </TransformGroup>

 </Border.RenderTransform>

 <ListBox x:Name="historyList" >

 <ListBox.ItemTemplate>

246 PART II Application Model

 <DataTemplate>

 <TextBlock

 Text="{Binding}" TextWrapping="Wrap"

 FontSize="{StaticResource PhoneFontSizeSmall}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

</Border>

In the code-behind, set up an ObservableCollection of strings: when you want to write out some

diagnostic output, add a string to this collection. You then use data binding by assigning the collec-

tion to the ItemsSource of the ListBox.

public partial class DiagnosticsControl : UserControl

{

 private static ObservableCollection<String> debugHistory;

 public DiagnosticsControl()

 {

 InitializeComponent();

 debugHistory = new ObservableCollection<String>();

 historyList.ItemsSource = debugHistory;

 }

 public void WriteLog(object payload)

 {

 StackTrace stackTrace = new StackTrace();

 MethodBase method = stackTrace.GetFrame(1).GetMethod();

 String status = String.Format("{0}: {1}.{2}: {3}",

 DateTime.Now.ToString("H:mm:ss"),

 method.DeclaringType.Name,

 method.Name,

 payload);

 debugHistory.Insert(0, status);

 }

 private void DiagnosticsBox_ManipulationDelta(

 object sender, ManipulationDeltaEventArgs e)

 {

 DragTransform.X += e.DeltaManipulation.Translation.X;

 DragTransform.Y += e.DeltaManipulation.Translation.Y;

 }

}

Observe the use of the StackTrace and MethodBase classes to provide information about the cur-

rently executing method as part of the diagnostics output. You need to specify GetFrame(1) to skip

the current frame (which would be the frame for the WriteLog method itself). In the Manipulation

Delta handler, use the TranslateTransform that you declared in XAML to move the X and Y values for

the control. This affords the user the ability to drag the Popup around the screen.

 ChAPTER 8 Diagnostics and Debugging 247

Note As an alternative, you could use the Blend behaviors feature instead of the

ManipulationDelta event handling, as discussed in Chapter 5, “Touch UI.” You can see

this at work in the FloatingDiagnostics_Behavior solution in the sample code. The added

wrinkle for this reusable library control is that you would have to add references to System.

Windows.Interactivity.dll and Microsoft.Expression.Interactions.dll in both the library proj-

ect and the consuming application project. Then, in the DiagnosticsControl.xaml, you would

add XML namespaces for these assemblies and declare the MouseDragElementBehavior

within the Border element, as shown in the following:

<interact:Interaction.Behaviors>

 <ilayout:MouseDragElementBehavior />

</interact:Interaction.Behaviors>

In the host application, the diagnostics control is instantiated and set as the Child of a Popup

window. In this application, you test the diagnostics feature in a simple way by handling the KeyDown

and Click event handlers to write to the log.

public partial class MainPage : PhoneApplicationPage

{

 private DiagnosticsControl diagnostics = new DiagnosticsControl();

 private Popup diagnosticsPopup = new Popup();

 public MainPage()

 {

 InitializeComponent();

 diagnosticsPopup.Child = diagnostics;

 diagnosticsPopup.IsOpen = true;

 }

 private void Name_KeyDown(object sender, KeyEventArgs e)

 {

 diagnostics.WriteLog(e.Key);

 }

 private void Submit_Click(object sender, RoutedEventArgs e)

 {

 diagnostics.WriteLog(null);

 }

}

One of the most common reasons why you’ll be glad you implemented logging is for scenarios

in which the app throws an unhandled exception. It is simple enough to enhance the control with a

handler for the UnhandledException event for the application, and you would probably want to hook

this up in the control’s constructor. You can see this technique at work in the SimpleDiagnostics_UEH

solution in the sample code.

248 PART II Application Model

public DiagnosticsControl()

{

 InitializeComponent();

 debugHistory = new ObservableCollection<String>();

 historyList.ItemsSource = debugHistory;

 Application.Current.UnhandledException +=

 new EventHandler<ApplicationUnhandledExceptionEventArgs>(

 application_UnhandledException);

}

private void application_UnhandledException(

 object sender, ApplicationUnhandledExceptionEventArgs e)

{

 if (debugHistory != null)

 {

 WriteLog(e.ExceptionObject.ToString());

 }

}

You might want to make the exception reporting a little more sophisticated; for example, try iter-

ating through any inner exceptions, and reporting speciics for each one.

private void application_UnhandledException(

 object sender, ApplicationUnhandledExceptionEventArgs e)

{

 try

 {

 if (debugHistory != null)

 {

 //WriteLog(e.ExceptionObject.ToString());

 WriteLog("Caught Unhanded Exception");

 Exception ex = e.ExceptionObject;

 while (ex != null)

 {

 WriteLog(String.Format("\type = {0}", ex.GetType()));

 WriteLog(String.Format("\tmessage = {0}", ex.Message));

 WriteLog(String.Format(ex.StackTrace));

 ex = ex.InnerException;

 }

 }

 }

 catch (Exception ex)

 {

 Debug.WriteLine("Diagnostics exception: " + ex.ToString());

 }

}

This approach illustrates how you can start to build your own diagnostics feature, but it has some

limitations. One obvious problem is that simplistically incorporating the control within a page means

that the collection of diagnostic strings is also scoped to just that one page. It is far more likely that

you will want to make the diagnostics log accessible to all pages, throughout the application.

 ChAPTER 8 Diagnostics and Debugging 249

To implement this, you can move the control to the App class, and expose it as a static property.

You can see this variation at work in the FloatingDiagnostics_AppScope solution in the sample code.

public partial class App : Application

{

...

 private static DiagnosticsControl diagnostics;

 public static DiagnosticsControl Diagnostics

 {

 get

 {

 if (diagnostics == null)

 {

 diagnostics = new DiagnosticsControl();

 }

 return diagnostics;

 }

 }

}

The additional problem this introduces is that the control should only ever have one parent. If

you set it as the child of a Popup in the MainPage, then you need to detach it before you navigate

to another page. And you need to do the same when coming back from that page to the MainPage.

This implies moving the Popup hosting behavior from the page constructor to the OnNavigatedTo

override and doing the detaching in the OnNavigatedFrom override in each page, as shown in the

example that follows. A suitable alternative to this approach would be to dedicate a single page to the

diagnostics control.

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 diagnosticsPopup.IsOpen = false;

 diagnosticsPopup.Child = null;

}

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 diagnosticsPopup.Child = App.Diagnostics;

 diagnosticsPopup.IsOpen = true;

}

Fixed Diagnostics Control
It might not always be feasible to overlay diagnostics output on top of other visual elements in your

application. So, an alternative option would be to keep a separate page or other visual element dedi-

cated to your diagnostic output. If your application uses a Pivot or Panorama, you could dedicate one

of the subitems to diagnostics. The next example (the SimpleDiagnostics solution in the sample code)

illustrates this. As with the loating Popup example, there is a custom UserControl with a data-bound

ListBox.

250 PART II Application Model

<Border

 BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="2" Height="800">

 <ListBox x:Name="historyList" >

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock

 Text="{Binding}" TextWrapping="Wrap"

 FontSize="{StaticResource PhoneFontSizeSmall}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

</Border>

The code-behind is almost identical to the previous version, with an ObservableCollection of

strings, an UnhandledException handler, and a public WriteLog method. The only difference is that you

don’t need the ManipulationDelta handler because this version of the control will be ixed in position.
Figure 8-3 presents screenshots of how this looks at runtime, as used in a Panorama-based test appli-

cation. The irst PanoramaItem has a TextBox and a Button. Event handlers for these controls call into

the diagnostics UserControl to log diagnostics information, placed on the second PanoramaItem.

FIguRE 8-3 You can implement diagnostics reporting in a UserControl.

Unlike the previous example, this application uses the diagnostics control as a ixed element on
the page. The XAML for this test application is shown in the code that follows, with the control on the

second PanoramaItem. As before, the KeyDown event handler on the TextBox and the Click handler

for the Button do nothing in this example except write to the diagnostics log.

 ChAPTER 8 Diagnostics and Debugging 251

<controls:Panorama Title="TestDiagnostics">

 <controls:PanoramaItem Header="One">

 <StackPanel>

 <TextBox x:Name="Name" KeyDown="Name_KeyDown"/>

 <Button x:Name="Submit" Content="submit" Click="Submit_Click"/>

 </StackPanel>

 </controls:PanoramaItem>

 <controls:PanoramaItem Header="Diagnostics">

 <StackPanel Height="800">

 <utils:DiagnosticsControl x:Name="diagnostics"/>

 </StackPanel>

 </controls:PanoramaItem>

</controls:Panorama>

This works in a simple application, but again, there’s a scoping problem. As previously done, this

can be solved by moving the declaration to the App class and exposing it as a property. The page

XAML then needs to be updated to remove the declarative instantiation of the Diagnostics control,

and instead set up a host control to which it can be added programmatically. That is, change this:

 <controls:PanoramaItem Header="Diagnostics">

 <StackPanel Height="800">

 <utils:DiagnosticsControl x:Name="diagnostics"/>

 </StackPanel>

 </controls:PanoramaItem>

to this (in all pages where you want to use the control):

 <controls:PanoramaItem Header="Diagnostics">

 <StackPanel Height="800" x:Name="DiagnosticsHost"/>

 </controls:PanoramaItem>

The corresponding OnNavigatedTo and OnNavigatedFrom overrides on each page need to attach

and detach the diagnostics control exposed from the App class to the hosting control on the page.

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 DiagnosticsHost.Children.Remove(App.Diagnostics);

}

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 DiagnosticsHost.Children.Add(App.Diagnostics);

}

Post-release Diagnostics
Viewing diagnostic information in real time on the device is useful during development. After release,

it is more useful to log this information, and then send it to the development team, typically by

email. It is reasonable to add this functionality to your diagnostics control. This approach is shown in

Figure 8-4 (Diagnostics_Email in the sample code). But, you will ind that as soon as you start putting
input controls on your diagnostics control, you introduce a dilemma: it becomes more challenging

252 PART II Application Model

to host your control. Speciically, you generally don’t want to have too many (or any) input controls
on Panorama or Pivot-based pages because of the ”duelling inputs” problem. That is, the Panorama

and Pivot controls make extensive use of touch gestures to manipulate the UI, and introducing other

touch-input controls like TextBox, Button, ToggleSwitch, and so on makes the user touch interface

more complex.

So, if your diagnostics control does include input controls, it is generally better to dedicate a sepa-

rate (non-Panorama, non-Pivot) page to host it. This has the added beneit of reduced complexity
because it eliminates the need to attach and detach the diagnostics control for multiple pages.

FIguRE 8-4 It is often useful to have a separate page dedicated for diagnostics output.

To add the email feature, you irst extend the simple diagnostics control with a TextBox and Button.

This is so that the user can enter an email address (or accept the default address provided in code)

and then send the message:

<Border BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="2" Height="800">

 <StackPanel>

 <StackPanel Orientation="Horizontal">

 <TextBox

 x:Name="emailTextBox" Text="someone@contoso.com" InputScope="EmailUserName"/>

 <Button x:Name="sendEmail" Content="send" Click="sendEmail_Click"/>

 </StackPanel>

 <ListBox x:Name="historyList" >

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock Text="{Binding}" TextWrapping="Wrap" />

 </DataTemplate>

mailto:someone@contoso.com

 ChAPTER 8 Diagnostics and Debugging 253

 </ListBox.ItemTemplate>

 </ListBox>

 </StackPanel>

</Border>

The code-behind simply uses the supplied email address and creates a suitable EmailComposeTask,

illing in the body of the email from the collection of diagnostic strings. Note that you’re limited to
64 KB of text in emails, so you should check the length of the log before attempting to send it, and

perhaps ilter it or send multiple emails if necessary.

private void sendEmail_Click(object sender, RoutedEventArgs e)

{

 if (debugHistory.Count > 0)

 {

 EmailComposeTask task = new EmailComposeTask();

 StringBuilder builder = new StringBuilder();

 foreach (String s in debugHistory)

 {

 builder.AppendLine(s);

 }

 task.To = emailTextBox.Text;

 task.Subject = "Diagnostics";

 task.Body = builder.ToString();

 task.Show();

 }

}

Persisting Logs
Recall that executing a Launcher such as the EmailComposeTask will navigate away from the applica-

tion, which will therefore be deactivated and might be tombstoned. If you want the diagnostic infor-

mation to persist in such a scenario, you need to save it to isolated storage and subsequently retrieve

it upon initialization. Persisting diagnostic information in this way will also persist it across runs of the

application, which might also be useful in some scenarios.

You can see this at work in the Diagnostics_Persist solution in the sample code. First, you modify

the WriteLog method to persist the diagnostic data in addition to adding it to the debug history col-

lection, as shown in the following:

public void WriteLog(object payload)

{

 StackTrace stackTrace = new StackTrace();

 MethodBase method = stackTrace.GetFrame(1).GetMethod();

 String status = String.Format("{0}: {1}.{2}: {3}",

 DateTime.Now.ToString("H:mm:ss"),

 method.DeclaringType.Name,

 method.Name,

 payload);

 debugHistory.Insert(0, status);

 SaveLog(status);

}

254 PART II Application Model

All the real persistence work is done in the SaveLog method. This uses the application’s isolated

storage via the standard IsolatedStorageFile and IsolatedStorageFileStream classes.

private string logFileName = "DiagnosticsLog.txt";

public void SaveLog(String logLine)

{

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream isoStream =

 new IsolatedStorageFileStream(

 logFileName, FileMode.Append, isoFile))

 {

 using (StreamWriter writer = new StreamWriter(isoStream))

 {

 writer.WriteLine(logLine); }

 }

 }

}

You also need a way to retrieve existing log information from isolated storage. This is simply a

matter of reading the IsolatedStorageFileStream with a StreamReader and then adding the resulting

strings to the data-bound collection.

public ObservableCollection<String> GetLog()

{

 ObservableCollection<String> data = new ObservableCollection<String>();

 object lockObject = new object();

 lock (lockObject)

 {

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (isoFile.FileExists(logFileName))

 {

 using (IsolatedStorageFileStream isoStream =

 new IsolatedStorageFileStream(

 logFileName, FileMode.Open, isoFile))

 {

 using (StreamReader reader = new StreamReader(isoStream))

 {

 String logLine;

 while ((logLine = reader.ReadLine()) != null)

 {

 data.Insert(0, logLine);

 }

 }

 }

 }

 }

 }

 return data;

}

 ChAPTER 8 Diagnostics and Debugging 255

Call this new GetLog method on initialization; speciically, update the Loaded event handler to

replace this line:

debugHistory = new ObservableCollection<String>();

with this one:

debugHistory = GetLog();

If you’re persisting all diagnostics to isolated storage, the log will persist across runs of the applica-

tion, so it’s probably useful to offer the option to clear the log. If you’re adding a timestamp to each

diagnostic entry, this reduces the risk of confusion between multiple entries in the log, but the prob-

lem here is to mitigate the chance of an ever-increasing log, which could eventually become unman-

ageable and even risks running the phone out of disk space.

private void clearLog_Click(object sender, RoutedEventArgs e)

{

 debugHistory.Clear();

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 isoFile.DeleteFile(logFileName);

 }

}

Conigurable Diagnostics
Abstracting the diagnostics functionality to a UserControl makes it more reusable, but the down-

side is that if you want something to be reusable, it needs to be lexible. The more features you
build into the control, the more you’ll need to provide ways for the consumer and/or the user to

conigure them. In the following evolution of our diagnostics control, there are additional options
to turn logging on or off, and to turn the diagnostics display on or off, as shown in Figure 8-5 (the

Diagnostics_Settings solution in the sample code). These are really just representative examples of the

kind of coniguration you could implement. Other conigurations might include log output formatting
options, severity levels, event logging triggers, log ile size, log record purging behavior, and so on.
The application uses ToggleSwitch controls, provided in the Silverlight Toolkit.

<Border BorderBrush="{StaticResource PhoneForegroundBrush}"

 BorderThickness="2" Height="800">

 <StackPanel Name="diagnosticsPanel" >

 <toolkit:ToggleSwitch

 x:Name="toggleLogging" Content="Logging is OFF" IsChecked="False"

 Checked="toggleLogging_Checked"

 Unchecked="toggleLogging_Unchecked"/>

 <toolkit:ToggleSwitch

 x:Name="toggleDisplay" Content="Display is OFF" IsChecked="False"

 Checked="toggleDisplay_Checked"

 Unchecked="toggleDisplay_Unchecked"/>

256 PART II Application Model

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition/>

 <ColumnDefinition/>

 </Grid.ColumnDefinitions>

 <Button Grid.Column="0" x:Name="clearLog" Content="Clear Log"

 Click="clearLog_Click"/>

 <Button Grid.Column="1" x:Name="emailLog" Content="Email Log"

 Click="emailLog_Click"/>

 </Grid>

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="Email To: " VerticalAlignment="Center"

 Margin="10,0,0,0"/>

 <TextBox

 x:Name="emailTextBox" LostFocus="emailTextBox_LostFocus"

 InputScope="EmailUserName"/>

 </StackPanel>

 <ListBox x:Name="historyList" Visibility="Collapsed">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <StackPanel>

 <TextBlock Text="{Binding}" TextWrapping="Wrap" />

 </StackPanel>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

 </StackPanel>

</Border>

When the consuming application declares an instance of the control, the developer can supply

initial values for the interesting properties (IsLogging, DeleteLogOnStart, and so on), as shown in the

following:

public partial class App : Application

{

...

 private static DiagnosticsControl diagnostics;

 public static DiagnosticsControl Diagnostics

 {

 get

 {

 if (diagnostics == null)

 {

 diagnostics = new DiagnosticsControl (

 "TestDiagnostics_Log", true, false, false, "someone@contoso.com");

 }

 return diagnostics;

 }

 }

}

This means that you need to supply a constructor in the control class to take in the various param-

eters and assign them internally to ields and properties.

 ChAPTER 8 Diagnostics and Debugging 257

public DiagnosticsControl(

 string logname, bool islogging, bool deletelog, bool isVisible, string emailTo)

{

 LogName = logname;

 IsLogging = islogging;

 DeleteLogOnStart = deletelog;

 IsHistoryVisible = isVisible;

 EmailTo = emailTo;

 InitializeComponent();

 logFileName = LogName + ".txt";

 debugHistory = GetLog();

 historyList.ItemsSource = debugHistory;

 toggleLogging.IsChecked = IsLogging;

 toggleDisplay.IsChecked = IsHistoryVisible;

 emailTextBox.Text = EmailTo;

 if (DeleteLogOnStart)

 {

 DeleteLogFile();

 }

 Application.Current.UnhandledException +=

 new EventHandler<ApplicationUnhandledExceptionEventArgs>(

 application_UnhandledException);

}

In this implementation example, if the consumer sets DeleteLogOnStart=true, then you’ll always

launch with a fresh log ile. This includes when returning from navigating away, which includes when
returning from sending an email of the diagnostics. It’s up to the developer to decide the exact

behavior that is appropriate in each of these scenarios.

The various handlers for the UI events set the internal properties, as you would expect.

private void toggleLogging_Checked(object sender, RoutedEventArgs e)

{

 IsLogging = true;

 this.toggleLogging.Content = loggingIsOn;

}

private void toggleLogging_Unchecked(object sender, RoutedEventArgs e)

{

 IsLogging = false;

 this.toggleLogging.Content = loggingIsOff;

}

private void toggleDisplay_Checked(object sender, RoutedEventArgs e)

{

 historyList.Visibility = Visibility.Visible;

 this.toggleDisplay.Content = displayIsOn;

}

258 PART II Application Model

private void toggleDisplay_Unchecked(object sender, RoutedEventArgs e)

{

 historyList.Visibility = Visibility.Collapsed;

 this.toggleDisplay.Content = displayIsOff;

}

Some of the properties govern conditional behavior. For example, you now write only fresh strings

to the collection (and to the log) if the IsLogging property is set to true.

public void WriteLog(object payload)

{

 if (IsLogging)

 {

 StackTrace stackTrace = new StackTrace();

 MethodBase method = stackTrace.GetFrame(1).GetMethod();

 String status = String.Format("{0} - {1}.{2}: {3}",

 DateTime.Now.ToString("H:mm:ss"),

 method.DeclaringType.Name,

 method.Name,

 payload);

 debugHistory.Insert(0, status);

 SaveLog(status);

 }

}

As a further enhancement, given is the constraints on real estate, you could provide a Button to

show/hide the diagnostic control’s settings UI. This leaves more space for the diagnostics output itself,

as shown in Figure 8-5. You can see this at work in the Diagnostics_SettingsExpando solution in the

sample code.

FIguRE 8-5 It might be useful to allow the user to expand or collapse your custom diagnostics chrome.

 ChAPTER 8 Diagnostics and Debugging 259

This is achieved with two Button controls, only one of which is visible at a time (they occupy the

same space).

<Button x:Name="openButton" Width="60" Height="60"

 Padding="0"

 HorizontalAlignment="Right"

 Click="openButton_Click"

 Visibility="Collapsed">

 <Button.Content>

 <Path

 Width="20" Height="20" Stretch="Fill"

 Fill="{StaticResource PhoneForegroundBrush}"

 Data="M0,0 L1,0 0.5,1Z" />

 </Button.Content>

</Button>

<Button x:Name="closeButton" Width="60" Height="60"

 Padding="0"

 HorizontalAlignment="Right"

 Click="closeButton_Click">

 <Button.Content>

 <Path

 Width="20" Height="20" Stretch="Fill"

 Fill="{StaticResource PhoneForegroundBrush}"

 Data="M0,1 L1,1 0.5,0Z" />

 </Button.Content>

</Button>

The Click handlers show or hide the entire settings panel as well as toggling the visibility of the

Button controls themselves.

private void openButton_Click(object sender, RoutedEventArgs e)

{

 settingsPanel.Visibility = Visibility.Visible;

 openButton.Visibility = Visibility.Collapsed;

 closeButton.Visibility = Visibility.Visible;

}

private void closeButton_Click(object sender, RoutedEventArgs e)

{

 settingsPanel.Visibility = Visibility.Collapsed;

 closeButton.Visibility = Visibility.Collapsed;

 openButton.Visibility = Visibility.Visible;

}

Screen Capture
Sometimes it’s useful to see what the user sees on the screen. Fortunately, it’s simple enough to

capture the screen (of your own application) and store the image in the phone’s media library. The

following application provides an App Bar button that when tapped by the user renders the current

page into a WriteableBitmap and then saves that bitmap to the media library. You’ll also display the

bitmap in an Image control on the screen, set to half the screen size. Clearly, you could take a screen-

shot of this screen also. Figure 8-6 illustrates such recursive screenshots (using the ScreenCapture

application in the sample code).

260 PART II Application Model

FIguRE 8-6 Capturing your application’s screen can be a useful diagnostics support technique.

Here’s the XAML for the Image control, set to half the width and height of the screen, with a

2-pixel border:

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Border

 Width="240" Height="400"

 BorderThickness="2" BorderBrush="{StaticResource PhoneBorderBrush}">

 <Image x:Name="capturedImage" Stretch="Uniform" />

 </Border>

</Grid>

The example that follows shows the code-behind for the App Bar button. All the hard work is done

by the WriteableBitmap.Render method, which renders any given UIElement to the bitmap object.

Notice how you’re capturing the entire page but the image doesn’t include the SystemTray or the

App Bar region, and also won’t include the contents of WebBrowser or MediaElement controls. Having

captured the screen, you then also set the bitmap as the Source for your Image control. Finally, save

the image as a JPEG ile to the phone’s media library.

private void appBarCapture_Click(object sender, System.EventArgs e)

{

 WriteableBitmap wb = new WriteableBitmap(

 (int)this.ActualWidth, (int)this.ActualHeight);

 wb.Render(this, null);

 wb.Invalidate();

 ChAPTER 8 Diagnostics and Debugging 261

 // Display the captured image.

 this.capturedImage.Source = wb;

 // Save the image to the media library.

 MemoryStream stream = new MemoryStream();

 wb.SaveJpeg(stream, wb.PixelWidth, wb.PixelHeight, 0, 100);

 stream.Seek(0, SeekOrigin.Begin);

 MediaLibrary lib = new MediaLibrary();

 lib.SavePicture("ScreenCapture", stream);

}

Although you can programmatically send emails via the EmailComposeTask, there’s currently no

way to add attachments to one programmatically. Also, although you can programmatically invoke

the PhotoChooser task, you can’t programmatically get to the feature that sends a photo via email. So,

if you need your user to send you a screen capture image, you can provide runtime diagnostics fea-

tures to take the screen captures, but you’ll then have to ask him to select the images from the media

library and email them manually.

Note also that this feature uses the media APIs, so you can’t test it on a physical device while the

Zune software is running (Zune locks the local media database). Therefore, to test this, you need to

use the Connect tool supplied with the Windows Phone Developer Tools.

emulator Console Output
Debug.WriteLine of course works only in debug builds. The strategy of using a custom logging mech-

anism will work for either debug or release builds. Suppose that you don’t want to go to the extent of

custom logging, but you do want simple diagnostics output in a release build. If you don’t mind using

regedit, you direct the emulator to show its associated console window. As always, you should ensure

that you have a current backup of the registry before you make any changes so that you can restore

its previous state, if need be. You should also be aware that editing the registry is normally considered

an advanced technique; you should not undertake this unless you fully understand the risks involved.

If you want to go ahead and show the emulator console window, run regedit, and then go to

HKLM\Software\Microsoft\XDE. Create a new DWORD value named EnableConsole, and then set the

value to 1, as shown in Figure 8-7. After setting (or changing) the registry key, you must restart the

emulator for the change to take effect.

FIguRE 8-7 If you’re an advanced user, you can enable the emulator’s console output in the registry.

262 PART II Application Model

After this, when you run the emulator, it will display its console window. You can take advantage

of this by sending console output to this window as part of your release build application. Here’s a

simple wrapper class to a static method that will provide release diagnostics output:

public class ConsoleOutput

{

 public static void WriteLine()

 {

 WriteLine(null);

 }

 public static void WriteLine(object payload)

 {

 StackTrace stackTrace = new StackTrace();

 MethodBase method = stackTrace.GetFrame(2).GetMethod();

 String status = String.Format("{0} - {1}.{2}: {3}",

 DateTime.Now.ToString("H:mm:ss"),

 method.DeclaringType.Name,

 method.Name,

 payload != null ? payload : "(null)");

 Console.WriteLine(status);

 }

}

Here’s how you might use this in your application code:

public MainPage()

{

 ConsoleOutput.WriteLine();

 InitializeComponent();

}

private void gotoPage2_Click(object sender, RoutedEventArgs e)

{

 Uri page2Uri = new Uri("/Page2.xaml", UriKind.Relative);

 ConsoleOutput.WriteLine(page2Uri);

 NavigationService.Navigate(page2Uri);

}

Figure 8-8 shows this application using console output. This is the ConsoleDiagnostics solution in

the sample code.

 ChAPTER 8 Diagnostics and Debugging 263

FIguRE 8-8 Tracking emulator console output can be useful in some scenarios.

Debugging tombstoning and Lock-Screen
In Chapter 6, “Application Model,” you took an in-depth look at application lifecycle events and the

various ways that an application behaves when the user navigates between applications. As part of

developing your application, you need to be able to check the behavior when the user navigates

away. However, when the user navigates away from your application, it will be terminated. Depending

on exactly how the user navigates away, the application might be deactivated, and the current pro-

cess might be terminated. If the user presses Back to back out of the irst page in your application, the
application is closed, and any debug session running at the time is also terminated. However, if the

user presses Start instead of Back or launches a Launcher or Chooser from your application, the appli-

cation is deactivated and moved to the backstack. If she later returns back to your application, it will

be reactivated. We’ve seen that tombstoning an application actually terminates its process but lags it
for potential reactivation at a later point. When deactivated and then tombstoned, your application’s

process no longer exists. Given that, how can you possibly test the reactivation code path?

264 PART II Application Model

Fortunately, the debugger in Visual Studio has special code to deal speciically with this scenario.
For the scenario in which the application is deactivated and placed on the backstack, the debugging

session remains alive, even though the target process is no longer running. Obviously, none of the

debugging operations are functional at this point; the debug session is in a frozen state, and the only

action that is supported is to stop debugging. However, if you leave the debugging session alive, and

the user eventually returns back to the application, the debugger will be attached to the new process,

and debugging can then continue.

Also, as you saw in Chapter 5, the phone pays attention to its activities and is smart about turning

off the screen and other peripherals when the user has been idle for a conigurable period of time.
During debugging, it is often useful to disable this screen-lock behavior so that it doesn’t interfere

with debug sessions. The standard Visual Studio project templates all include a statement in the App.

xaml.cs to turn off idle detection if a debugger is attached.

PhoneApplicationService.Current.UserIdleDetectionMode = IdleDetectionMode.Disabled;

If you do use this technique, you should remove this statement toward the inal stages of develop-

ment, when you want to test your application under the most realistic conditions. Before releasing the

application to marketplace, you will certainly test in release mode, without the debugger attached,

in which case this won’t be a problem. When the screen-lock is allowed to engage, the phone also

deactivates the foreground application at that time. You should test your application’s behavior under

this condition as well.

Debugging MediaPlayer
When you use Visual Studio to debug an application on a physical device, the device is attached to

the PC. When the device is attached, the Zune software is generally running. The problem is that you

cannot debug an application that uses the Zune media library, including the photo chooser and cam-

era launcher tasks, because Zune locks the local media database. The ix for this is to use the Windows

Phone Connect Tool.

The Connect tool is installed with the SDK, and you can typically ind it at %ProgramFiles%\
Microsoft SDKs\Windows Phone\v7.1\Tools\WPConnect\x86\WPConnect.exe. You can make this

slightly more convenient to use if you add it as an external tool in the Visual Studio IDE. To do this, in

Visual Studio, click Tools | External Tools. Add a new tool and specify the path to WpConnect.exe, as

shown in Figure 8-9. Note that this only works with the full version of Visual Studio, not with Visual

Studio Express. To use the Connect tool, you irst connect your phone device and run the Zune soft-
ware to ensure that the device is recognized. Then, close the Zune software and run WPConnect; this

is a console application, which should produce a conirmation something like this:

Connecting for device 'HTC HD7'......

Connection established.

 ChAPTER 8 Diagnostics and Debugging 265

Note The Connect tool is shipped in both a 32-bit version and a 64-bit version. However,

Visual Studio 2010 is a 32-bit process, so even if you’re running it on a 64-bit computer, you

should not link in the 64-bit version of the Connect tool. In this scenario, you should use

the 64-bit Connect from a command prompt, not from Visual Studio.

You need to run this only once, so long as the device remains connected. The connection will per-

sist across runs of Visual Studio.

FIguRE 8-9 You can add the WpConnect tool to the Visual Studio Tools Menu.

You can use the same technique for another SDK tool, the Windows Phone Capability Detection

Tool. You can run this tool to scan your application, and detect the capabilities that your application

actually requires. This scanning operation is equivalent to what happens when you submit your appli-

cation to the marketplace. You’ll ind the tool here:

%ProgramFiles%\Microsoft SDKs\Windows Phone\v7.0\Tools\CapDetect\CapabilityDetection.exe.

The tool requires two command-line arguments: the path to a rules ile that controls the scanning
operation, and the path to the output folder for your project. The default rules.xml is provided with

the tool; it’s a list of types and assemblies that govern which capabilities your app uses, and matches

the marketplace rules. To set this up as an external tool in Visual Studio, In the Arguments ield of

266 PART II Application Model

the External Tools dialog box, select “Rules.xml” and “$(TargetDir)”, and then set Initial Directory to

the directory that contains the rules.xml ile. Also select the Use Output Window option, as shown in
Figure 8-10.

FIguRE 8-10 You can add the Capability Detection tool to Visual Studio.

This will produce a simple list of the capabilities used in your application. If your application

doesn’t use any phone capabilities, the list will be empty. Here’s an example output list:

ID_CAP_NETWORKING

ID_CAP_PUSH_NOTIFICATION

ID_CAP_SENSORS

Note If you don’t use any phone capabilities, and you correctly edit the WMAppmanifest.

xml ile to remove all the auto-generated ones, the next time you open the solution in
Visual Studio you’ll get a spurious complaint about missing capabilities. You can safely

ignore this. Note also that this tool is largely superseded in the version 7.1 SDK by the

Marketplace Test Kit; however, that tool only works on version 7.1 projects, so you would

still need the Capability Detection tool if you’re building version 7 projects.

 ChAPTER 8 Diagnostics and Debugging 267

Device and user Information

Additional information about the application’s runtime environment that could be useful in debug-

ging or diagnostics can be garnered from the platform itself. There are various classes in the platform

that you can use to obtain information about the current device, user, and status. Speciically, they are
the DeviceExtendedProperties, UserExtendedProperties, NetworkInterface, PhoneApplicationService,

Microsoft.Devices.Environment, and System.Environment classes. In this example (the DeviceInfo

solution in the sample code), you gather the information into multiple collections of strings, and then

data-bind each one to a ListBox, as shown in Figure 8-11. The data is refreshed when the user taps the

App Bar button.

FIguRE 8-11 Device and user information can be helpful in diagnosing application problems.

First, fetching information by using the DeviceExtendedProperties API is very straightforward.

This will yield the device manufacturer, model name, unique ID, version numbers, and so on. It also

provides data on total memory available, and the current application’s memory usage. You use

TryGetValue as a normal due diligence technique, although in this context—assuming we’ve got the

spelling of each property correct—you can be sure that these speciic keys will be in the collection.
Note that DeviceUniqueId is a byte[20], and it is unlikely to be useful to represent this as a character

string, although it is included here for completeness. Also note that this API is superseded in version

7.1 by the DeviceStatus API (more on this in Chapter 16, “Enhanced Phone Services”).

object propertyValue;

if (DeviceExtendedProperties.TryGetValue("DeviceManufacturer", out propertyValue))

{

 deviceItems.Add(String.Format("Manufacturer={0}", propertyValue));

}

268 PART II Application Model

if (DeviceExtendedProperties.TryGetValue("DeviceName", out propertyValue))

{

 deviceItems.Add(String.Format("Device Name={0}", propertyValue));

}

if (DeviceExtendedProperties.TryGetValue("DeviceUniqueId", out propertyValue))

{

 byte[] bytes = (byte[])propertyValue;

 String idString = Convert.ToBase64String(bytes);

 deviceItems.Add(String.Format("Device Id={0}", idString));

}

if (DeviceExtendedProperties.TryGetValue("DeviceFirmwareVersion", out propertyValue))

{

 deviceItems.Add(String.Format("Firmware={0}", propertyValue));

}

if (DeviceExtendedProperties.TryGetValue("DeviceHardwareVersion", out propertyValue))

{

 deviceItems.Add(String.Format("Hardware={0}", propertyValue));

}

if (DeviceExtendedProperties.TryGetValue("DeviceTotalMemory", out propertyValue))

{

 deviceItems.Add(String.Format(

 "Total Memory={0:N} Mb", (double)(long)propertyValue / 1024 / 1024));

}

if (DeviceExtendedProperties.TryGetValue(

 "ApplicationCurrentMemoryUsage", out propertyValue))

{

 deviceItems.Add(String.Format(

 "App Current Memory={0:N} Mb", (double)(long)propertyValue / 1024 / 1024));

}

if (DeviceExtendedProperties.TryGetValue(

 "ApplicationPeakMemoryUsage", out propertyValue))

{

 deviceItems.Add(String.Format(

 "App Peak Memory={0:N} Mb", (double)(long)propertyValue / 1024 / 1024));

}

You can use the Microsoft.Devices.Environment class to determine whether the application is cur-

rently running on a device or emulator, as demonstrated in the following:

String deviceType = Microsoft.Devices.Environment.DeviceType.ToString();

deviceItems.Add(String.Format("DeviceType={0}", deviceType));

You can use the NetworkInterface class to get information about the available network, as shown

here.

bool isNetworkAvailable = NetworkInterface.GetIsNetworkAvailable();

networkItems.Add(String.Format(

 "Is Network Available={0}", isNetworkAvailable));

For OS and CLR version, you can use the standard Microsoft .NET System.Environment class.

Note, however, that not all features of this type are applicable on Windows Phone; speciically, if you
attempt to access the CurrentDirectory property, this will throw an exception. There is no program-

matic access to the ilesystem on the phone, except for the very constrained use of the application’s
isolated storage.

 ChAPTER 8 Diagnostics and Debugging 269

environmentItems.Add(String.Format(

 "OS Version={0}", System.Environment.OSVersion));

environmentItems.Add(String.Format(

 "CLR Version={0}", System.Environment.Version));

// Throws a NotSupportedException.

//environmentItems.Add(String.Format(

// "CurrentDirectory={0}", Environment.CurrentDirectory));

The PhoneApplicationService class will indicate whether application and/or user idle detection

are turned on as well as specify the current startup mode. Applications can be started by the user

launching the application explicitly (typically by selecting the application from the Start experience)

or implicitly (by the user returning to the application after having previously navigated away by using

the Back button or the task switcher).

applicationItems.Add(String.Format(

 "ApplicationIdleDetectionMode={0}",

 PhoneApplicationService.Current.ApplicationIdleDetectionMode));

applicationItems.Add(String.Format(

 "UserIdleDetectionMode={0}",

 PhoneApplicationService.Current.UserIdleDetectionMode));

applicationItems.Add(String.Format(

 "StartupMode={0}",

 PhoneApplicationService.Current.StartupMode));

You can get the status of the App Bar and System Tray from the corresponding classes in the

platform:

shellItems.Add(String.Format(

 "ApplicationBar.IsVisible={0}", ApplicationBar.IsVisible));

shellItems.Add(String.Format(

 "SystemTray.IsVisible={0}", SystemTray.IsVisible));

Although there is no support for accessing the ilesystem directly, you can retrieve information
about isolated storage. In fact, you can get the total amount of free disk space available to all applica-

tions. Unlike desktop isolated storage, there is no quota imposed on an application, so it is possible

for any application to consume all available storage.

using (IsolatedStorageFile storage = IsolatedStorageFile.GetUserStoreForApplication())

{

 storageItems.Add(String.Format(

 "IsoStorage Free Space={0:N} Mb",

 (double)(long)storage.AvailableFreeSpace / 1024 / 1024));

}

270 PART II Application Model

It might also be useful to extract information from the application’s marketplace manifest, that is,

WMAppManifest.xml. You can do this fairly easily by loading the manifest into an XDocument and

parsing it, as shown in the code that follows. The manifest will be at the root of the folder from which

the current application is running.

manifestItems.Add(String.Format(

 "ProductID={0}", GetApplicationAttribute("App", "ProductID")));

manifestItems.Add(String.Format(

 "AppPlatformVersion={0}", GetApplicationAttribute(

 "Deployment", "AppPlatformVersion")));

private string GetApplicationAttribute(String elementName, String attributeName)

{

 String attributeValue = String.Empty;

 XDocument appManifest = XDocument.Load("WMAppManifest.xml");

 if (appManifest != null)

 {

 using (XmlReader reader = appManifest.CreateReader(ReaderOptions.None))

 {

 if (reader.ReadToDescendant(elementName))

 {

 attributeValue = reader.GetAttribute(attributeName);

 }

 }

 }

 return attributeValue;

}

The inal piece of device/user information that you can retrieve is the Anonymous User ID (ANID).

For this, you can use the UserExtendedProperties class. This class exposes just one piece of informa-

tion: the ANID. The ANID will be returned in a 44-character string. In fact, the ANID itself is only a

32-character subset of this string; the remainder of the string is used internally by the phone applica-

tion platform; it is opaque to your application.

object propertyValue;

if (UserExtendedProperties.TryGetValue("ANID", out propertyValue))

{

 string anid = String.Empty;

 if (propertyValue != null)

 {

 anid = propertyValue.ToString().Substring(2, 32);

 }

 userItems.Add(String.Format("User Id={0}",

 (String.IsNullOrEmpty(anid) ? "(null)" : anid)));

}

 ChAPTER 8 Diagnostics and Debugging 271

Using DeviceExtendedProperties will lag your application as using phone identity information,
which will require ID_CAP_IDENTITY_DEVICE, which in turn will require you to notify the user that

your application wants to access identity information. When warned that your application requires

access to personal identity information, many users will err on the side of caution and might well

change their mind about installing your application. The DeviceStatus API introduced in version 7.1

supersedes DeviceExtendedProperties and does not require this capability. You are strongly discour-

aged from using the ANID, and there’s every chance that the warning will become more urgent in

future releases. Using the UserExtendedProperties API also requires the ID_CAP_IDENTITY_USER

capability.

Windows Phone Performance Counters

The standard applications that the Visual Studio templates generate all include some proiling code in
the App class constructor, as shown in the following:

if (System.Diagnostics.Debugger.IsAttached)

{

 Application.Current.Host.Settings.EnableFrameRateCounter = true;

 Application.Current.Host.Settings.EnableRedrawRegions = true;

 Application.Current.Host.Settings.EnableCacheVisualization = true;

}

By default, the generated code applies these only if a debugger is attached, and only actually

enables the frame-rate counters. These three performance counters track your application’s perfor-

mance in terms of how many frames are rendered per second (FPS), which areas of the screen are

being redrawn, and so on, as summarized in Table 8-1.

TABlE 8-1 Performance Counters

Proiling Description

Frame-rate counter Show six counters, including how many frames are being rendered per second, count of sur-
faces and textures, and screen ill rate.

Redraw regions Show the areas of the application that are being redrawn in each frame.

Cache visualization Show the areas of an application that are being passed to the GPU for acceleration (the inverse
of the Silverlight browser behavior).

It’s generally not useful to have both EnableRedrawRegions and EnableCacheVisualization turned

on at the same time. Also, if you’re examining caching, with EnableCacheVisualization turned on, the

frame rate counter values will be largely meaningless during that time.

The frame-rate counters are described in Table 8-2, with an indication of an optimal range for each

one (where that makes sense).

272 PART II Application Model

TABlE 8-2 Frame-Rate Counters

Counter Description Warning level optimal Range

Render Thread FPS The number of frames per second that the rendering
(composition) thread is using. Values <30 are presented
in red.

≤30 45–60

User Interface Thread
FPS

The number of FPS that the primary UI thread is using.
Presented in red if the count is <15.

≤15 30–60

Texture Memory
Usage

The video memory used for storing application textures/
surfaces.

Surface Counter The number of explicit surfaces that are being passed to
the GPU for processing.

Intermediate Surface
Counter

The number of implicit surfaces generated when the
compositor thread optimizes/combines cached surfaces.

Screen Fill Rate The number of total pixel draw operations as a multiple
of the number of pixesl on the screen. A value of 1 ==
480x800 pixels. Presented in red if the counter is >3.0.

>3.0 1.0–2.0

The render thread FPS counter is shown only if you set the SystemTray to invisible (or transparent

in version 7.1). The SystemTray is an area normally reserved at the top of the screen (in portrait mode)

for signal strength and battery life indicators. This would normally obscure the render thread FPS

counter. You can turn it off in your page XAML, as shown in the following:

<phone:PhoneApplicationPage

...

 shell:SystemTray.IsVisible="False">

The frame counters are depicted in Figure 8-12 (full-size on the left; magniied on the right).

FIguRE 8-12 The standard Windows Phone performance counters track your application’s performance.

 ChAPTER 8 Diagnostics and Debugging 273

The application shown in Figure 8-13 (the TestPerfCounters solution in the sample code) illustrates

how some of the performance counters are used. The UI offers a ListBox and three Button controls.

When the user taps the Add Item button, you add a new string item to the ListBox, when he taps

Clear List, you clear the list of strings. The Toggle Redraw Button toggles the EnableRedrawRegions

setting on the Application.Host object. This application is designed to work in Landscape orientation

to facilitate reading the performance counters while working with the Button controls and the ListBox.

FIguRE 8-13 Visualizing redraw regions is useful for diagnosing and optimizing performance.

If you enable redraw regions and then start adding items, you’ll see that each item is drawn when

it is added. Each Button is redrawn every time it is tapped. Also, the surface counter increments by

one with each item you add, as does the texture/surface memory consumption, of course. Observe

also that the surface counter continues to increment with each item you add, even though the new

items are initially invisible, off the end of the list. The count of surfaces is reset when you clear the list.

The ill rate for this application is consistently <1.0; this is because you’re only drawing relatively small
elements, a relatively small number of pixels for each frame.

You should obviously test your application and analyze the performance counters on a real device,

which will be signiicantly more resource-constrained than the emulator. Chapter 14, “Go to Market,”
explores best practices for Windows Phone development in general, including how to optimize your

application’s rendering behavior.

Memory Diagnostics
The Windows Phone application platform cooperates with the underlying operating system to man-

age system resources, including memory and CPU time. This resource management ensures that

the phone maintains the optimal balance of resource allocation/deallocation, resolving contention

according to established priorities, while also not degrading battery consumption.

The guiding principles are that the phone is a consumer device; the end-user expects all exposed

features to work equally well. This does not mean that all applications and system processes are

granted equal resources. For instance, phone calls are generally considered more important to the

user because they are interruptive and happen in real-time. Most assuredly, the user doesn’t want to

miss a call and doesn’t want to be prevented from making a call at any time. The application platform

274 PART II Application Model

enforces behavior that maintains an optimal balance between foreground and background applica-

tions and their resource consumption. This makes it easy for developers to build applications that are

consistent with these guiding principles. Resources are allocated according to the type of task. For

instance, the currently active application will be granted a lot of resources, whereas a dormant appli-

cation on the backstack will be allocated almost no resources. The operating system, device drivers,

the application platform, and the Silverlight and XNA runtimes obviously carve out resources, too.

One of the most constrained resources on any mobile device is memory. Although technically,

the minimum requirement is only 256 MB, every one of the irst generation of Windows Phone 7
devices has at least 512 MB of system memory. Of this, on Windows Phone 7, 90 MB is carved out for

the current foreground application. This is the amount of memory that an application running in the

foreground can always assume is available. There is also a certiication requirement that applications
restrict themselves to running within 90 MB, because you are never guaranteed to have more than

that. But, in practice on version 7 devices, you often have more than 90 MB available.

The behavior changes slightly in version 7.1, but for both versions, applications should restrict

themselves such that they always run in 90 MB or less. Over time, a wider range of devices will most

likely be supported, including devices with signiicantly less than 512 MB of total memory. Therefore
it makes sense to tune your application so that as much as possible it minimizes its use of memory.

In many scenarios, you might have a choice of alternative techniques to use. Monitoring memory

consumption with each choice will help you to make an informed decision regarding the optimal

approach.

The DeviceExtendedProperties class in the platform provides three memory-related statistics (all

values are reported in bytes):

 ■ DeviceTotalMemory This is, for all intents and purposes, the total memory on the device.

This is not necessarily the same as the total physical memory, but the difference is irrelevant,

because any physical memory above the reported total memory is not accessible to an appli-

cation anyway. Note that from version 7.1, applications should use the new ApplicationMemory

UsageLimit property instead.

 ■ ApplicationCurrentMemoryusage This is the current memory consumption of the current

application.

 ■ ApplicationPeakMemoryusage This is the peak memory consumption of the current appli-

cation, during this session. This peak is not persisted across tombstoning.

The next application (the TestMemory application in the sample code), shown in Figure 8-14, uses

a UserControl named MemoryDiagnostics to monitor these three values. The UserControl displays

memory starts at the upper-right corner of the screen.

 ChAPTER 8 Diagnostics and Debugging 275

FIguRE 8-14 You can use a custom control to monitor memory consumption in your application.

In the test application, the App class declares and initializes an instance of the MemoryDiagnostics

UserControl as a ield. In the Deactivated event, you stop the control, although in this case, this is

redundant because the application is about to be removed from memory at that point anyway. This is

really just to make the point that if you used this MemoryControl object with a smaller lifetime scope,

you would then want to ensure that the underlying timer is stopped properly when you’re inished
with it. Note the use of conditional statements to ensure that you only use this code for debug builds.

public partial class App : Application

{

#if DEBUG

 public static MemoryDiagnostics MemoryControl = new MemoryDiagnostics();

#endif

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)

 {

#if DEBUG

 MemoryControl.Stop();

#endif

 }

... irrelevant code ommitted for brevity

}

276 PART II Application Model

Then, for any page on which you want to display the memory statistics that this control is moni-

toring, you create a Popup window for it. The example that follows shows the code in the MainPage

constructor. Another way to achieve the same result is to put all the MemoryControl code into a new

method and add the [Conditional(“DEBUG”)] attribute to it.

public MainPage()

{

 InitializeComponent();

#if DEBUG

 Popup p = new Popup();

 p.Child = App.MemoryControl;

 p.IsOpen = true;

#endif

}

So, using the control from an application perspective is trivial. The control itself is also quite simple

internally. You set its size and layout so that the text contents is displayed at the upper-right corner

of the page, allowing for the 32 vertical pixels that the SystemTray occupies. The control contains just

one TextBlock.

<UserControl x:Class="Utilities.MemoryDiagnostics"

...

 Margin="320, 32, 0, 0" Width="160" Height="24" IsHitTestVisible="False">

 <TextBlock

 x:Name="MemoryDisplay" FontSize="{StaticResource PhoneFontSizeSmall}"/>

</UserControl>

The code-behind for the control sets up a one-second DispatcherTimer, and starts it on construc-

tion. For each one-second tick, you fetch the memory values from DeviceExtendedProperties, convert

them from bytes to megabytes, and then format them into a string for the TextBlock.

public partial class MemoryDiagnostics : UserControl, IDisposable

{

 private DispatcherTimer timer;

 public MemoryDiagnostics()

 {

 InitializeComponent();

 timer = new DispatcherTimer { Interval = TimeSpan.FromMilliseconds(1000) };

 timer.Tick += (s, e) =>

 {

 long currentMemory =

 (long)DeviceExtendedProperties.GetValue(

 "ApplicationCurrentMemoryUsage");

 long peakMemory =

 (long)DeviceExtendedProperties.GetValue(

 "ApplicationPeakMemoryUsage");

 ChAPTER 8 Diagnostics and Debugging 277

 long totalMemory =

 (long)DeviceExtendedProperties.GetValue(

 "DeviceTotalMemory");

 MemoryDisplay.Text = String.Format(

 "{0:N} | {1:N} | {2:N}",

 (double)currentMemory / 1024 / 1024,

 (double)peakMemory / 1024 / 1024,

 (double)totalMemory / 1024 / 1024);

 };

 timer.Start();

 }

 public void Stop()

 { if (timer != null)

 {

 timer.Stop();

 timer = null;

 }

 }

}

You could take this further and track when your application is approaching the 90 MB limit—or,

better yet, when it is approaching some lower threshold that you want to target for your application.

For an example, see Peter Torr’s excellent memory helper utility, shown in Figure 8-15 and available at

http://blogs.msdn.com/b/ptorr/archive/2010/10/30/that-memory-thing-i-promised-you.aspx.

Custom
memory
counters

FIguRE 8-15 Custom memory counters extend the standard performance counters.

http://blogs.msdn.com/b/ptorr/archive/2010/10/30/that-memory-thing-i-promised-you.aspx

278 PART II Application Model

In essence, this uses a Popup window, rotated and scaled, and positioned in line with the standard

performance counters. The Popup contains TextBlock controls that are updated on a Timer tick with

the results of these calls:

DeviceExtendedProperties.GetValue("ApplicationCurrentMemoryUsage");

DeviceExtendedProperties.GetValue("ApplicationPeakMemoryUsage");

The utility provides methods for you to take snapshots of memory usage, as required, and also

warns if you exceed the marketplace maximum of 90 MB. It even calculates a “safety band,” within

which available memory is at some conigured percentage of the maximum. As the application’s
memory consumption approaches the limits, it changes the color of the text.

The Device Emulator

The Device Emulator (XDE) is a desktop application that emulates the behavior of a Windows Phone

device. The XDE only emulates hardware; to complete the picture, you need to have the XDE load an

OS image ile. The XDE combined with the OS image together provide a virtual machine that emu-

lates both the phone hardware and the phone OS. On top of that, you need a visual representation

of the phone. This is provided by a ”skin” image ile, which is a simple PNG. These three combined
are known as the Windows Phone Emulator. With the emulator, you can run, test, and debug a run-

time image without the need for a physical device. Whereas a physical device is still required for inal
testing and sign-off before publishing the application to the marketplace, it was a design goal of the

emulator that it should be an acceptable surrogate for a physical phone for at least 80 percent of the

end-user experience of the application.

The emulator also mimics some—but not all—of the phone peripherals. For a list of the differ-

ences, see Table 8-3. Apart from peripherals, the critical difference between the emulator and a real

device is performance. The emulator uses the CPU and memory resources of the host computer; these

will be signiicantly faster and bigger than on a physical phone.

If you prefer, you can start the emulator from outside Visual Studio by using a command line such

as the following:

XDE.exe <path to OS image bin file> /skin <path to skin file> /vmid <valid GUID>

For example:

"%ProgramFiles%\Microsoft XDE\1.0\XDE.exe" "%ProgramFiles%\Microsoft SDKs\Windows Phone\v7.x\

Emulation\Images\WM70C1.en-US.bin" /skin "%ProgramFiles%\Microsoft XDE\1.0\WM7_Skin_Up.png" /

vmid {FE530891-F2BC-4D95-A1A9-FA17DD2FA012}

Alternatively, you could use the XdeLauncher application, like so:

"%ProgramFiles%\Microsoft SDKs\Windows Phone\v7.x\Tools\XDE Launcher\XdeLauncher.exe" "Windows

Phone 7" "Windows Phone Emulator"

 ChAPTER 8 Diagnostics and Debugging 279

Keep in mind that even though you can run the emulator from the command line and conigure
it in various ways, there’s no way to specify a XAP to load, so it’s not really useful for Windows Phone

development. However, the ability to run from the command line is useful to troubleshoot scenarios

in which the emulator fails to run from Visual Studio. If the emulator runs from the command line but

not from Visual Studio, the most likely explanation is low memory. If this happens, simply terminate

other running processes that you don’t need, and then try again. Your desktop computer should have

at least 2 GB of memory, and preferably a lot more.

Your development computer should also support the following:

 ■ Hardware-assisted virtualization. Remember that the emulator is a virtual machine, and its

performance is signiicantly improved if it can avail itself of speciic virtualization support from
the computer hardware itself. If this option is available on your computer, you will see it listed

in the BIOS setup screen. If it is available, it should be enabled. If you’re unsure whether your

computer offers hardware-assisted virtualization, you can download and run the Hardware-

Assisted Virtualization Detection Tool, which is available at http://www.microsoft.com/

download/en/details.aspx?id=592.

 ■ A high performance DirectX 10–capable graphics card with a WDDM 1.1 driver that can take

advantage of GPU acceleration on the emulator. You can check your computer’s DirectX capa-

bilities with the DxDiag.exe tool. This is typically installed in %SystemRoot%\System32.

emulator vs. Device
A number of features that are available on the phone itself are either not supported or are signii-

cantly restricted on the emulator. These are listed in Table 8-3.

TABlE 8-3 Differences Between Emulator and Device

Feature Description

Disk storage Restricted storage. The emulator simulates a lash drive of only 2 GB, whereas most phones have
at least 8 or 16 GB. There are two consequences of this: irst, an application that uses isolated
storage will have a lower maximum storage limit, and second, you cannot install as many appli-
cations on the emulator as on a retail physical phone. Note, however, that you can only deploy
up to 10 applications on a developer-unlocked physical phone via developer side-loading (that
is, not via the marketplace). There is no hard restriction on deploying applications to the emula-
tor, apart from physical storage.

Persistence
between runs

Restarting the emulator always restarts the hosted OS image from scratch; nothing is persisted in
that image between runs. This means that any applications installed in one run are not persisted
to a subsequent run. It also means that any data stored by an application to isolated storage dur-
ing one run will not persist to any subsequent run.

Multi-touch Multi-touch capabilities require a host computer that supports multi-touch input: speciically,
4-point multi-touch. Most computers that support multi-touch only support 2 points. Simulation
of multi-touch by using the mouse is not supported in the emulator.

Peripherals and
sensors

There is no real camera on the emulator; a simple representation of camera behavior is available
that always returns to the application a simple image of a rectangle at different positions on the
screen. The version 7 release of the emulator does not support the phone accelerometer or GPS
capabilities.

http://www.microsoft.com/download/en/details.aspx?id=592
http://www.microsoft.com/download/en/details.aspx?id=592

280 PART II Application Model

Feature Description

Email You cannot set up an email account on the emulator; therefore the EmailComposeTask has
restricted behavior.

Windows Live ID The emulator does not include support for Windows Live ID.

MediaPlayer An application can start the media player and the user can play music, but video is not rendered.

Phone calls and
SMS

The emulator uses a non-functional GSM capability and a false SIM card. Placed phone calls al-
ways appear to connect, but there is no real cellular connectivity. Phone calls cannot be received.
SMS messages always appear to be sent, but cannot be received.

XDe Automation
Recall that the key connectivity component that enables the Visual Studio debugger to connect to an

application running on the emulator or device is CoreCon, the Smart Device Connectivity component.

Visual Studio ships an API for Smart Device Connectivity. You’ll ind the managed assemblies that
wrap the native COM components at %ProgramFiles%\Common Files\Microsoft Shared\PhoneTools\

CoreCon\10.0\Bin\. You can use these to automate the Windows Phone emulator and the physical

device. The basic steps are as follows:

1. Add a reference to %ProgramFiles%\Common Files\Microsoft Shared\CoreCon\1.0\Bin\

Microsoft.Smartdevice.Connectivity.dll.

2. Instantiate a DatastoreManager and use it to enumerate a collection of Platform objects. Each

Platform object represents a platform such as Windows Phone 7 that is installed in your local

PC’s Datastore. A platform is really little more than a registered capability, or category of

devices.

3. Select a Platform and use it to enumerate its collection of Device objects. Each Device object

represents one of the devices or emulators, such as Windows Phone 7 Emulator, that belongs

to the platform. This does not imply that any of the devices are actually present on the system,

only that they are registered in the platform’s capabilities.

4. Select a Device object to access information about the device, provision it, and connect to it.

At this point, you can discover whether the device actually exists on the system and is avail-

able for connection.

5. After connecting to the device, you can use the RemoteApplication type to install/uninstall and

launch/terminate an application on that device.

Here’s a simple example console application (the AutomateEmulator solution in the sample code)

that inds either a physical phone or the emulator, installs an application, and launches it.

You’re ultimately calling Device.InstallApplication, which requires you to pass in the application’s

GUID (the ProductID in the WMAppManifest.xml), application icon path, and application XAP path. In

this example, you provide these values on the command line (where “AutomateEmulator” is the name

of this console application):

AutomateEmulator true "{70d7ea03-f1a3-4c85-8900-779ac50d4a80}" "C:\Temp\SampleXap\

ApplicationIcon.png" "C:\Temp\SampleXap\BouncingBall.xap"

 ChAPTER 8 Diagnostics and Debugging 281

The irst step is to access the DataStoreManager: this component manages the registry-based data

store that contains information on the computer about platforms and devices registered for smart

device automation. From the DataStoreManager, you can retrieve the “Windows Phone 7” platform

object.

public static void Main(string[] args)

{

 bool useEmulator = bool.Parse(args[0]);

 String appGuid = args[1];

 String appIconPath = args[2];

 String appXapPath = args[3];

 DatastoreManager manager =

 new DatastoreManager(CultureInfo.CurrentCulture.LCID);

 Collection<Platform> platforms = manager.GetPlatforms();

 Platform platform = platforms.Single(p => p.Name == "Windows Phone 7");

Then, you make a decision as to whether you want to connect to the emulator or physical device

so that you can query the platform for the device in the collection that matches this name. The string

identiiers for the emulator and device changed between Windows Phone 7 and 7.1, but you can deal
with that via conditional directives.

#if WINDOWS_PHONE_71

 String deviceName = useEmulator ?

 "Windows Phone Emulator" : "Windows Phone Device";

#else

 String deviceName = useEmulator ?

 "Windows Phone 7 Emulator" : "Windows Phone 7 Device";

#endif

After you’ve decided whether to connect to the emulator or device, you can use the correspond-

ing string to search in the collection of “devices” known to the platform to get a corresponding Device

object to which you can attempt to connect.

 Collection<Device> devices = platform.GetDevices();

 Device device = devices.Single(d => d.Name == deviceName);

 device.Connect();

Once you’ve established a connection to the device (emulator or physical device), terminate any

running instance of the application, uninstall it, install a fresh version, and then inally, launch it.

 RemoteApplication app;

 Guid appID = new Guid(appGuid);

 if (device.IsApplicationInstalled(appID))

 {

 app = device.GetApplication(appID);

 app.TerminateRunningInstances();

 app.Uninstall();

 }

 app = device.InstallApplication(

 appID, appID, "NormalApp", appIconPath, appXapPath);

 app.Launch();

}

282 PART II Application Model

This technique can be useful in setting up automated build/test scripts in a fairly simplistic manner.

A more sophisticated use of this would include functionality to unzip a target application XAP ile so
that it could extract the WMAppManifest.xml. From that manifest, the solution could further extract

the application icon name and the ProductID. Be aware that several of the methods and properties

on the RemoteApplication type are not implemented, including GetInstalledFileInfo, GetIsolatedStore,

IsRunning, Genre, and Title.

If you want to retrieve baseline metrics for a device—perhaps for benchmarking your application’s

behavior across multiple devices—you can also use the CoreCon APIs to return system information

about any device (or the emulator). Speciically, you can call the GetSystemInfo method on the Device

object, as shown in the following:

SystemInfo si = device.GetSystemInfo();

Console.WriteLine("OSMajor = {0}", si.OSMajor);

Console.WriteLine("OSMinor = {0}", si.OSMinor);

Console.WriteLine("OSBuildNo = {0}", si.OSBuildNo);

Console.WriteLine("ProcessorArchitecture = {0}", si.ProcessorArchitecture);

Console.WriteLine("InstructionSet = {0}", si.InstructionSet);

Console.WriteLine("NumberOfProcessors = {0}", si.NumberOfProcessors);

Console.WriteLine("TotalPhys = {0:N} Mb", si.TotalPhys / 1024 / 1024);

Console.WriteLine("AvailPhys = {0:N} Mb", si.AvailPhys / 1024 / 1024);

Console.WriteLine("TotalPageFile = {0}", si.TotalPageFile);

Console.WriteLine("TotalVirtual = {0:N} Mb", si.TotalVirtual / 1024 / 1024);

Console.WriteLine("AvailVirtual = {0:N} Mb", si.AvailVirtual / 1024 / 1024);

Console.WriteLine("AvailPageFile = {0}", si.AvailPageFile);

Console.WriteLine("PageSize = {0}", si.PageSize);

Console.WriteLine("SystemDefaultLocaleId = {0}", si.SystemDefaultLocaleId);

Console.WriteLine("CurrentTime = {0}", si.CurrentTime);

When run on an HTC HD7 phone, GetSystemInfo provided the following data:

OSMajor = 7

OSMinor = 0

OSBuildNo = 7390

ProcessorArchitecture = Arm

InstructionSet = Armv4ifp

NumberOfProcessors = 1

TotalPhys = 474.00 Mb

AvailPhys = 346.00 Mb

TotalPageFile = 0

TotalVirtual = 1,024.00 Mb

AvailVirtual = 1,020.00 Mb

AvailPageFile = 0

PageSize = 4096

SystemDefaultLocaleId = 1033

CurrentTime = 9/23/2011 5:14:40 PM

 ChAPTER 8 Diagnostics and Debugging 283

You can get information about (and update, install, uninstall, launch, and terminate) installed

developer applications (that is, unsigned XAPs deployed to a developer-unlocked device or to the

emulator). These are represented by the RemoteApplication class. However, you cannot obtain infor-

mation about installed marketplace applications on the device or emulator.

Collection<RemoteApplication> apps = device.GetInstalledApplications();

foreach (RemoteApplication app in apps)

{

 Console.WriteLine("{0}", app.ProductID);

}

using the Microsoft network Monitor

Microsoft Network Monitor (NetMon) is a protocol analyzer. With it, you can capture network traf-

ic, view it, and analyze it. You can download it from http://www.microsoft.com/en-us/download/

details.aspx?id=4865. There’s also a command-line version called NMCap, which can be used in a less

resource-intensive manner.

When you start a capture session, NetMon stores frames in a sequence of capture iles in the
\Temp folder. By default, each capture ile is 20 MB, and NetMon will continue to capture iles until
your disk space drops to less than 2 percent. This is conigurable.

In addition to capturing data, NetMon also assigns properties to frames, and then uses the proper-

ties to group the frames into conversations, which are displayed in a tree view in the NetMon UI. Keep

in mind that this conversations feature signiicantly increases both CPU utilization and memory use
and can cause the computer to become unresponsive.

To use NetMon in Windows Phone development, start your application in the emulator (or the

device), run NetMon, and then create a new capture. When you’re ready to start exercising network

operations, in the NetMon menu, click Start. The emulator will be listed in the conversations tree

(XDE.EXE). If you’re using NetMon with a physical device, you need to look at the WMZuneComm.

EXE entry, instead. The NetMon UI provides a rich set of features for viewing and analyzing network

frames, as shown in Figure 8-16.

http://www.microsoft.com/en-us/download/details.aspx?id=4865
http://www.microsoft.com/en-us/download/details.aspx?id=4865

284 PART II Application Model

FIguRE 8-16 NetMon is a useful tool for analyzing network trafic.

NetMon supports plug-ins, called “experts.” One such expert is the TCP Analyzer provided

by Microsoft Research, which you can download from http://research.microsoft.com/en-us/

downloads/05136260-202d-4a01-bb29-33454d0c30c2/. This tool analyzes NetMon trace captures,

providing a range of performance statistics and visualizations for the captured TCP connection,

including the time-sequence graph, round-trip time measurements, and the like, as shown in Figure

8-17. The tool also includes an analysis engine that attempts to explain what the limiting performance

factor of a particular connection was, such as limited physical bandwidth, network congestion, or a

receiver or sender window size that is too small. This can help you to understand what a connection is

doing, and why it might be slow.

http://research.microsoft.com/en-us/downloads/05136260-202d-4a01-bb29-33454d0c30c2/
http://research.microsoft.com/en-us/downloads/05136260-202d-4a01-bb29-33454d0c30c2/

 ChAPTER 8 Diagnostics and Debugging 285

FIguRE 8-17 NetMon supports “experts” (plug-ins) such as the TCP Analyzer.

Fiddler

Fiddler is an internet debugging proxy that logs all HTTP(S) trafic between your computer and the
Internet. You can download it from http://www.iddler2.com/iddler2/. Using Fiddler, you can also

inspect the trafic, set breakpoints, and “iddle” with incoming or outgoing data. To conigure it for
use with the emulator, you need to take these steps:

1. In Fiddler, click Tools | Fiddler Options | Connections, and then select the Allow Remote

Computers To Connect option.

2. In the tiny QuickExec window at the bottom of the session list, type the following:

prefs set iddler.network.proxy.registrationhostname YourComputerName

(where YourComputerName is the name of your computer).

3. Close and restart Fiddler.

4. Start (or restart) the emulator.

http://www.fiddler2.com/fiddler2/

286 PART II Application Model

With these steps completed, you can test any application that uses HTTP(S) and see trafic logging
in Fiddler, as shown in Figure 8-18.

FIguRE 8-18 The Fiddler tool is very useful for debugging Windows Phone applications.

Note There are additional issues if you want to use Fiddler with a physical device. For

example, if the computer on which you’re running Fiddler is on a corporate network with

IPsec enabled, you won’t be able to exchange trafic between your phone and your com-

puter. Also, for HTTPS trafic, Fiddler resigns the trafic with its own certiicate, which would
typically not be installed on your phone.

 ChAPTER 8 Diagnostics and Debugging 287

silverlight spy

Silverlight Spy is a third-party runtime inspector tool for examining Silverlight XAPs, including in-

browser, out-of-browser, and Windows Phone 7 applications. Using this tool, you can explore the UI

element tree, examine element properties, monitor events, extract XAML, interactively execute DLR

code, and view runtime statistics. The tool hooks into the Windows Phone 7 emulator to monitor

events and performance, as shown in Figure 8-19.

You can also point it to Relector, and it will integrate static code disassembly into its UI. This is a
commercial tool; you can obtain a downloadable trial at http://irstloorsoftware.com/silverlightspy.

FIguRE 8-19 Silverlight Spy is a runtime inspector tool for working with Silverlight XAPs.

http://firstfloorsoftware.com/silverlightspy

288 PART II Application Model

summary

In this chapter, you examined the range of tools—both within the Windows Phone SDK, and external

tools—that support debugging for phone development. You also looked at the supporting metrics

that the application platform exposes and the speciic issues of debugging tombstoning and media
player scenarios. Finally, you explored the various ways that you can implement reusable runtime

diagnostics capabilities with your phone applications.

The Windows Phone 7.1 SDK includes a very rich proiler, which brings an additional dimension
to development diagnostics and debugging. This will be examined in detail in Chapter 20, “Tooling

Enhancements.”

 289

Part III

Extended Services

ChAPTER 9 Phone Services .291

ChAPTER 10 Media Services .319

ChAPTER 11 Web and Cloud. .349

ChAPTER 12 Push Notiications .409

ChAPTER 13 Security .445

ChAPTER 14 Go to Market. .499

A key aspect of the Windows Phone vision is that applications

take part in an integrated ecosystem. This part explores how

your application can take advantage of functionality provided

by built-in features of the phone, including photos, email, audio

and video media, the accelerometer sensor, and web connectiv-

ity. It also includes crucial chapters on security and what you

must do in order to optimize performance, and publish your

application to the marketplace.

 291

C h A P T E R 9

Phone Services

The most important feature of Windows Phone 7 devices is the cellular phone functionality. Beyond

that, the phone offers a range of additional hardware features, from the high-resolution, true

multi-touch screen to the accelerometer. Unlike historical versions of Windows Mobile (the precur-

sor to Windows Phone), there is a very constrained, inite set of possible variations on the standard
hardware speciication. This ensures an extremely high degree of consistency across different phone
models and individual devices. On top of that, the application platform encapsulates and exposes a

set of features with a number of sensor-related classes. And on top of that, there is a set of launchers

and choosers, which is the way that the application platform repurposes built-in applications, such as

the camera, photo library, contacts, and so on. You can take advantage of these features within your

own applications. In this chapter, you’ll explore the various levels of application support and your

choices for using sensor streams and integration with standard system features.

Phone hardware

All Windows Phone devices must conform to a set of minimum standards speciied by Microsoft.
These hardware requirements were determined as a result of extensive market research, usability

studies, and evaluation with hardware suppliers. All Windows Phone devices include a large WVGA

format display, a true multi-touch screen, three sets of sensors, and Assisted-GPS. The large screen

is capable of rendering most web content in full-page width and allows users to view movies in an

aspect ratio of 15:9, which is close to the high-deinition cinematic ratio of 16:9. The multi-touch
support provides an intuitive and compelling user experience (UX). The accelerometer provides

additional interface controls for games and other applications. The light sensor improves power

consumption by adjusting screen brightness according to environmental conditions, and the proxim-

ity sensors turn off the touch screen when the device is held close to the head during phone calls or

when it is in a pocket or handbag. Table 9-1 summarizes the minimum hardware requirements. All

devices support these features, and most devices support additional, optional features.

292 PART III extended Services

TABlE 9-1 Minimum Hardware Requirements for Windows Phone

Component Required Feature Description

Applications
processor

Type Qualcomm QSD8x50.

Graphics processor Direct3D Direct3D 10 Level 9, hardware acceleration, driver-level support for
GDI and DirectDraw (although GDI is not exposed to applications).

Memory RAM 256 MB LPDDR1 (low-power double data-rate). In practice, all
Windows Phone 7 devices ship with at least 512 MB.

Flash system partition Raw NAND.

Flash user partition e-MMC or microSD or Raw NAND.

Power Usability Monitor/gauge.

Screen Type LCD or OLED.

Screen size 3.5" to 4.4" WVGA (800x480 pixels = 15:9 aspect ratio).

Bit depth At least 16 bits of color per pixel (5 red, 6 green, 5 blue).

Screen surface Glass or polyethylene terphthalate (PET).

Touch support At least 4-point true multi-touch.

Digital camera Still capture At least 5 megapixel.

Video capture At least VGA.

Viewinder VGA.

Automatic control Auto-exposure, auto white balance, auto-focus.

Electronic lash Xenon or LED.

Zoom Either optical or digital or both. Digital zoom is limited to 4x maxi-
mum to reduce image quality degradation.

Aspect ratio 4:3.

Photo imaging JPEG encoding.

Wireless Cellular radio UMTS/GSM/GPRS/EDGE, HSPA/HSPA+ and/or CDMA2000 3xEVDO,
Rev B.

Bluetooth 2.1.

Wi-Fi 802.11b/g/n.

FM radio Worldwide (76 MHz to 108 MHz) band support.

Sensors A-GPS Assisted GPS (helps to obtain a faster time to ix location, especially
when GPS signals are weak or not available).

Accelerometer Three-axis, with hardware sampling rate up to 100 Hz.

Magnetometer
(Compass)

Three-axis, with sampling rate of 60 Hz. Note that Windows Phone
SDK 7.0 did not provide API support for the Compass. This was intro-
duced in Windows Phone SDK 7.1 (see Chapter 16, “Enhanced Phone
Services,” for details).

Ambient light sensor Dynamic range 0 lux to ≥4,000 lux.

Proximity sensor Detects the presence of nearby objects without physical contact. This
is used mainly to conserve battery power by turning off the screen
when the phone senses that the user is on a call (phone is close to the
ear), or that it is in a pocket/handbag.

Vibration motor Used to vibrate the phone as a quieter alternative to the phone’s
ringer.

 ChAPTER 9 Phone Services 293

launchers and Choosers

A Windows Phone ”task” is a generic concept that provides for consistent behavior in a set of stan-

dard features. Tasks break down into Launchers (which launch a feature, and don’t return a value) and

Choosers (which launch a feature, and do return a value). Table 9-2 summarizes these tasks. Behind

the scenes, system services and built-in applications like the phone dialer or the web browser expose

a range of application programming interfaces (APIs) through Component Object Model (COM),

Remote Procedure Call (RPC) or simple dynamic-link library (DLL) exports. However, none of these

protocols is available to marketplace application developers. Instead, the application platform on the

phone provides suitable wrappers to managed applications that expose a set of these features in a

consistent, rapid application development (RAD)–friendly manner.

Invoking a Launcher or Chooser causes the invoking application to be sent to the backstack. It

can additionally cause the application to be tombstoned; this depends on which Launcher/Chooser is

used and the version of the phone OS. Either way, as you would expect, the inter-application naviga-

tion behavior is consistent with all other inter-application navigations. Users can return back to the

original application upon completing the task inside the launcher/chooser, or they can use the Back

key. If the launcher/chooser has multiple pages, then the Back key will navigate the user through the

previous pages and, inally, back to the calling application. In the same manner, if the user navigates
forward through multiple applications, this can result in the original calling application falling off the

backstack, as normal. Also, the chooser is auto-dismissed if the user forward navigates away from it.

TABlE 9-2 Launchers and Choosers

Type Task Description

Defers
Tombstoning
in version 7.0

Launchers EmailComposeTask Composes a new email. No

PhoneCallTask Initiates a phone call to a speciied number. No

SmsComposeTask Composes a new text message. No

SearchTask Launches Microsoft Bing Search with a speciied
search term.

No

WebBrowserTask Launches Microsoft Internet Explorer and
browses to a speciic URL.

No

MarketplaceXXXTask Launches Marketplace. No

MediaPlayerLauncher Launches Media Player. Yes

Choosers CameraCaptureTask Opens the camera application to take a photo. Yes

PhotoChooserTask The user can select an image from his Picture
Gallery or take a photo.

Yes

EmailAddressChooserTask The user can select an email address from his
Contacts List.

Yes

PhoneNumberChooserTask The user can select a phone number from his
Contacts List.

Yes

SaveEmailAddressTask Saves an email address to an existing or new
contact.

No

SavePhoneNumberTask Saves a phone number to an existing or new
contact.

No

294 PART III extended Services

In the following example, buttons are available to invoke a CameraCaptureTask, PhoneCallTask,

WebBrowserTask, and SearchTask, as shown in Figure 9-1. This is the SimpleTasks application in the

sample code.

FIguRE 9-1 Many standard tasks are exposed programmatically as Launchers and Choosers.

In general, the application code for invoking Launchers and Choosers is very simple. The applica-

tion platform provides easy-to-use wrappers for all the sensors and application-accessible system

tasks on the device. The basic steps for using a Launcher are as follows:

1. Create an instance of the type that represents the speciic Launcher feature that you want
to use.

2. Set properties on the object, as appropriate.

3. Invoke the Show method.

In this example, when the user clicks the phone button, you instantiate a PhoneCallTask object and

call Show, which prompts the user to conirm the outgoing call.

PhoneCallTask phone = new PhoneCallTask { PhoneNumber = phoneNumber.Text };

phone.Show();

The search button invokes SearchTask.Show; it is equally simple to use.

SearchTask search = new SearchTask { SearchQuery = searchText.Text };

search.Show();

 ChAPTER 9 Phone Services 295

The irst time you do this, the system displays a prompt, indicating that the Search feature can
make use of your location, as shown in Figure 9-2.

FIguRE 9-2 Invoking a search task triggers a permission request to the user.

When you proceed with the search, the task displays a scrolling list with the Bing search results for

the speciied term, as illustrated in Figure 9-3.

FIguRE 9-3 When you invoke a search task, the Bing search results page appears.

296 PART III extended Services

Using the WebBrowserTask follows the same pattern.

WebBrowserTask browser = new WebBrowserTask { URL = browseText.Text };

browser.Show();

Using the CameraCaptureTask is only marginally more involved. So far, you’ve seen how to use

Launchers, but the CameraCaptureTask is a Chooser, which means it returns a value to the calling

application. The basic steps for using a Chooser are as follows:

1. Create an instance of the type that represents the speciic Chooser feature that you want to
use. You would typically do this in your page constructor.

2. Hook up the Completed event on the object, which will call back on your event handler when

the Chooser task completes. You should do this very early, typically in your page constructor.

3. Set properties on the object as appropriate.

4. Invoke the Show method.

5. In your Completed event handler, process the return value from the Chooser.

So, to use this, you need to hook up the Completed event, and implement your event handler to

retrieve the return value.

CameraCaptureTask camera = new CameraCaptureTask();

public MainPage()

{

 InitializeComponent();

 camera.Completed += new EventHandler<PhotoResult>(camera_Completed);

}

private void cameraButton_Click(object sender, RoutedEventArgs e)

{

 camera.Show();

}

private void camera_Completed(object sender, PhotoResult e)

{

 if (e.TaskResult == TaskResult.OK && e.ChosenPhoto != null)

 {

 BitmapImage bitmap = new BitmapImage();

 bitmap.SetSource(e.ChosenPhoto);

 cameraImage.Source = bitmap;

 }

}

 ChAPTER 9 Phone Services 297

Under the covers, many of the exposed UI features on the phone are implemented internally as

applications—this includes the features behind the Launchers and Choosers. So, for example, if you

open Relector (see the Note that follows) and examine the Show method on the PhoneNumber

ChooserTask, you’ll see code similar to the following listing:

public override void Show()

{

 if (ChooserHelper.NavigationInProgressGuard(() => this.Show()))

 {

 ParameterPropertyBag ppb = new ParameterPropertyBag();

 byte[] buffer = ChooserHelper.Serialize(ppb);

 Uri appUri = new Uri(

 "app://5B04B775-356B-4AA0-AAF8-6491FFEA5615/ChoosePhonePropertyOfExistingPerson",

 UriKind.Absolute);

 base.Show();

 ChooserHelper.Invoke(appUri, buffer, base._genericChooser);

 }

}

More Info Relector is a tool for browsing, analyzing, decompiling, and debugging
Microsoft .NET assemblies. It is available at http://www.relector.net/.

The relevant code to call out here is that internally this is invoking the ChoosePhoneProperty

OfExistingPerson task within the contacts application, speciied by its URI, which always includes the
ProductID of the application. The same pattern is followed by almost all the launchers and choosers.

Photo Extras

Note The following information applies to Windows Phone SDK 7. The behavior changed

somewhat in the version 7.1 release (see Chapter 16 for details).

The standard photo/picture library in version 7 includes a menu, and that menu offers an “extras”

item, as shown in Figure 9-4. This is a phone extensibility point. You can write an application that

will be listed in the Extras menu. The idea is that the user selects a picture from the gallery, and then

selects your application to perform some operation on that picture.

http://www.reflector.net/

298 PART III extended Services

FIguRE 9-4 You can add your application to the photo library Extras menu.

To create a photo extras application with Windows Phone SDK 7, you need to add an extras.xml ile
to your project and implement OnNavigatedTo for your main page to perform some operation on the

speciied picture. The extras.xml is always the same (see the listing that follows), and its build proper-
ties must be set to Content. You can see this at work in the MyPhotoExtra solution in the sample code.

<Extras>

 <PhotosExtrasApplication>

 <Enabled>true</Enabled>

 </PhotosExtrasApplication>

</Extras>

In this example, you’ll take the selected picture and place it into an Image control on your main

page.

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Image Height="350" HorizontalAlignment="Left" Name="selectedPicture"

 VerticalAlignment="Top" Width="450" />

</StackPanel>

You need to override OnNavigatedTo, because if the user has navigated to this application from

the Pictures application, you’ll be passed the key named “token” in the QueryString. You need to

extract the value that corresponds to this key from the navigation context; this will be the picture

that the user selected. Having retrieved this value from the media library, you would then go ahead

and do some work with it. In this example, you take the picture and place it into the empty Image

control on the page. Keep in mind that if you use the MediaLibrary type, you must add a reference to

Microsoft.Xna.Framework.dll.

 ChAPTER 9 Phone Services 299

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (this.NavigationContext.QueryString.ContainsKey("token"))

 {

 MediaLibrary library = new MediaLibrary();

 Picture picture = library.GetPictureFromToken(

 this.NavigationContext.QueryString["token"]);

 DoSomethingWithSelectedImage(picture.GetImage());

 }

}

private void DoSomethingWithSelectedImage(Stream imageStream)

{

 BitmapImage bitmap = new BitmapImage();

 bitmap.SetSource(imageStream);

 selectedPicture.Source = bitmap;

}

The emulator doesn’t have a picture library, so you need to test this on the device directly. If your

application uses the MediaLibrary, you can’t test while the Zune software is running. For this reason,

Microsoft provides the WPConnect tool as part of the Windows Phone SDK, installed to %Program

Files%\Microsoft SDKs\Windows Phone\v7.x\Tools\WPConnect.

You should also allow for the possibility that the user launches your application not from the photo

gallery, but from the Start menu. This is a marketplace certiication requirement. One way to handle
this is to provide a closely mirrored UX and launch the PhotoChooser explicitly, upon startup. The

obvious place to do this is in your override of OnNavigatedTo. If you take this approach, you could

then handle the Completed event and duplicate the desired operation there.

The following code illustrates this approach. In it, a lag is set in the main page constructor, and
then in the OnNavigatedTo override, you check to see if you are being invoked as a Photos extra,

as before. On the other hand, if there’s no token in the NavigationContext, then the user must have

launched the application from the Start menu, in which case, you launch the PhotoChooser. As you’ve

seen from an earlier example, you need to hook up the Completed event on the PhotoChooserTask

and implement it to mirror the behavior that the user sees when she goes through the Photo extras

path.

public partial class MainPage : PhoneApplicationPage

{

 private bool launchedFromStart;

 private PhotoChooserTask chooser;

 public MainPage()

 {

 launchedFromStart = true;

 InitializeComponent();

 chooser = new PhotoChooserTask();

 chooser.Completed +=

 new System.EventHandler<PhotoResult>(chooser_Completed);

 }

 void chooser_Completed(object sender, PhotoResult e)

300 PART III extended Services

 {

 DoSomethingWithSelectedImage(e.ChosenPhoto);

 }

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 if (NavigationContext.QueryString.ContainsKey("token"))

 {

 launchedFromStart = false;

 MediaLibrary library = new MediaLibrary();

 Picture picture = library.GetPictureFromToken(

 NavigationContext.QueryString["token"]);

 DoSomethingWithSelectedImage(picture.GetImage());

 }

 else

 {

 if (launchedFromStart)

 {

 launchedFromStart = false;

 chooser.Show();

 }

 }

 }

}

For this to work in the face of tombstoning, you would want to persist the value of the launched

FromStart lag in page state. You cannot normally step through a photo extras application in the

debugger, because it must be invoked from the photo gallery application. However, there is a way

to simulate this code path. What you need to do is to have your application launched with the token

for a picture as part of the launch parameters. To do this, change the DefaultTask entry in your

WMAppManifest.xml, to provide the “token=” parameter. The value must be a valid token GUID for a

photo on the phone.

<!--<DefaultTask Name ="_default" NavigationPage="MainPage.xaml"/>-->

<DefaultTask Name="_default" NavigationPage="MainPage.xaml?token={3074581d-5422-b770-9570-

92a2e7958035}"/>

If you do use this approach during development and testing, you must remember to remove

the additional parameters prior to submitting your application to the marketplace, or it will fail

certiication.

 ChAPTER 9 Phone Services 301

Accelerometer

The accelerometer is a sensor on the phone that detects changes in X,Y,Z orientation. When it detects

a change, it raises an event. There are two basic ways with which the accelerometer can be used in

your application:

 ■ To determine the phone’s orientation at any point in time.

 ■ To detect movement of the phone relative to an initial point.

Note that the accuracy of the accelerometer at any point depends on the Earth’s gravity being

a constant everywhere on the planet—which it isn’t—and on the user’s ability to keep the phone

completely steady, which is very dificult, even when laid lat on a table. The accelerometer assumes
a baseline gravity of 1.0, when in fact the Earth’s gravity varies from 9.78 m/s2 to 9.83 m/s2. The effect

of centrifugal force due to the Earth’s rotation means that gravity increases with latitude (it’s higher at

the poles than at the equator). Gravity also decreases with altitude, and the density and composition

of the local rocks can also affect it.

You can use the Accelerometer class in the Microsoft.Devices.Sensors namespace to start and stop

the accelerometer and to respond to the events. The AccelerometerReading event arguments include

the values of the force applied to the phone in the X,Y,Z planes, in the range –1.0 to +1.0, as illustrated

in Figure 9-5.

+Z

+X

-X

-Z

+Y

-Y

FIguRE 9-5 Accelerometer events specify the force applied in the X,Y,Z planes.

Table 9-3 lists the minimum and maximum values for each plane.

302 PART III extended Services

TABlE 9-3 Minima and Maxima for X,Y,Z Planes

orientation x Y Z

0 –1 0

+1 0 0

0 +1 0

–1 0 0

0 0 –1

0 0 +1

The next example, which is illustrated in Figure 9-6, shows the basics of how to program the

accelerometer. This is the TestAccelerometer application in the sample code. The UI offers a TextBlock

and an App Bar button. The button acts as a toggle with which the user can start or stop the accel-

erometer. It is important to give the user a way to control the accelerometer, because running the

accelerometer constantly will eventually drain the battery. When the user toggles the accelerometer

on, you instantiate a new Accelerometer object and hook up the ReadingChanged event. When the

user toggles the accelerometer off, you unhook the event handler, stop the accelerometer, and set the

object reference to null so that it becomes available for garbage collection.

 ChAPTER 9 Phone Services 303

private Accelerometer accelerometer;

private void appbarStartStop_Click(object sender, EventArgs e)

{

 if (accelerometer == null)

 {

 accelerometer = new Accelerometer();

 accelerometer.ReadingChanged +=

 new EventHandler<AccelerometerReadingEventArgs>(

 accelerometer_ReadingChanged);

 try

 {

 accelerometer.Start();

 }

 catch (AccelerometerFailedException ex)

 {

 statusText.Text = ex.ToString();

 }

 }

 else

 {

 accelerometer.ReadingChanged -=

 new EventHandler<AccelerometerReadingEventArgs>(

 accelerometer_ReadingChanged);

 try

 {

 accelerometer.Stop();

 accelerometer = null;

 statusText.Text = "Accelerometer stopped";

 }

 catch (AccelerometerFailedException ex)

 {

 statusText.Text = ex.ToString();

 }

 }

}

When you receive accelerometer ReadingChanged events, you extract the X,Y,Z axis values to

compose a string for the TextBlock. Note that these events come in on a different thread from the UI

thread, so you need to dispatch the action to the UI thread via the Dispatcher property on that page.

private void accelerometer_ReadingChanged(object sender, AccelerometerReadingEventArgs e)

{

 this.Dispatcher.BeginInvoke(() =>

 {

 statusText.Text = String.Format("X={0}, Y={1}, Z={2}",

 e.X.ToString("0.00"), e.Y.ToString("0.00"), e.Z.ToString("0.00"));

 });

}

304 PART III extended Services

FIguRE 9-6 You can extract the X,Y,Z axis values from accelerometer events.

This illustrates the basic code requirements for working with the accelerometer, although a

realistic application would do something more interesting with the X,Y,Z data. Note that you cannot

test the accelerometer on the emulator in Windows Phone SDK 7; however, the version 7.1 release

does include a sophisticated accelerometer emulation tool, as described in Chapter 20, “Tooling

Enhancements.”

reactive extensions for .Net
With the Reactive Extensions for .NET (Rx .NET), implemented in System.Observable.dll and Microsoft.

Phone.Reactive.dll, you can treat sequences of events as collections instead of as independent events.

Thus, you can perform such operations as iltering and aggregating. You can perform Language-

Integrated Query (LINQ) operations on the sequence, or compose multiple events into a higher-level

virtual event. This capability is particularly useful in high-volume scenarios, such as sensor events,

geo-location events, or low-level touch manipulation events.

More Info Rx .NET ships as part of .NET Framework 4.0 and also with the Windows Phone

SDK. You can read more about it at http://msdn.microsoft.com/en-us/data/gg577609.

In this enhanced version of the accelerometer test application (the FilteredAccelerometer applica-

tion in the sample code), you add a lag ield to determine whether to apply iltering, and an addi-
tional App Bar button with which the user can toggle the lag.

http://msdn.microsoft.com/en-us/data/gg577609

 ChAPTER 9 Phone Services 305

private bool isFiltered = false;

private void appbarFilter_Click(object sender, EventArgs e)

{

 isFiltered = !isFiltered;

}

Instead of simply hooking the ReadingChanged events with a traditional EventHandler<>,

you want to maintain a collection of events on which you can ilter. Speciically, you’ll get an
IObservable<IEvent<>>. You then subscribe to it. This means that you hook up your event handler so

that it’s invoked when the observable collection changes—in other words, whenever a Reading

Changed event is added to the sequence. The Subscribe method of the IObservable<IEvent<>> type

returns an IDisposable. This is so that you can unhook the event handler and clean up when you need

to by disposing of the object. Therefore, you need to add a couple of IDisposable ields to your page
class.

private IDisposable eventsSubscription;

private IDisposable filteredEventsSubscription;

Observe how the ReadingChanged events are hooked (and unhooked) to the collection.

 var rawEvents =

 Observable.FromEvent<AccelerometerReadingEventArgs>

 (ev => accelerometer.ReadingChanged += ev,

 ev => accelerometer.ReadingChanged -= ev);

This seems a little cumbersome. If you look at the class reference documentation, you’ll see that

the deinition of FromEvent is even more cumbersome.

public static IObservable<IEvent<TEventArgs>> FromEvent<TEventArgs>(

 Action<EventHandler<TEventArgs>> addHandler,

 Action<EventHandler<TEventArgs>> removeHandler

)

where TEventArgs : EventArgs

This all arises unfortunately because of certain constraints on events in the .NET framework that

restrict the extent to which they can be used in type inference with generics. This slight developer

awkwardness aside, this is actually a very eficient mechanism for feeding events into the collection.

The only other change in our application is in the Start/Stop button Click handler. Now, when you

start the accelerometer, you also create an IObservable<IEvent<>> collection based on the Reading

Changed events. If the ilter lag is off, you simply subscribe to the full collection of events. On the
other hand, if the ilter lag is on, you irst sample the sequence before you subscribe to it. In this
example, you’re sampling every second. If the user is asking to stop the accelerometer, you irst dis-
pose of the subscription objects (which will unhook the events), before cleaning up the Accelerometer

object, as before.

private void appbarStartStop_Click(object sender, EventArgs e)

{

 if (accelerometer == null)

 {

 accelerometer = new Accelerometer();

306 PART III extended Services

 var rawEvents =

 Observable.FromEvent<AccelerometerReadingEventArgs>

 (ev => accelerometer.ReadingChanged += ev,

 ev => accelerometer.ReadingChanged -= ev);

 if (!isFiltered)

 {

 eventsSubscription = rawEvents.Subscribe(

 args => accelerometer_ReadingChanged(

 args.Sender, args.EventArgs));

 }

 else

 {

 var sampledEvents =

 rawEvents.Sample<

 IEvent<AccelerometerReadingEventArgs>>(

 TimeSpan.FromMilliseconds(1000));

 filteredEventsSubscription = sampledEvents.Subscribe(

 args => accelerometer_ReadingChanged(

 args.Sender, args.EventArgs));

 }

 try

 {

 accelerometer.Start();

 }

 catch (AccelerometerFailedException ex)

 {

 statusText.Text = ex.ToString();

 }

 }

 else

 {

 if (eventsSubscription != null)

 eventsSubscription.Dispose();

 if (filteredEventsSubscription != null)

 filteredEventsSubscription.Dispose();

 try

 {

 accelerometer.Stop();

 accelerometer = null;

 statusText.Text = "Accelerometer stopped";

 }

 catch (AccelerometerFailedException ex)

 {

 statusText.Text = ex.ToString();

 }

 }

}

The net result of this from the user’s perspective is that the accelerometer text value will only

change every second, regardless of how fast she moves the device.

 ChAPTER 9 Phone Services 307

Level Starter Kit
Microsoft provides additional code to support the use of the accelerometer in your application. One

in particular, the Level Starter Kit for Windows Phone, you can obtain at http://create.msdn.com/

en-US/education/catalog/sample/level_starter_kit.

This kit provides a complete level application that you can adapt for your own purposes.

Within this, the kit includes a couple of very useful wrapper classes: the AccelerationHelper and the

OrientationHelper. The AccelerationHelper provides methods to calibrate the accelerometer as well as

to smooth out the raw accelerometer data stream. Strictly speaking, the code does not calibrate the

accelerometer. Of course, this is because your application cannot write to the system’s accelerometer

driver. Rather, the code calibrates itself; it computes the practical values for the X and Y axes when the

phone is at rest, face up on a horizontal surface. All other things being equal, this should provide X,Y

values of 0,0; the calibration allows for variations in local gravity, device shake, and so on.

Smoothing out the raw data is useful because the raw data stream comes in at 50 Hz (50 data

points per second). In the earlier example, you smoothed this out by sampling the data only every

second. Sampling the data is often useful, but is a fairly crude approach and risks losing data that

might otherwise be of interest.

Exactly how you use the accelerometer depends on the speciics of the application you’re build-

ing. It might be that you need to see every data point in the incoming stream. It might be that an

n-second sample is appropriate. In other scenarios, you might want to smooth the data by ignoring

changes that fall below some threshold. This approach reveals a ”bigger picture” trend in the data,

rather than focusing on the individual data points.

The AccelerometerHelper class includes some signal processing functionality to apply smoothing to

the data stream in a number of different ways:

 ■ Averaging This averages the data over time, using an arithmetic mean of the last 25 samples

(the last 500 ms of data). This provides a very stable reading, but there is an obvious delay

introduced by waiting for the 25 samples before computing the reading. Obviously, you can

adjust the number of samples, increasing the value to improve the average at the cost of

increased latency, or reducing to make the averaging less smooth but faster.

 ■ low-Pass Filtering This smoothes the data stream to eliminate the main sensor noise.

Essentially, the current value is adjusted to make it closer to the previous one.

 ■ optimal Filtering This combines the low-pass iltering with a threshold-based high-pass
ilter, to eliminate most of the low amplitude noise, while trending very quickly to large offsets,
and with very low latency.

These are the basic steps for reusing the AccelerometerHelper from the Level Starter Kit:

1. Create a Phone Application project named, for example, TestAccelerometerHelper.

2. Add a Class Library project to this solution. Name it AccelerometerHelper.

http://create.msdn.com/en-US/education/catalog/sample/level_starter_kit
http://create.msdn.com/en-US/education/catalog/sample/level_starter_kit

308 PART III extended Services

3. Add existing items to the class library: the AccelerometerHelper.cs, ApplicationSettingHelper.

cs, and Simple3DVector.cs.

4. Add a reference to Microsoft.Devices.Sensors.dll.

5. Build the AccelerometerHelper class library.

6. In the TestAccelerometerHelper project, add a reference to the AccelerometerHelper class

library.

7. In the application, hook up the ReadingChanged event on the singleton AccelerometerHelper

instance, and then start the accelerometer by setting the IsActive property to true.

8. In your ReadingChanged event handler, retrieve the AccelerometerHelperReadingEventArgs

values, and then do something interesting with them.

Figure 9-7 shows an example that presents the solution as it appears in Solution Explorer on the

left, and the runtime behavior on the right. In this application, you fetch the X,Y,Z values for all four

of the data sets—the raw data, plus the three smoothed streams. This is the TestAccelerometerHelper

solution in the sample code.

FIguRE 9-7 You can use the AccelerometerHelper class to apply smoothing to the raw readings.

The XAML in this application deines a Grid comprising four rows of label TextBlock controls (“raw,”

“optimal,” “average,” and “low pass”) and four rows of data TextBlock controls. The only custom code

in the application is in the MainPage, in which you hook up and handle the ReadingChanged event.

 ChAPTER 9 Phone Services 309

public MainPage()

{

 InitializeComponent();

 AccelerometerHelper.Instance.ReadingChanged +=

 new EventHandler<AccelerometerHelperReadingEventArgs>

 (OnAccelerometerHelperReadingChanged);

 AccelerometerHelper.Instance.IsActive = true;

}

private void OnAccelerometerHelperReadingChanged

 (object sender, AccelerometerHelperReadingEventArgs e)

{

 Dispatcher.BeginInvoke(() =>

 {

 raw.Text = String.Format("{0:0.000}, {1:0.000}, {2:0.000}",

 e.RawAcceleration.X,

 e.RawAcceleration.Y,

 e.RawAcceleration.Z);

 optimal.Text = String.Format("{0:0.000}, {1:0.000}, {2:0.000}",

 e.OptimallyFilteredAcceleration.X,

 e.OptimallyFilteredAcceleration.Y,

 e.OptimallyFilteredAcceleration.Z);

 average.Text = String.Format("{0:0.000}, {1:0.000}, {2:0.000}",

 e.AverageAcceleration.X,

 e.AverageAcceleration.Y,

 e.AverageAcceleration.Z);

 lowPass.Text = String.Format("{0:0.000}, {1:0.000}, {2:0.000}",

 e.LowPassFilteredAcceleration.X,

 e.LowPassFilteredAcceleration.Y,

 e.LowPassFilteredAcceleration.Z);

 }

);

}

The data sets are listed in order of latency, given the current settings for things such as the number

of data points to average, and so on. The raw data stream is unprocessed, so there’s effectively zero

latency in rendering the data to the UI. At the other end, the processing for the low-pass data takes

the longest time. Increasing the number of data points to average will generally add latency to the

averaging data set. When this application runs, the raw data values stabilize rapidly, whereas the

higher latency data sets take longer to stabilize.

Figure 9-8 shows another example, this one focusing on the OrientationHelper in the Level Starter

Kit. Again, the solution is shown on the left; the runtime behavior is on the right. This is the Test

OrientationHelper solution in the sample code.

310 PART III extended Services

FIguRE 9-8 You can use the OrientationHelper class to smooth orientation readings.

The OrientationHelper uses the AccelerometerHelper underneath, because it also processes acceler-

ometer reading events, taking the processed signal from the AccelerometerHelper.

These are the basic steps for reusing the OrientationHelper from the Level Starter Kit:

1. Create a Phone Application project named, for example, TestOrientationHelper.

2. Add a Class Library project to this solution. Name it OrientationHelper.

3. Add existing items to the class library: the AccelerometerHelper.cs, ApplicationSettingHelper.cs,

and Simple3DVector.cs, as before, plus the DeviceOrientationInfo.cs and OrientationHelper.cs.

4. Add a reference to Microsoft.Devices.Sensors.dll.

5. Build the OrientationHelper class library.

6. In the TestOrientationHelper project, add a reference to the OrientationHelper class library.

7. In the application, hook up the OrientationChanged event on the singleton Orientation

Helper instance. As before, start the accelerometer by setting the IsActive property on the

AccelerometerHelper singleton instance to true.

8. In your OrientationChanged event handler, retrieve the OrientationHelperReadingEventArgs

values, and do something interesting with them.

From this event object, you can retrieve the current and previous orientation (an enu-

meration with the values: Unknown, ScreenSideUp, ScreenSideDown, PortraitRightSideUp,

 ChAPTER 9 Phone Services 311

LandscapeRight, LandscapeLeft, PortraitUpSideDown), the AngleOnXYPlan (which will be 0°

for vertical, or ±90° for horizontal), the HorizontalAxisPolarity (0 for vertical, or ±1 for horizon-

tal), and the NormalGravityVector (X,Y,Z values).

The following listing shows the simplest use of this, rendering the orientation values as strings:

public MainPage()

{

 InitializeComponent();

 AccelerometerHelper.Instance.IsActive = true;

 DeviceOrientationHelper.Instance.OrientationChanged +=

 new EventHandler<DeviceOrientationChangedEventArgs>(

 orientationHelper_OrientationChanged);

}

private void orientationHelper_OrientationChanged(

 object sender, DeviceOrientationChangedEventArgs e)

{

 Dispatcher.BeginInvoke(() =>

 {

 previous.Text = e.PreviousOrientation.ToString();

 current.Text = e.CurrentOrientation.ToString();

 DeviceOrientationInfo doi =

 DeviceOrientationHelper.GetDeviceOrientationInfo(e.CurrentOrientation);

 angle.Text = doi.AngleOnXYPlan.ToString();

 polarity.Text = doi.HorizontalAxisPolarity.ToString();

 vector.Text = doi.NormalGravityVector.ToString();

 });

}

Shake
Just as low-level touch events can be modeled as more complex user-centric gestures such as pinch/

stretch or lick, so too can raw accelerometer events be modeled as more complex user-centric ges-
tures such as rotate or shake. If you analyze a shake gesture, it can be modeled as a series of acceler-

ometer changes (typically on one axis) that oscillates between maxima in the two opposite directions

of that dimension. In other words, it swings back and forth (or up and down, or left and right), with

roughly the same extremes of value in both directions, and changes in the other two axes are effec-

tively noise that should be ignored.

Microsoft provides a Shake Gesture Library on the AppHub, which is available at http://create.

msdn.com/en-us/education/catalog/article/Recipe_Shake_Gesture_Library. You can use this to model

shake gestures in your applications. This library also makes use of the AccelerometerHelper class avail-

able in the Level Starter Kit, primarily to smooth out the raw data stream before processing it. The

core class in the Shake Gesture Library is the ShakeGesturesHelper, which takes the smoothed data

and categorizes it into ”shake” and ”still” segments, and then determines the signal boundaries to

determine where the stream includes shake gestures.

http://create.msdn.com/en-us/education/catalog/article/Recipe_Shake_Gesture_Library
http://create.msdn.com/en-us/education/catalog/article/Recipe_Shake_Gesture_Library

312 PART III extended Services

Not surprisingly, shake gestures are individualized: different people shake differently, and different

applications have different shake requirements. For this reason, the library includes several conigura-

tion options, with which you can establish what constitutes a valid shake gesture for your application.

Figure 9-9 illustrates an example application that uses the Shake Gesture Library (the TestShake

solution in the sample code).

FIguRE 9-9 You can use the Shake Gesture Library to model shake gestures in your application.

In this example, you use the Slider to govern the sensitivity of the shake readings, and the Toggle

Switch to turn the accelerometer on and off. The TextBlock displays the shake axis. To use the Shake

Gesture Library, you can download the sample code from AppHub and build the project. Then, add a

reference to the ShakeGestures.dll to your application project. In this example, you need to set up the

ShakeGesturesHelper singleton object in the MainPage constructor. At a minimum, you need to hook

up the ShakeGesture event. You can optionally also set properties, and in this example, you should set

the MinimumRequiredMovesForShake to 4, which means that the user will have to shake the phone

four times (twice in each direction) on the same axis before you start processing readings.

public MainPage()

{

 InitializeComponent();

 ShakeGesturesHelper.Instance.ShakeGesture +=

 new EventHandler<ShakeGestureEventArgs>(Instance_ShakeGesture);

 ShakeGesturesHelper.Instance.MinimumRequiredMovesForShake = 4;

}

 ChAPTER 9 Phone Services 313

In the handler for the ShakeGesture event, you extract the ShakeType value from the ShakeGesture

EventArgs and use it to update the TextBlock. Note that this is the only property exposed from the

event, which is minimally useful. If you need to get more values from the underlying accelerometer

readings, you can always modify the library source code to suit your own purposes.

private void Instance_ShakeGesture(object sender, ShakeGestureEventArgs e)

{

 this.Dispatcher.BeginInvoke(() =>

 {

 this.ShakeTypeText.Text = String.Format("shake axis = {0}", e.ShakeType);

 });

}

You handle the ToggleSwitch events to toggle the ShakeGesturesHelper (and therefore, the under-

lying accelerometer) on and off. The Slider value is used to set the ShakeMagnitudeWithoutGravitation

Threshold property—any readings below this value will be ignored for the purposes of computing the

shake gesture. Higher values indicate more vigorous shaking.

private void ToggleSwitch_Checked(object sender, RoutedEventArgs e)

{

 ShakeGesturesHelper.Instance.Active = true;

 this.ShakeToggle.Content = "shake is on";

}

private void ToggleSwitch_Unchecked(object sender, RoutedEventArgs e)

{

 ShakeGesturesHelper.Instance.Active = false;

 this.ShakeToggle.Content = "shake is off";

}

private void SensitivitySlider_ValueChanged(

 object sender, RoutedPropertyChangedEventArgs<double> e)

{

 ShakeGesturesHelper.Instance.ShakeMagnitudeWithoutGravitationThreshold =

 SensitivitySlider.Value;

}

In the XAML, you should set the Slider Maximum to 1.5, which is about the biggest threshold value

that you can use realistically, and even this will generally require that the user makes shake gestures of

a foot or two on each shake.

<Slider

 x:Name="SensitivitySlider"

 ValueChanged="SensitivitySlider_ValueChanged"

 Maximum="1.5"

 LargeChange="0.15" />

314 PART III extended Services

geo-location

The application platform exposes a GeoCoordinateWatcher class, which, like the Accelerometer class,

provides a managed representation of the geolocation services provided by the underlying phone

system. Under the covers, location information is gathered from a variety of sources, including both

on-device hardware and drivers and via web service calls to a cloud-based Microsoft location service.

The architecture is illustrated in Figure 9-10.

Application

System.Device.dll

Native Drivers

Hardware

Cellular
Radio

WiFiGPS

Microsoft
Location

Web Service

FIguRE 9-10 The geolocation architecture provides a software stack that’s based on the underlying hardware.

The location data surfaced by the GeoCoordinateWatcher can be sourced from any of the underly-

ing sensors (GPS, WiFi, cellular radio) or from the Microsoft location web service. The code in System.

Device.dll wraps the underlying native OS feature that determines the best data source to feed to

the GeoCoordinateWatcher, depending on which source(s) are available and whether the application

requires default or high accuracy. Figure 9-11 illustrates an application (the SimpleGeoWatcher appli-

cation in the sample code) that uses location data, reporting each location event as it occurs. You can

see how this could easily form the basis of a run or trail-tracking application.

 ChAPTER 9 Phone Services 315

FIguRE 9-11 The GeoCoordinateWatcher provides longitude and latitude readings.

To use location functionality, the application declares a GeoCoordinateWatcher object and instanti-

ates it in the OnNavigatedTo override. The constructor is your only opportunity to set the required

accuracy. You can subsequently retrieve this value from the DesiredAccuracy property, which is read-

only. You also declare a collection of GeoPosition objects, which will be stored each time you get a

location event. This is enabled by hooking up the PositionChanged event.

private GeoCoordinateWatcher geoWatcher;

public ObservableCollection<GeoPosition<GeoCoordinate>> Positions;

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (geoWatcher == null)

 {

 geoWatcher = new GeoCoordinateWatcher(GeoPositionAccuracy.High);

 }

 geoWatcher.PositionChanged +=

 new EventHandler<GeoPositionChangedEventArgs<GeoCoordinate>>

 (gcw_PositionChanged);

}

316 PART III extended Services

In the PositionChanged event handler, extract the Position value and store it in the collection. The

Position property is of type GeoPosition<T>, which includes both a DateTimeOffset and a position of

type <T> (in this case, a GeoCoordinate value). The GeoCoordinate type represents a geographical

location with latitude and longitude coordinates.

private void gcw_PositionChanged(object sender, GeoPositionChangedEventArgs<GeoCoordinate> e)

{

 Positions.Add(e.Position);

}

As with the Accelerometer class, the only other thing you need to do is to Start and Stop the

GeoCoordinateWatcher at appropriate times. You only start it under user control, in the Click handler

for the corresponding button. However, you stop it either when the user asks to stop, or—as a good

housekeeping technique—in the OnNavigatedFrom override.

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 geoWatcher.Stop();

 geoWatcher = null;

}

The GeoCoordinate type provides additional values, including Speed and Altitude, as shown in Fig-

ure 9-12. This is the TestGeoCoordinates application in the sample code. The interesting code for this

application is in the PositionChanged event handler.

private void gcw_PositionChanged(object sender, GeoPositionChangedEventArgs<GeoCoordinate> e)

{

 timestamp.Text = e.Position.Timestamp.ToString();

 latitude.Text = String.Format("{0:0.00}", e.Position.Location.Latitude);

 longitude.Text = String.Format("{0:0.00}", e.Position.Location.Longitude);

 speed.Text = String.Format("{0:0.00}", e.Position.Location.Speed);

 altitude.Text = String.Format("{0:0.00}", e.Position.Location.Altitude);

}

You don’t need to bother using Dispatcher.BeginInvoke to update the UI in the event handler. This

is because the PositionChanged events will come in on the UI thread anyway. This seems a little unex-

pected, but it’s actually a deliberate technique to make it easier for developers to consume.

 ChAPTER 9 Phone Services 317

FIguRE 9-12 GeoCoordinate values include speed and altitude readings.

Keep in mind that sensors use power. And sensors such as the accelerometer and location can

consume a lot of power (reducing battery life) because of the way they fetch and report data very

frequently. You should therefore consider very carefully how you want to use classes such as the

Accelerometer and GeoCoordinateWatcher. You should avoid running them without notifying the user,

and always give the user control over starting and stopping them. In some applications, the use of

these features is implicit and obvious from the nature of the application, but it’s still a good idea to

inform the user that you’re doing this, and preferably to ask his permission at least once, in advance.

You should also turn them off when not needed. Consider using the default accuracy setting, which

is less accurate but consumes less power. For example, use the default setting if you only need a less

granular location, such as the general city area for weather forecasts or basic personalization. Note

that accelerometer readings are not sent while the screen lock is engaged.

You are also encouraged to set the MovementThreshold property on the GeoCoordinateWatcher

class. This is the distance in meters that the phone must move (relative to the last PositionChanged

event) before the location provider raises another PositionChanged event. To optimize battery life,

the recommended setting is above 20. An appropriate setting depends on the nature of your applica-

tion: if you’re tracking position changes for someone walking, then a smaller setting might be more

appropriate. On the other hand, if you’re tracking movements of a car, then a much higher value will

probably be more useful. Setting MovementThreshold to a higher value will save some CPU time as

the application platform does not report all values from the sensor, but it does not prevent the sen-

sors from retrieving the data, so battery savings are minimal.

318 PART III extended Services

You can use the Reactive Extensions for GeoCoordinateWatcher data in exactly the same way as

for Accelerometer data. This way, you can sample the data stream and apply a ilter of some kind.
However, this also does not prevent the underlying system from sourcing the sensor data, nor does it

prevent the application platform from propagating the data changed events to your application, so

again, there are no battery savings with this approach.

summary

In this chapter, you examined the different levels and types of application platform support for inte-

grating your application with standard features and services on the phone. Built on top of a baseline

represented by a consistent hardware speciication, the application platform exposes sensor and
device functionality through a solid set of classes. Built-in applications such as photo gallery, contacts,

and connection to the Windows Phone marketplace are all thoughtfully exposed by wrapper classes

that take care of the complex internal behavior and cross-application hook-ups, while providing a

developer-friendly API surface with which to work. Note that Windows Phone 7.1 introduces addi-

tional sensors and enhanced sensor application support, as described in Chapter 16.

 319

C h A P T E R 1 0

Media Services

As detailed in Chapter 9, “Phone Services,” the Windows Phone platform exposes a range of fea-

tures, mostly via Launchers and Choosers. In addition, the platform also provides extensive sup-

port for media services, including audio and video playback and an FM radio tuner. You can choose

from several different sets of media-related application programming interfaces (APIs), depending on

the speciic requirements of your application. If you have a simple requirement for media playback,
you can use the MediaPlayerLauncher. If you need more lexibility, the MediaElement type might suit

your needs better. If you need more inely-grained control over the media ile content, you can use
the MediaStreamSource API, and so on. In this chapter, you’ll explore these various levels of applica-

tion support and your choices for working with audio and video.

Audio and video hardware

The audio hardware speciications include:

 ■ A microphone capable of handling input in the 150 Hz to 7 kHz range.

 ■ Audio codecs at 8 kHz and 16 kHz mono input/output sample rates, plus one or more stereo

output sample rates of ≥44.1 kHz.

The Windows Phone is designed from the ground up to excel at entertainment, with the explicit

aim of giving customers access to media on their terms—including the ability to stream music and

video, and to watch full-length movies on a large, wide, bright, high-resolution screen. As a result, the

minimum hardware requirements for Windows Phone devices set the bar high for video encode and

decode standards, including the following:

 ■ The video must be encoded in H.264 Baseline Proile, with the audio stream encoded in
AAC-LC.

 ■ Video must be packaged as an MP4 media ile.

 ■ The encoders and the MP4 ile writer/multiplexor must be provided in the form of DirectShow

ilters.

 ■ If H.264 encoding is not supported at an HD resolution, then MPEG4 Layer 2 encoding can be

used, instead.

320 PART III extended Services

 ■ Video encoding at VGA (640x480) or higher resolution must be supported at a minimum

frame rate of 30 frames per second (FPS) and a minimum bit rate of 2.5 megabits per second

(Mbps).

The number one reason for these encoding requirements is to preclude the need for proprietary

software to play back Windows Phone videos on your PC or other device.

Audio and video APIs

Windows Phone includes a range of techniques for working with media, both audio and video, in four

broad categories, as described in Table 10-1.

TABlE 10-1 Media Techniques for Windows Phone

Category Technique Description

Media Playback MediaPlayerLauncher A launcher for playing audio or video with the built-in player experi-
ence. Primarily used for XNA videos.

MediaElement The primary wrapper class for audio and/or video iles in Microsoft
Silverlight applications.

MediaStreamSource Allows you to work directly with the media pipeline, and is most often
used to enable the MediaElement to use a container format not na-
tively supported by Silverlight.

Audio Input and
Manipulation

SoundEffect,
SoundEffectInstance,
DynamicSoundEffect

XNA classes for working with audio content, in both Silverlight and
XNA applications.

Microphone The only API for the microphone on the phone is the XNA Microphone
class. It is used for both XNA and Silverlight applications.

Platform
Integration

MediaHistory Allows you to integrate your application with the Music and Videos hub.

Radio FMRadio Simple wrapper class for interacting with the FM radio on the phone.

Note that DirectX and XNA developers are accustomed to using the Microsoft Cross-Platform

Audio Creation Tool (XACT). This is a GUI tool that helps you to create and edit audio content, man-

age audio ile banks, and implement audio playback triggers in games. However, this tool is not used
in Windows Phone 7 development.

 ChAPTER 10 Media Services 321

Media Playback

The platform provides three main types for playing audio and video: the MediaPlayerLauncher, Medi-

aElement, and MediaStreamSource. Each type offers varying levels of lexibility and control, which are
described in the following sections.

the MediaPlayerLauncher Class
As with all Launchers and Choosers provided by the application platform, the MediaPlayerLauncher

is very easy to use. It is a simple wrapper that provides access to the underlying media player appli-

cation, without exposing any of the complexity. To use this in your application, you follow the same

pattern as for other launchers. The listing that follows shows how to invoke the MediaPlayerLauncher

with a media ile that is deployed as Content within the application’s XAP. You can see this at work in

the TestMediaPlayer application in the sample code.

MediaPlayerLauncher player = new MediaPlayerLauncher();

player.Media = new Uri(@"Media/campus_20111017.wmv", UriKind.Relative);

player.Controls = MediaPlaybackControls.Pause | MediaPlaybackControls.Stop;

player.Location = MediaLocationType.Install;

player.Show();

You can assign the Controls property from a lags enum of possible controls. The preceding listing
speciies only the Pause and Stop controls, whereas the listing that follows speciies all available con-

trols (including Pause, Stop, Fast Forward, Rewind). This listing also shows how to specify a remote URL

for the media ile, together with the MediaLocationType.Data:

MediaPlayerLauncher player = new MediaPlayerLauncher();

player.Media = new Uri(

 @"http://ecn.channel9.msdn.com/o9/ch9/0882/570882/WelcomeToInsideWPShow_ch9.mp4",

 UriKind.Absolute);

player.Controls = MediaPlaybackControls.All;

player.Location = MediaLocationType.Data;

player.Show();

the MediaElement Class
Figure 10-1 shows a simple application (TestMediaElement in the sample code) that uses the Media

Element control. The MediaElement class is a FrameworkElement type that you can use in your

application—supericially, at least—in a similar way as the Image type.

322 PART III extended Services

FIguRE 10-1 You can use the MediaElement control for simple audio and video playback.

You can set up a MediaElement in code or in XAML. The MediaElement class exposes a set of

media-speciic properties, including:

 ■ AutoPlay This property deines whether to start playing the content automatically. The
default is true, but in many cases, you probably want to set it to false because of application

lifecycle/tombstoning issues.

 ■ IsMuted This deines whether sound is on (which is the default).

 ■ volume This property is set in the range 0 to 1, where 1 (the default) is full volume.

 ■ stretch This is the same property used by an Image control to govern how the content ills
the control (the default is Fill).

The following code shows how to set up a MediaElement in XAML:

<MediaElement

 x:Name="myVideo" Source="/Media/campus_20111017.wmv" AutoPlay="False"

 IsMuted="False" Volume="0.5" Stretch="UniformToFill"/>

It then just remains to invoke methods such as Play and Pause; in this example, these are triggered

in App Bar button Click handlers.

private void appBarPlay_Click(object sender, EventArgs e)

{

 myVideo.Play();

}

 ChAPTER 10 Media Services 323

private void appBarPause_Click(object sender, EventArgs e)

{

 myVideo.Pause();

}

You might be thinking, “This seems to be too simple to be true”—and you’d be right. In the appli-

cation’s current state, there is a very small chance that the media ile might not be fully opened at the
point when the user taps the play button, and this would raise an exception. To make the application

more robust and preclude this scenario, it would be better to have the App Bar buttons initially dis-

abled and to handle the MediaOpened event on the MediaElement object to enable them.

private void myVideo_MediaOpened(object sender, System.Windows.RoutedEventArgs e)

{

 ((ApplicationBarIconButton)ApplicationBar.Buttons[0]).IsEnabled = true;

 ((ApplicationBarIconButton)ApplicationBar.Buttons[1]).IsEnabled = true;

}

More Info If you need sample media iles for testing your application, you can use the
collection that Microsoft provides on AppHub, which is available at http://create.msdn.

com/en-US/education/catalog/utility/soundlab. These are provided under the Microsoft

Public License (Ms-PL). You can also use the audio and video iles provided by default with
Windows, which are typically installed to C:\Users\Public\Music\Sample Music and C:\Users\

Public\Videos\Sample Videos.

the MediaStreamSource and ManagedMediaHelpers Classes
Using the MediaPlayerLauncher provides the simplest approach for playing media in your applica-

tion. For more lexibility, the MediaElement class offers a good set of functionality and is suitable for

most phone applications. However, if you really need lower-level access to the media ile contents,
you can use the MediaStreamSource class. This class offers more control over the delivery of content

to the media pipeline, and is particularly useful if you want to use media iles in a format that are not
natively supported by MediaElement, or for scenarios that are simply not yet supported in Silverlight,

such as RTSP protocol support, SHOUTcast protocol support, seamless audio looping, ID3 v1/v2 meta-

data support, adaptive streaming, or multi-bitrate support.

Unfortunately, the MediaStreamSource class is only minimally documented. Fortunately, Micro-

soft has made available a set of helper classes, which you can obtain at https://github.com/loarabia/

ManagedMediaHelpers. These are provided in source-code format and include library projects and

demonstration apps for Silverlight Desktop and Windows Phone. Note that the library source code is

all in the Desktop projects—the phone projects merely reference the Desktop source iles. The phone
demonstration application is, of course, independent.

Here’s how you can use these. First, create a phone application solution, as normal. Then, add

the ManagedMediaHelpers library projects (either take copies, so that you have all the sources

available, or build the library assemblies, and then use CopyLocal=true to reference them in your

http://create.msdn.com/en-US/education/catalog/utility/soundlab
http://create.msdn.com/en-US/education/catalog/utility/soundlab
https://github.com/loarabia/ManagedMediaHelpers
https://github.com/loarabia/ManagedMediaHelpers

324 PART III extended Services

solution). If you add the library phone projects to your solution, you will then need to copy across the

source iles from the Desktop projects. You need two library projects: the MediaParsers.Phone and

Mp3MediaStreamSource.Phone projects. Between them, these projects provide wrapper classes for

the MP3 ile format. The Mp3MediaStreamSource.Phone project has a reference to the MediaPars-
ers.Phone project. Your application needs to have a reference to the Mp3MediaStreamSource.Phone

project. Figure 10-2 shows a solution with this setup. This is the TestMediaHelpers solution in the

sample code.

FIguRE 10-2 You can use ManagedMediaHelpers for low-level control of media playback.

Having set up the projects, you can then declare an Mp3MediaStreamSource object. In this exam-

ple, you fetch a remote MP3 ile by using an HttpWebRequest. When you get data back, you use it to

initialize your Mp3MediaStreamSource and set that as the source for a MediaElement object declared

in XAML.

 ChAPTER 10 Media Services 325

private HttpWebRequest request;

private Mp3MediaStreamSource mss;

private string mediaFileLocation =

 @"http://ecn.channel9.msdn.com/o9/ch9/0882/570882/WelcomeToInsideWPShow_ch9.mp3";

public MainPage()

{

 InitializeComponent();

}

private void Get_Click(object sender, EventArgs e)

{

 request = WebRequest.CreateHttp(mediaFileLocation);

 request.AllowReadStreamBuffering = true;

 IAsyncResult result =

 request.BeginGetResponse(new AsyncCallback(this.RequestCallback), null);

}

private void RequestCallback(IAsyncResult asyncResult)

{

 HttpWebResponse response =

 request.EndGetResponse(asyncResult) as HttpWebResponse;

 Stream s = response.GetResponseStream();

 mss = new Mp3MediaStreamSource(s, response.ContentLength);

 Dispatcher.BeginInvoke(() =>

 {

 MyMp3.SetSource(mss);

 });

}

Notice how this code sets the AllowReadStreamBuffering property to true. If you enable buffering

like this, then it becomes easier to work with the stream source, because all the data is downloaded

irst. On the other hand, you can’t start processing the data until the entire ile is downloaded—plus,
it uses more memory. The alternative is to use the asynchronous methods and read the stream in the

background. This simple example shows how you can easily use the MediaStreamSource type via the

ManagedMediaHelpers, although it doesn’t really show the power of these APIs—by deinition, these
are advanced scenarios.

MediaElement Controls
When you point a MediaElement to a remote media source and start playing, the content is down-

loaded to the device and playing commences as soon as there is enough in the buffer to play. Down-

load and buffering continues in the background while content that was already buffered is playing.

The MediaElement class exposes BufferingChanged and DownloadChanged events, which you can

handle if you’re interested in the progress of these operations. The standard media player application

on the device, invoked via MediaPlayerLauncher, offers a good set of UI controls for starting, stop-

ping, and pausing, as well as a timeline progress bar that tracks the current position in the playback,

and a countdown from the total duration of the content. MediaElement does not provide such UI con-

trols, but you can emulate these features by using the properties that it exposes, notably the Position

and NaturalDuration values.

326 PART III extended Services

Figure 10-3 shows an application (the TestVideo solution in the sample code) that uses Media

Element with a Slider and TextBlock controls to mirror some of the UI features of the standard media

player.

FIguRE 10-3 You can report media playback progress by using custom UI.

In the XAML, you declare a MediaElement, a Slider, and a couple of TextBlock controls (to represent

the playback timer count-up and count-down values).

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <MediaElement

 x:Name="Player" Height="297" Width="443" AutoPlay="False" Stretch="UniformToFill"

 Source="http://ecn.channel9.msdn.com/o9/ch9/f076/8a77bfbc-5e80-4bcb-aa44-9e1a0116f076/

IWPS08TakingALookInToArch_ch9.wmv"/>

 <Slider

 x:Name="MediaProgress" Height="90" Margin="-5,0"

 Maximum="1" LargeChange="0.1" ValueChanged="MediaProgress_ValueChanged"/>

</StackPanel>

<TextBlock

 Grid.Row="1" x:Name="ElapsedTime" Text="00:00" IsHitTestVisible="False"

 Width="60" Height="30" Margin="19,180,0,0" HorizontalAlignment="Left" />

<TextBlock

 Grid.Row="1" x:Name="RemainingTime" Text="00:00" IsHitTestVisible="False"

 Width="60" Height="30" Margin="0,180,6,0" HorizontalAlignment="Right"/>

The MediaElement points to a video ile on AppHub—as it happens, this example is an actual inter-
view with the Windows Phone architect, Abolade Gbadegesin. For the Slider, the important piece is to

sink the ValueChanged event. Note that the two TextBlock controls are not part of the same Stack-

Panel, thus you can speciiy Margin values that effectively overlay them on top of the Slider. Because

 ChAPTER 10 Media Services 327

of this, you need to ensure that the TextBlock controls are not hit-testable so that they don’t pick up

touch gestures intended for the Slider.

In the MainPage code-behind, you declare a TimeSpan ield for the total duration of the video ile,
and a bool to track whether or not you are updating the Slider based on the current playback posi-

tion. The Slider performs a dual role: the irst aspect is a passive role, in which you update it program-

matically to synchronize it with the current playback position; the second aspect is an active role, in

which the user can click or drag the Slider position—you respond to this in the application by setting

the MediaElement.Position value.

private bool isUpdatingSliderFromMedia;

private TimeSpan totalTime;

private DispatcherTimer timer;

public MainPage()

{

 InitializeComponent();

 timer = new DispatcherTimer();

 timer.Interval = new TimeSpan(0, 0, 0, 0, 500);

 timer.Tick += new EventHandler(timer_Tick);

 timer.Start();

 appBarPlay = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 appBarPause = ApplicationBar.Buttons[1] as ApplicationBarIconButton;

}

Here’s how to implement the irst role. You implement a DispatcherTimer with a half-second inter-

val, updating the Slider on each tick. The irst thing you do is cache the total duration of the video
ile—this is a one-off operation. Next, you calculate the time remaining and render this in the cor-
responding TextBlock. Assuming that the playback has actually started (even if it is now paused), you

then calculate how much of the video playback is complete and use the resulting value to update the

position of the Slider. You also need to update the current ”elapsed time” value to match the playback

position. Throughout this operation, you toggle the isUpdatingSliderFromMedia lag—this will be
used in another method.

private void timer_Tick (object sender, EventArgs e)

{

 if (totalTime == TimeSpan.Zero)

 {

 totalTime = Player.NaturalDuration.TimeSpan;

 }

 TimeSpan remainingTime = totalTime - Player.Position;

 String remainingTimeText = String.Format("{0:00}:{1:00}",

 (remainingTime.Hours * 60) + remainingTime.Minutes, remainingTime.Seconds);

 RemainingTime.Text = remainingTimeText;

 isUpdatingSliderFromMedia = true;

 if (Player.Position.TotalSeconds > 0)

 {

 double fractionComplete = Player.Position.TotalSeconds / totalTime.TotalSeconds;

 MediaProgress.Value = fractionComplete;

 TimeSpan elapsedTime = Player.Position;

328 PART III extended Services

 String elapsedTimeText = String.Format("{0:00}:{1:00}",

 (elapsedTime.Hours * 60) + elapsedTime.Minutes, elapsedTime.Seconds);

 ElapsedTime.Text = elapsedTimeText;

 isUpdatingSliderFromMedia = false;

 }

}

In the handler for the ValueChanged event on the Slider, check irst that you’re not in this handler
as a result of what you did in the previous method. That is, you need to verify that you’re not here

because you’re updating the Slider from the media position. The other scenario for which you’d be

in this handler is if the user is clicking or dragging the Slider position. In this case, assuming that the

media content can actually be repositioned (CanSeek is true), you reset its position based on the Slider

position. This is the inverse of the normal behavior, for which you set the Slider position based on the

media position.

private void MediaProgress_ValueChanged(

 object sender, RoutedPropertyChangedEventArgs<double> e)

{

 if (!isUpdatingSliderFromMedia && Player.CanSeek)

 {

 TimeSpan duration = Player.NaturalDuration.TimeSpan;

 int newPosition = (int)(duration.TotalSeconds * MediaProgress.Value);

 Player.Position = new TimeSpan(0, 0, newPosition);

 }

}

The App Bar buttons invoke the MediaElement Play and Pause methods, each of which is very

simple. In the case of Pause, you need to irst establish that this media content can actually be paused.
Note that if you don’t check CanSeek or CanPause, and just go ahead and attempt to set Position or

call Pause, in neither case is an exception thrown. Rather, the method simply does nothing. So, these

checks are arguably redundant, except that you should use them to avoid executing unnecessary

code.

private void appBarPause_Click(object sender, EventArgs e)

{

 if (Player.CanPause)

 {

 Player.Pause();

 }

}

Audio Input and Manipulation

Both MediaElement and MediaStreamSource give you some ability to manipulate media during play-

back. For even greater lexibility, you can use the SoundXXX classes. You can also use the Dynamic

SoundEffectInstance class in combination with the Microphone class to work with audio input.

 ChAPTER 10 Media Services 329

the SoundEffect and SoundEffectInstance Classes
As an alternative to using MediaElement, you can use the XNA SoundEffect classes, instead. The disad-

vantage of this is that it is an XNA type, so your Silverlight application needs to pull in XNA libraries and

manage the different expectations of the XNA runtime. One of the advantages is that you cannot play

multiple MediaElements at the same time, whereas you can play multiple SoundEffects at the same

time. Another advantage is that the SoundEffect class offers better performance than MediaElement.

This is because the MediaElement carries with it a lot of UI baggage, relevant for a Control type. On

the other hand, the SoundEffect class is focused purely on audio and has no UI features.

The code that follows shows how to use SoundEffect. It also illustrates the SoundEffectInstance

class, which offers greater lexibility than the SoundEffect class. This application is in the TestSound

Effect solution in the sample code. The primary difference is that SoundEffect has no Pause method—

the playback is essentially “ire and forget.” You can create a SoundEffectInstance object from a

SoundEffect, and this does have a Pause method. Also, you can create multiple SoundEffect

Instances from the same SoundEffect; they’ll all share the same content, but you can control them

independently.

This application has two sound iles, built as Content into the XAP (but not into the DLL). These are

available in the SoundLab download from AppHub, mentioned earlier. In the application, you irst
need to add a reference to the Microsoft.Xna.Framework.dll. Then, declare SoundEffect and Sound

EffectInstance ields. Early in the life of the application, you load the two sound iles from the install
folder of the application by using Application.GetResourceStream. This can be slightly confusing,

because you need to explicitly build the iles as Content not Resource. However, GetResourceStream

can retrieve a stream for either Content or Resource. If the sound ile is a valid PCM wave ile, you can
use the FromStream method to initialize a SoundEffect object. For one of these SoundEffect objects,

you create a SoundEffectInstance.

private SoundEffect sound;

private SoundEffectInstance soundInstance;

public MainPage()

{

 InitializeComponent();

 sound = LoadSound("Media/AfternoonAmbienceSimple_01.wav");

 SoundEffect tmp = LoadSound("Media/NightAmbienceSimple_02.wav");

 if (tmp != null)

 {

 soundInstance = tmp.CreateInstance();

 }

 InitializeXna();

}

private SoundEffect LoadSound(String streamPath)

{

 SoundEffect s = null;

 try

 {

 StreamResourceInfo streamInfo =

330 PART III extended Services

 App.GetResourceStream(new Uri(streamPath, UriKind.Relative));

 s = SoundEffect.FromStream(streamInfo.Stream);

 }

 catch (Exception ex)

 {

 Debug.WriteLine(ex.ToString());

 }

 return s;

}

Not only must the ile be a valid WAV ile, it must also be in the RIFF bitstream format, mono or
stereo, 8 or 16 bit, with a sample rate between 8,000 Hz and 48,000 Hz.

More Info The full set of media codecs supported on Windows Phone is documented at

http://msdn.microsoft.com/en-us/library/ff462087(VS.92).aspx.

If the sound ile was created on the phone with the same microphone device and saved as a raw
audio stream (no ile format headers), you could instead work with the stream directly and assume the
same sample rate and AudioChannels values. This alternative approach is shown in the following code:

 try

 {

 StreamResourceInfo streamInfo =

 App.GetResourceStream(new Uri(streamPath, UriKind.Relative));

 byte[] buffer = new byte[streamInfo.Stream.Length];

 streamInfo.Stream.Read(buffer, 0, (int)streamInfo.Stream.Length);

 s = new SoundEffect(buffer, Microphone.Default.SampleRate, AudioChannels.Mono);

 }

Also, very early in the life of the application, you must do some housekeeping to ensure that any

XNA types work correctly. The basic requirement is to simulate the XNA game loop—this is the core

architectural model in XNA, and most signiicant XNA types depend on this. XNA Framework event
messages are placed in a queue that is processed by the XNA FrameworkDispatcher. In an XNA appli-

cation, the XNA Game class calls the FrameworkDispatcher.Update method automatically whenever

Game.Update is processed. This FrameworkDispatcher.Update method causes the XNA Framework to

process the message queue. Conversely, if you use the XNA Framework from an application that does

not implement the Game class, you must call the FrameworkDispatcher.Update method yourself to

process the XNA Framework message queue.

There are various ways to achieve this. The simplest approach here is to set up a DispatcherTimer

to call FrameworkDispatcher.Update. The typical tick rate for processing XNA events is 33 ms. The XNA

game loop updates and redraws at 30 FPS; that is, one frame every 33 ms.

private void InitializeXna()

{

 DispatcherTimer timer = new DispatcherTimer();

http://msdn.microsoft.com/en-us/library/ff462087(VS.92).aspx

 ChAPTER 10 Media Services 331

 timer.Interval = TimeSpan.FromMilliseconds(33);

 timer.Tick += delegate { try { FrameworkDispatcher.Update(); } catch { } };

 timer.Start();

}

The application provides three App Bar buttons. The Click handler for the irst one simply plays the
SoundEffect by invoking the “ire-and-forget” Play method. The other two are used to Start (that is,

Play) or Pause the SoundEffectInstance.

private void appBarPlay_Click(object sender, EventArgs e)

{

 if (sound != null)

 {

 sound.Play();

 }

}

private void appBarStart_Click(object sender, EventArgs e)

{

 if (soundInstance != null)

 {

 soundInstance.Play();

 }

}

private void appBarPause_Click(object sender, EventArgs e)

{

 if (soundInstance != null)

 {

 soundInstance.Pause();

 }

}

Audio Input and the Microphone
The only way to work with audio input in a Windows Phone application is to use the XNA Microphone

class. This provides access to the microphone (or microphones) available on the system. Although

you can get the collection of microphones, the collection always contains exactly one microphone, so

you would end up working with the default microphone anyway. The standard hardware speciica-

tion requires that all microphones on the device conform to the same basic audio format, and return

16-bit PCM mono audio data, with a sample rate between 8,000 Hz and 48,000 Hz. The low-level

audio stack uses an internal circular buffer to collect the input audio from the microphone device. You

can conigure the size of this buffer by setting the Microphone.BufferDuration property. This buffer is

actually double-buffered, so the real size of the buffer is twice the size you specify in Buffer

Duration. BufferDuration is of type TimeSpan, so setting a buffer size of 300 ms will result in a buffer

of 2 * 16 * 300 = 9,600 bytes. BufferDuration must be between 100 ms and 1000 ms, in 10 ms incre-

ments, giving an underlying buffer size of 3,200–64,000 bytes. The size of the buffer is returned by

GetSampleSizeInBytes.

332 PART III extended Services

There are two different methods for retrieving audio input data:

 ■ Handle the BufferReady event and process data when there is a BufferDuration’s-worth of data

received in the buffer. This has a minimum latency of 100 ms.

 ■ Pull the data independently of BufferReady events, at whatever time interval you choose,

including more frequently than 100 ms.

For a game, it can often be more useful to pull the data so that you can synchronize sound and

action in a lexible manner. For a non-game it is more common to respond to BufferReady events.

With this approach, the basic steps for working with the microphone are as follows:

1. For convenience, cache a local reference to the default microphone.

2. Specify how large a buffer you want to maintain for audio input, and declare a byte array for

this data.

3. Hook up the BufferReady event, which is raised whenever a buffer’s-worth of audio data is

ready.

4. In your BufferReady event handler, retrieve the audio input data and do something interesting

with it.

5. At suitable points, start and stop the microphone to start and stop the buffering of audio

input data.

You might wonder what happens if your application is using the microphone to record sound,

and then a phone call comes in and the user answers it. Is the phone call recorded? The answer is no,

speciically because this is a privacy issue. So, what happens is that your application keeps recording,
but it records silence until the call is inished.

Figure 10-4 shows a simple decibel meter that illustrates a simple use of the microphone. This is

the DecibelMeter application in the sample code. The application takes audio input data, converts it to

decibels, and then displays a graphical representation of the decibel level, using both a rectangle and

a text value.

 ChAPTER 10 Media Services 333

FIguRE 10-4 You can build a simple decibel meter to exercise the microphone.

In the XAML, the application deines a StackPanel that contains a Button and an inner Grid. Inside

the Grid, you have a Rectangle and a TextBlock. These are both bottom-aligned and overlapping (the

control declared last is overlaid on top of the previous one).

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Button x:Name="ToggleMicrophone" Content="toggle microphone"

 Click="ToggleMicrophone_Click"/>

 <Grid Height="535">

 <Rectangle x:Name="LevelRect"

 Height="0" Width="432" VerticalAlignment="Bottom"

 Margin="{StaticResource PhoneHorizontalMargin}" />

 <TextBlock

 Text="0" x:Name="SoundLevel" TextAlignment="Center" Width="432"

 FontSize="{StaticResource PhoneFontSizeHuge}"

 VerticalAlignment="Bottom"/>

 </Grid>

</StackPanel>

First, you declare a byte array for the audio data and a local reference to the default microphone,

and then initialize these in the MainPage constructor. You specify that you want to maintain a 300 ms

buffer for audio input. Whenever the buffer is illed, you’ll get a BufferReady event. Retrieve the size

of the byte array required to hold the speciied duration of audio for this microphone object by using
GetSampleSizeInBytes (this is how you know what size buffer to allocate). The following code also

retrieves the current accent brush and sets this as the Brush object with which to ill the rectangle:

private byte[] soundBuffer;

private Microphone mic;

334 PART III extended Services

public MainPage()

{

 InitializeComponent();

 Brush accent = (Brush)Resources["PhoneAccentBrush"];

 LevelRect.Fill = accent;

 mic = Microphone.Default;

 mic.BufferDuration = TimeSpan.FromMilliseconds(300);

 mic.BufferReady += Microphone_BufferReady;

 int bufferSize = mic.GetSampleSizeInBytes(mic.BufferDuration);

 soundBuffer = new byte[bufferSize];

}

Whenever a buffer’s-worth of audio input data is received, you pull that data from the Microphone

object and copy it into your private buffer in order to work on it. You process this data by determin-

ing the average sound level in decibels and rendering text and graphics to represent that level. The

rectangle height and position are constrained by the height of the containing grid (534 pixels).

void Microphone_BufferReady(object sender, EventArgs e)

{

 int soundDataSize = mic.GetData(soundBuffer);

 if (soundDataSize > 0)

 {

 SoundLevel.Dispatcher.BeginInvoke(() =>

 {

 int decibels = GetSoundLevel();

 SoundLevel.Text = decibels.ToString();

 LevelRect.Height = Math.Max(0, Math.Min(534, decibels * 10));

 });

 }

}

The sound pressure level ratio in decibels is given by 20*log(<actual value>/<reference value>),

where the logarithm is to base 10. Realistically, the <reference value> would be determined by cali-

bration. In this example, you use an arbitrary hard-coded calibration value (300), instead. First, you

must convert the array of bytes into an array of shorts. Then convert these shorts into decibels.

private int GetSoundLevel()

{

 short[] audioData = new short[soundBuffer.Length / 2];

 Buffer.BlockCopy(soundBuffer, 0, audioData, 0, soundBuffer.Length);

 double calibrationZero = 300;

 double waveHeight = Math.Abs(audioData.Max<short>() - audioData.Min<short>());

 double decibels = 20 * Math.Log10(waveHeight / calibrationZero);

 return (int)decibels;

}

Finally, you provide a button in the UI so that the user can toggle the microphone on or off.

private void ToggleMicrophone_Click(object sender, RoutedEventArgs e)

 ChAPTER 10 Media Services 335

{

 if (mic.State == MicrophoneState.Started)

 {

 mic.Stop();

 }

 else

 {

 mic.Start();

 }

}

As before, you need to ensure that the XNA types work correctly in a Silverlight application.

Previously, you took the approach of a DispatcherTimer to provide a tick upon which you could

invoke FrameworkDispatcher.Update in a simple fashion. A variation on this approach is to implement

IApplicationService and put the DispatcherTimer functionality in that implementation. IApplication

Service represents an extensibility mechanism in Silverlight. The idea is that where you have a need

for some global ”service” that must work across your application, you can register it with the run-

time. This interface declares two methods: StartService and StopService. The Silverlight runtime will

call StartService during application initialization, and it will call StopService just before the application

terminates. Effectively, you’re taking the InitializeXna custom method from the previous example,

and reshaping it as an implementation of IApplicationService. Then, instead of invoking the method

directly, you register the class and leave it to Silverlight to invoke the methods.

The following is the class implementation. As before, you simply set up a DispatcherTimer and

invoke FrameworkDispatcher.Update on each tick.

public class XnaFrameworkDispatcherService : IApplicationService

{

 private DispatcherTimer timer;

 public XnaFrameworkDispatcherService()

 {

 timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromTicks(333333);

 timer.Tick += OnTimerTick;

 FrameworkDispatcher.Update();

 }

 private void OnTimerTick(object sender, EventArgs args)

 {

 FrameworkDispatcher.Update();

 }

 private void IApplicationService.StartService(ApplicationServiceContext context)

 {

 timer.Start();

 }

 private void IApplicationService.StopService()

 {

 timer.Stop();

 }

}

336 PART III extended Services

Registration is a simple matter of updating the App.xaml to include the custom class in the

ApplicationLifetimeObjects section.

<Application

...standard declarations omitted for brevity.

 xmlns:local="clr-namespace:DecibelMeter">

 <Application.ApplicationLifetimeObjects>

 <local:XnaFrameworkDispatcherService />

 <shell:PhoneApplicationService

 Launching="Application_Launching" Closing="Application_Closing"

 Activated="Application_Activated" Deactivated="Application_Deactivated"/>

 </Application.ApplicationLifetimeObjects>

</Application>

Figure 10-5 shows an application that uses the microphone to record sound, and then plays back

the sound. This application (the SoundFx solution in the sample code) uses a slider to control the

sound pitch.

FIguRE 10-5 It’s very simple to build sound recording and playback features.

In the MainPage constructor, you need to set up the XNA message queue processing, initialize

the default microphone (with a 300 ms buffer), and create a private byte array for the audio data, as

before. Set the SoundEffect.MasterVolume to 1. This is relative to the volume on the device/emulator

itself. You can set the volume in a range of 0–1, where 0 approximates silence, and 1 equates to the

device volume. You cannot set the volume higher than the volume on the device. Each time the audio

 ChAPTER 10 Media Services 337

input buffer is illed, you get the data in the private byte array, and then copy it to a MemoryStream

for processing. Note that you should protect the buffer with a lock object. This addresses the issue of

the user pressing Stop while you’re writing to the buffer (this would reset the buffer position to zero).

private byte[] soundBuffer;

private Microphone mic;

private MemoryStream ms;

private SoundEffectInstance sei;

private DispatcherTimer timer;

public MainPage()

{

 InitializeComponent();

 timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromMilliseconds(33);

 timer.Tick += delegate { try { FrameworkDispatcher.Update(); } catch { } };

 timer.Start();

 mic = Microphone.Default;

 mic.BufferDuration = TimeSpan.FromMilliseconds(300);

 mic.BufferReady += Microphone_BufferReady;

 int bufferSize = mic.GetSampleSizeInBytes(mic.BufferDuration);

 soundBuffer = new byte[bufferSize];

 SoundEffect.MasterVolume = 1.0f;

}

private void Microphone_BufferReady(object sender, EventArgs e)

{

 object lockObject = new object();

 lock (lockObject)

 {

 mic.GetData(soundBuffer);

 ms.Write(soundBuffer, 0, soundBuffer.Length);

 }

}

The user can tap the App Bar buttons to start and stop the recording. You handle these actions by

calling Microphone.Start and Microphone.Stop. When the user chooses to start a new recording, you

close any existing stream and set up a fresh one, and then start the microphone. Conversely, when the

user asks to stop recording, you stop the microphone and reset the stream pointer to the beginning.

private void StartRecording()

{

 if (ms != null)

 {

 ms.Close();

 }

 ms = new MemoryStream();

 mic.Start();

 isRecording = true;

}

private void StopRecording()

{

 mic.Stop();

338 PART III extended Services

 ms.Position = 0;

 isRecording = false;

}

The only other interesting code is starting and stopping playback of the recorded sound. To start

playback, you irst create a new SoundEffect object from the buffer of microphone data. Then, you

create a new SoundEffectInstance from the SoundEffect object, varying the pitch to match the slider

value. You also set the Volume to 1.0, relative to the SoundEffect.MasterVolume; the net effect is to

retain the same volume as the device itself. To stop playback, simply call SoundEffectInstance.Stop, as

before.

private void StartPlayback()

{

 SoundEffect se = new SoundEffect(ms.ToArray(), mic.SampleRate, AudioChannels.Mono);

 sei = se.CreateInstance();

 sei.Volume = 1.0f;

 sei.Pitch = (float)Frequency.Value;

 sei.Play();

}

private void StopPlayback()

{

 if (sei != null)

 {

 sei.Stop();

 }

}

You can take this one step further by persisting the recorded sound to a ile in isolated storage.
You can see this at work in the SoundFx_Persist solution in the sample code. To persist the sound, you

can add a couple of extra App Bar buttons for Save and Load. To save the data, simply write out the

raw audio data by using the isolated storage APIs. This example uses a .wav ile extension because the
data is in fact PCM wave data. However, this is not a WAV ile in the normal sense, because it is miss-
ing the header information that describes the ile format, sample rate, channels, and so on.

private const string soundFile = "SoundFx.wav";

private void appBarSave_Click(object sender, EventArgs e)

{

 using (IsolatedStorageFile storage =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream stream =

 storage.OpenFile(soundFile, FileMode.Create, FileAccess.Write))

 {

 stream.Write(soundBuffer, 0, soundBuffer.Length);

 }

 }

}

To load the persisted ile from disk, load the raw stream data back into your in-memory byte array,
ready for playback.

 ChAPTER 10 Media Services 339

private void appBarLoad_Click(object sender, EventArgs e)

{

 using (IsolatedStorageFile storage =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream stream =

 storage.OpenFile(soundFile, FileMode.Open, FileAccess.Read))

 {

 byte[] buffer = new byte[stream.Length];

 stream.Read(buffer, 0, buffer.Length);

 if (ms != null)

 {

 ms.Close();

 }

 ms = new MemoryStream();

 ms.Write(buffer, 0, buffer.Length);

 }

 }

}

You’ve seen already that you can use the SoundEffect class to load a conventional WAV ile (includ-

ing header) from disk. There’s no support in SoundEffect—or indeed any other Silverlight or XNA

classes—for saving WAV iles with header information. This is not generally a problem on Windows
Phone, because if the same application is both recording the data and playing it back, then it can

precisely control the ile contents without the need for a descriptive header. On the other hand, if you
need to record audio on the phone, and then transmit it externally (for example, via a web service)

to a consuming user or application that is using a different device (perhaps a PC, not a phone at all),

then you need to save a descriptive header in the ile along with the audio data.

More Info One solution to this is the NAudio library. NAudio is an open-source Microsoft .NET

audio and MIDI library that contains a wide range of useful audio-related classes intended to

speed development of audio-based managed applications. NAudio is licensed under the Ms-PL,

which means that you can use it in whatever project you like, including commercial projects. It is

available at http://naudio.codeplex.com/.

the DynamicSoundEffectInstance Class
So far, we’ve used the SoundEffect and SoundEffectInstance classes to play back audio streams, either

from static audio content or from dynamic microphone input. The DynamicSoundEffectInstance is

derived from SoundEffectInstance. The critical difference is that it exposes a BufferNeeded event. This

is raised when it needs more audio data to play back. You can provide the audio data from static

iles or from dynamic microphone input; however, the main strength of this feature is that you can
manipulate or compute the audio data before you provide it. Typically, you would modify source

data, or even compute the data entirely from scratch.

340 PART III extended Services

The following example does just that—it provides a simple sound based on a sine wave. But before

you get started, here’s a little background information that might be helpful. Sound is the result of a

vibrating object that creates pressure oscillations—variations in pressure over time—in the air. A vari-

ation over time is modeled in mathematical terms as a wave. A wave can be represented by a formula

that governs how the amplitude (or height) of the signal varies over time and the frequency of the

oscillations. Given two otherwise identical waves, if one has higher amplitude it will be louder; if one

has greater frequency it will have a higher pitch. A wave is continuous, but you need to end up with

a buffer full of discrete items of audio data, where each datapoint is a value that represents a sample

along the wave. This behavior is explored in the TestDynamicSounds solution in the sample code.

First, you need to declare ields for the DynamicSoundEffectInstance, a sample rate set to the

maximum achievable on the device (48,000), and a buffer to hold the sound data. The sample count is

computed as the maximum sample rate divided by the sample size (16 bits). From this, you can calcu-

late the required buffer size as twice this value. For the purposes of this example, set the frequency to

an arbitrary value of 100.

private DynamicSoundEffectInstance dynamicSound;

private const int sampleRate = 48000;

private const int sampleCount = sampleRate / 16;

private byte[] soundBuffer = new byte[sampleCount * 2];

private int totalTime = 0;

private double frequency = 100;

At a suitable early point—for example, in the MainPage constructor—you would set up your pre-

ferred method for pumping the XNA message queue. You want to initialize the DynamicSound

EffectInstance early on, but the catch is that the constructor is too early, because you won’t yet have

started pumping the XNA message queue. One solution is to hook up the Loaded event on the page

and do your initialization of the XNA types there, but there is a possible race condition with that

approach. The simplest approach is to just pump the XNA message queue irst, before performing
initialization. Apart from the timing aspect, the key functional requirement is to hook up the Buffer

Needed event. This will be raised every time the audio pipeline needs input data.

public MainPage()

{

 InitializeComponent();

 timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromMilliseconds(33);

 timer.Tick += delegate { try { FrameworkDispatcher.Update(); } catch { } };

 timer.Start();

 FrameworkDispatcher.Update();

 dynamicSound = new DynamicSoundEffectInstance(sampleRate, AudioChannels.Mono);

 dynamicSound.BufferNeeded += dynamicSound_BufferNeeded;

 dynamicSound.Play();

}

 ChAPTER 10 Media Services 341

In the handler for the BufferNeeded event, the task is to ill in the byte array of sound data. In this
example, you ill it with a simple sine wave. The basic formula for a sine wave as a function of time is
as follows:

y(t) = A .sin(ωt+φ)

Where:

 ■ A = amplitude The peak deviation of the function from its center position (loudness).

 ■ ω = frequency How many oscillations occur per unit of time (pitch)

 ■ φ = phase Where in the cycle the oscillation begins

In this example, for the sake of simplicity, you can default the amplitude to 1 (parity with the

volume on the device), and the phase to be zero (oscillation starts at the beginning of the cycle).

You loop through the whole buffer, 2 bytes (that is, 16 bits: one sample) at a time. For each sample,

compute the loating-point value of the sine wave and convert it to a short (16 bits). The double value
computed from the sine wave formula is in the range –1 to 1, so you multiply by the MaxValue for a

short in order to get a short equivalent of this.

Then, you need to store the short as 2 bytes. The low-order byte of the short is stored as an ele-

ment in the sample array, and then the high-order byte is stored in the next element. Fill the second

byte with the low-order byte of the short by bit-shifting 8 bits to the right. Finally, you submit the

newly illed buffer to the DynamicSoundEffectInstance so that it can play it back.

private void dynamicSound_BufferNeeded(object sender, EventArgs e)

{

 for (int i = 0; i < sampleCount - 1; i += 2)

 {

 double time = (double)totalTime / (double)sampleRate;

 short sample =

 (short)(Math.Sin(2 * Math.PI * frequency * time) * (double)short.MaxValue);

 soundBuffer[i] = (byte)sample;

 soundBuffer[i + 1] = (byte)(sample >> 8);

 totalTime += 2;

 }

 dynamicSound.SubmitBuffer(soundBuffer);

}

The result will be a continuously oscillating tone. Figure 10-6 shows a variation on this application

(TestDynamicSounds_Controls in the sample code), which includes an App Bar Button to start/stop the

playback, and a Slider to control the frequency of the wave.

342 PART III extended Services

FIguRE 10-6 You can use DynamicSoundEffectInstance to manipulate audio data before playback.

In the XAML, you need to deine a Slider. Give it a range from 1.0 to 1000.0, and set the initial posi-

tion at halfway along the range, as demonstrated in the following:

<Slider

 Grid.Row="1" Margin="12,0,12,0"

 x:Name="Frequency" Minimum="1.0" Maximum="1000.0" Value="500.0" />

The implementation of the BufferNeeded event handler is changed slightly to use the Slider value

instead of the ixed frequency value.

short sample =

 (short)(Math.Sin(2 * Math.PI * Frequency.Value * time)

 * (double)short.MaxValue);

The only other work is to respond to button Click events to start and stop the playback.

private void appBarPlay_Click(object sender, EventArgs e)

{

 if (isPlaying)

 {

 dynamicSound.Stop();

 appBarPlay.IconUri = new Uri("/Images/play.png", UriKind.Relative);

 appBarPlay.Text = "play";

 isPlaying = false;

 }

 else

 {

 dynamicSound.Play();

 appBarPlay.IconUri = new Uri("/Images/stop.png", UriKind.Relative);

 ChAPTER 10 Media Services 343

 appBarPlay.Text = "stop";

 isPlaying = true;

 }

}

When this application runs, the user can manipulate the slider to control the data that’s fed into

the playback buffer. Because you’ve tied the amplitude to the volume on the device, the user can

change the volume of the playback by invoking the universal volume control (UVC) (see Figure 10-6).

On the emulator, this is invoked by pressing either F9 or F10 while audio playback is ongoing; press F9

to increase the volume and F10 to decrease it. On the device, this is invoked by the hardware volume

controls.

Music and videos hub

The Music and Videos Hub on Windows Phone is a centralized location for accessing the phone’s

music and videos library. Figure 10-7 shows an application that integrates with the Music and Videos

Hub to fetch a list of all songs in the library and render them in a ListBox. This is the TestMediaHub

solution in the sample code. When the user selects an item from the ListBox, the application fetches

the selected song’s album art and presents buttons with which the user can play/pause the selected

song.

FIguRE 10-7 Your application can integrate with the Music and Videos Hub on the phone.

344 PART III extended Services

In the MainPage class, declare ields for the MediaLibrary itself and for the current Song. As always,

you need to ensure that you pump the XNA message queue. Next, initialize the MediaLibrary ield
and set the collection of Songs to be the ItemsSource on your ListBox. In the XAML, data bind the Text

property on the ListBox items to the Name property of each Song.

private MediaLibrary library;

private Song currentSong;

public MainPage()

{

 InitializeComponent();

 Play = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 Pause = ApplicationBar.Buttons[1] as ApplicationBarIconButton;

 DispatcherTimer dt = new DispatcherTimer();

 dt.Interval = TimeSpan.FromMilliseconds(33);

 dt.Tick += delegate { FrameworkDispatcher.Update(); };

 dt.Start();

 library = new MediaLibrary();

 HistoryList.ItemsSource = library.Songs;

}

You can test this on the emulator; however, it has only three songs, which won’t yield very thor-

ough results. Conversely, if you test on a physical device, you would want one that has a representa-

tive number of songs. If there are very many songs on the device, then initializing the list could be

slow—in this case you could restrict the test to perhaps the irst album by using this syntax:

 HistoryList.ItemsSource = library.Albums.First().Songs;

The application’s play and pause operations are more or less self-explanatory, invoking the Media

Player Play or Pause methods.

private void Play_Click(object sender, EventArgs e)

{

 MediaPlayer.Play(currentSong);

 Pause.IsEnabled = true;

 Play.IsEnabled = false;

}

private void Pause_Click(object sender, EventArgs e)

{

 MediaPlayer.Pause();

 Play.IsEnabled = true;

}

The interesting work is done in the SelectionChanged handler for the ListBox. Here, you fetch the

currently selected item and search for it in the MediaLibrary collection. When you ind the matching
Song, fetch its album art to render in an Image control in the application’s UI. If you can’t ind any cor-
responding album art, use a default image built in to the application.

private void HistoryList_SelectionChanged(object sender, SelectionChangedEventArgs e)

 ChAPTER 10 Media Services 345

{ if (HistoryList.SelectedIndex == -1)

 {

 return;

 }

 currentSong = HistoryList.SelectedItem as Song;

 if (currentSong != null)

 {

 Play.IsEnabled = true;

 Stream albumArtStream = currentSong.Album.GetAlbumArt();

 if (albumArtStream == null)

 {

 StreamResourceInfo albumArtPlaceholder =

 App.GetResourceStream(new Uri(

 "Images/AlbumArtPlaceholder.jpg", UriKind.Relative));

 albumArtStream = albumArtPlaceholder.Stream;

 }

 BitmapImage albumArtImage = new BitmapImage();

 albumArtImage.SetSource(albumArtStream);

 MediaImage.Source = albumArtImage; }

}

The FM Tuner

All Windows Phone 7 devices ship with an FM radio, covering worldwide FM bands between 76 MHz

and 108 MHz. The valid ranges depend on the region selected. The FMRadio class in the Microsoft.

Devices namespace exposes properties for the region, frequency, power mode (on or off), and signal

strength. Figure 10-8 shows an application that exercises the FMRadio class (the TestRadio solution in

the sample code).

346 PART III extended Services

FIguRE 10-8 The FMRadio class provides programmatic access to the radio tuner on the phone.

In the MainPage class, cache the global radio instance and set the CurrentRegion. There are only

three supported regions: United States, Europe, and Japan—which is slightly misleading, as the

Europe setting matches all countries that are not the US or Japan. In a real application, you might

want to use location services to match the current region that the user is actually in. Note also that

the default is United States. You also need to set up a DispatcherTimer. Unlike other examples in this

chapter, FMRadio does not use any XNA types, so this DispatcherTimer is not for the XNA message

queue; instead, you use it to keep the signal strength display updated.

private FMRadio radio;

public MainPage()

{

 InitializeComponent();

 Power = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 DispatcherTimer timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromMilliseconds(1000);

 timer.Tick += new EventHandler(timer_Tick);

 timer.Start();

 radio = FMRadio.Instance;

 radio.CurrentRegion = RadioRegion.UnitedStates;

}

 ChAPTER 10 Media Services 347

In the Tick event handler for the timer, update the signal strength display from the corresponding

FMRadio property.

void timer_Tick(object sender, EventArgs e)

{

 if (radio != null && radio.PowerMode == RadioPowerMode.On)

 {

 Signal.Text = String.Format("signal: {0:F2}", radio.SignalStrength);

 }

}

In the Click event handler for the App Bar Button, toggle the PowerMode on/off, set the App Bar

Button Text to match, and set a default string into the signal strength display if you’re turning the

radio off.

private void Power_Click(object sender, EventArgs e)

{

 if (radio.PowerMode == RadioPowerMode.On)

 {

 radio.PowerMode = RadioPowerMode.Off;

 Power.Text = "off";

 Signal.Text = "(no signal)";

 }

 else

 {

 radio.PowerMode = RadioPowerMode.On;

 Power.Text = "on";

 }

}

Finally, track the ValueChanged event on the Slider to update the Frequency property of the radio

as well as the frequency display text.

private void Frequency_ValueChanged(

 object sender, RoutedPropertyChangedEventArgs<double> e)

{

 if (radio != null)

 {

 radio.Frequency = Frequency.Value;

 FrequencyValue.Text = String.Format("{0:F2} MHz", Frequency.Value);

 }

}

Note that although most of the FMRadio class functionality is operational on the emulator, there

will be no signal. Also, on the physical device, you should plug in the headphones because the radio

uses these as an antenna. Both tuning and powering up the radio can take up to a second before the

FMRadio class is responsive to other calls. So, for example, setting PowerMode=RadioPowerMode.On

and then immediately checking SignalStrength will generally result in a zero value return.

summary

In this chapter, you saw how the application platform provides four broad categories of API support

for building audio and video features into your application. There are three main classes for media

playback at varying levels of lexibility. Audio input via the microphone and low-level manipulation
of audio data is enabled through a second set of classes. Integration with the phone’s media hub is

enabled through the XNA MediaLibrary class. And inally, radio tuner support is provided through the
FMRadio class. With judicious use of these APIs, you can easily build a very compelling media-focused

user experience into your application.

 349

C h A P T E R 1 1

Web and Cloud

The Windows Phone application platform provides some basic support for connecting to the web

via two core classes and their supporting types: WebClient and HttpWebRequest. It also provides

a modiied version of the Microsoft Silverlight WebBrowser control for rendering HTML web pages.

Beyond these, many of the standard techniques for connecting to web services, including Windows

Communication Foundation (WCF) data services, are also directly supported on the phone. This

chapter will examine each of these techniques, and also look at additional support that is available for

connecting to Microsoft Bing Maps, Microsoft Windows Azure, bitly, Microsoft Windows Live, Micro-

soft SkyDrive, and Facebook. You should read this chapter in conjunction with Chapter 13, “Security,”

which discusses the security aspects of web connectivity.

The WebClient Class

The WebClient class is part of the standard Microsoft .NET base class library (BCL). With it, you can

download or upload web content. The version that is available to you in a Silverlight application is

more constrained than the standard desktop Common Language Runtime (CLR) version, mainly by

restricting you to asynchronous calls. In general, all web calls on the phone are asynchronous. To use

the Silverlight WebClient class, you need to:

 ■ Create an instance of WebClient, typically as a class-level ield (because the asynchronous
model means that you’ll most likely need to use it across more than one method). Alterna-

tively, you can use inline lambdas.

 ■ Wire up either the DownloadStringCompleted event or the OpenReadCompleted event (or both),

implementing the event handlers to process the Result data returned from the service call.

 ■ Call the DownloadStringAsync or OpenReadAsync method, to start fetching data from the web.

WebClient: the DownloadStringAsync Method
If you know that the target URL speciies content that can be represented as a string, you can use
WebClient.DownloadStringAsync. For other content, you can use WebClient.OpenReadAsync. Figure

11-1 shows a phone application (the SimpleWebClient solution in the sample code) that uses the

WebClient to retrieve arbitrary web pages and render the resulting HTML text in a TextBlock.

350 PART III extended Services

FIguRE 11-1 Use the WebClient class to download or upload web content.

private WebClient webClient;

public MainPage()

{

 InitializeComponent();

 webClient = new WebClient();

 webClient.DownloadStringCompleted +=

 webClient_DownloadStringCompleted;

}

private void getPageButton_Click(object sender, RoutedEventArgs e)

{

 webClient.DownloadStringAsync(new Uri(urlText.Text));

}

private void webClient_DownloadStringCompleted(

 object sender, DownloadStringCompletedEventArgs e)

{

 if (e.Error == null)

 {

 pageText.Text = e.Result;

 }

 else

 {

 pageText.Text = e.Error.ToString();

 }

}

 ChAPTER 11 Web and Cloud 351

Although WebClient operations (such as DownloadStringAsync) run on a background thread, the

events generated (such as DownloadStringCompleted) are raised on the UI thread. An advantage of

this is that there’s no need to dispatch any work back to the UI thread in this scenario. A disadvantage

is that you’re inevitably doing work on the UI thread, and you might prefer to avoid or minimize this

for performance/responsiveness reasons.

WebClient: the OpenReadAsync Method
If you’re retrieving data that’s not all strings, you can use OpenReadAsync instead. Here’s an example

(the AvatarWebClient solution in the sample code) that fetches user-speciied avatar images from
Microsoft Xbox Live, as shown in Figure 11-2. Each time you fetch an avatar, you add it to the ListBox.

FIguRE 11-2 Use OpenReadAsync for retrieving non-string data such as these avatars.

In the XAML, apart from the TextBlock, TextBox, and Button, there is a ListBox whose items are

data-bound Image controls:

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <StackPanel Orientation="Horizontal">

 <TextBlock Text="gamertag: " Margin="12,20,0,12"

 FontSize="{StaticResource PhoneFontSizeMedium}" />

 <TextBox Name="gamerTagText" Text="something" Margin="0"

 Width="260" Height="72" VerticalAlignment="Top"/>

 <Button Content="get" Height="72" Margin="-10,0,0,0"

 Name="getAvatarButton" VerticalAlignment="Top"

 Width="95" Click="getAvatarButton_Click" />

 </StackPanel>

352 PART III extended Services

 <ListBox Name="avatarList" Height="530" HorizontalAlignment="Center">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <Image Source="{Binding}" Height="250"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

</StackPanel>

In the code-behind, there is an ObservableCollection of ImageSource items. When the user clicks

the Button, you call OpenReadAsync on the WebClient, using the supplied gamertag to build a Uri to

the corresponding Xbox Live avatar image. On OpenReadCompleted, fetch the resulting image and

add it to the collection. The magic of data binding takes care of the rest.

public partial class MainPage : PhoneApplicationPage

{

 private WebClient webClient;

 private ObservableCollection<ImageSource> avatarImages;

 public MainPage()

 {

 InitializeComponent();

 avatarImages = new ObservableCollection<ImageSource>();

 avatarList.ItemsSource = avatarImages;

 webClient = new WebClient();

 webClient.OpenReadCompleted +=

 new OpenReadCompletedEventHandler(webClient_OpenReadCompleted);

 }

 private void getAvatarButton_Click(object sender, RoutedEventArgs e)

 {

 try

 {

 webClient.OpenReadAsync(new Uri(String.Format(

 "http://avatar.xboxlive.com/avatar/{0}/avatar-body.png",

 gamerTagText.Text)));

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.ToString());

 }

 }

 private void webClient_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)

 {

 if (!e.Cancelled && e.Error == null)

 {

 BitmapImage bmp = new BitmapImage();

 bmp.SetSource(e.Result);

 avatarImages.Add(bmp);

 }

 }

}

 ChAPTER 11 Web and Cloud 353

The HttpWebRequest Class

The code that follows (the SimpleHttpReq solution in the sample code) presents the HttpWebRequest

(also part of the standard .NET BCL) equivalent of the previous simple WebClient example (you fetch

text from the web and display it in a TextBlock). You irst need to create an HttpWebRequest for the

selected URL, and then invoke the asynchronous BeginGetResponse method. When you call BeginGet

Response, you need to pass in the HttpWebRequest object so that it is accessible in the asynchronous

callback. When the callback is invoked, extract the WebResponse from the result, and then fetch the

embedded data stream to populate the TextBlock. Note that unlike WebClient, the response callbacks

for HttpWebRequest are invoked on a background thread; hence, the use of the page’s Dispatcher to

update the UI.

private void getPageButton_Click(object sender, RoutedEventArgs e)

{

 HttpWebRequest webRequest =

 (HttpWebRequest)HttpWebRequest.Create(new Uri(urlText.Text));

 webRequest.BeginGetResponse(httpRequestCallback, webRequest);

}

private void httpRequestCallback(IAsyncResult result)

{

 HttpWebRequest request = (HttpWebRequest)result.AsyncState;

 try

 {

 WebResponse response = request.EndGetResponse(result);

 Stream responseStream = response.GetResponseStream();

 StreamReader reader = new StreamReader(responseStream);

 Dispatcher.BeginInvoke(() =>

 { this.pageText.Text = reader.ReadToEnd(); });

 }

 catch (WebException ex)

 {

 Dispatcher.BeginInvoke(() => { pageText.Text = ex.Message; });

 }

}

WebBrowser Control

The WebBrowser control available for Windows Phone is based on the desktop Silverlight version. This

control is not a full web browser; rather, it provides the core functionality to render HTML content,

but it has no UI controls or chrome of its own. This is useful if you simply want to render local HTML

(either static or dynamically-generated). It is also useful if you want to navigate to remote web pages,

354 PART III extended Services

and to provide your own custom chrome. The phone version of the WebBrowser control is slightly dif-

ferent from the desktop version in the following ways:

 ■ It does not allow the use of ActiveX controls on web pages.

 ■ It can invoke scripts loaded from any site. Unlike desktop Silverlight, it is not restricted to the

same site as the XAP package.

 ■ It can access isolated storage for the hosting application.

 ■ It has the same cross-site restrictions for HTML loaded from the web, but not for HTML loaded

from static or dynamic local content.

 ■ It can be treated as a normal UI control that can have transforms and projections performed

on it, and it participates in the Z-order of UI elements.

You can use the WebBrowser by adding the following line to your XAML:

<phone:WebBrowser Source="http://create.msdn.com" />

The result of this is shown in Figure 11-3, which is a screenshot from the TestWbc solution in the

sample code. Zoom (pinch-and-stretch) and scroll manipulations work, as do any links on the page.

Embedded ActiveX controls, including Silverlight, will not work. By default, scripts will not work either,

although this can be changed.

FIguRE 11-3 Use the WebBrowser control to render HTML content.

 ChAPTER 11 Web and Cloud 355

If you don’t specify a name for the WebBrowser control in your XAML, and then run the Capabili-

ties Detection tool, this will not report any required capabilities. If you then go ahead and remove the

boilerplate capabilities from your manifest, the application will fail at runtime. In fact, you need both

the ID_CAP_WEBBROWSERCOMPONENT and ID_CAP_NETWORKING capabilities. To be sure, simply

specify a name for the control in XAML, as follows:

<phone:WebBrowser x:Name="wbc" Source="http://create.msdn.com" />

Without chrome, the previous example offers no way for the user to navigate forward and back.

You could add suitable UI for this, if you need it (App Bar buttons would be most appropriate here).

You would also have to add your own implementation of the navigation history, because the Web

Browser control does not provide any back/forward navigation functionality. In addition to the his-

tory list itself, you would also need to keep track of where the current page is in the history list and

whether the current navigation is to a page in the history list or not. However, note that the Web

Browser control is intended to be used for simple rendering of HTML content. Although you could do

a lot of work to replicate the behavior of a full browser, this is not encouraged. Instead, if you need

browser functionality, you can use the WebBrowserTask, as is discussed in Chapter 9, “Phone Services.”

Silverlight and Javascript
It is possible to interoperate between JavaScript on an HTML page and your application code, bi-

directionally. There are three pieces to this:

 ■ If you want any script on the page to run, you need to set the WebBrowser.IsScriptEnabled

property to true.

 ■ To receive data from scripts on the HTML page, you need to hook up the WebBrowser.Script

Notify event, and retrieve the data in the NotifyEventArgs parameter.

 ■ To invoke script on the HTML page, you can invoke the WebBrowser.InvokeScript method,

specifying the name of the function to invoke, and passing any input data.

You can work with script on any suitable HTML page, local or remote, although you would almost

certainly restrict your application to working with known pages and scripts—speciically, those that
you control. For this reason, the pages are likely to be either on a server you control or local to the

application. Figure 11-4 shows an application (WbcScript in the sample code) that loads a local HTML

page into a WebBrowser control.

356 PART III extended Services

FIguRE 11-4 You can interoperate between a phone application and web page script.

To make it more obvious which parts of this are in the web page and which parts are in the client

application, there is a border around the WebBrowser control. The HTML source for the page is listed

in the code sample that follows. There are two JavaScript functions:

 ■ outputFromApp This is invoked within the application. The function takes in a text param-

eter and sets it into the textFromApp DIV on the HTML page.

 ■ InputToApp This is invoked when the user taps the Send button on the HTML page. The

function takes the text from the textToApp input textbox on the page, and then sends it to

anything listening to the external Notify event (an event that you hook up in the client phone

application).

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/

xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head >

 <title>SimplePage</title>

 <meta name="mobileoptimized" content="480" />

 <script type="text/javascript">

 function OutputFromApp(text) {

 textFromApp.innerHTML = text;

 }

 function InputToApp() {

 window.external.Notify(textToApp.value);

 }

 </script>

</head>

<body>

 ChAPTER 11 Web and Cloud 357

 <div style="font-family: 'Segoe WP Semibold'; font-size: x-large">

 input

 <input id="textToApp" type="text"

 style="font-family: 'Segoe WP Semibold'; font-size: large; width: 292px;" />

 <input id="sendButton" type="button" value="send" onclick="InputToApp()"

 style="font-family: 'Segoe WP Semibold'; font-size: large; width: 90px;" />

 output

 <div id="textFromApp"

 style="font-family: 'Segoe WP Semibold'; font-size: x-large; color: #008000;" />

 </div>

</body>

</html>

Note the mobileoptimized tag: you can use this to specify an integer value that corresponds to the

intended display width of the screen. In the case of Windows Phone, this should always be 480. The

browser will honor this value, and force the page into a single-column layout at the speciied width.
The tag is also used by search engines to determine whether the page is mobile-optimized.

In the client phone application, enable scripting and hook up the ScriptNotify event. Then, to

load the local HTML ile, you fetch it from the XAP (using GetResourceStream, although it is built as

Content) and read it into a string. You can then use the WebBrowser.NavigateToString method to

render the page. When the user taps Send on the web page, the page JavaScript invokes Notify, which

results in a callback to the ScriptNotify event handler. In this handler, you fetch the incoming data

from the JavaScript function and set it into a TextBox. Finally, when the user taps the Invoke button

in the client phone application, you call InvokeScript to invoke one of the JavaScript functions on the

page and pass in some text data.

private void MainPage_Loaded(object sender, RoutedEventArgs e)

{

 wbc.IsScriptEnabled = true;

 wbc.ScriptNotify += new EventHandler<NotifyEventArgs>(wbc_ScriptNotify);

 StreamResourceInfo sri =

 App.GetResourceStream(new Uri("SimplePage.htm", UriKind.Relative));

 using (StreamReader reader = new StreamReader(sri.Stream))

 {

 String html = reader.ReadToEnd();

 wbc.NavigateToString(html);

 }

}

private void wbc_ScriptNotify(object sender, NotifyEventArgs e)

{

 scriptToApp.Text = e.Value;

}

private void InvokeScript_Click(object sender, RoutedEventArgs e)

{

 wbc.InvokeScript("OutputFromApp", appToScript.Text);

}

358 PART III extended Services

Web services

Windows Phone can consume web services, including Microsoft ASP.NET and WCF. The following

example uses a simple WCF service that provides facts about the Magical Manatee, a creature in Bra-

zilian folklore with mystical powers. The ServiceContract is listed in the following code. It deines just
one method, GetFact, which returns a string.

[ServiceContract]

public interface IMagicalManateeFacts

{

 [OperationContract]

 string GetFact();

}

The code that follows (the WCF Simple\MagicalManateeService solution in the sample code)

presents the server-side implementation. The service contains a static array of strings, and for each

GetFact call, it simply returns a (pseudo-)random string from the array.

public class MagicalManateeFacts : IMagicalManateeFacts

{

 public string GetFact()

 {

 int len = FactsStrings.Length;

 Random rand = new Random();

 int num = rand.Next(len - 1);

 return FactsStrings[num];

 }

 private static string[] FactsStrings =

 {

 @"The Magical Manatee uses Tabasco Sauce for eye drops.",

 @"The Magical Manatee can get Blackjack with just one card.",

 ... etc

 };

}

The service must be hosted in some executable process. In this example, the host is a console

application (see the sample code that accompanies this book for details). When the application

starts, it creates a ServiceHost for the MagicalManatee service component, specifying the URL

endpoint where clients can reach it. You then open the ServiceHost to start listening for client calls;

you continue to listen until the user presses a key on the console to close the host and terminate the

application.

The phone client has a single ListBox and an App Bar button, as shown in Figure 11-5. This is the

WCF Simple\MagicalManateeClient solution in the sample code.

In creating the client application, you can generate a client-side proxy to the WCF service in the

usual way: ensure that the service is running, select Add Service Reference, and then point to the

service URL, as shown in Figure 11-6. This example uses localhost with port 8001, but for a production

system, you would obviously use a real address.

 ChAPTER 11 Web and Cloud 359

FIguRE 11-5 It’s common for a phone client application to access web services.

FIguRE 11-6 Use the Add Service Reference Wizard to generate proxy code for a web service.

360 PART III extended Services

This will generate a proxy as well as a ServiceReferences.ClientConig ile. Note that the binding is
set to basicHttpBinding. You cannot change this for a phone application; this is a limitation of the .NET

Compact Framework.

<configuration>

 <system.serviceModel>

 <bindings>

 <basicHttpBinding>

 <binding name="BasicHttpBinding_IMagicalManateeFacts"

 maxBufferSize="2147483647"

 maxReceivedMessageSize="2147483647">

 <security mode="None" />

 </binding>

 </basicHttpBinding>

 </bindings>

 <client>

 <endpoint address="http://localhost:8001/MagicalManateeFacts.svc"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IMagicalManateeFacts"

 contract="ChuckClient.MagicalManateeService.IMagicalManateeFacts"

 name="BasicHttpBinding_IMagicalManateeFacts" />

 </client>

 </system.serviceModel>

</configuration>

Now you can implement the App Bar button Click handler to invoke the service.

private MagicalManateeFactsClient client;

private static bool isAccentBrush;

private void appbarGetFact_Click(object sender, EventArgs e)

{

 if (client == null)

 {

 client = new MagicalManateeFactsClient();

 client.GetFactCompleted += chuckClient_GetFactCompleted;

 }

 client.GetFactAsync();

}

All phone application calls to web services are asynchronous—only asynchronous client proxies are

generated, and you need to wire up the GetFactCompleted event and call GetFactAsync. In this exam-

ple, you implement the GetFactCompleted handler to add a new TextBlock for each Magical Manatee

fact received, and then add it to the ListBox (via the page Dispatcher, to ensure that it’s executed on

the UI thread). This example alternates the brush used for the TextBlock Foreground between the

standard foreground brush and a brush based on the current accent color.

private void client_GetFactCompleted(object sender, GetFactCompletedEventArgs e)

{

 String result = String.Empty;

 if (e.Error == null)

 {

 result += e.Result + Environment.NewLine;

 }

 ChAPTER 11 Web and Cloud 361

 else

 {

 result = e.Error.ToString() + Environment.NewLine;

 }

 Dispatcher.BeginInvoke(delegate

 {

 TextBlock tb = new TextBlock();

 tb.FontSize =

 (double)App.Current.Resources["PhoneFontSizeMediumLarge"];

 tb.TextWrapping = TextWrapping.Wrap;

 if (isAccentBrush)

 {

 tb.Foreground =

 (Brush)App.Current.Resources["PhoneAccentBrush"];

 }

 else

 {

 tb.Foreground =

 (Brush)App.Current.Resources["PhoneForegroundBrush"];

 }

 isAccentBrush = !isAccentBrush;

 tb.Text = result;

 factsList.Items.Add(tb);

 });

}

WCF Data services

A data service is an HTTP-based web service that exposes server-side data by using the Open Data

(OData) web protocol. You can use WCF Data Services to publish data from a server application by

using a REST-based interface, in either XML or JavaScript Object Notation (JSON) format. This is par-

ticularly interesting for mobile clients, because OData formats involve signiicantly less overhead than
traditional SOAP formats.

the OData Client and XML Data
Figure 11-7 illustrates the high-level architecture of a generic WCF data service client/server solu-

tion. In the server application, you can deine an Entity Data Model (EDM). This is a set of classes that
represent some backing data, typically tables and rows in a database. Then, you would deine a WCF
data service to consume the EDM and expose your selected data to the web. On the client, you would

typically generate a service proxy and data-bind the proxied entities to your UI.

362 PART III extended Services

Entity
Data

Model

WCF
Data

Service

Service
Proxy

UI

DB

data
bind

serve
data

map data
to classes

Server App Client App

FIguRE 11-7 At a high-level, there are ive major components in a WCF data service client/server solution.

Here are the basic steps for building an OData solution with a Windows Phone client, which are

discussed in detail, later on:

server

1. Create an ASP.NET application (by using either the regular ASP.NET Visual Studio project tem-

plate or the empty ASP.NET template).

2. Using Microsoft Visual Studio’s Add Item project wizard, add an ADO.NET Entity Data Model

item, mapped to the database tables/views that you want to expose.

3. Add a WCF Data Service item, and then connect it to your EDM.

Client

1. Run the server, and then run the DataSvcUtil tool to generate the client-side proxy.

2. Add the generated proxy classes to your Windows Phone client project.

3. In the client XAML, data-bind UI elements to the proxied data entities.

4. In the code-behind, (asynchronously) execute the proxy service queries to return the data

collection.

The following example uses the Customer table in the AdventureWorks database, which is one of

the Microsoft SQL Server sample databases.

More Info You can get the Microsoft SQL Server sample databases as free downloads from

codeplex at http://msftdbprodsamples.codeplex.com/.

 ChAPTER 11 Web and Cloud 363

On the server side, you have an ASP.NET Web Application with an ADO.NET Entity Data Model

mapped to the Customer table, plus a WCF Data Service. This is the WCF Data Services\Customer

WebApp solution in the sample code.

The Entity Data Model Wizard will generate Entities (ObjectContext) and Customer model (Entity)

classes. The Entities class roughly corresponds to your database (collection of tables and views that

you select in the wizard), whereas the Entity classes correspond to the individual tables and views, as

shown in the following example:

public partial class AdventureWorksLT2008R2Entities : ObjectContext

{

 public ObjectSet<Customer> Customers

 {

 get

 {

 if ((_Customers == null))

 {

 _Customers = base.CreateObjectSet<Customer>("Customers");

 }

 return _Customers;

 }

 }

 private ObjectSet<Customer> _Customers;

... etc

}

[EdmEntityTypeAttribute(

 NamespaceName="AdventureWorksLT2008R2Model", Name="Customer")]

[Serializable()]

[DataContractAttribute(IsReference=true)]

public partial class Customer : EntityObject

{

 [EdmScalarPropertyAttribute(EntityKeyProperty=true, IsNullable=false)]

 [DataMemberAttribute()]

 public global::System.Int32 CustomerID

 {

 get

 {

 return _CustomerID;

 }

 set

 {

 if (_CustomerID != value)

 {

 OnCustomerIDChanging(value);

 ReportPropertyChanging("CustomerID");

 _CustomerID = StructuralObject.SetValidValue(value);

 ReportPropertyChanged("CustomerID");

 OnCustomerIDChanged();

 }

 }

 }

364 PART III extended Services

 private global::System.Int32 _CustomerID;

 partial void OnCustomerIDChanging(global::System.Int32 value);

 partial void OnCustomerIDChanged();

 [EdmScalarPropertyAttribute(EntityKeyProperty=false, IsNullable=true)]

 [DataMemberAttribute()]

 public global::System.String CompanyName

 {

 ... etc

 }

... etc

}

The WCF Data Service Wizard will generate a customer data service, as follows:

public class CustomerDataService : DataService< /* put your data source class name here */ >

{

 public static void InitializeService(DataServiceConfiguration config)

 {

 config.DataServiceBehavior.MaxProtocolVersion =

 DataServiceProtocolVersion.V2;

 }

}

You must update the data service class to associate it with the EDM and to specify what access to

allow (read, write, append, delete, and so on) to which entities. The following example speciies all
access to all entities:

public class CustomerDataService : DataService<AdventureWorksLT2008R2Entities>

{

 public static void InitializeService(DataServiceConfiguration config)

 {

 config.SetEntitySetAccessRule("*", EntitySetRights.All);

 config.DataServiceBehavior.MaxProtocolVersion =

 DataServiceProtocolVersion.V2;

 }

}

Build and test the server. Most browsers will decide to render the results as an RSS feed. To see the

underlying data, you can select View Source. Alternatively (in Internet Explorer), click to Tools | Inter-

net Options, click the Content tab, and then in the Feeds And Web Slices section, click Settings. Clear

the Turn On Feed Reading View check box, as shown in Figure 11-8.

 ChAPTER 11 Web and Cloud 365

FIguRE 11-8 To see the data service data in XML, turn off feed reading view in Internet Explorer.

With this change, the browser will render the returned data as XML. The listing below shows just

the irst Customer in the list (Orlando Gee), returned by using the URL of our example service, that is,

http://localhost:8001/CustomerDataService.svc/Customers.

<feed xml:base="http://localhost:8001/CustomerDataService.svc/" xmlns:d="http://schemas.

microsoft.com/ado/2007/08/dataservices" xmlns:m="http://schemas.microsoft.com/ado/2007/08/

dataservices/metadata" xmlns="http://www.w3.org/2005/Atom">

 <title type="text">Customers</title>

 <id>http://localhost:8001/CustomerDataService.svc/Customers</id>

 <link rel="self" title="Customers" href="Customers" />

 <entry>

 <id>http://localhost:8001/CustomerDataService.svc/Customers(1)</id>

 <link rel="edit" title="Customer" href="Customers(1)" />

 <category term="AdventureWorksLT2008R2Model.Customer"

 scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme" />

 <content type="application/xml">

 <m:properties>

 <d:CustomerID m:type="Edm.Int32">1</d:CustomerID>

 <d:NameStyle m:type="Edm.Boolean">false</d:NameStyle>

 <d:FirstName>Orlando</d:FirstName>

 <d:LastName>Gee</d:LastName>

 <d:CompanyName>A Bike Store</d:CompanyName>

 <d:EmailAddress>orlando0@adventure-works.com</d:EmailAddress>

 <d:Phone>245-555-0173</d:Phone>

 </m:properties>

 </content>

 </entry>

 <entry>

 <id>http://localhost:8001/CustomerDataService.svc/Customers(2)</id>

 <!—etc -->

 </entry>

 <!—etc -->

366 PART III extended Services

To consume this service in a Windows Phone app, you can’t use the Visual Studio Add Service

Reference approach because WCF Data Services are not yet supported in the Visual Studio Windows

Phone application templates. Instead, you need to run the server, and then run the DataSvcUtil tool to

generate the client-side proxy. Here’s a suitable command line:

"%windir%\Microsoft.NET\Framework\v4.0.30319\DataSvcUtil.exe" /version:2.0 /

dataservicecollection /language:CSharp /out:CustomerData.cs /uri:http://localhost:8001/

CustomerDataService.svc

The /language, /out, and /uri switches are self-explanatory. You need the /version and /dataservice

collection switches to generate classes suitable for data binding.

Add the generated CustomerData.cs to the phone application project. You can see this at work in

the WCF Data Services\DataServiceClient(Simple) solution in the sample code. Also, add a reference

to the OData Client Library (System.Services.Data.Client.dll). Then, you can consume the data service

proxy in your client code.

The current example deines a ListBox with an ItemTemplate which contains TextBlock controls that

are data-bound to the service data, as shown in Figure 11-9.

FIguRE 11-9 All the hard work is in talking to the data service. After that, it’s just a question of
doing something useful with the data that’s returned.

The following is the deinition of the ItemTemplate and the ListBox in the XAML. Each ListBox item

is made up of a two-column Grid with two TextBlock controls, one bound to the CompanyName, and

the other bound to the Phone property.

 ChAPTER 11 Web and Cloud 367

<phone:PhoneApplicationPage.Resources>

 <DataTemplate x:Key="CustomerItemTemplate">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="270"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <TextBlock Grid.Column="0" Text="{Binding CompanyName}"

 Style="{StaticResource PhoneTextAccentStyle}"/>

 <TextBlock Grid.Column="1" Text="{Binding Phone}"/>

 </Grid>

 </DataTemplate>

</phone:PhoneApplicationPage.Resources>

<ListBox Name="customerList"

 ItemTemplate="{StaticResource CustomerItemTemplate}"/>

The code that follows is in the MainPage code-behind. You override OnNavigatedTo to call a

custom method ExecuteQuery, which sets up the query (in this example, you query for all Customers)

and makes an asynchronous call to execute the query. The callback retrieves the data results and dis-

patches them on the UI thread to the ListBox. Note that you’re instantiating the entities object as part

of class construction, but this might take a long time (that is, more than a few hundred milliseconds),

in which case, you should defer construction to the OnNavigatedTo override to ensure that the appli-

cation is as responsive as possible on startup. Also, in a production-strength application, you would

typically check to see if invoking the query is actually necessary. Speciically, you could test to see if
this is a fresh start or if the application is being resurrected after tombstoning. For scenarios in which

you have already done this (and persisted some/all of the data to isolated storage), you can avoid the

expensive server call.

public partial class MainPage : PhoneApplicationPage

{

 private AdventureWorksLT2008R2Entities entities =

 new AdventureWorksLT2008R2Entities(

 new Uri("http://localhost:8001/CustomerDataService.svc"));

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 ExecuteQuery();

 }

 private void ExecuteQuery()

 {

 DataServiceQuery<Customer> query = entities.Customers;

 query.BeginExecute(Customers_Callback, query);

 }

368 PART III extended Services

 private void Customers_Callback(IAsyncResult result)

 {

 DataServiceQuery<Customer> query =

 (DataServiceQuery<Customer>)result.AsyncState;

 var customers = query.EndExecute(result);

 this.Dispatcher.BeginInvoke(

 () => { customerList.ItemsSource = customers; });

 }

}

In the enhanced version shown in Figure 11-10 (the WCF Data Services\DataServiceClient(Filterable)

solution in the sample code), a ilter capability is provided. There’s an additional ListBox that is data-

bound to an array of strings to represent the alphabet. The user can scroll the list to ind a speciic
letter; you then ilter the query on the data service to return only those customers for which the
CompanyName starts with that letter.

FIguRE 11-10 It’s common to offer client-side iltering features for remote data services.

Here are the interesting changes. In the page, there is an array of strings, and a ield to record the
current ilter string. You set the ItemsSource of the new ListBox, named alphabetList, to this array.

private String[] alphabet =

 { "*", "A", "B", "C", "D", "E", "F", "G", "H",

 "I","J", "K", "L", "M", "N", "O", "P", "Q",

 "R","S", "T", "U", "V", "W", "X", "Y", "Z" };

public String filter = "*";

private AdventureWorksLT2008R2Entities entities =

 new AdventureWorksLT2008R2Entities(

 new Uri("http://localhost:8001/CustomerDataService.svc"));

 ChAPTER 11 Web and Cloud 369

public MainPage()

{

 InitializeComponent();

 this.alphabetList.ItemsSource = alphabet;

}

You invoke the ExecuteQuery not only in OnNavigatedTo but also in the SelectionChanged handler

for the alphabet ListBox. The ExecuteQuery is slightly more complex: the inner LINQ query has a where

clause (which returns an IQueryable<T>, which you then have to cast to the DataServiceQuery<T> that

you need to execute against the data service).

private void alphabet_SelectionChanged(object sender, SelectionChangedEventArgs e)

{

 filter = (String)this.alphabetList.SelectedItem;

 ExecuteQuery();

}

private void ExecuteQuery()

{

 DataServiceQuery<Customer> query = null;

 if (filter == "*")

 {

 query = entities.Customers;

 }

 else

 {

 var innerQuery =

 from c in entities.Customers

 where c.CompanyName.StartsWith(filter)

 select c;

 query = (DataServiceQuery<Customer>)innerQuery;

 }

 query.BeginExecute(Customers_Callback, query);

}

JSON-Formatted Data
Data formatted by using JSON is signiicantly smaller than XML-formatted data for the same web

service call. There’s no proxy-generation tools support for JSON, but the code you need to write is

simple enough. Instead of generating a proxy with the DataSvcUtil tool, you need to write a class

manually that corresponds to the data received. You can see this at work in the WCF Data Services\

DataServiceClient(JSON) solution in the sample code.

Here’s a class that maps to the Customer data. All mappable ields are set up as public properties
(they need to be serializable). You only need to deine the ields that you care about (in this case,
CompanyName and Phone). Note that the data in a JSON-formatted payload starts with “d”.

public class Customers

{

 public Customer[] d { get; set; }

}

370 PART III extended Services

public class Customer

{

 public String CompanyName { get; set; }

 public String Phone { get; set; }

}

The revised version of ExecuteQuery now has to create an HttpWebRequest manually and specify in

the HTTP Accept header that you want to receive JSON-formatted data.

private void ExecuteQuery()

{

 HttpWebRequest request = (HttpWebRequest)HttpWebRequest.Create(

 "http://localhost:8001/CustomerDataService.svc/Customers");

 request.Accept = "application/json";

 request.BeginGetResponse(Customers_Callback, request);

}

The callback extracts the data stream from the response and uses the DataContractJsonSerializer

(deined in System.ServiceModel.Web.dll) to deserialize it into a Customers object.

private void Customers_Callback(IAsyncResult result)

{

 HttpWebRequest request =

 (HttpWebRequest)result.AsyncState;

 HttpWebResponse response =

 (HttpWebResponse)request.EndGetResponse(result);

 DataContractJsonSerializer deserializer =

 new DataContractJsonSerializer(typeof(Customers));

 Stream responseStream = response.GetResponseStream();

 Customers customers =

 (Customers)deserializer.ReadObject(responseStream);

 this.Dispatcher.BeginInvoke(

 () => { customerList.ItemsSource = customers.d; });

}

Table 11-1 provides a detailed comparison of the data in XML format and JSON format for

Customers(1).

To achieve the same kind of iltering capability (wherein the app provides a iltered request to the
server, which then returns only the iltered data) with a JSON-based client, you can use a ilter as part
of the request URI string. The code that follows is an enhanced version; most of the changes are the

same as for the DataServiceQuery version. This is the WCF Data Services\DataServiceClient(JSON-

ilterable) solution in the sample code. The interesting differences are listed here—irst, for conve-

nience you declare a string that represents the unchanging part of the request URI.

private String requestBase =

 "http://localhost:8001/CustomerDataService.svc/Customers";

Then, in the ExecuteQuery method, you can append a suitable ilter query to the end of this
request URI.

 ChAPTER 11 Web and Cloud 371

private void ExecuteQuery()

{

 HttpWebRequest request = null;

 if (filter == "*")

 {

 request = (HttpWebRequest)HttpWebRequest.Create(requestBase);

 }

 else

 {

 string requestString = String.Format(

 "{0}$filter=startswith(CompanyName,'{1}')", requestBase, filter);

 request = (HttpWebRequest)HttpWebRequest.Create(requestString);

 }

 request.Accept = "application/json";

 request.BeginGetResponse(Customers_Callback, request);

}

TABlE 11-1 Comparision Between XML and JSON Format

xMl Json

 <?xml version="1.0" encoding="utf-8"
standalone="yes" ?>
- <entry xml:base="http://localhost:8001/
CustomerDataService.svc/" xmlns:d="http://
schemas.microsoft.com/ado/2007/08/dataservices"
xmlns:m="http://schemas.microsoft.com/ado/2007/08/
dataservices/metadata" xmlns="http://www.w3.org/2005/
Atom">
 <id>http://localhost:8001/CustomerDataService.svc/
Customers(1)</id>
 <title type="text" />
 <updated>2011-03-14T02:14:00Z</updated>
- <author>
 <name />
 </author>
 <link rel="edit" title="Customer"
href="Customers(1)" />
 <category term="AdventureWorksLT2008R2Model.
Customer" scheme="http://schemas.microsoft.com/
ado/2007/08/dataservices/scheme" />
- <content type="application/xml">
- <m:properties>
 <d:CustomerID m:type="Edm.Int32">1</d:CustomerID>
 <d:NameStyle m:type="Edm.Boolean">false</
d:NameStyle>
 <d:Title>Mr.</d:Title>
 <d:FirstName>Orlando</d:FirstName>
 <d:MiddleName>N.</d:MiddleName>
 <d:LastName>Gee</d:LastName>
 <d:Suffix m:null="true" />
 <d:CompanyName>A Bike Store</d:CompanyName>
 <d:SalesPerson>adventure-works\pamela0
 </d:SalesPerson>
 <d:EmailAddress>orlando0@adventure-works.com
 </d:EmailAddress>
 <d:Phone>245-555-0173</d:Phone>
 <d:PasswordHash>L/Rlwxzp4w7RWmEgXX+/
A7cXaePEPcp+KwQhl2fJL7w=</d:PasswordHash>
 <d:PasswordSalt>1KjXYs4=</d:PasswordSalt>
 <d:rowguid m:type="Edm.Guid">3f5ae95e-b87d-4aed-
95b4-c3797afcb74f</d:rowguid>
 <d:ModifiedDate m:type="Edm.DateTime">2005-08-
01T00:00:00</d:ModifiedDate>
 </m:properties>
 </content>
 </entry>

{
"d" : [
{
"__metadata": {
"uri": "http://localhost:8001/
CustomerDataService.svc/Customers(1)", "type":
"AdventureWorksLT2008R2Model.Customer"},
"CustomerID": 1, "NameStyle": false,"Title":
"Mr.", "FirstName": "Orlando","MiddleName": "N.",
"LastName": "Gee", "Suffix": null, "CompanyName":
"A Bike Store", "SalesPerson":"adventure-works\\
pamela0", "EmailAddress": "orlando0@adventure-works.
com", "Phone": "245-555-0173", "PasswordHash":
"L/Rlwxzp4w7RWmEgXX+/A7cXaePEPcp+KwQhl2fJL7w=",
"PasswordSalt": "1KjXYs4=", "rowguid": "3f5ae95e-
b87d-4aed-95b4-c3797afcb74f", "ModifiedDate":"\/
Date(1122854400000)\/"
}
]
}

372 PART III extended Services

Bing Maps and geolocation

The Bing Maps service exposes a range of APIs for use in a wide variety of application types. For Win-

dows Phone, you would typically use the Map control and the Bing Maps web services, both of which

are described in the following sections.

Using the Map Control
To use Bing Maps and Bing services, you need a Windows Live ID and a Bing Maps developer account,

both of which are free and easy to obtain. Go to http://www.bingmapsportal.com, associate an

account with your Live ID, and then select the option to create keys, as shown in Figure 11-11. You

can create up to ive keys, and for each one, you supply an arbitrary application name and URL (these
don’t have to bear any relation to your real application name/URL).

FIguRE 11-11 Use the Bing maps portal to create/view Bing account keys.

 ChAPTER 11 Web and Cloud 373

This will generate a key, which you should copy and save somewhere locally. For simplicity, you can

paste it into your application code, typically as a ield in the App class. You can see an example of this

in the SimpleBingMaps solution in the sample code. Note, however, that this is not a secure approach

to use for a production application. Chapter 13 discusses alternative, more secure approaches than

simply hard-coding such ”secrets” into your application.

internal const string BingMapsAccountId = "<< BING APP KEY >>";

In your main page, set up an ApplicationIdCredentialsProvider, using this key:

private readonly CredentialsProvider _credentialsProvider =

 new ApplicationIdCredentialsProvider(App.BingMapsAccountId);

public CredentialsProvider CredentialsProvider

{

 get { return _credentialsProvider; }

}

Note that ApplicationIdCredentialsProvider implements INotifyPropertyChanged, so you can use it

for data binding. Drag a Map control from the toolbox onto your page. In the XAML, data-bind it to

this CredentialsProvider.

<my:Map Name="map1" CredentialsProvider="{Binding CredentialsProvider}" />

These few simple steps will give your map functionality in your application, as shown in Figure 11-12.

FIguRE 11-12 Building a basic Bing maps application is simple.

374 PART III extended Services

Note Pinch-and-stretch will work out of the box, as will a double-tap to zoom in.

Geolocation
Basic use of the GeoCoordinateWatcher was covered in Chapter 9. In this example, you combine the

GeoCoordinateWatcher with Bing Maps. This is the TestBingMaps solution in the sample code.

To use the phone’s geolocation capabilities, add a reference to System.Device so that you can

declare a GeoCoordinateWatcher and GeoCoordinate ields. In OnNavigatedTo, you instantiate and

start the watcher, sinking the PositionChanged events. You stop the watcher in OnNavigatedFrom.

private GeoCoordinateWatcher coordWatcher;

private GeoCoordinate position;

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (coordWatcher == null)

 {

 coordWatcher = new GeoCoordinateWatcher();

 coordWatcher.PositionChanged += gcw_PositionChanged;

 }

 coordWatcher.Start();

}

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 if (coordWatcher != null)

 {

 coordWatcher.Stop();

 }

}

In the PositionChanged event handler, update the value of the GeoCoordinate. You’ll use this to set

the map position.

private void gcw_PositionChanged(object sender, GeoPositionChangedEventArgs<GeoCoordinate> e)

{

 position = e.Position.Location;

}

Finally, in a suitable App Bar button handler, you’ll set the map position. At the same time, set the

ZoomLevel to an arbitrary value of 16, just to make it more obvious that the position locator is work-

ing as expected.

 ChAPTER 11 Web and Cloud 375

private void appbarGeoLocate_Click(object sender, EventArgs e)

{

 if (position != null)

 {

 map1.Center = position;

 map1.ZoomLevel = 16;

 }

}

The results are shown in Figure 11-13.

FIguRE 11-13 An application is more useful if it combines Bing maps and geolocation.

Bing Maps Web Services
The Bing Maps Simple Object Access Protocol (SOAP) services are listed in Table 11-2.

TABlE 11-2 Bing Maps SOAP Services

namespace uRl

GeocodeService http://dev.virtualearth.net/webservices/v1/geocodeservice/geocodeservice.svc?wsdl

SearchService http://dev.virtualearth.net/webservices/v1/searchservice/searchservice.svc?wsdl

ImageryService http://dev.virtualearth.net/webservices/v1/imageryservice/imageryservice.svc?wsdl

RouteService http://dev.virtualearth.net/webservices/v1/routeservice/routeservice.svc?wsdl

376 PART III extended Services

The following example (the TestGeocodeService application in the sample code), which is shown

in Figure 11-14, uses the GeocodeService to ind the geocode (latitude,longitude) for a given street
address.

FIguRE 11-14 The GeocodeService is the most commonly used Bing Maps web service.

First, we add a service reference to the GeocodeService, as shown in Figure 11-15. Click the

Advanced button, set the Collection Type to System.Array, and then clear the Reuse Types In Refer-

enced Assemblies check box; otherwise, the wizard generates a blank service reference. You don’t

want the types from the assemblies referenced by the service because they’ll be full .NET CLR and not

compatible with the phone. The same applies to the collection classes.

 ChAPTER 11 Web and Cloud 377

FIguRE 11-15 Avoid incompatibilities in the generated service reference.

In addition to the client proxy code, this will also generate a client-side service conig ile, typi-
cally named ServiceReferences.ClientConig. This will include declarations like the basic HTTP binding,
which you will need to reference later in your code.

<basicHttpBinding>

 <binding name="BasicHttpBinding_IGeocodeService" maxBufferSize="2147483647"

 maxReceivedMessageSize="2147483647">

 <security mode="None" />

 </binding>

</basicHttpBinding>

In the main page, you implement the Button Click handler by creating a GeocodeRequest, handling

its GeocodeCompleted event and invoking the asynchronous web service call GeocodeAsync.

internal const string BingMapsAccountId = "<< BING APP KEY >>";

private void getGeocode_Click(object sender, RoutedEventArgs e)

{

 if (!String.IsNullOrEmpty(streetText.Text))

 {

378 PART III extended Services

 GeocodeRequest request = new GeocodeRequest();

 request.Credentials = new Credentials();

 request.Credentials.ApplicationId = BingMapsAccountId;

 request.Query = streetText.Text;

 GeocodeServiceClient geocodeService =

 new GeocodeServiceClient("BasicHttpBinding_IGeocodeService");

 geocodeService.GeocodeCompleted +=

 new EventHandler<GeocodeCompletedEventArgs>

 (geocodeService_GeocodeCompleted);

 geocodeService.GeocodeAsync(request);

 }

}

When you receive the GeocodeCompleted event, extract the Latitude and Longitude values from

the results, and then set them into the last TextBox.

private void geocodeService_GeocodeCompleted(object sender, GeocodeCompletedEventArgs e)

{

 GeocodeResponse response = e.Result;

 if (response.Results.Length > 0)

 {

 geocodeText.Text = String.Format("{0},{1}",

 response.Results[0].Locations[0].Latitude,

 response.Results[0].Locations[0].Longitude);

 }

 else

 {

 geocodeText.Text = "not found";

 }

}

Deep Zoom (MultiScaleImage)

Deep Zoom is a WPF/Silverlight technology with which you can build applications that use extremely

high-resolution images that can be incrementally downloaded to a desktop or mobile device. This

provides obvious bandwidth-consumption beneits and a responsive UI, even in the face of very large
image iles. The way it works is that images are comprised of image tiles, at different resolutions. As
the user zooms in and out of the image, only those tiles required for the requested zoom operation

are downloaded. Although it is possible to use local image tiles with desktop Silverlight, this does not

work with Windows Phone—all Deep Zoom images must be on a remote server, not packaged with

the application itself. Figure 11-16 shows a simple application (the TestDZ solution in the sample code)

that uses Deep Zoom. The phone application uses a Deep Zoom project on the server side.

 ChAPTER 11 Web and Cloud 379

FIguRE 11-16 You can easily adapt a desktop Deep Zoom project for a Windows Phone application.

There are two stages to creating a Deep Zoom application: creating the image tiles that reside on

a server; and creating the client application on the phone that downloads the server-side images. To

create the image tiles, you need to use the Deep Zoom Composer tool, which is a free download from

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=24819. Full documentation is

included in the download, but the basic steps are as follows:

1. Create a new Deep Zoom project.

2. Import one or more source images. You can drag image iles onto the Deep Zoom Composer
window.

3. Compose the images, including optionally layering different images at different zoom levels

into one composite experience.

4. Export the project. At this point, you can choose from several options for the export. The most

useful for the purposes of Windows Phone development is to use the Deep Zoom Classic +

Source template type. This generates a desktop Silverlight solution as well as generating all

the image tiles. You can see an example of this in Figure 11-17.

380 PART III extended Services

FIguRE 11-17 Create a Deep Zoom project by using the Deep Zoom Composer tool.

The generated solution includes an XAML ile for the main application page, which includes
the declaration for a MultiScaleImage control. The MultiScaleImage control is a standard control in

System.Windows.dll. The Source property is set to the default dzc_output.xml, which is the top-level

manifest that points to the collection of image tiles. The image tiles reside in a server-side web proj-

ect, also generated as output by the Deep Zoom Composer. At this point, you could deploy the web

project to a server. The desktop Silverlight project would also typically be deployed from a server-

hosted HTML page. This piece is not required for a Windows Phone solution, but to keep things

simple, you can just build and execute the entire solution as is. This will deploy to the local computer

and run the browser to connect to the HTML page that hosts the Silverlight solution. You can then

copy the browser URL and use it as the base path for the Source of your own MultiScaleImage control.

Create a phone solution, and then add the following line to your page XAML, making sure that the

URL corresponds to the path of the generated dzc_output.xml in the web project:

<MultiScaleImage

 x:Name="msi" Source="http://localhost:61306/DeepZoomProjectSite/ClientBin/GeneratedImages/

dzc_output.xml"/>

You can also cannibalize parts of the desktop Silverlight project and use them in a standard

Windows Phone solution. Speciically, almost all of the code related to mouse manipulation can be
used directly—just copy it into your phone project. This provides all the scroll/drag behavior, and

supports zooming by tapping the image. Most of this code is in three anonymous delegates, which

you can copy from the Page.xaml.cs in the desktop Silverlight project to the MainPage.xaml.cs in your

 ChAPTER 11 Web and Cloud 381

phone project. These delegates handle MouseLeftButtonDown to track the starting point of a subse-

quent MouseMove; MouseLeftButtonUp to zoom in or out by a factor of two (depending on whether

the Shift key is down—this is not applicable to non-keyboard/SIP input in a phone application); and

MouseMove to move the ViewportOrigin of the MultiScaleImage control (thereby dragging it around

the screen).

public MainPage()

{

 InitializeComponent();

 this.MouseLeftButtonDown += delegate(object sender, MouseButtonEventArgs e)

 {

 lastMouseDownPos = e.GetPosition(msi);

 lastMouseViewPort = msi.ViewportOrigin;

 mouseDown = true;

 msi.CaptureMouse();

 };

 this.MouseLeftButtonUp += delegate(object sender, MouseButtonEventArgs e)

 {

 if (!duringDrag)

 {

 newzoom *= 2;

 Zoom(newzoom, msi.ElementToLogicalPoint(this.lastMousePos));

 }

 duringDrag = false;

 mouseDown = false;

 msi.ReleaseMouseCapture();

 };

 this.MouseMove += delegate(object sender, MouseEventArgs e)

 {

 lastMousePos = e.GetPosition(msi);

 if (mouseDown && !duringDrag)

 {

 duringDrag = true;

 double w = msi.ViewportWidth;

 Point o = new Point(msi.ViewportOrigin.X, msi.ViewportOrigin.Y);

 msi.UseSprings = false;

 msi.ViewportOrigin = new Point(o.X, o.Y);

 msi.ViewportWidth = w;

 zoom = 1 / w;

 msi.UseSprings = true;

 }

 if (duringDrag)

 {

 Point newPoint = lastMouseViewPort;

 newPoint.X += (lastMouseDownPos.X - lastMousePos.X) /

 msi.ActualWidth * msi.ViewportWidth;

 newPoint.Y += (lastMouseDownPos.Y - lastMousePos.Y) /

 msi.ActualWidth * msi.ViewportWidth;

 msi.ViewportOrigin = newPoint;

 }

 };

}

382 PART III extended Services

As an alternative to just copying the code from the desktop project, you could consider migrat-

ing the mouse event code to use ManipulationXXX event handlers or OnManipulationXXX overrides,

instead. This would keep your code more in line with the touch-oriented phone model, as opposed to

the mouse-oriented desktop model. With the SDK v7.1, you could also use the simpler Gesture event

support.

The desktop project also includes four buttons and their Click handlers (zooming in, zooming

out, resetting to the original zoom level, and zooming to fullscreen). The fullscreen behavior is not

relevant to Windows Phone, but all the code for the other three buttons can be copied and pasted.

Revisit Figure 11-16 and note that the on-page buttons have been replaced with App Bar buttons, but

the code-behind is the same.

private void Zoom(double newzoom, Point p)

{

 if (newzoom < 0.5)

 {

 newzoom = 0.5;

 }

 msi.ZoomAboutLogicalPoint(newzoom / zoom, p.X, p.Y);

 zoom = newzoom;

}

private void GoHome_Click(object sender, EventArgs e)

{

 this.msi.ViewportWidth = 1;

 this.msi.ViewportOrigin = new Point(0, 0);

 ZoomFactor = 1;

}

private void ZoomOut_Click(object sender, EventArgs e)

{

 Zoom(zoom / 2, msi.ElementToLogicalPoint(

 new Point(.5 * msi.ActualWidth, .5 * msi.ActualHeight)));

}

private void ZoomIn_Click(object sender, EventArgs e)

{

 Zoom(zoom * 2, msi.ElementToLogicalPoint(

 new Point(.5 * msi.ActualWidth, .5 * msi.ActualHeight)));

}

Note that the code generated by the Deep Zoom Composer tool sets the zoom factor to 1.3 in the

ZoomIn and ZoomOut handlers. To be consistent with touch/mouse manipulation, the code above

sets the factor to 2 in both cases. Also note that if you want to experiment with a phone solution

without going to the trouble of building and deploying server-side image tiles, you can point your

MultiScaleImage to the Deep Zoom team’s hosted tiles at http://static.seadragon.com, as shown here:

<MultiScaleImage x:Name="msi" Source="http://static.seadragon.com/content/misc/

contoso-fixster.dzi"/>

 ChAPTER 11 Web and Cloud 383

Note If you want to see these tiles in a regular browser window, go to http://zoom.it.

Windows Azure

Windows Azure is a cloud services platform hosted through Microsoft data centers. Customers who

have accounts on Azure Windows Azure accounts can build and deploy applications to the cloud.

The applications are hosted in virtual computers running on geographically distributed data cen-

ters. Customer data can be hosted in SQL Azure databases and/or in Windows Azure tables and

blob containers. You would then typically deploy headless components—called “worker roles”—and

internet-facing web services and web applications—called “Web Roles.” Finally, you can also build

client applications (desktop, web or mobile) to connect to the server-side components. Figure 11-18

summarizes the high-level architecture of Windows Azure applications. In this diagram, the round-

cornered blocks are custom-deined, whereas the rectangular blocks are part of Windows Azure.

SQL
Database

Admin
Portal

Azure
API

Access
Control

Azure OS & API

Windows Azure

Application

App Fabric

Client

SQL
Azure

Compute
Services

Storage
Services

Browser
Client

Web
Role

Worker
Role

Queue

Table

Blob
Phone or
Desktop
Client

VM

FIguRE 11-18 The Windows Azure application architecture offers a comprehensive set of cloud features.

384 PART III extended Services

When you build a Windows Azure application, you can build one or more Web Roles and/or

one or more worker roles. Each web or worker role runs in a virtual computer on top of the Win-

dows Azure operating system, which itself sits on top of Windows Internet Information Services (IIS).

Microsoft provides an admin portal with which you can manage your server-side application, includ-

ing starting and stopping, specifying the number of instances to run, and so on. The portal is a web

application accessible from any browser. Your Web Role can consist of headless web services or it can

include web UI. If your Web Role includes web UI, then the user can connect to it via a browser. You

can also create Windows desktop and/or Windows Phone client applications that connect to Win-

dows Azure. These will typically use the Windows Azure API, most of which resides in the Microsoft.

WindowsAzure.StorageClient.dll (part of the Windows Azure SDK).

The Windows Azure AppFabric SDK includes access control, compute services, and storage ser-

vices. Together, these provide secured access to your data in the cloud. There are two main types of

cloud data:

 ■ Windows Azure storage This is intended for relatively simple, lat data. You can use
tables (which behave like a very simple form of database table, supporting simple queries),

queues (which behave exactly like queues, for reliable, persistent messaging between services),

and blobs (for any unstructured data such as images).

 ■ sQl Azure This is a full-blown SQL Server implementation hosted within Windows Azure. It

has equivalent capabilities to regular SQL Server, including automatic geographically distrib-

uted server replication, provided by default.

Just as you can choose an appropriate permutation of web and/or worker roles, you can also

choose which, if any, of the storage options your application needs. You can access the storage ser-

vices either directly via a REST API over the Internet from any application that can use HTTP/HTTPS,

or from a server-side component running within Windows Azure by using the StorageClient.dll.

The Windows Azure SDK is available as a free download from http://www.microsoft.com/

windowsazure/sdk/, and includes:

 ■ Windows Azure Tools for Microsoft Visual Studio, including project templates.

 ■ Windows Azure SDK, including the client API in the StorageClient.dll.

 ■ Visual Web Developer 2010, if you do not have Visual Studio 2010.

 ■ ASP.Net MVC3.

 ■ Windows Azure AppFabric SDK.

 ■ Required IIS feature settings and related hotixes.

 ■ The storage emulator, which provides desktop emulation of Windows Azure storage services

for local blob, queue, and table storage. This also includes the DSInit command-line tool for

coniguring the storage emulator for your speciic desktop and local SQL environment.

http://www.microsoft.com/windowsazure/sdk/
http://www.microsoft.com/windowsazure/sdk/

 ChAPTER 11 Web and Cloud 385

 ■ The compute emulator, which provides desktop emulation of the Windows Azure compute

services, including a UI application for managing service deployments and role instances, and

the CSPack and CSRun command-line tools for packaging applications for deployment.

Windows Azure Web Services
From the perspective of the Windows Phone app, consuming a web service exposed by Windows

Azure is no different from consuming a web service exposed in any other way. Setting up the Win-

dows Azure web service, however, does require speciic steps, including an Azure account registration.

This example (including all the applications in the CloudManatee solution in the sample code) is a

Windows Azure equivalent of the MagicalManatee WCF web service example that you created earlier.

After you have downloaded and installed the Windows Azure SDK, create a Windows Azure project,

and then add a WCF Service Web Role, as shown in Figure 11-19.

FIguRE 11-19 Add a WCF Service Web Role to a Windows Azure solution.

 ■ Create the service. Rename and edit the IService1.cs, Service1.svc, and Service1.svc.cs to

deine your service. All this is the same as for regular WCF web services. Press F5 to build and
run it. This will run the service and open a client browser window to the svc URL.

 ■ Create the client. With the service still running, create a Windows Phone app, and then add

a service reference to the service. Write code to exercise the service methods. All this is the

same as for regular WCF web services client. Build and test the client.

 ■ Provision the service in Azure. Log on to the Windows Azure Management Portal

(http://windows.azure.com), and then create the storage account for your application, as shown

in Figure 11-20.

386 PART III extended Services

Note Even if you don’t have explicit data to store, you need a storage account for diagnos-

tics logs. Select your subscription from the list, and then enter the name for your storage

account. This must be a unique name. Azure uses this value to generate the endpoint URLs

for the storage account services.

FIguRE 11-20 For most Windows Azure solutions, you must create a new storage account.

Create a new afinity group from the drop-down list. You use this to deploy both the hosted
service and storage account to the same location, thus ensuring high bandwidth and low latency

between the application and the data on which it depends. When you conirm this dialog, the pro-

visioning process starts—this usually takes a few minutes. Once provisioning is complete, you need

to copy the generated access keys for use in your code. You can get these keys from the View Access

Keys button in the management portal toolbar.

In Visual Studio, open the ServiceConiguration.cscfg ile located in your service. Replace the
developer diagnostics connection string value with your account information. That is, replace this:

<Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"

value="UseDevelopmentStorage=true" />

with this (using your own account name and key, as copied to the clipboard in an earlier step):

<Setting name="Microsoft.WindowsAzure.Plugins.Diagnostics.ConnectionString"

value="DefaultEndpointsProtocol=https;AccountName=magicalmanateeservice;AccountKey=XXXXXXXXXXXXX

XX" />

Go back to the Management Portal and create a new hosted service, as shown in Figure 11-21.

Enter an arbitrary (and unique) service name and a name for the base part of the URL. You should

normally use the same name for both the storage account and hosted service.

 ChAPTER 11 Web and Cloud 387

FIguRE 11-21 Create a new Hosted Service for your Windows Azure web services.

Use the same afinity group as for your storage account. Select the option labeled Do Not Deploy.
While you can create and deploy your service to Azure in a single operation by completing the

Deployment Options section, it is normal to use the “deferred deployment” path because the same

steps are used when updating your deployment.

There are several alternatives for deploying applications to Azure. Using the Azure Tools for Visual

Studio, you can both create and deploy the service package to the Azure environment directly from

Visual Studio. Another deployment option is the Azure Service Management PowerShell Cmdlets

(available at http://archive.msdn.microsoft.com/azurecmdlets) with which you can script deployment

of your application. With the Management Portal, you can deploy and manage your service by using

only your browser.

Back in Visual Studio, right-click the cloud project (not the Web Role), and then select Package, as

shown in Figure 11-22.

388 PART III extended Services

FIguRE 11-22 It is generally more useful to deploy the Windows Azure project in two phases.

This creates the packaged solution and its coniguration ile. By default, these are located in the
app.publish subfolder of your solution target folder. Note that in order to package and publish from

Visual Studio, you will be prompted to download and import a credentials ile from the Azure Man-

agement Portal.

Back in the Management Portal, select your hosted service, and then create a New Staging

Deployment. A hosted service has two separate deployment slots: staging and production. With the

staging deployment slot, you can test your service in the Azure environment before you deploy it to

production. Specify an arbitrary name for this deployment (for example, v1.0), and then browse to the

location for the package and coniguration iles, as shown in Figure 11-23.

FIguRE 11-23 When you create a new deployment, you’re typically creating a new version of your solution.

 ChAPTER 11 Web and Cloud 389

When you conirm this, the system analyzes your service coniguration. If it inds anything ques-
tionable, it will issue a warning. For example, if any of your roles are set to have only one instance

deployed (which is the default code generated in Visual Studio), the system will warn that this is not

best practice from an availability perspective. You can override this warning, and you can always go

back and edit the number of instances in the portal later. After conirming the deployment, the ser-
vice is provisioned, and you can then test it. In the Management Portal, select your deployment and

copy (don’t click) the link in the text box labeled DNS Name, as shown in Figure 11-24.

FIguRE 11-24 When you deploy your solution, you get a unique URL for the service name.

Paste this into a browser and append the service .svc extension; for example:

http://a18daf2763ff41eb88f753fb6c6f8b72.cloudapp.net/MagicalManateeFacts.svc

When you have veriied that the service is working correctly in the staging environment, you can
promote it to inal production. When you deploy the application to production, Azure reconigures its
load balancers so that the application is available at its production URL—in this example, that will be:

http://magicalmanateeservice.cloudapp.net/MagicalManateeFacts.svc.

To switch between staging and production, select your service, and then on the ribbon, click Swap

VIP. In the Swap VIP dialog box, click OK to swap the deployments between staging and production.

Wait for the promotion process to complete, and then test the client phone app again. The inal
result on the client is exactly the same as the version illustrated back in Figure 11-5. The only differ-

ence between this version of the client and the earlier version is that you now target an Azure-hosted

web service instead of a web service hosted on a non-Azure server. This difference is almost com-

pletely transparent to the client. To redirect the client to point to the Azure web service, all you need

to do is to change the endpoint address in the ServiceReferences.ClientConig ile, as follows:

<endpoint

 address="http://magicalmanateeservice.cloudapp.net/MagicalManateeFacts.svc"

 binding="basicHttpBinding"

 bindingConfiguration="BasicHttpBinding_IMagicalManateeFacts"

 contract="MagicalManateeService.IMagicalManateeFacts"

 name="BasicHttpBinding_IMagicalManateeFacts" />

390 PART III extended Services

Windows Azure toolkit for Windows Phone
The Developer Platform Evangelism team at Microsoft publishes and maintains the Windows Azure

Toolkit for Windows Phone. This is available as a free download from http://watwp.codeplex.com/.

The toolkit includes Visual Studio project templates for building Windows Azure solutions that

incorporate Windows Phone client applications, a set of class libraries optimized for use on the phone,

sample applications, and documentation. One of the most useful pieces in the toolkit is its support

for authentication. To access data stored in Windows Azure, a client must have the name and key

information for the storage account. You would not want to expose this information to real client

applications across the Internet, and you would not want these details stored on the phone. To solve

this issue, the toolkit provides a set of proxies and services with which you can access Windows Azure

Storage in a secure fashion. This way, the storage account information remains safe in the Web Role

that hosts these services:

 ■ The Azure Tables and Queues proxies forward requests to the real Windows Azure Storage

Services. These proxies support several authentication mechanisms such as Membership and

Access Control Service (ACS).

 ■ The Shared Access Signature service is a WCF REST Service that delivers Shared Access Signa-

tures (SAS) for containers and blobs. An SAS is a set of URL query parameters that includes an

expiry time, the permission set to be granted, the blob/container resources to be made avail-

able, and the signature that the Blob service should use to authenticate the request. Once the

phone client receives the SAS, it can use it to perform requests to the Blob Service REST API.

To get a feel for the toolkit, the proxies, and the supporting class libraries, you can create a new

application by using the toolkit-supplied Windows Phone 7 Cloud Application solution template in

Visual Studio. This will generate a solution with three projects: the Cloud project (which is primarily a

deployment packaging project); a Cloud Services project (which contains the Web Roles, web services,

and web application); and a Phone client application. Altogether, the template generates about 190

iles. However, the solution is not as complicated as it seems: it is heavily layered, with strict separation
of concerns, using a Model View ViewModel (MVVM) design—and most of the iles are quite small.

Starting the Cloud project starts both the web app and the web services. The web app, shown in

Figure 11-25, provides a tabbed-UI for managing users and permissions.

 ChAPTER 11 Web and Cloud 391

FIguRE 11-25 A Windows Phone 7 cloud application has a web app management portal.

The web services include both authentication services to verify that the client has the required per-

missions to access the cloud resources as well as the data services for transferring data to and from

Azure storage. The phone application starts with a LoginPage, which upon successful login by the

user, transitions to the MainPage. The MainPage has a PivotControl with pivot items for a list of tables,

list of table data, and list of blob data. The phone UI is shown in Figure 11-26.

392 PART III extended Services

FIguRE 11-26 The Windows Phone client application login page and pivot page, connecting to Windows Azure.

Figures 11-27, 11-28, and 11-29 summarize the lows between the client and server applications,
and the various toolkit-provided services and proxies that are used. First, login: the LoginPage is

backed by a corresponding viewmodel, which uses the StorageClient.dll to connect to the

AuthenticationService.

AuthenticationServiceAzure StorageClient

LoginPage ViewModel

LoginPage

Windows Phone Client App Windows Azure
Server App

(ASP.NET MVC 3
Web Role)1. Login

2. Login

3. Login

4. GenerateAuthToken

1a. PageTransitionOut.
Completed

MainPage

FIguRE 11-27 A phone client application logs in via the AuthenticationService.

 ChAPTER 11 Web and Cloud 393

After logging in, the user can select any of the pivot items on the MainPage, but each type of data

represented is also secured on the server. For example, to access a list of tables and the table data

within them, the user must not only be registered with the application but must also be authorized to

access the table data. The web application provides UI for the administrator to manage storage and

user permissions. The pivot items for table listings and table data are both backed by correspond-

ing viewmodels, which use the StorageClient.dll to talk to the AzureTablesHandler proxy. In turn, this

proxy submits an HttpWebRequest to fetch table data from cloud storage.

AzureTablesHandlerAzure StorageClient

Tables ViewModel

MainPage

Windows Phone Client App Windows Azure
Server App

(ASP.NET MVC 3
Web Role)2a. Fetch

Azure Data

2b. Fetch
Azure Data

3. HttpWebRequest

1. Setup
Viewmodels

Tables

Windows Azure
Server App

(OData Service)

2c. Fetch
Azure Data

4. Return
WebResponse

FIguRE 11-28 The phone client application accesses table data via the AzureTablesHandler proxy.

Access to blob containers and blob data is via the SharedAccessSignature service. Internally, this

uses the StorageClient.dll to connect to the blobs in Azure via a REST API.

394 PART III extended Services

Azure StorageClient

SharedAccessSignature
Service

Azure StorageClient

Tables ViewModel

MainPage

Windows Phone Client App Windows Azure
Server App

(ASP.NET MVC 3
Web Role)2a. Fetch

Azure Data

2b. Fetch
Azure Data

1. Setup
Viewmodels

Windows Azure
Server App
(REST API)

3. Get
Blobs

5. Return
Blobs

4. GetContainer, ListBlobs

2c. Fetch
Azure Data

6. Return
Blob Data

Containers
& Blobs

FIguRE 11-29 The phone client application accesses blob data via the SharedAccessSignature Service.

This application exercises many of the features of the toolkit and acts as guidance for building your

own phone applications for connecting to Windows Azure Storage. The toolkit also includes sample

applications for accessing SQL Azure databases by using bitly and by using Project Hawaii. bitly is

discussed in the upcoming section. Project Hawaii is a joint initiative between Microsoft Research and

universities around the world. It enables students to develop inventive cloud-enhanced mobile appli-

cations. Students at participating universities can use Windows Phone for accessing Windows Azure

for computation and data storage.

bitly

bitly is a tool with which users can create a very short URL that maps to any arbitrarily long URL. The

resulting short URL is unique and publicly accessible. For example, you can turn the link http://msdn.

microsoft.com/en-us/library/ff637516(VS.92).aspx into http://bit.ly/c2RmNr. bitly exposes an API that

you can use in your Windows Phone applications. To use the bitly API, you must irst create a free
account at http://bitly.com/. The bitly API is documented at http://code.google.com/p/bitly-api/wiki/

ApiDocumentation. Figure 11-30 shows a Windows Phone application (TestBitly in the sample code)

that uses the bitly API to generate a shortened URL from a long URL.

http://msdn.microsoft.com/en-us/library/ff637516(VS.92).aspx
http://msdn.microsoft.com/en-us/library/ff637516(VS.92).aspx
http://code.google.com/p/bitly-api/wiki/ApiDocumentation
http://code.google.com/p/bitly-api/wiki/ApiDocumentation

 ChAPTER 11 Web and Cloud 395

FIguRE 11-30 You can use the bitly API to generate a short URL, and then navigate to that URL.

The user can enter a long URL in the irst TextBox. When he taps the Shorten button, you compose

a URI string that incorporates the base bitly API website along with your API username and account

key, and the long URL as query string parameters. As noted with Bing services, you should not hard-

code your username and account key in a production application. See Chapter 13 for ways to secure

these credentials. You then make an asynchronous WebClient request, and retrieve the XML returned

as an XDocument. This will contain the short URL as well as a status code. In the event of an error, it

will also contain an error string.

private void Shorten_Click(object sender, RoutedEventArgs e)

{

 String login = "<< YOUR BITLY USERNAME >>";

 String apiKey = "<< YOUR BITLY API ACCOUNT KEY >>";

 String longUrl = LongUrl.Text;

 String uriString = String.Format(

 "http://api.bitly.com/v3/shorten?login={0}&apiKey={1}&format=xml&longUrl={2}",

 login, apiKey, longUrl);

 Uri bitlyUrl = new Uri(uriString);

 WebClient client = new WebClient();

 client.DownloadStringCompleted += (s, ev) =>

 {

396 PART III extended Services

 if (ev.Error == null)

 {

 XDocument doc = XDocument.Parse(ev.Result);

 XElement errorCodeResponse =

 doc.Descendants("status_code").FirstOrDefault();

 String shortenedUrl = longUrl;

 if (errorCodeResponse != null)

 {

 int statusCode = Convert.ToInt32(errorCodeResponse.Value);

 if ((StatusCode)statusCode == StatusCode.OK)

 {

 XElement node = doc.Descendants("data").FirstOrDefault();

 shortenedUrl = node.Descendants("url").SingleOrDefault().Value;

 }

 }

 Dispatcher.BeginInvoke(() => { ShortUrl.Text = shortenedUrl; });

 }

 };

 client.DownloadStringAsync(bitlyUrl);

}

When you get the short URL back, set it into the second TextBox. After that, the user can tap

the second button to navigate to the short URL, using a WebBrowserTask. The result is shown in

Figure 11-30.

private void Go_Click(object sender, RoutedEventArgs e)

{

 WebBrowserTask browserTask = new WebBrowserTask();

 browserTask.URL = ShortUrl.Text;

 browserTask.Show();

}

Note that the preceding listings use a custom StatusCode enum, whose values are derived from the

bitly API documentation.

public enum StatusCode

{

 OK = 200,

 RateLimitExceeded = 403,

 Invalid = 500,

 UnknownError = 503,

 Unspecified = 1,

}

Facebook

The Facebook C# SDK is available as a free download at http://facebooksdk.codeplex.com. The SDK

supports web, desktop Silverlight, and Windows Phone applications that are intended to integrate with

Facebook. To create a Phone application that integrates with Facebook, you must provision the applica-

tion on Facebook. To do this, go to the Facebook developer page (http://developers.facebook.com/),

 ChAPTER 11 Web and Cloud 397

log in with a valid Facebook account, and then create an application. The tool will present you with a

prompt you for an application name as well as a captcha challenge. It will then allocate you an App ID

and App Secret. As noted with the Bing and bitly examples, you should not hard-code these creden-

tials in a production application. See Chapter 13 for security options.

Back in Visual Studio, create a regular phone application, and put a WebBrowser control on your

page. The example shown in Figure 11-31 offers a Button to start connecting to Facebook, a Web

Browser control (in this screenshot, it shows the result of the user’s irst tap on the Go button), and a
TextBox at the bottom in which you place the results when you fetch Facebook data. This is the Test

Facebook solution in the sample code.

FIguRE 11-31 When you log into Facebook, you’re presented with a permissions prompt.

In the XAML, note that it is important to set the WebBrowser control’s IsScriptEnabled property to

true; otherwise, the connection will fail, because the Facebook login mechanism includes Javascript

for redirection.

<StackPanel x:Name="ContentPanel">

 <Button x:Name="Go" Content="go" Click="Go_Click"/>

 <phone:WebBrowser

 x:Name="wbc" Height="430" Margin="{StaticResource PhoneHorizontalMargin}"

 IsScriptEnabled="True"/>

 <TextBox x:Name="FbData" TextWrapping="Wrap" Height="110" />

</StackPanel>

In the code-behind, add a reference to the Facebook.dll, deployed as part of the SDK. Then,

declare a string for the App ID and an array of strings for the permissions that your application will

398 PART III extended Services

request from the user when she logs in. As noted previously, you should not hard-code the App ID in

a production application. See Chapter 13 for security options.

The code that follows lists all of the possible permissions. Normally, you would want to request

only those permissions that you actually need. The more permissions you ask for, the higher the

chance the user will reject the request to connect.

private const string appID = "<< APP ID >>";

private readonly string[] extendedPermissions = new[]

{

 "user_about_me", "user_activities", "user_location", "user_likes",

 "user_interests", "friends_activities", "friends_about_me", "read_stream",

 "read_friendlists", "email", "user_birthday", "publish_stream", "offline_access"

};

Handle the Click event on the button by navigating the WebBrowser contol to the Facebook login

page. This is not a ixed URL; rather, it is composed of the speciic user information, permissions, and
authentication type that this application uses. As of the time of this writing, contrary to the documen-

tation, you need to specify “wap” for the display property, not “touch” for a phone application. You

build a string of all the properties you need, and pass this to the FacebookOAuthClient GetLogin

Url method, which will return a valid URL that you can then pass on to the WebBrowser control for

navigation.

private void Go_Click(object sender, RoutedEventArgs e)

{

 FacebookOAuthClient oauth = new FacebookOAuthClient { AppId = appID };

 Dictionary<String, object> parameters = new Dictionary<String, object>

 {

 { "response_type", "token" },

 { "display", "wap" }

 };

 if (extendedPermissions != null && extendedPermissions.Length > 0)

 {

 parameters["scope"] = String.Join(",", extendedPermissions);

 }

 Uri loginUrl = oauth.GetLoginUrl(parameters);

 wbc.Navigated += new EventHandler<NavigationEventArgs>(wbc_Navigated);

 wbc.Navigate(loginUrl);

}

 ChAPTER 11 Web and Cloud 399

In this example, the URL returned by GetLoginUrl looks something like the following listing (with

the dummy “<< APP ID >>” replaced, of course), which can be useful to know in case you ever need to

either compose or decompose the URL manually:

http://www.facebook.com/dialog/oauth/?response_type=token&display=wap&scope=user_about_me,user_

activities,user_location,user_likes,user_interests,friends_activities,friends_about_me,read_

stream,read_friendlists,email,user_birthday,publish_stream,offline_access&client_id=<< APP ID

>>&redirect_uri=http://www.facebook.com/connect/login_success.html

After the user logs in, she will be redirected to the Facebook permissions prompt page, as previ-

ously shown in Figure 11-31.

If the user chooses to allow your application to have the permissions requested, the browser will be

redirected again, and you will be able to parse the returned URI into a FacebookOAuthResult object. If

this is successful, you can then start requesting Facebook data. In this example, you request the basic

user proile data by passing “/me” to the FacebookClient GetAsync method. When this returns, simply

set the proile data into the TextBox, as shown in Figure 11-32.

private void wbc_Navigated(object sender, NavigationEventArgs e)

{

 FacebookOAuthResult result;

 if (FacebookOAuthResult.TryParse(e.Uri, out result))

 {

 if (result.IsSuccess)

 {

 var fb = new FacebookClient(result.AccessToken);

 fb.GetCompleted += new EventHandler<FacebookApiEventArgs>(fb_GetCompleted);

 fb.GetAsync("/me");

 }

 else

 {

 MessageBox.Show(result.ErrorDescription);

 }

 }

}

private void fb_GetCompleted(object sender, FacebookApiEventArgs e)

{

 var name = e.GetResultData();

 Dispatcher.BeginInvoke(() => { FbData.Text = name.ToString(); });

}

400 PART III extended Services

FIguRE 11-32 You can use the Facebook API to retrieve proile data.

Windows live

At the time of this writing, Microsoft has released an early version of the Live SDK, with which you

can connect to Windows Live, including SkyDrive, Hotmail, and Messenger. Figure 11-33 shows a very

simple phone application that connects to Windows Live and retrieves some basic proile data for the
logged-in user (the TestLive solution in the sample code). Note that the caption in the SignInButton

changes dynamically from “Sign in” to “Sign out” according to the current sign-in state of the

application.

 ChAPTER 11 Web and Cloud 401

FIguRE 11-33 A phone application that connects to Windows Live provides a sign-in button.

Before you can successfully connect a phone application to Windows Live, you must provision the

application on Live itself. To do this, you log into Live in the normal way, using your Windows Live ID.

Then go to the application management site (http://manage.dev.live.com) and click the Create Appli-

cation link. You can give your application any arbitrary name, as shown in Figure 11-34, where the

name is “My First Live App.” Live will generate a Client ID and Client secret. You don’t need the secret

for this application. Make sure that you select the Mobile client app option.

402 PART III extended Services

FIguRE 11-34 You must provision an application in Windows Live before deploying to the phone.

To build the phone application, you need to download the Live SDK from Micro-

soft download. Version 5.0 is available at http://www.microsoft.com/download/en/details.

aspx?displaylang=en&id=28195. This includes a couple of critical DLLs that provide access to Live.

Next, create a regular Windows Phone application. Add references to the Microsoft.Live.dll and

Microsoft.Live.Controls.dll assemblies (these were installed with the Live SDK). You can then add a

SignInButton control to your XAML. You can type this in manually, and you also need to add the cor-

responding namespace declaration. Alternatively, you can add it to the ToolBox in Visual Studio, and

then drag it from the ToolBox to the design surface. Using this approach, the namespace is added for

you. Here’s the XAML declarations for the sample application:

xmlns:my="clr-namespace:Microsoft.Live.Controls;assembly=Microsoft.Live.Controls"

...

<my:SignInButton

 x:Name="liveSignIn" SessionChanged="liveSignIn_SessionChanged" />

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=28195
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=28195

 ChAPTER 11 Web and Cloud 403

In the code-behind, initialize the Scopes and ClientId properties of the SignInButton control. Scopes

are the permissions that your application needs when connecting to Live. These are similar in concept

to the capabilities that you specify for a phone application, but they are speciic to Live. When your
application runs, the user will be shown the list of scopes that your application is requesting so that

he can make an informed decision as to whether to allow your application to connect to Live on his

behalf, as shown in Figure 11-35.

FIguRE 11-35 When you log into Windows Live, you‘re presented with a scopes access prompt.

The three basic scopes are wl.signin, wl.basic, and wl.ofline_access, all of which are required for

a phone application. There are extended scopes for accessing birthday information, photos, emails,

contacts, and so on, but these are not used in this application.

private LiveConnectClient liveClient;

public MainPage()

{

 InitializeComponent();

 liveSignIn.Scopes = "wl.signin wl.basic wl.offline_access";

 liveSignIn.ClientId = "<< APP CLIENT ID >>";

}

404 PART III extended Services

In the XAML, the SessionChanged event is hooked up on the SignInButton. The implementation for

this handler constructs a LiveConnectClient object from the event arguments. This event handler will

be invoked irst when the SignInButton is loaded, at which point there will be no session. After that,

it will be invoked after the user has clicked the SignInButton to log in to Live and he has accepted the

proposed scopes. At this point, you hook up the GetCompleted event and invoke the asynchronous

GetAsync method. This calls the Windows Live REST API, with a speciic entity request. In this case,
you’re retrieving the user data, as speciied by the “me” identiier.

private void liveSignIn_SessionChanged(

 object sender, LiveConnectSessionChangedEventArgs e)

{

 if (e.Session != null)

 {

 liveClient = new LiveConnectClient(e.Session);

 liveClient.GetCompleted += OnGetLiveData;

 liveClient.GetAsync("me", null);

 }

 else

 {

 liveClient = null;

 liveResult.Text = e.Error != null ? e.Error.ToString() : string.Empty;

 }

}

When the GetAsync call returns, the custom OnGetLiveData event handler is invoked. Assum-

ing this was successful, you’ll now have a set of user data that includes name, id, proile page link,
birthday, employer, gender, emails, and so on. For your purposes, you’re only interested in the name

property, which you retrieve from the result set and set into the UI of the phone application.

private void OnGetLiveData(object sender, LiveOperationCompletedEventArgs e)

{

 if (e.Error == null)

 {

 object name;

 if (e.Result.TryGetValue("name", out name))

 {

 liveResult.Text = name.ToString();

 }

 else

 {

 liveResult.Text = "name not found";

 }

 }

 else

 {

 liveResult.Text = e.Error.ToString();

 }

}

 ChAPTER 11 Web and Cloud 405

SkyDrive
Figure 11-36 shows an enhanced version of this application (the TestLive_Photos solution in the

sample code), which fetches photos from a SkyDrive album for the logged-in user.

FIguRE 11-36 You can use the Windows Live API to download photos from SkyDrive.

The additional features are as follows. First, you deine a SkydrivePhoto class to represent the key

data that you want to fetch for each photo from SkyDrive. Note that the Live/SkyDrive REST API

returns more properties (such as Description, ID, and so on), but you’re only interested in the Title and

Url. For other data, you might want to make this implement INotifyPropertyChanged, but that’s not

required for this application.

public class SkydrivePhoto

{

 public string Title { get; set; }

 public string Url { get; set; }

}

In the XAML, you add a ListBox with an ItemTemplate that includes an Image for the photo itself,

plus a TextBlock for the Title. These two controls are data-bound to the SkyDrive properties.

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <my:SignInButton

 x:Name="liveSignIn" SessionChanged="liveSignIn_SessionChanged" />

 <TextBox x:Name="albumName" Height="80" />

 <ListBox

 x:Name="PhotoList" Height="460" >

 <ListBox.ItemTemplate>

406 PART III extended Services

 <DataTemplate>

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="180"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="200"/>

 <ColumnDefinition Width="*"/>

 </Grid.ColumnDefinitions>

 <Image

 Grid.Row="0" Grid.Column="0" Width="200" Height="175"

 Source="{Binding Url}" />

 <TextBlock

 Grid.Row="0" Grid.Column="1" Text="{Binding Title}"

 TextWrapping="Wrap" VerticalAlignment="Center"

 Style="{StaticResource PhoneTextTitle3Style}" />

 </Grid>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

</StackPanel>

In the page code-behind, declare a LiveConnectSession ield so that you can cache this between
method calls. As before, you’ll get the session value in the SessionChanged event handler. Previously,

you needed to use this only in the one handler, but now you’ll need it in a second handler. This is

because you need to make two calls to retrieve SkyDrive data: one for the collection of albums, and

a second call for the collection of photos within a given album. You also declare an Observable

Collection of SkydrivePhoto objects. This will represent all the photos you download for the photo

album that you target.

private LiveConnectClient liveClient;

private LiveConnectSession liveSession;

private ObservableCollection<SkydrivePhoto> photos =

 new ObservableCollection<SkydrivePhoto>();

public ObservableCollection<SkydrivePhoto> Photos

{

 get { return photos; }

}

In the SessionChanged event handler, modify the GetAsync call to fetch the collection of albums

for this user.

liveClient.GetAsync("me/albums", null);

The implementation of your OnGetLiveData callback is rather different from the previous ver-

sion. Instead of retrieving a simple string value, you’re now fetching a collection of albums, indicated

by the “data” preix in the result set. In this example, you’re interested only in the irst album in the
collection. Extract the name so that you can display it in the UI (in place of the user name that was

displayed before). You also extract the ID because you need to pass this to the second GetAsync call,

appending “/iles”, to fetch the collection of photos within this album.

 ChAPTER 11 Web and Cloud 407

private void OnGetLiveData(object sender, LiveOperationCompletedEventArgs e)

{

 if (e.Error == null)

 {

 if (e.Result.ContainsKey("data"))

 {

 List<object> data = (List<object>)e.Result["data"];

 IDictionary<string, object> album = (IDictionary<string, object>)data[0];

 albumName.Text = (string)album["name"];

 String albumId = (string)album["id"];

 LiveConnectClient albumClient = new LiveConnectClient(liveSession);

 albumClient.GetCompleted +=

 new EventHandler<LiveOperationCompletedEventArgs>(

 albumClient_GetCompleted);

 albumClient.GetAsync(albumId + "/files", null);

 }

 }

}

Finally, in the second GetCompleted handler, extract the collection of photos, again identiied by
the “data” preix. For each photo, you extract the name and source properties. The source property is
the URL of the photo on SkyDrive.

void albumClient_GetCompleted(object sender, LiveOperationCompletedEventArgs e)

{

 if (e.Error == null)

 {

 List<object> data = (List<object>)e.Result["data"];

 foreach (IDictionary<string, object> item in data)

 {

 SkydrivePhoto photo = new SkydrivePhoto();

 photo.Title = (string)item["name"];

 photo.Url = (string)item["source"];

 photos.Add(photo);

 }

 }

}

summary

This chapter examined the basic support that the application platform provides for connecting to the

web. This included speciically the WebClient and HttpWebRequest classes, and the WebBrowser con-

trol. Note that version 7.1 introduces support for Sockets, which is discussed in Chapter 17, “Enhanced

Connectivity Features.” You also looked at the many different ways that you can connect a phone

application to web services, including WCF data services and Windows Azure hosted services. Finally,

you looked at the additional support that is available for connecting to Bing Maps, bitly, Facebook,

and Windows Live (including SkyDrive). As noted previously, it should be emphasized that this chapter

should be read in conjunction with Chapter 13, which discusses security, including the security aspects

of web connectivity.

 409

C h A P T E R 1 2

Push Notiications

An important tenet of the user-focused application model in Windows Phone is that information

on the phone can be continually refreshed so that it is always current. The traditional model for

updating data on a mobile device is for software on the device to poll a remote server periodically to

fetch, or pull, new data. The problem with any pull model is that the hit-rate is variable. That is, if the

polling interval is small, some number of the polling operations will result in no new data; this con-

sumes battery power for no beneit. Conversely, if the polling interval is large, there is a risk of losing
some updates and the user viewing too much stale data. A push model, wherein the remote server

pushes data to the phone only when it is updated, signiicantly improves the experience.

In this chapter, you will examine the Windows Phone 7 push notiication model, which includes a
server-side piece and a client-side piece that you need to build, plus a cloud service (built by Micro-

soft) for channeling notiications.

Architecture

For a push implementation to work, the server must know where to send the new data. It requires

some way to identify each mobile device as an endpoint for updates. The model also more or less

mandates some retry or queuing logic to allow for the circumstance in which the target device is

ofline or out of network. On top of that, there must be a way for a user to opt his phone in or out of
receiving updates, potentially on a per-application basis.

There’s a lot of infrastructure inherent in this model, which would be common across all services

that want to push data to the phone. Fortunately, Microsoft provides the Microsoft Push Notiication
Service (MPNS), which handles many of the common server-side features of this model. Your server

sends new data as simple HTTP messages to the MPNS, specifying which phones should receive the

messages. The MPNS then takes care of propagating the messages and pushing them to all the target

devices. Each client application running on the device that wants to receive notiications talks to the
MPNS to establish an identity for the device. The overall behavior is illustrated in Figure 12-1.

410 PART III extended Services

Notification
Source App

Microsoft Push
Notification Service

Push
Client

Service

Client
App

Register with MPNS and
subscribe to PN events

Send Channel URI

Push Notifications

Receive
Notification

Channel
URI

Send Notifications

1b

2a

5a

2b 5b

Register with
Notification Source

Register/
Subscribe

31a

4

FIguRE 12-1 An overview of the Push Notiication architecture.

The following list presents a bit more detail about the process:

1. Your phone application initiates the communication by registering with the MPNS. This is a

simple matter of using HttpNotiicationChannel.Open. Behind the scenes, this uses the Push

Client service running on the device to communicate with the MPNS.

2. The MPNS returns a channel URI back to the phone. This URI serves as a unique identiier for
the phone; it will be used by the server application as the target URL for a web request. Again,

the MPNS actually sends this to the Push Client service on the device, which forwards it to

your application.

3. To register for this server’s notiications, the phone must send this device identiier (chan-

nel URI) to the server application (the application that will send the notiications). The server
application can be anything that can make and receive web requests (web app, desktop app,

and so on). For this to happen, the server application typically exposes a web service that the

phone application can call to perform registration.

4. When it’s ready to send a notiication to a particular device, the server application makes
an HttpWebRequest for the given channel URI (typically, it does this for multiple registered

devices). This web request goes to the MPNS.

5. The MPNS then pushes the corresponding notiication to the speciied device (again, transpar-
ently through the Push Client service).

Whenever the server application sends a notiication to the MPNS, it will receive a response that
provides some information about the result, including the connection status of the target device and

whether the notiication was actively received or suppressed.

 ChAPTER 12 Push Notiications 411

There are three types of push notiication, which are described in Table 12-1. The payload for all
types of notiication must be no more than 1,024 bytes, and additional constraints apply to each type.

There’s a limit of one push notiication channel per application, and this channel will be used for all
types of notiication. There’s also a limit of 15 active push notiication channels per device in version
7 (30 in version 7.1). The MPNS has a daily limit of 500 pushes per channel—this is per application/

device combination, not 500 in total. Note that this limit also doesn’t apply if you create an authenti-

cated push channel, which you will read about in Chapter 13, “Security.”

TABlE 12-1 Push Notiication Types

Type Description Constraints Typical scenario

Tile Handled by the phone OS and rendered
on the start page when your application is
pinned to the start page. The display includes
three items: Count, Title, and Background
image, all of which are speciied in the Tile
notiication received on the phone. Each of
the three items can update independently.
Tile notiications will update the pinned tile,
regardless of whether the application is cur-
rently running. The images must be either
local to the phone application itself or specify
a reachable HTTP URL.

Title can be any length, but only
the irst ~15 characters of the Title
will be displayed. Images will be
scaled to 173x173 pixels. They can
be either JPG or PNG format. The
Count is capped at 99; that is, you
can send any number you like, but
if you send a number higher than
99, the Count will be set to 99.
Any remote image must be ≤80
KB, and must download in ≤30
seconds.

Status updates; for
example, count of
unread emails for an
email client, current
temperature for a
weather application.

Toast Include a Title and a message body (Content).
If your application is not running or is ob-
scured, the phone OS will display a popup
toast at the top of the screen for 10 seconds,
including both the title and the message. The
user can tap the toast to launch the applica-
tion. If your application is running and not
obscured, then there is no default display and
it’s up to your application to handle the mes-
sage, as appropriate.

Maximum ~40 characters Title, or
~47 characters Content, or ~41
characters Title + Content.

Breaking news,
alerts.

Raw No default visual display. With a raw push
notiication, you can send any arbitrary data
(text or binary) to your application on the
phone.

Can be received only when the
application is running.

Arbitrary data for
use in your applica-
tion.

Figure 12-2 illustrates the UI elements of Toast and Tile notiications.

To build a solution that uses push notiications, you build two main pieces: the server-side applica-

tion that generates and sends the notiications, and the client-side application that runs on the phone
to receive and process incoming notiications. In fact, the client-side application is an optional piece,
because you might send only tile notiications that do not require client-side code to process them.
These are explored in the following sections. Note that the general security considerations for web

services also apply to push notiications. These are not discussed in this chapter, but your push notii-

cation solution is not complete unless you factor in security. Chapter 13 discusses security across the

board and includes speciic guidelines for push notiication security.

412 PART III extended Services

Count

title

Background
imge

toast

App Icon

title
Message tile

FIguRE 12-2 The Toast and Tile elements.

Push Notiication Server

This example sends all three types of notiication; it is a simple Windows Presentation Foundation
(WPF) application that offers a user interface (UI) with which the user can enter suitable values for the

various parts of the three notiication types. This is the Push_Simple\PnServer solution in the sample

code. The application provides a Response list with which the server reports on status and responses

from notiications that have been sent. The values in the response report are the WebResponse Status

Code and the values from the X-DeviceConnectionStatus, X-SubscriptionStatus, and X-Notiication

Status headers for the WebResponse, as shown in Figure 12-3.

Note that for all the message elements but one, the data is constructed entirely on the server. The

exception is the “two.png” value shown in the screenshot. This is the path for an image ile that will
be used as the background image for a Tile notiication. In this example, this is a relative path to a ile
that deploys as part of the phone application (although the path can also identify a remote URL for

the image ile).

 ChAPTER 12 Push Notiications 413

FIguRE 12-3 A Simple WPF Push Notiication server.

There are two broad sets of functionality that you need to expose from your server: the code

that generates and sends the notiications, and the code that allows client applications to register to
receive notiications. For the latter, the standard approach is to expose a web service with Register (and

Unregister) web methods. In your application, you deine a simple ServiceContract named IRegister

DeviceService and implement it in a custom RegisterDeviceService class. In this class, you maintain a

static collection of device URIs; this is the list of phones that register to receive notiications. You make
the collection static so that it is accessible both to the server host application and the service object

itself. The Register method simply adds the incoming URI to the collection, and the Unregister method

removes it.

[ServiceContract]

public interface IRegisterDeviceService

{

 [OperationContract]

 void Register(Uri deviceUri);

 [OperationContract]

 void Unregister(Uri deviceUri);

}

public class RegisterDeviceService : IRegisterDeviceService

{

 private static Collection<Uri> devices = new Collection<Uri>();

 public static Collection<Uri> Devices

 {

 get { return devices; }

 set { devices = value; }

 }

414 PART III extended Services

 public void Register(Uri deviceUri)

 {

 if (deviceUri != null && !Devices.Contains(deviceUri))

 {

 Devices.Add(deviceUri);

 }

 }

 public void Unregister(Uri deviceUri)

 {

 Devices.Remove(deviceUri);

 }

}

Here’s the app.conig, which is entirely taken up with service coniguration:

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

 <system.serviceModel>

 <behaviors>

 <serviceBehaviors>

 <behavior name="">

 <serviceMetadata httpGetEnabled="true" />

 <serviceDebug includeExceptionDetailInFaults="true" />

 </behavior>

 </serviceBehaviors>

 </behaviors>

 <services>

 <service name="PnServer.RegisterDeviceService">

 <endpoint

 address=""

 binding="basicHttpBinding"

 contract="PnServer.IRegisterDeviceService">

 <identity>

 <dns value="localhost" />

 </identity>

 </endpoint>

 <endpoint

 address="mex"

 binding="mexHttpBinding"

 contract="IMetadataExchange" />

 <host>

 <baseAddresses>

 <add baseAddress=

 "http://localhost:8001/RegisterDeviceService/" />

 </baseAddresses>

 </host>

 </service>

 </services>

 </system.serviceModel>

</configuration>

 ChAPTER 12 Push Notiications 415

In the service host application, the MainWindow has a ield for the WCF ServiceHost object, and

string templates for the toast and tile messages. Each type of notiication is formatted as XML, with
different elements and attributes for the different types of notiication.

private ServiceHost serviceHost;

const String toastMessageFormat =

 "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +

 "<wp:Notification xmlns:wp=\"WPNotification\">" +

 "<wp:Toast>" +

 "<wp:Text1>{0}</wp:Text1>" +

 "<wp:Text2>{1}</wp:Text2>" +

 "</wp:Toast>" +

 "</wp:Notification>";

const String tileMessageFormat =

 "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +

 "<wp:Notification xmlns:wp=\"WPNotification\">" +

 "<wp:Tile>" +

 "<wp:BackgroundImage>{0}</wp:BackgroundImage>" +

 "<wp:Count>{1}</wp:Count>" +

 "<wp:Title>{2}</wp:Title>" +

 "</wp:Tile>" +

 "</wp:Notification>";

In the MainWindow constructor, you instantiate the ServiceHost and start the service.

public MainWindow()

{

 InitializeComponent();

 serviceHost = new ServiceHost(typeof(RegisterDeviceService));

 try

 {

 serviceHost.Open();

 ShowStatus(

 "The service is ready at " + serviceHost.BaseAddresses[0]);

 }

 catch (Exception ex)

 {

 ShowStatus(ex.ToString());

 serviceHost = null;

 }

}

There are button Click handlers to trigger sending each of the three notiication types. Each of
these handlers invokes a custom SendNotiication method, which has all the common code for send-

ing any notiication. The parameters that you pass to this method distinguish the different types and
therefore govern how the XML payload is ultimately composed. Note that raw messages are type 3,

toasts are type 2, and tiles are type 1. It is common to deine an enum for these values, but the raw
numeric values are retained here to make it clear that this is what the system uses under the covers.

416 PART III extended Services

private void sendRaw_Click(object sender, RoutedEventArgs e)

{

 ShowStatus(SendNotification(rawMessage.Text, 3));

}

private void sendToast_Click(object sender, RoutedEventArgs e)

{

 String message = String.Format(

 toastMessageFormat, toastTitle.Text, toastMessage.Text);

 ShowStatus(SendNotification(message, 2));

}

private void sendTile_Click(object sender, RoutedEventArgs e)

{

 tileTitle.Text = DateTime.Now.ToLongTimeString();

 String message = String.Format(

 tileMessageFormat, tileBackground.Text,

 tileCount.Text, tileTitle.Text);

 ShowStatus(SendNotification(message, 1));

}

All the heavy lifting of sending notiication messages is done in a centralized method. This iterates
through the collection of device URIs and opens an HttpWebRequest for each one, with the payload

formatted as necessary for each message type. For toast and tile notiications, you need to add the
X-WindowsPhone-Target header; this is not used for raw notiications. The toast target speciier is
“toast”, whereas the tile target speciier is “token”. If you’re wondering why there’s a naming discrep-

ancy, it’s because prior to the irst release of Windows Phone, tiles used to be called tokens, internally.
Once you’ve composed the appropriate notiication payload, you send the message and fetch the
HttpWebResponse that results. You return payload and header information from the response as a

collection of strings.

private List<String> SendNotification(String message, short notificationClass)

{

 List<String> responses = new List<String>();

 byte[] payload = Encoding.UTF8.GetBytes(message);

 if (payload.Length > maxPayload)

 {

 responses.Add(String.Format(

 "The message must be <= {0} bytes: {1}", maxPayload, message));

 }

 else

 {

 if (RegisterDeviceService.Devices.Count == 0)

 {

 responses.Add("No devices");

 }

 else

 {

 ChAPTER 12 Push Notiications 417

 foreach (Uri uri in RegisterDeviceService.Devices)

 {

 // Create an HTTP web request for each device Uri.

 HttpWebRequest request = (HttpWebRequest)WebRequest.Create(uri);

 request.Method = WebRequestMethods.Http.Post;

 request.ContentLength = payload.Length;

 request.ContentType = "text/xml";

 // Add message headers.

 request.Headers.Add("X-MessageID", Guid.NewGuid().ToString());

 request.Headers.Add("X-NotificationClass", notificationClass.ToString());

 if (notificationClass == 1)

 {

 request.Headers.Add("X-WindowsPhone-Target", "token");

 }

 else if (notificationClass == 2)

 {

 request.Headers.Add("X-WindowsPhone-Target", "toast");

 }

 // Send the message.

 using (Stream requestStream = request.GetRequestStream())

 {

 requestStream.Write(payload, 0, payload.Length);

 }

 // Fetch the response.

 HttpWebResponse webResponse;

 try

 {

 webResponse = (HttpWebResponse)request.GetResponse();

 responses.Add(String.Format("{0}: {1}, {2}, {3}, {4}",

 notificationClass == 1 ? "Tile" :

 notificationClass == 2 ? "Toast" : "Raw",

 webResponse.StatusCode,

 webResponse.Headers["X-DeviceConnectionStatus"],

 webResponse.Headers["X-SubscriptionStatus"],

 webResponse.Headers["X-NotificationStatus"]));

 }

 catch (WebException ex)

 {

 webResponse = (HttpWebResponse)ex.Response;

 responses.Add(ex.Message);

 }

 }

 }

 }

 return responses;

}

418 PART III extended Services

To report these response strings (or other status), simply add the strings to the ListBox.

private void ShowStatus(List<String> responses)

{

 foreach (String response in responses)

 {

 ShowStatus(response);

 }

}

private void ShowStatus(String response)

{

 responseList.Items.Add(response);

}

Push Notiication Client

In the client (the Push_Simple\PnClient solution in the sample code), raw and toast notiications are
handled by the application, if the application is running and not obscured, as shown in Figure 12-4.

FIguRE 12-4 The Push Notiication client.

If the application is not running, toast notiications are rendered as popups, as shown in Figure
12-5. The OS handles tile notiications.

 ChAPTER 12 Push Notiications 419

FIguRE 12-5 Your application can receive both toast and tile push notiications.

In the client’s mainpage.xaml.cs, declare ields for the channel name (an arbitrary string), the
HttpNotiication channel for working with the MPNS, and a client-side proxy to the server applica-

tion’s web service. You also have an ObservableCollection<T> to hold all the message strings. This is

data-bound to the ListBox in the UI.

private String channelName = "Contoso Notification Channel";

private HttpNotificationChannel channel;

private RegisterDeviceServiceClient serviceClient;

private Uri channelUri;

private bool isRegistered;

private ObservableCollection<String> notifications;

public ObservableCollection<String> Notifications

{

 get { return notifications; }

 private set { }

}

You now need to override OnNavigatedTo to perform initialization. You must instantiate the WCF

service proxy and handle the event that’s raised when your async call to the Register method returns.

Later in the code, you will provide a mechanism for the user to unregister, and you need to hook up

the callback for the asynchronous unregister event. The OnNavigatedTo is a suitable place to do this.

This will ensure that you don’t hook up the event multiple times. You must also subscribe to the push

client.

420 PART III extended Services

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (serviceClient == null)

 {

 serviceClient = new RegisterDeviceServiceClient();

 serviceClient.RegisterCompleted += serviceClient_RegisterCompleted;

 serviceClient.UnregisterCompleted += serviceClient_UnregisterCompleted;

 SubscribeToNotifications();

 }

}

To subscribe to notiications, ind the named HttpNotiicationChannel—or create it if it doesn’t

exist—and open it. You must handle the ChannelUriUpdated event so that you can get the Channel

URI from MPNS. You also handle the other interesting channel events, ShellToastNotiication and

HttpNotiication, for toast and raw notiications, respectively. If the channel hasn’t already been bound
to tile and toast notiications, go ahead and bind it now by using the BindToShellTile and BindToShell

Toast APIs.

private Uri SubscribeToNotifications()

{

 if (channel == null)

 {

 channel = HttpNotificationChannel.Find(channelName);

 if (channel == null)

 {

 channel = new HttpNotificationChannel(channelName);

 channel.ChannelUriUpdated += channel_ChannelUriUpdated;

 channel.Open();

 }

 else

 {

 if (!isRegistered)

 {

 serviceClient.RegisterAsync(channelUri);

 }

 }

 channel.ShellToastNotificationReceived += channel_ShellToastNotificationReceived;

 channel.HttpNotificationReceived += channel_HttpNotificationReceived;

 Notifications.Add("Subscribed");

 if (!channel.IsShellTileBound)

 {

 channel.BindToShellTile();

 }

 if (!channel.IsShellToastBound)

 {

 channel.BindToShellToast();

 }

 }

 return channel.ChannelUri;

}

 ChAPTER 12 Push Notiications 421

When you receive a ChannelUriUpdate event, you need to call the server application’s web service

in order to register this client, passing it the Channel URI (device identiier) you’ve been given by the
MPNS.

private void channel_ChannelUriUpdated(

 object sender, NotificationChannelUriEventArgs e)

{

 channelUri = e.ChannelUri;

 String message = String.Format("CHANNELURI: {0}", channelUri);

 Dispatcher.BeginInvoke(() => Notifications.Add(message));

 serviceClient.RegisterAsync(channelUri);

}

Note that you should allow for the possibility of a server restart while the client has a channel

open. Of course, your client application won’t know when this has happened, but you can mitigate

it somewhat by always registering the channel during OnNavigatedTo (as in the preceding code), by

periodically refreshing the channel, or by providing the user with a UI-driven mechanism for refresh-

ing. This last approach is the least useful because most users won’t know why they need to do this;

however, it is a useful feature during testing. To this end, you also provide an App Bar button to

toggle registration. Regardless of whether the registration is triggered by the UI or programmatically

in your handler for the ChannelUriUpdate event, you simply cache the registered state and report

status in the UI.

private void register_Click(object sender, EventArgs e)

{

 if (channelUri != null)

 {

 if (!isRegistered)

 {

 serviceClient.RegisterAsync(channelUri);

 }

 else

 {

 serviceClient.UnregisterAsync(channelUri);

 }

 }

}

private void serviceClient_RegisterCompleted(object sender, AsyncCompletedEventArgs e)

{

 if (e.Error == null)

 {

 isRegistered = true;

 Dispatcher.BeginInvoke(() => Notifications.Add("RegisterCompleted"));

 }

 else

 {

 Dispatcher.BeginInvoke(() => Notifications.Add(e.Error.Message));

 }

}

422 PART III extended Services

private void serviceClient_UnregisterCompleted(object sender, AsyncCompletedEventArgs e)

{

 if (e.Error == null)

 {

 isRegistered = false;

 Dispatcher.BeginInvoke(() => Notifications.Add("UnregisterCompleted"));

 }

 else

 {

 Dispatcher.BeginInvoke(() => Notifications.Add(e.Error.Message));

 }

}

When you receive a push notiication (raw or toast) event, you also display it in the UI, appropri-
ately dispatched to the UI thread. To retrieve the data, you dig into the Collection property on the

NotiicationEventArgs parameter that is passed into the event handler. Notiication data is sent in this
collection, which is a dictionary, so the elements are key-value pairs. In this application, there will be

only one pair of data, although you will allow for it being a null element (in which case, you use an

empty string).

private void channel_HttpNotificationReceived(

 object sender, HttpNotificationEventArgs e)

{

 byte[] bytes;

 using (Stream stream = e.Notification.Body)

 {

 bytes = new byte[stream.Length];

 stream.Read(bytes, 0, (int)stream.Length);

 }

 String rawMessage = Encoding.UTF8.GetString(bytes, 0, bytes.Length);

 String message = String.Format("RAW: {0}", rawMessage);

 Dispatcher.BeginInvoke(() => Notifications.Add(message));

}

private void channel_ShellToastNotificationReceived(

 object sender, NotificationEventArgs e)

{

 String title = e.Collection.Values.First();

 String rawMessage =

 e.Collection.Values.Skip(1).FirstOrDefault() ?? String.Empty;

 String message = String.Format("TOAST: {0}, {1}", title, rawMessage);

 Dispatcher.BeginInvoke(() => Notifications.Add(message));

}

The preceding code illustrates all the core requirements for the client and server applications.

However, there are a few additional features that you could incorporate, to improve robustness and

usability; these are described in the following sections.

 ChAPTER 12 Push Notiications 423

Additional server Features

On the server side, you can use the following enhancements:

 ■ Batching intervals, which you can use to group notiications in batches.

 ■ The XmlWriter or XDocument classes, for building the notiication payload.

 ■ Tracking, to monitor additional notiication response information.

These features are described in the following sections.

Batching Intervals
The server currently uses strings, 1, 2, 3 to identify the X-NotiicationClass, and these must be added

to the request headers. However, the values 1, 2, 3 really correspond to batching indicators, and there

are nine possible values. There are three categories, as shown in Table 12-2.

TABlE 12-2 Notiication Batching Intervals

value Notiication Type Meaning

1 Tile Send immediately

2 Toast Send immediately

3 Raw Send immediately

11 Tile Batch and send within 450 seconds (7.5 minutes)

12 Toast Batch and send within 450 seconds (7.5 minutes)

13 Raw Batch and send within 450 seconds (7.5 minutes)

21 Tile Batch and send within 900 seconds (15 minutes)

22 Toast Batch and send within 900 seconds (15 minutes)

23 Raw Batch and send within 900 seconds (15 minutes)

This allows the MPNS to batch notiications together, including from multiple applications. The
primary purpose of this is to maintain an optimal balance of user experience (UX) on the phone;

sending notiications in batches will improve battery performance because it makes maximum use
of the network while it is up, rather than bringing it up for every single notiication. In the follow-

ing enhancement (the Push_Additional\PnServer solution in the sample code), there is an additional

HeaderedContentControl that includes a ComboBox with which the user can select one of the three

batching intervals. This will be applied to all notiications until it is changed.

<HeaderedContentControl

 Grid.Row="1" Grid.ColumnSpan="3" Header="batching interval">

 <Grid>

 <ComboBox Name="batchList" Width="100" Height="30">

 <ComboBoxItem Content="immedate" Tag="0"/>

 <ComboBoxItem Content="450 sec" Tag="10"/>

 <ComboBoxItem Content="900 sec" Tag="20"/>

 </ComboBox>

 </Grid>

</HeaderedContentControl>

424 PART III extended Services

The SendNotiication method is updated to allow for the batching interval. Speciically, change this line:

request.Headers.Add("X-NotificationClass", notificationClass.ToString());

to this:

int batch = Int16.Parse(

 ((ComboBoxItem)batchList.SelectedItem).Tag.ToString())

 + notificationClass;

request.Headers.Add("X-NotificationClass", batch.ToString());

Be aware that the MPNS does not provide a true end-to-end conirmation that the notiication
was delivered. In particular, if you batch up your notiications, you will still get an immediate response
notiication based on the last known state of the target device and application, even though the noti-
ication might not be sent until up to 15 minutes after the fact.

XML Payload
Building the XML payload from string templates is useful from a developer’s perspective; it helps to

make it obvious what the XML schema is and what a typical payload for each notiication type looks
like. However, it is a somewhat error-prone approach. For example, it is very fragile in the face of

replacement values that contain reserved characters such as “<”, and so on. A more robust approach

is to construct the XML in code by using XmlWriter methods WriteStartElement, WriteEndElement, and

so on. Alternatively (and preferably), you can use XDocument.

Using this approach, you can eliminate the string templates altogether. Then, to send a toast notii-

cation, you change this method:

private void sendToast_Click(object sender, RoutedEventArgs e)

{

 String message = String.Format(

 toastMessageFormat, toastTitle.Text, toastMessage.Text);

 ShowStatus(SendNotification(message, 2));

}

to the implementation shown in the following, using XmlWriter:

private void sendToast_Click(object sender, RoutedEventArgs e)

{

 MemoryStream stream = new MemoryStream();

 XmlWriterSettings settings = new XmlWriterSettings();

 settings.Encoding = new UTF8Encoding(false);

 XmlWriter writer = XmlWriter.Create(stream, settings);

 writer.WriteStartDocument();

 writer.WriteStartElement("wp", "Notification", "WPNotification");

 writer.WriteStartElement("wp", "Toast", "WPNotification");

 writer.WriteStartElement("wp", "Text1", "WPNotification");

 writer.WriteValue(toastTitle.Text);

 writer.WriteEndElement();

 ChAPTER 12 Push Notiications 425

 writer.WriteStartElement("wp", "Text2", "WPNotification");

 writer.WriteValue(toastMessage.Text);

 writer.WriteEndElement();

 writer.WriteEndElement();

 writer.WriteEndDocument();

 writer.Flush();

 ShowStatus(SendNotification(stream.ToArray(), 2));

}

Note It’s important to construct your own UTF8Encoding object so that you can specify

that the byte order mark (BOM) should be eliminated.

To send a tile notiication, you can make similar changes to the sendTile Click handler. The earlier

version of our custom SendNotiication method took in a string as the message parameter and con-

verted it to a byte array. Using XmlWriter (or XDocument) makes it easy to provide a byte array in the

irst place, so you can simplify the SendNotiication method to take this as a parameter instead of the

original message string.

private List<String> SendNotification(byte[] payload, int notificationClass)

{

 List<String> responses = new List<string>();

 //byte[] payload = Encoding.UTF8.GetBytes(message);

...unchanged code omitted for brevity.

}

You can take this one step further by using XDocument instead of the more traditional XmlWriter

approach. Doing so does mean pulling in the LINQ assemblies, but you’re likely to be doing that any-

way for other reasons. Using XDocument, you can rewrite the cumbersome XmlWriter code for toasts

and tiles as shown in the following example. You can see this at work in the Push_Better\PnServer

solution in the sample code.

private static readonly XNamespace WpNs = "WPNotification";

private void sendToast_Click(object sender, RoutedEventArgs e)

{

 XDocument doc = new XDocument();

 doc.Add(

 new XElement(WpNs + "Notification",

 new XAttribute(XNamespace.Xmlns + "wp", WpNs.NamespaceName),

 new XElement(WpNs + "Toast",

 new XElement(WpNs + "Text1", toastTitle.Text),

 new XElement(WpNs + "Text2", toastMessage.Text))));

 UTF8Encoding encoding = new UTF8Encoding(false);

 byte[] payload = encoding.GetBytes(doc.ToString());

 ShowStatus(SendNotification(payload, 2));

}

426 PART III extended Services

private void sendTile_Click(object sender, RoutedEventArgs e)

{

 XDocument doc = new XDocument();

 doc.Add(

 new XElement(WpNs + "Notification",

 new XAttribute(XNamespace.Xmlns + "wp", WpNs.NamespaceName),

 new XElement(WpNs + "Tile",

 new XElement(WpNs + "BackgroundImage", tileBackground.Text),

 new XElement(WpNs + "Count", tileCount.Text),

 new XElement(WpNs + "Title", tileTitle.Text))));

 UTF8Encoding encoding = new UTF8Encoding(false);

 byte[] payload = encoding.GetBytes(doc.ToString());

 ShowStatus(SendNotification(payload, 1));

}

response Information
The application has logic to test for connected subscribers, so for each notiication sent, the results
are most likely to be status code = OK, connection status = Connected, subscription status = Active. The

notiication status will be either Received or Suppressed. Raw notiications are received if the applica-

tion is running; otherwise, it is suppressed. Tile notiications are received if the application is pinned to
the start menu and is not running; otherwise, it is suppressed. Toast notiications are received whether
the application is running or not, and the platform will show toast UI if the application is not in the

foreground.

So far, you have been reporting the most useful notiication response information in the server
application’s UI. In a more sophisticated application, you might well want to track other informa-

tion such as the message ID and timestamp. A full list of the headers, with sample values, is shown

in the example code that follows. These are documented at http://msdn.microsoft.com/en-us/library/

ff941100(VS.92).aspx. Your server application will realistically not be UI-driven; although it might have

some management UI, and you would most likely track the notiications sent and responses received
in a database (or perhaps in Windows Azure table storage). Most of the potentially useful information

is in the m_HttpResponseHeaders member of the HttpWebResponse object that you get back in the

server after sending a notiication (as listed in the following example). Be aware that some of these are
not speciic to push notiications.

X-DeviceConnectionStatus: Connected

X-NotificationStatus: Received

X-SubscriptionStatus: Active

X-MessageID: 82ce700e-b409-4aeb-bb6c-235edfd01495

ActivityId: 7ebf51ac-3fb6-4f55-b8c8-4dd5504408d0

X-Server: SN1MPNSM020

Content-Length: 0

Cache-Control: private

Date: Tue, 22 Nov 2011 19:25:54 GMT

Server: Microsoft-IIS/7.5

X-AspNet-Version: 4.0.30319

X-Powered-By: ASP.NET

http://msdn.microsoft.com/en-us/library/ff941100(VS.92).aspx
http://msdn.microsoft.com/en-us/library/ff941100(VS.92).aspx

 ChAPTER 12 Push Notiications 427

Additional Client Features

On the client side, there are several enhancements that you should consider layering on top of the

basic push features, including the following:

 ■ Persistent client settings, with which the application can keep track of its push status in the

face of user navigation.

 ■ Handling the special ErrorOccurred push notiication event.

 ■ Providing a mechanism for the user to opt in or out of push notiications for your application.

 ■ Implementing a custom viewmodel for push settings.

Persistent Client Settings
Recall that toast and tile push notiications are sent even when the application is not running, and
both can be used to launch the application. This means that the application needs to keep track of

its MPNS subscription/registration status if it wants to retain the option to unsubscribe or unregister.

One way to deal with this is to persist the channel URI and registration state in IsolatedStorageSettings,

writing them out in the OnNavigatedFrom override. Then, in the OnNavigated override, if you’re navi-

gating back to the application after you’ve already registered the device with MPNS, you can retrieve

the Channel URI from the application settings. You can see this at work in the Push_Additional\PnClient

solution in the sample code. However, keep in mind that this is only marginally useful, and you should

generally consider it best practice to simply Find or Open the channel on each launch, so that you

don’t need to persist this information.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 Uri uri;

 if (IsolatedStorageSettings.ApplicationSettings.TryGetValue<Uri>

 ("ChannelUri", out uri))

 {

 channelUri = uri;

 }

 bool reg;

 if (IsolatedStorageSettings.ApplicationSettings.TryGetValue<bool>

 ("IsRegistered", out reg))

 {

 isRegistered = reg;

 }

 if (serviceClient == null)

 {

 serviceClient = new RegisterDeviceServiceClient();

 serviceClient.RegisterCompleted +=

 new EventHandler<AsyncCompletedEventArgs>(serviceClient_RegisterCompleted);

 SubscribeToNotifications();

 }

}

428 PART III extended Services

In OnNavigatedFrom, you perform the corresponding “save” operation and persist the Channel URI

and registration status settings to isolated storage.

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 IsolatedStorageSettings.ApplicationSettings["ChannelUri"] = channelUri;

 IsolatedStorageSettings.ApplicationSettings["IsRegistered"] = isRegistered;

 IsolatedStorageSettings.ApplicationSettings.Save();

}

the ErrorOccurred event
So far, your code has used a reasonable level of try/catch exception handling, including for standard

HTTP web error codes. However, the MPNS will also report speciic errors that you can consume in
your application. To do this, in the SubscribeToNotiications method, add an event sink for the Error

Occurred event, as shown in the example that follows. You can see this at work in the Push_Better\

PnClient solution in the sample code.

if (channel == null)

{

 channel = new HttpNotificationChannel(channelName);

 channel.ChannelUriUpdated += channel_ChannelUriUpdated;

 channel.ErrorOccurred += channel_ErrorOccurred;

 channel.Open();

}

For testing purposes and for a simple implementation, the event handler could report the error—

or rather, a suitably user-friendly version of the error message—to the screen. In a more sophisticated

application, you would want to look at the ErrorType property (and possibly the ErrorCode property)

and take the appropriate corrective action. For example, if you get a ChannelOpenFailed or Payload

FormatError, the channel is now useless, so you should clean it up and optionally recreate it. On the

other hand, if you get bad data from the server or too many notiications in a short span of time,
there’s really not much you can do on the client, beyond reporting. If you get a PowerLevelChanged

event, this is an informative warning that the server will stop sending tile and toast notiications. If
phone power drops to critical level, then MPNS will stop sending even raw notiications to the device.
The obvious purpose of this event is to reduce power consumption on the phone when the battery

is low.

private void channel_ErrorOccurred(object sender, NotificationChannelErrorEventArgs e)

{

 String description = String.Empty;

 switch (e.ErrorType)

 {

 case ChannelErrorType.ChannelOpenFailed:

 case ChannelErrorType.PayloadFormatError:

 channel.Close();

 channel.Dispose();

 channel = null;

 SubscribeToNotifications();

 description = "Channel closed and re-initialized.";

 ChAPTER 12 Push Notiications 429

 break;

 case ChannelErrorType.MessageBadContent:

 description = "Bad data received from server.";

 break;

 case ChannelErrorType.NotificationRateTooHigh:

 description = "Too many notifications received.";

 break;

 case ChannelErrorType.PowerLevelChanged:

 if (e.ErrorAdditionalData == (int)ChannelPowerLevel.LowPowerLevel)

 {

 description =

 "No more toast or tile notifications will be "

 +"received until power levels are restored.";

 }

 else if

 (e.ErrorAdditionalData ==

 (int)ChannelPowerLevel.CriticalLowPowerLevel)

 {

 description =

 "No notifications of any kind will be received"

 + "until power levels are restored.";

 }

 break;

 }

 Dispatcher.BeginInvoke(() => Notifications.Add(

 String.Format("ERROR: {0} - {1}", e.Message, description)));

}

User Opt-In/Out
The marketplace certiication requirements include two items that are speciic to push notiications.
The irst time your application uses the BindToShellToast method, you must ask the user for explicit

permission to receive toast notiications. You must also provide a UI mechanism with which the user
can turn off toast notiications at any time subsequently. A simple example of the irst requirement
is shown in Figure 12-6. This feature is also implemented in the Push_Better\PnClient solution in the

sample code.

This is because toast notiications use the same alert mechanism as other system notiications, such
as incoming phone calls and incoming SMS messages. These alerts are executed at idle-level priority;

that is, they will be displayed immediately, regardless of anything else the user is doing on the phone

at the time, so long as the CPU is not at maximum utilization. The user must be given the choice as

to whether she considers your application’s notiications to warrant this high priority. In addition,
notiications consume battery power, and even though the MPNS itself will throttle the rate at which
notiications are sent, any potentially excessive use of battery power should also be under the user’s
control.

430 PART III extended Services

FIguRE 12-6 The prompt to accept or decline toast notiications.

To accommodate this requirement, you need to prompt the user, typically with a MessageBox, and

then persist the user’s choice. You can enhance the client application with a couple of additional bool

ields to record whether the user wants to allow toasts and whether you’ve already asked her once.
These need to be included in the persistent application settings.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 bool push;

 if (IsolatedStorageSettings.ApplicationSettings.TryGetValue<bool>

 ("IsToastOk", out push))

 {

 isToastOk = push;

 }

 bool prompted;

 if (IsolatedStorageSettings.ApplicationSettings.TryGetValue<bool>

 ("ToastPrompted", out prompted))

 {

 toastPrompted = prompted;

 }

...unchanged code omitted for brevity.

}

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 IsolatedStorageSettings.ApplicationSettings["IsToastOk"] = isToastOk;

 IsolatedStorageSettings.ApplicationSettings["ToastPrompted"] = toastPrompted;

 IsolatedStorageSettings.ApplicationSettings.Save();

}

 ChAPTER 12 Push Notiications 431

Some applications use only toast notiications. Also, some applications require both toast notiica-

tions and either raw or tile notiications. This means that the user’s choice about allowing toasts might
determine whether your application uses notiications at all. However, it is more common to keep
the different types of notiication separate. In the following example, you go ahead with raw and tile
notiications, regardless, but only use toasts if the user has explicitly agreed to them.

private Uri SubscribeToNotifications()

{

...unchanged code omitted for brevity.

 if (!channel.IsShellToastBound)

 {

 if (!isToastOk && !toastPrompted)

 {

 MessageBoxResult pushPrompt =

 MessageBox.Show(

 "Allow toast notifications for this application?",

 "PnClient",

 MessageBoxButton.OKCancel);

 toastPrompted = true;

 if (pushPrompt == MessageBoxResult.OK)

 {

 isToastOk = true;

 channel.BindToShellToast();

 }

 }

 }

 }

 return channel.ChannelUri;

}

Implementing a Push ViewModel
You are only required to ask the user about toast notiications once; in fact, you probably don’t want
to ask him more than once. On the other hand, you are also required to offer a mechanism by which

the user can change his decision at any later stage. This more or less mandates a settings page of

some kind. As soon as you implement a settings page, the limitations of the simple client implemen-

tation you’ve been working with so far become more obvious, speciically because you now need to
access connection information across at least two pages. The classic design solution here is to encap-

sulate all the connection information into a viewmodel class and declare a public property of that

type in the App class, where it will be accessible to all pages in the application.

Here’s an example (this is the Push_ViewModel\PnClient solution in the sample code) wherein the

application class declares a static PushViewModel property, and invokes the LoadContext and Save

Context methods in the appropriate lifecycle events.

432 PART III extended Services

public partial class App : Application

{

 private static PushViewModel push = new PushViewModel();

 public static PushViewModel Push

 {

 get { return push; }

 }

 private void Application_Launching(object sender, LaunchingEventArgs e)

 {

 push.LoadContext();

 }

 private void Application_Activated(object sender, ActivatedEventArgs e)

 {

 push.LoadContext();

 }

 private void Application_Deactivated(object sender, DeactivatedEventArgs e)

 {

 push.SaveContext();

 }

 private void Application_Closing(object sender, ClosingEventArgs e)

 {

 push.SaveContext();

 }

}

All of the connection-related ields and properties are moved from the MainPage class to the

PushViewModel class, along with all of the server registration and notiication subscription methods.
Most of these methods are taken wholesale from the original implementation in MainPage. There

are a couple of interesting modiications: notice that the LoadContext includes both loading of set-

tings from isolated storage, and also the registration and subscription calls. These are moved from

MainPage.OnNavigatedTo. The SaveContext code is moved from MainPage.OnNavigatedFrom. The

registration code is moved from the App Bar Click handler to a new Register method in the PushView

Model class.

public class PushViewModel : INotifyPropertyChanged

{

 private String channelName = "Contoso Notification Channel";

 private HttpNotificationChannel channel;

 private RegisterDeviceServiceClient serviceClient;

 private Uri channelUri;

 private bool isRegistered;

 private bool toastPrompted;

 private ObservableCollection<String> notifications = new ObservableCollection<String>();

 public ObservableCollection<String> Notifications

 {

 get { return notifications; }

 }

 ChAPTER 12 Push Notiications 433

public void LoadContext()

{

 bool prompted;

 if (IsolatedStorageSettings.ApplicationSettings.TryGetValue<bool>

 ("ToastPrompted", out prompted))

 {

 toastPrompted = prompted;

 }

 bool push;

 if (IsolatedStorageSettings.ApplicationSettings.TryGetValue<bool>

 ("IsToastOk", out push))

 {

 isToastOk = push;

 }

 if (serviceClient == null)

 {

 serviceClient = new RegisterDeviceServiceClient();

 serviceClient.RegisterCompleted += serviceClient_RegisterCompleted;

 serviceClient.UnregisterCompleted += serviceClient_UnregisterCompleted;

 SubscribeToNotifications();

 }

}

public void SaveContext()

{

 IsolatedStorageSettings.ApplicationSettings["ToastPrompted"] = toastPrompted;

 IsolatedStorageSettings.ApplicationSettings["IsToastOk"] = isToastOk;

 IsolatedStorageSettings.ApplicationSettings.Save();

}

 private Uri SubscribeToNotifications()

 {

 ...original code moved unchanged from MainPage class.

 }

 private void channel_ChannelUriUpdated(

 object sender, NotificationChannelUriEventArgs e)

 {

 ...original code moved unchanged from MainPage class.

 }

 private void channel_HttpNotificationReceived(

 object sender, HttpNotificationEventArgs e)

 {

 ...original code moved unchanged from MainPage class.

 }

 private void channel_ShellToastNotificationReceived(

 object sender, NotificationEventArgs e)

 {

 ...original code moved unchanged from MainPage class.

 }

 public void Register()

 {

 if (channelUri != null)

434 PART III extended Services

 {

 if (!isRegistered)

 {

 serviceClient.RegisterAsync(channelUri);

 }

 else

 {

 serviceClient.UnregisterAsync(channelUri);

 }

 }

 }

 private void serviceClient_RegisterCompleted(object sender, AsyncCompletedEventArgs e)

 {

 ...original code moved unchanged from MainPage class.

 }

 private void serviceClient_UnregisterCompleted(object sender, AsyncCompletedEventArgs e)

 {

 ...original code moved unchanged from MainPage class.

 }

 private void channel_ErrorOccurred(object sender, NotificationChannelErrorEventArgs e)

 {

 ...original code moved unchanged from MainPage class.

 }

}

You also need a Dispatcher in the viewmodel. This is because the notiications will come in on a
non-UI thread, but you’re data-binding the list of notiications to the UI. To avoid cross-thread excep-

tions, you need to marshal any updates to the notiications collection to the UI thread. The standard
way to achieve this is to use the Dispatcher class. Every UI element—in fact, every type derived from

DependencyObject—has a Dispatcher ield of type Dispatcher. Your viewmodel is not a UI element,

but you can use the Deployment.Current.Dispatcher, which always exists in a phone application and is

globally available. If there is no UI active, you simply add the message to the collection, but if there is

UI active, you use the global Dispatcher to ensure that you update the collection on the UI thread.

private void AddMessage(String message)

{

 if (Deployment.CurrentDispatcher != null)

 {

 Deployment.Current.Dispatcher.BeginInvoke(() => Notifications.Add(message));

 }

 else

 {

 Notifications.Add(message);

 }

}

 ChAPTER 12 Push Notiications 435

The other side of this design is that in the MainPage class, the Click event for the Register App Bar

button is now routed through to the Register method in the PushViewModel. You also implement a

second App Bar button and wire its Click event to navigate to the new SettingsPage.

public partial class MainPage : PhoneApplicationPage

{

 public MainPage()

 {

 InitializeComponent();

 messageList.ItemsSource = App.Push.Notifications;

 }

 private void register_Click(object sender, EventArgs e)

 {

 App.Push.Register();

 }

 private void settings_Click(object sender, EventArgs e)

 {

 NavigationService.Navigate(new Uri("/SettingsPage.xaml", UriKind.Relative));

 }

}

The SettingsPage itself is trivial; it uses the ToggleSwitch from the Microsoft Silverlight Toolkit to

give the user the option to turn toast notiications on or off, as shown in Figure 12-7.

FIguRE 12-7 The toast notiications settings page.

436 PART III extended Services

In the SettingsPage XAML, data-bind the ToggleSwitch to the IsToastOk property on the

PushViewModel.

<StackPanel x:Name="LayoutRoot" Background="Transparent" Margin="{StaticResource

PhoneHorizontalMargin}">

 <toolkit:ToggleSwitch

 Header="Allow toast notifications" IsChecked="{Binding IsToastOk, Mode=TwoWay}"

 FontSize="{StaticResource PhoneFontSizeLarge}"/>

 <TextBlock

 Style="{StaticResource PhoneTextTitle3Style}" TextWrapping="Wrap"

 Text="When a toast notification is received, it brings up the radio stack which can

 reduce battery life." />

</StackPanel>

Back in the PushViewModel, expose the IsToastOk property and implement INotifyPropertyChanged

so that it can take part in data binding. The collection of notiications is already covered because
you’re using an ObservableCollection<T>, which itself implements INotifyCollectionChanged. For the

IsToastOk property, when it is changed (which in your application is done only via the SettingsPage

ToggleSwitch), you conditionally either bind or unbind to toast notiications.

public class PushViewModel : INotifyPropertyChanged

{

 private bool isToastOk;

 public bool IsToastOk

 {

 get { return isToastOk; }

 set

 {

 if (value != isToastOk)

 {

 isToastOk = value;

 PropertyChangedEventHandler handler = PropertyChanged;

 if (null != handler)

 {

 handler(this, new PropertyChangedEventArgs("IsToastOk"));

 }

 if (isToastOk)

 {

 channel.BindToShellToast();

 }

 else

 {

 channel.UnbindToShellToast();

 }

 }

 }

 }

 public event PropertyChangedEventHandler PropertyChanged;

}

 ChAPTER 12 Push Notiications 437

Note For an even richer UX, you could provide two settings: one for toggling toasts on/

off, and another for toggling all notiications on/off. This won’t be useful in all applications,
but if your application uses toasts plus tiles and/or raw notiications, and if it can function
correctly with only some or none of the notiication features, then a iner-grained settings
option might make sense.

The Push Notiication Server-Side Helper Library

The Push Notiication Server-Side Helper Library is a set of classes that simplify the creation of server
applications that need to send push notiications. The library is available as a free download from
http://create.msdn.com/en-us/education/catalog/article/pnhelp-wp7. The download includes source

code for the library as well as a tutorial and sample code showing how to use it. The library provides

the following additional features:

 ■ A set of classes that encapsulate the server-side behavior of sending each of the different

notiication types, including a base PushNotiicationMessage class, and derived RawPush

NotiicationMessage, TilePushNotiicationMessage, and ToastPushNotiicationMessage classes.

 ■ A set of support classes such as the HttpWebResponseExtensions class that provides extension

methods for HttpWebResponse; the MessageSendPriority class that provides a simple encap-

sulation of the core batching intervals; the MessageSendResult class that encapsulates the web

response from a sent notiication; and simple enumerations for subscription, notiication, and
connection status.

 ■ A client implementation that illustrates a traditional Model-View ViewModel (MVVM)

approach to data-binding the notiications and connection context, including the user’s set-
tings preferences for accepting each type of notiication.

 ■ Demonstration code to illustrate some of the more common server-side notiication patterns.

The key feature of the library is the hierarchy of notiication message classes, which is illustrated in
Figure 12-8.

438 PART III extended Services

FIguRE 12-8 The Push Notiication Server-Side Helper Library classes.

Using these classes simpliies the server-side code for sending notiications. For example, the code
that follows sends a raw notiication; you instantiate the speciic notiication type class, and then
invoke either the synchronous (blocking) Send method or the asynchronous SendAsync method. For

the asynchronous method, rather than having to wire up an event handler for the result indepen-

dently, you pass in a delegate as a parameter to the SendAsync method.

var rawMsg = new RawPushNotificationMessage(MessageSendPriority.High)

{

 RawData = Encoding.ASCII.GetBytes(RawMessage)

};

foreach (var subscriber in PushService.Subscribers)

{

 rawMsg.SendAsync(

 subscriber.ChannelUri,

 result =>

 {

 Log(result);

 OnRawSent(subscriber.UserName, result);

 },

 Log);

}

 ChAPTER 12 Push Notiications 439

In addition to the helper classes, the library also demonstrates how you can implement some of

the common patterns for sending notiications, speciically:

 ■ one-time push This is the simplest pattern and the basis of all notiications. This is what
you’ve been using to explore push notiications throughout this chapter.

 ■ Push counter resets upon logon The classic example of this is email, wherein the email

client tile shows a counter for the number of unread emails since the last time the user opened

the email client application. The same technique is used for unread SMS messages, missed

phone calls, and so on. The trigger for resetting the count can be opening the application

(which will generally log the user on to the server implicitly) or some other domain-speciic
action.

 ■ Ask to pin application tile If you send a tile notiication but the tile is not pinned to the
start screen, the notiication will not be delivered to the phone. In this case, the server will
be notiied that the application tile is not pinned. It is part of the usability model in Windows
Phone that there is no programmatic way to pin a tile to the start screen. This is kept strictly

under user control. When the server application detects that the tile is not pinned, it can work

with this constraint and simply send a follow-up raw notiication that can be used by the
client application to inform the user that she can receive tile updates if she performs the pin

operation.

 ■ Create custom server-side image The location of the image for the tile background must

be either local to the client application or at a remote URL that can be reached by the client. If

the image is on the phone, it must be static. However, if it is at a remote URL, it can be either

static or dynamic. This pattern shows how to generate static images on the server for use as

tile backgrounds.

 ■ scheduled tile updates The normal pattern is that tile updates are sent by the server appli-

cation at times dictated by logic on the server. An alternative pattern is where the client appli-

cation can use the ShellTileSchedule class to register for periodic tile updates from the server.

Common Push Notiication Service

So far in this chapter, you’ve considered the Microsoft Push Notiication Service. In fact, there are
two other commonly used push notiication systems: the Apple Push Notiication Service (APNS) for
iOS devices, and the Cloud 2 Device Messaging Framework (C2DM) for Android devices. It is possible

that an application developer would want to target not just the MPNS, but one or both of the other

systems, as well.

Although the three systems have similar goals and architectures, they’re obviously implemented

differently. There are differences in how your application would need to talk to each service, so build-

ing an application to target multiple systems involves additional work. This work would need to be

repeated for each application. This is where the Common Push Notiication Service (CPNS) comes
in. The CPNS provides a common framework, and a set of common classes that simplify connecting

440 PART III extended Services

to any or all of the three systems. Furthermore, it’s suficiently open-ended that it could easily be
extended to cover other systems that might become available in the future. The CPNS is released as

open source by the Microsoft Interoperability Strategy Group; it is not a formal service like the MPNS,

rather it is a set of class libraries that you can deploy to your servers (or to Windows Azure) to medi-

ate between your application server and the MPNS/APNS/C2DM services. The basic architecture of an

application that uses the CPNS is shown in Figure 12-9.

MPNS

APNS

C2DM

CPNS

Web role

Worker
role

Notification Queues

Notification
Source App

Send to Devices

Send to Devices

Send to Devices

Register/
Subscribe

2f

2f

2f

De-Queue

Get Device &
Service Data

2c

2d

2e

2b

1a

Send
Notification

Send
Notification

En-Queue

Store
Data

2a registrations/
Subscription

tables

1b

FIguRE 12-9 An overview of the Common Push Notiication Service (CPNS) architecture.

The CPNS deines three primary entities:

 ■ Devices This is the set of user phones that are registered for a given system.

 ■ Notiications The three systems support different types of notiication, but all of them sup-

port notiications of some kind.

 ■ subscriptions Notiications can be grouped into logical subscriptions. For example, a user
might choose to subscribe to all notiications for a particular sports team, or he might choose
to subscribe to a subset of news topics (perhaps, technology, business, and sports) from a

news feed.

 ChAPTER 12 Push Notiications 441

The CPNS maintains internal data stores that correspond to these three entity types. As it happens,

the CPNS is implemented as an Azure service. It consists of a web role that exposes REST endpoints

for device, subscription, and notiication management and a worker role that sends push notiica-

tions. It uses Azure storage for information about each device, notiication, and subscription, as well
as the different push notiication systems. Most of the data is held in Azure table storage, whereas the
ongoing notiications are held in an Azure queue.

Figure 12-10 is a screenshot of the sample server application UI. From this, you can see that you

can send either a system-speciic message (for Windows Phone 7, iPhone, or Android), or a non–
system-speciic message. In the latter case, the message will be sent to all devices that are subscribed
to receive notiications about coffee, for all three of the push notiication systems.

FIguRE 12-10 Sending a notifcation to multiple push systems.

Of course, the same message is implemented in a different way for each system:

 ■ When sending to a Windows Phone 7 device, the message is sent as a tile notiication.

 ■ For an iPhone, it’s sent as an iPhone push notiication.

 ■ For Android, notiications are similar to Windows Phone 7 raw notiications; the payload is
arbitrary and each client application can choose how to handle it.

To send push messages to iPhone, the sender service must be registered with the Apple Developer

portal and use certiicate authentication. Similarly, for sending notiications to Android devices, you
need to sign up to use C2DM (http://code.google.com/android/c2dm/signup.html).

442 PART III extended Services

The CPNS exposes service REST endpoints, backed by Azure web and worker roles. Your client

application would register with the CPNS, and the web role adds the registration and subscription

data to table storage. Your server application also uses the CPNS to send notiications, and the web
role puts each notiication into queue storage. Then, the worker role consumes the queue, matching
each notiication to its target device(s), using the speciied target notiication system(s).

Here’s how you would use the CPNS. Keep in mind that the following code listings are a simpliied
abstraction of the core functionality. In your server application (the custom data provider that initiates

the push notiications), you would send each notiication to the CPNS instead of directly to MPNS/
APNS/C2DM. You send the message payload without any of the push notiication XML formatting or
headers. For example, the code that follows is all you need to send a toast notiication. The key point
to note is that your server code is extremely simple—you don’t need to worry about the speciics of
the target system.

string toast =

 "http://127.0.0.1/push.svc/message/toast/CoffeeSubscription?mesg=Hello World";

HttpWebRequest request = (HttpWebRequest)WebRequest.Create(toast);

The CPNS side of this request constructs a ToastMessage class object from the incoming Http

WebRequest payload, and then adds this to an Azure queue. The ToastMessage class is one of the

derivatives of a base PushMessage class deined in the CPNS library.

ToastMessage toastMsg = new ToastMessage(subscriptionId, message);

this.msgQueue.Enque(toastMsg);

Then, there is an independent Azure worker role which processes the main queue of incoming

notiication requests. For each notiication, it determines which target system(s) are requested, and
adds the message to one or more of the queues speciic to each system.

while (true)

{

 PushMessage message;

 if ((message = this.msgQueue.Deque()) != null)

 {

 if ((message.MessageType & MessageType.Apns) == MessageType.Apns)

 {

 apnsConnection.Enque(message);

 }

 if ((message.MessageType & MessageType.Mpns) == MessageType.Mpns)

 {

 mpnsConnection.Enque(message);

 }

 if ((message.MessageType & MessageType.C2dm) == MessageType.C2dm)

 {

 c2dmConnection.Enque(message);

 }

 }

}

 ChAPTER 12 Push Notiications 443

Meanwhile, another operation in the worker role is processing each system-speciic queue, adding
the required payload formatting and custom headers for that system. It then sends a WebRequest to

the corresponding target system (MPNS, APNS, or C2DM).

var request = (HttpWebRequest)WebRequest.Create(uri);

request.Method = WebRequestMethods.Http.Post;

request.ContentType = "text/xml";

request.Headers.Add("X-MessageID", Guid.NewGuid().ToString());

request.Headers["X-WindowsPhone-Target"] = "toast";

request.Headers.Add("X-NotificationClass", ((int)this.ToastInterval).ToString());

while (!sent && tries < retries)

{

 using (var requestStream = request.GetRequestStream())

 {

 requestStream.Write(messageBytes, 0, messageBytes.Length);

 }

}

You can use the CPNS as it is, modifying it in minor ways to meet your speciic requirements, or
you can use it as an informational example of just one way to support push notiications that target
multiple notiication systems. For example, the CPNS as released uses Windows Azure internally, and
you might choose to implement your own backing storage and notiication queuing mechanisms
instead. Further details are available at http://windowsphone.interoperabilitybridges.com/articles/

common-push-notiication-service-sample.

summary

In this chapter, you have seen how the Windows Phone 7 push notiication model provides a way
for you to build applications that can easily keep information on the phone up to date. This involves

a server-side application for generating notiications and a client-side application for receiving the
incoming notiications and rendering the data appropriately on the phone. The three different noti-
ication types (raw, tile, and toast) each provide different data and behavior, appropriate for different
use cases. Raw notiications are entirely under your control; tile notiications integrate seamlessly with
the standard Metro UX. Notiications also integrate with system-level alerts; therefore, they require
user approval. Finally, you examined two open-source helper libraries, which can help simplify your

applications, and help you target non–Windows Phone 7 devices. Security issues related to push noti-

ications are addressed in Chapter 13.

http://windowsphone.interoperabilitybridges.com/articles/common-push-notification-service-sample
http://windowsphone.interoperabilitybridges.com/articles/common-push-notification-service-sample

 445

C h A P T E R 1 3

Security

The Windows Phone 7 OS and application platform are very secure, but there’s no such thing as

100 percent secure, and developers have a responsibility to follow secure development guidelines

and do their part toward protecting the user from security attacks. Mobile devices present particu-

lar security challenges, arising mainly from the fact that they’re mobile: it is easier for an attacker

to steal your phone than your PC. As a developer, this means that you should carefully consider the

impact of storing potentially valuable data on the phone, especially if the phone is not protected by

a PIN. This includes personal information such as credit card or other account details, all usernames

and passwords, and unique identiiers used to access public web services or websites—none of this
data should be kept on the phone. In this chapter, you’ll examine the security features built into the

platform, some development lifecycle techniques that you can adopt to improve the security of your

applications, and some speciic authentication and authorization technologies.

Device security

Windows Phone 7 does have some level of built-in security support. For example, the user can set

a PIN on the device which is then required to unlock it for use. Also, removable SD cards are not

supported, which signiicantly reduces the security vulnerability of the phone. Inserting an SD card

represents a potential attack vector, because you might have no control over what is put on the card

before it gets to your phone. However, for cases in which a Windows Phone uses an SD card, that card

is associated with the device by a 128-bit key, so even if an attacker manages to get hold of your SD

card, it would be dificult for him to read it on another device. Version 7 also does not support PC
tethering, although this feature was introduced in version 7.1.

To install applications on a Windows Phone, the user must have a Windows Live ID. This confers

a number of additional beneits, including security features. If the user loses his phone, he can go to
the Windows Phone Live portal (http://windowsphone.live.com) to manage the lost phone remotely.

Features available on the portal include locating the phone, locking it, ringing it, and erasing it. To use

any of these features, you navigate to the portal in any browser, and then sign in with your Windows

Live ID. If you have multiple phones, they will all be listed under your proile and available to manipu-

late. Figure 13-1 illustrates locating a phone and ringing it.

http://windowsphone.live.com

446 PART III extended Services

FIguRE 13-1 Locating and ringing my phone via the Windows Phone Live portal.

Application safeguards

On top of the user-centric device security features, the Windows Phone application platform has

also been built to use a range of techniques that help to protect users and their data by imposing

constraints on applications. These include checks on how applications are installed on the phone and

further restrictions within the deployment channel itself; that is, within the marketplace ingestion

process. Even after an application is installed on the phone, there are further launch-time and runtime

safeguards that protect the overall user experience (UX), the security and privacy of user data, as well

as the ongoing cost of using the phone.

 ChAPTER 13 Security 447

Application Deployment
Apart from developer-unlocked phones, applications can be deployed onto a retail phone only

through the Windows Phone marketplace portal. The structured marketplace submission and pro-

visioning process includes a suite of certiication tests to identify certain behaviors that might be
associated with problems. If detected, this process prevents applications that exhibit those behaviors

from becoming available in the marketplace. The marketplace is the only legitimate source of applica-

tion acquisition, mandatory code signing, and application licenses. This approach helps to maintain a

consistent set of standards for Windows Phone applications.

All marketplace applications have to go through a formal certiication process before they are
made available to users. Code signing occurs automatically once the application has successfully

passed the certiication testing within the marketplace ingestion worklow. The application and
repackaged XAP iles are signed by Microsoft with the Microsoft-issued Authenticode certiicate that
is assigned to the developer when it originally registered on the marketplace. Any pre-existing signa-

tures in a submitted application or XAP iles are replaced/overwritten during this process. Only those
applications that are signed with a Microsoft-issued Authenticode certiicate can be installed and run
on a retail Windows Phone.

Also, of course, for a developer to submit an application to marketplace, that developer must be

registered with the marketplace. This requires the developer to provide information about herself—

including credit card information—and this is subject to veriication.

Marketplace ingestion covers other aspects of publication apart from security (these are examined

in detail in Chapter 14, “Go to Market”). Ingestion includes the following security-speciic constraints:

 ■ Application code validation An application must not invoke native code via P/Invoke or

COM interoperability; if it does, it will fail certiication.

 ■ Malicious software screening The application must be free of viruses and any malicious

software.

 ■ Microsoft Intermediate Language (MSIL) type safety veriication The phone OS imple-

ments multiple sandboxes to help protect the integrity of the device and the applications

running on it. An application must contain only type-safe MSIL code to pass certiication; any
use of “unsafe” language constructs such as pointers and pointer arithmetic, type casts, ixed

buffers, and stackalloc will cause the application to fail type-safety veriication, and conse-

quently fail certiication.

Figure 13-2 summarizes the marketplace developer registration and application publication

processes.

448 PART III extended Services

Developer Application MarketPlace

Specify App Capabilities

Build the App

Submit the App

Notify Results

Validate the XAP

Finalize App Capabilities

Content Tests

Technical Tests

Publish the App

Re-sign the XAP

Register with WLID & Credit Card

FIguRE 13-2 The marketplace ingestion and publication process.

There are currently no supported mechanisms for loading applications onto the Windows Phone 7

platform outside of the marketplace. Such side-loading mechanisms, including downloading from a

PC or from a storage card or from another device over Bluetooth are not enabled. Even if you could

side-load an application on to the phone, there would still be no way to launch that application. The

only way to launch applications is via the application list or the Start menu (or Launchers and Choos-

ers, in the case of built-in applications). For an application to be available in the user interface (UI),

it must be correctly registered in the internal application database, and side-loading cannot achieve

this. Even upgrades, maintenance releases, and patches for applications must be routed through the

public marketplace and run through the marketplace security constraints. Figure 13-3 summarizes the

application installation process. Note that installation includes a step to conigure the security sand-

box that will be used for the application at runtime.

 ChAPTER 13 Security 449

User MarketPlace Phone Application

Buy App

Download

Verify XAP Signature

Unpack App

Check Capabilities

Configure Sandbox

Register App in DB

FIguRE 13-3 Installing an application from the marketplace.

Managed Code Constraints
All marketplace applications can be developed only in managed code. Not only does this help to

improve developer productivity, but it also improves the robustness of the applications. The strong

typing, bounds checking, and memory management features of managed code minimize or eliminate

many of the common programming errors that can lead to exploitation of the application by hackers

as well as excessive and unintended resource consumption. In general, managed applications are far

less vulnerable to issues such as buffer overlows, format string errors, memory management errors,
and so on, which are common in unmanaged code.

The Windows Phone 7 application platform also strictly controls access to Windows APIs. Many

areas of functionality are effectively blocked, including registry access, ilesystem access, many net-
work features, process APIs, all inter-process communication APIs, and so on. All of these restrictions

are designed to improve the overall robustness of the platform by disabling potentially damaging

APIs and increasing isolation between applications as well as between applications and the system

itself.

Note One inter-process communication mechanism that is supported is the use of named

mutexes. This was introduced in version 7.1 speciically to support communication between
a background agent and its associated foreground application. It is strictly scoped to the

application’s security chamber.

450 PART III extended Services

Windows Phone 7 applications run inside a managed sandbox which implements the Microsoft Sil-

verlight security model. Silverlight is supported by a stripped-down version of the Common Language

Runtime (CLR), and on the phone this uses the Microsoft .NET Compact Framework. Silverlight needs

only one sandbox that is equivalent to the browser sandbox for running scripts. Managed code in Sil-

verlight follows the new CLR Security model, based on the notion of “transparency.” This divides code

into three layers, based on whether the assembly is trusted, and on three custom attribute annota-

tions: Transparent, SafeCritical, and Critical, which are described in the following:

 ■ Transparent code This is the lowest trust level for code. Transparent code can run only with

the same permission as the caller. All third-party application code and signiicant portions of
framework libraries code is Transparent code. Transparent code has the following constraints:

• It cannot contain unveriiable code. This means that all of the code must be veriiably
type-safe.

• It cannot call native code via a P/Invoke or COM interop.

• It cannot access Critical code or data.

 ■ SafeCritical code The bridge between Transparent code and Critical code. SafeCritical code

performs security boundary checks such as parameter validation, and ensures that Transparent

code is clean to perform the critical operations. Basically, SafeCritical code is expected to per-

form the necessary due diligence on the caller before, in its turn, calling Critical code. All Safe

Critical code must be part of the platform itself; it cannot be part of a marketplace application.

 ■ Critical code This has the highest privileges and is restricted only by the permissions of the

application. This includes the ability to interact with the system through P/Invokes or even to

contain unveriiable code. All Critical code must be part of the platform.

Table 13-1 summarizes all three layers.

TABlE 13-1 Code Transparency Layers

Managed layer Code Annotated with Role Accessibility

SecurityCritical System.Security.
SecurityCritical

Fully trusted code. Can perform
pointer arithmetic and P/Invoke.

Can be accessed only by
SafeCritical layer. Must be loaded
by the OS as a trusted assembly.

SafeCritical System.Security.
SecuritySafeCritical

Acts as a bridge between
Transparent and Critical code.

Can be accessed by all layers.
Must be loaded by the OS as a
trusted assembly.

Transparent System.Security.
SecurityTransparent or
Unannotated

Can call into SafeCritical code.

All user application code is
Transparent; any annotation on user
code is ignored by the runtime.

Can be accessed by all layers.

Note that only Microsoft assemblies (that is, those that ship in the device as part of the managed

platform) are allowed to have these annotations; hence, only they can directly access any native code.

All marketplace application code and libraries are themselves treated as Transparent code and can

only access Transparent and SafeCritical methods in the managed platform APIs.

 ChAPTER 13 Security 451

Note Windows Phone 7 does also support a hybrid application model, in which the appli-

cation can include both native and managed code, but this feature is not exposed to mar-

ketplace application developers, and is used only by the phone hardware manufacturers

and mobile operators. A hybrid application can in fact use COM interop to call into its own

COM libraries, which in turn can call native functionality.

Chambers and Capabilities
On top of the basic Silverlight transparency layers, the Windows Phone application platform intro-

duces the following additional security/robustness techniques:

 ■ Chambers A chamber is a new process isolation technology. There are four chamber types.

The irst three have ixed permission sets, whereas the last one (Least-Privileged Chamber) has
permissions driven by capabilities. All marketplace applications use the Least-Privileged Cham-

ber only. The following is a description of each chamber:

• Trusted Computing Base (TCB) This chamber is assigned the greatest privileges, with

unrestricted access to all device resources, including the ability to modify security policy.

The kernel and kernel-mode drivers run in the TCB.

• Elevated-Rights Chamber (ERC) This chamber can access all resources except security

policy. The ERC is for services and user-mode drivers intended for use by other phone

applications.

• standard-Rights Chamber (sRC) This is the default chamber for pre-installed

applications.

• least-Privileged Chamber (lPC) This is the default chamber for all third-party applica-

tions; that is, all non-Microsoft applications that can be downloaded from the Windows

Phone marketplace. Windows Phone applications run in a sandboxed process. This means

that they are isolated from each other and interact with phone features in a strictly struc-

tured way.

 ■ Capabilities A capability (or privilege) grants access to one or more resources on the

phone that have security, privacy, or cost implications for the user. The platform provides a

capabilities-driven security model, in which an application is executed within a security sand-

box whose limits are determined by the capabilities required by the application, as described

in the following:

• The sandboxed process within which a particular application runs has a customized set of

security privileges. The platform is designed to minimize the attack surface area of each

application by only granting it the privileges that it needs in order to run. For example, if an

application does not require the use of the location services, the application platform will

seek to execute it in a sandboxed process which does not have access to location services.

452 PART III extended Services

• Certain privileges that an application might need have a direct impact on information

access or cost. In such cases, the Windows Phone marketplace will disclose this information

to the end user before the application is purchased. Some examples include using network-

based services, whereby a user could incur additional roaming costs if the use of the

services were not disclosed by the application. Pre-installed applications are also required

to disclose this information to the end-user upon irst use of the application.

• The capabilities model helps to decrease the attack surface: capabilities are used to create

a security chamber in which the application will execute. This chamber is created once

during installation, stored in the application database on the phone, and then always used

whenever the application is launched, subsequently. A chamber is a security and isolation

boundary for a process; it places limits on what the hosted process can do, based on poli-

cies, as conigured for the instance of the chamber.

• The capabilities model also helps to ensure proper disclosure. Users must be notiied if an
application’s functionality has implications on their privacy, security, or costs. The user is

told what capabilities an application uses before she installs it; if she chooses to proceed

with the installation, this is her acceptance of these capabilities. As it pertains to location

services, before the functionality is activated, the user must explicitly opt in, and she must

also be given a mechanism to opt out again at any later stage. For other capabilities, the

user’s only opt-out path is to uninstall the application. For example if an application uses

a microphone and a user is not aware of it, then it might be possible for the application

to record the user’s conversation and send it to the attacker, thus posing a security and

privacy risk. The capability model ensures that a user is able to review what capabilities an

application supports before she uses it.

 ■ Execution Model Before an application can run on the phone, it must be installed via the

oficial marketplace. Marketplace ingestion imposes security and other constraints, and when
the marketplace triggers the installation of an application on the phone, this includes register-

ing it in the platform’s application database. This registration includes extracting metadata

from the manifest about the application’s required capabilities. These, in turn, will be used to

conigure the sandbox in which the application runs.

• All applications on the phone are launched via an Execution Manager, which is a core part

of the application platform. The Execution Manager will only launch applications that are

correctly registered in the database, and it will ensure that the runtime sandbox is conig-

ured to precisely match the application’s registered capabilities.

• The Execution Manager will only load applications that have been signed by the Microsoft

certiicate used in marketplace ingestion. So, even if you could side-load an invalidly signed
XAP onto the device, it would not get loaded.

• When you build an application, the generated package includes metadata that declara-

tively speciies the capabilities required by the application. When the user installs an
application, the Package Manager validates the capabilities in the XAP and maps them

to corresponding security groups maintained in the application database, which are then

 ChAPTER 13 Security 453

associated with the Security ID (SID) and LPC created for the application. When the user

launches the application, the Execution Manager associates the required capabilities with

the SID and LPC under which the application’s host process executes.

• Launching an application is not a “ire-and-forget” operation. Rather, the Execution Man-

ager continues to monitor the running application to ensure that it behaves appropriately.

The application must not allow unhandled exceptions to propagate beyond itself; it must

respond within a reasonable time to events such as the user navigating away from (or back

to) the application; it must not make excessive use of CPU or memory resources; and so on.

An application that misbehaves at runtime will be terminated in order to protect the overall

UX on the phone.

Figure 13-4 shows a summary of the load/run sequence.

User Phone Shell

Check App DB

Configure LPC

Verify Signature

Verify Capabilities

Execution Manager Application

Select App to Launch

Request Launch

Load App DLL

Instantiate Entrypoint

Ongoing Monitoring

Use the App

Create Host Process

FIguRE 13-4 The application launch and execution sequence.

454 PART III extended Services

Missing Security Features
The Windows Phone 7 platform is targeted primarily as a consumer device rather than a business

device. Although the phone does include many enterprise features, the priorities for this release place

a greater emphasis on UX, battery life, and overall performance. Table 13-2 lists some prominent

security features which would be required for enterprise line of business (LOB) applications but are

not currently supported (or exposed to marketplace applications) in the Windows Phone 7 platform.

TABlE 13-2 Missing Security Features for Enterprise/LOB Applications

Feature Description

Private application
deployments

Windows Phone 7 applications can only be deployed through the Marketplace. Side-loading
of applications is not supported. This makes the phone more secure, but makes it dificult to
deploy a “private” enterprise application.

Credential Manager
(CredMan)

On earlier versions of Windows Mobile, CredMan manages username and password creden-
tials needed to authenticate clients who access remote resources. Without a way to store
credentials securely, applications must always prompt the user to provide his username/
password dynamically; you should avoid storing these on the phone wherever possible. One
reasonable approach is to prompt the user before storing such data, and then do so only if he
also has a PIN to protect the phone itself.

Client certiicates No managed API to access client certiicates. In addition, there is no UI to manage certiicates
on the device.

Device encryption Although a phone can be locked by using a PIN, and individual applications can encrypt
their data, there is no way to encrypt the device as a whole (that is, there is no equivalent to
Bitlocker).

Local Authentication
Subsystem (LASS)

No managed access to LASS. Marketplace applications cannot use Windows integrated au-
thentication (NTLM, Kerberos).

Windows Identify
Foundation (WIF)

No direct support for WIF federated authentication. An application can perform federated
authentication, but this requires the application itself to implement WIF protocols.

Internet Protocol
Security (IPSec)

IPSec provides a number of network access protections, including application-transparent
encryption services for IP network trafic. None of this is available on Windows Phone.

Information Rights
Management (IRM)

There is no support for viewing or editing IRM-protected documents in version 7; however,
this support was added in version 7.1.

Data Protection API
(DPAPI)

A comprehensive cryptography API for securing passwords and encryption keys. This is not
available on version 7, although the phone does include a minimal set of cryptographic APIs,
and DPAPI support was introduced in version 7.1.

Windows Live ID
(WLID)

Although a WLID is required to register a phone, client-side programming for Windows Live is
not directly supported in the platform. However, there is a Live SDK, available for download.

The absence of some of these features makes it challenging to develop and deploy applications for

enterprise/LOB scenarios. Note that support for some of these features is gradually being introduced.

For example, the Live SDK is available as a separate download; you can use this to connect to Win-

dows Live, including SkyDrive, Hotmail, and Messenger. Windows Phone 7.1 also introduces support

for Sockets (see Chapter 17, “Enhanced Connectivity Features”) and DPAPI (see Chapter 18, “Data

Support”).

Also note that Windows Phone 7 does include comprehensive support for Exchange ActiveSync

(EAS), version 14.0, and this is very important for enterprise users. System administrators can use EAS

to conigure security policy, which is then enforced on all phones connected to the organization’s
network. Administrators can require users to set up a PIN that must be used before the device can

sync Exchange data (including email, contacts, and calendar). PINs can also have an expiry policy,

 ChAPTER 13 Security 455

which requires users to enter a new PIN periodically. A security policy can prevent users from recy-

cling previously used PINs, and can enforce rules about what constitutes a valid PIN in terms of pat-

tern (for example, 1234 is typically not valid) and length. EAS also gives the organization the ability

to control the idle timeout period (upon which the phone is locked). It can even enable the ability

to erase a device remotely and reset it to factory defaults. This last feature can be combined with a

policy that speciies the maximum allowed number of failed unlock attempts.

Data Encryption

Any data stored on the phone by an application is stored in isolated storage. This is an isolated virtual

ilesystem that is sequestered from other applications. By default, it is not encrypted. If an attacker

gains physical access to a phone, it would be possible for him to then mount the phone’s ilesystem
as a navigable ilesystem on a PC, and thereby gain access to all the data stored on the device. To
mitigate this threat, an application can choose to encrypt its persisted data. To this end, a core set of

cryptographic functionality is supported on Windows Phone 7, as summarized in Table 13-3.

TABlE 13-3 Cryptographic Functionality Supported in Windows Phone 7

Algorithm Classes Description

Advanced
Encryption
Standard (AES)

AesManaged This is a symmetric-key algorithm, meaning that the same key is used
for both encrypting and decrypting the data. This is a standard algo-
rithm used by the United States government and others.

SHA-1, SHA-256 SHA1Managed,
SHA256Managed

A hash is used as a unique value of ixed size that represents a large
amount of data. Hashes of two sets of data should match if and only if
the corresponding data also matches. Small changes to the data result
in large unpredictable changes in the hash.

HMACSHA-1,
HMACSHA-256

HMACSHA1,
HMACSHA256

A type of keyed-hash algorithm that is constructed from the SHA1
or SHA256 hash function and used as a Hash-based Message
Authentication Code (HMAC). The HMAC process mixes a secret key
with the message data, hashes the result with the hash function, mixes
that hash value with the secret key again, and then applies the hash
function a second time.

Used to determine whether a message has been tampered with, as-
suming that the sender and receiver share a secret key. The sender
computes the hash value for the original data and sends both the orig-
inal data and hash value as a single message. The receiver recalculates
the hash value on the received message and checks that the computed
HMAC matches the transmitted HMAC. Be aware that this does not
provide conidentiality.

RFC-2898 Rfc2898DeriveBytes A password-based cryptography speciication. The Rfc2898DeriveBytes
class implements PBKDF2 (a password-based key derivation function)
and includes methods for creating a key and initialization vector (IV)
from a password and a salt.

As noted earlier, it is important to remember that the version 7 application platform does not sup-

port secure storage of passwords or encryption keys, nor does it include any kind of built-in key man-

agement facilities. It also does not contain managed APIs for asymmetric cryptography; for example,

certiicate-based scenarios such as digital signature veriication.

456 PART III extended Services

The application (the SimpleEncryption solution in the sample code) shown in Figure 13-5 offers

two pages. On one page (shown on the left), the user can enter some text plus an arbitrary password,

and then click the Encrypt button to encrypt the text and save it to a ile in isolated storage. On the
second page, the user is given a list of all iles in the application’s isolated storage; she can select any
of these, provide the corresponding password, and then click the Decrypt button to decrypt the ile
contents to a TextBox.

FIguRE 13-5 Encrypting data (on the left) and decrypting it (on the right).

There’s just one piece of data that’s common to both pages: the password salt. You store this in the

App class (this is an arbitrary string). Note that hard-coding this is not very secure; you’ll ix this later,
but for now it serves to illustrate the main low.

public const String PasswordSalt = "PasswordSalt";

To encrypt the data, take the password salt and the password itself that the user enters, and use

these with Rfc2898DeriveBytes to generate a key. You then set this key into an AesManaged object

and create a symmetric encryptor based on this key and the default IV. Next, perform the encryption

by writing to a CryptoStream object, using the encryptor.

using (IsolatedStorageFile store = IsolatedStorageFile.GetUserStoreForApplication())

{

 String filePath = String.Format("{0:yyyy-MM-dd_hh-mm-ss}.dat", DateTime.Now);

 using (IsolatedStorageFileStream fileStream =

 store.OpenFile(filePath, FileMode.Create))

 {

 using (Aes aes = new AesManaged())

 {

 Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(

 ChAPTER 13 Security 457

 password.Password, Encoding.UTF8.GetBytes(App.PasswordSalt));

 int maxKeySize = 256;

 int keyByteCount = maxKeySize / 8;

 aes.Key = key.GetBytes(keyByteCount);

 fileStream.Write(BitConverter.GetBytes(aes.IV.Length), 0, sizeof(int));

 fileStream.Write(aes.IV, 0, aes.IV.Length);

 ICryptoTransform transform = aes.CreateEncryptor();

 using (CryptoStream cryptoStream = new CryptoStream(

 fileStream, transform, CryptoStreamMode.Write))

 {

 byte[] plainText = Encoding.UTF8.GetBytes(input.Text);

 cryptoStream.Write(plainText, 0, plainText.Length);

 cryptoStream.FlushFinalBlock();

 }

 }

 }

To display the encrypted data on screen, you irst convert it to a Base64 string so that it is more
readable. This is only for testing/illustration purposes; you would not normally have a reason to do

this in a published application.

 using (IsolatedStorageFileStream fileStream =

 store.OpenFile(filePath, FileMode.Open))

 {

 using (StreamReader reader = new StreamReader(fileStream))

 {

 byte[] encryptedBytes = Encoding.UTF8.GetBytes(reader.ReadToEnd());

 encrypted.Text = Convert.ToBase64String(encryptedBytes);

 }

 }

}

Decryption follows a similar pattern. Again, you derive the same key from the password salt and

the user-supplied password. Then, read the initialization vector into an AesManaged object so that

you can then create a decryptor object. Next, read the CryptoStream.

using (IsolatedStorageFile store = IsolatedStorageFile.GetUserStoreForApplication())

using (IsolatedStorageFileStream fileStream = store.OpenFile(filePath, FileMode.Open))

{

 using (Aes aes = new AesManaged())

 {

 Rfc2898DeriveBytes deriveBytes = new Rfc2898DeriveBytes(

 password.Password, Encoding.UTF8.GetBytes(App.PasswordSalt));

 int maxKeySize = 256;

 int keyByteCount = maxKeySize / 8;

 aes.Key = deriveBytes.GetBytes(keyByteCount);

 byte[] dataSize = new byte[sizeof(int)];

 if (fileStream.Read(dataSize, 0, dataSize.Length) == dataSize.Length)

 {

 byte[] buffer = new byte[BitConverter.ToInt32(dataSize, 0)];

 if (fileStream.Read(buffer, 0, buffer.Length) == buffer.Length)

 {

 aes.IV = buffer;

458 PART III extended Services

 ICryptoTransform transform = aes.CreateDecryptor();

 try

 {

 using (CryptoStream cryptoStream = new CryptoStream(

 fileStream, transform, CryptoStreamMode.Read))

 {

 using (StreamReader reader = new StreamReader(

 cryptoStream, Encoding.UTF8))

 {

 decrypted.Text = reader.ReadToEnd();

 }

 }

 }

 catch (Exception ex)

 {

 decrypted.Text = ex.ToString();

 }

 }

 else

 {

 decrypted.Text = "Failed to read byte array from stream.";

 }

 }

 else

 {

 decrypted.Text = "Invalid byte array in stream";

 }

 }

}

Notice the call to Rfc2898DeriveBytes.GetBytes. For maximum strength, this code speciies a 256-
bit key; the key will be an array of 32 bytes. AES supports encryption using 128, 192, and 256-bit keys.

The longer the key is, the stronger is the encryption—and the slower the encryption process. In many

cases, a 128-bit key is suficient, but unless you’re encrypting large volumes of data, the inherent
performance degradation associated with a 256-bit key might not be signiicant.

Note that it is important not to store the encryption key on the device itself. You must also, of

course, not store the password on the device (unless the user directs you to do so). Instead, you must

derive the key dynamically, using Rfc2898DeriveBytes, each time it is required, and from a user-

supplied password. If you want to be super-secure, you could also avoid storing the password salt

on the device, and have the user enter this at runtime, too. Finally, if there is ever a need to generate

random numbers in a security context, you should always use the RNGCryptoServiceProvider class,

and not the standard Random class. In the following enhancement (the StrongerEncryption solution in

the sample code), you increase the strength of the security by eliminating the hard-coded password

salt. Instead, you generate it dynamically by using RNGCryptoServiceProvider to produce a random

array of bytes. In fact, you can do this for both the password salt and for the IV used in the AesManaged

object.

 ChAPTER 13 Security 459

//public const String PasswordSalt = "PasswordSalt";

private static byte[] passwordSalt;

public static byte[] PasswordSalt

{

 get

 {

 if (passwordSalt == null)

 {

 int maxKeySize = 256;

 int keySize = maxKeySize / 8;

 passwordSalt = new byte[keySize];

 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

 rng.GetBytes(passwordSalt);

 }

 return passwordSalt;

 }

 private set { }

}

private static byte[] iV;

public static byte[] IV

{

 get

 {

 if (iV == null)

 {

 int maxBlockSize = 128;

 int blockSize = maxBlockSize / 8;

 iV = new byte[blockSize];

 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

 rng.GetBytes(iV);

 }

 return iV;

 }

 private set { }

}

Then, on the main page, in the encryption method, create the encryption key by using the ran-

domly generated salt and the randomly generated IV. Note that you also specify the number of itera-

tions for the Rfc2898DeriveBytes to use (in this case, 1000, which is a good minimum number to use

in this scenario).

using (Aes aes = new AesManaged())

{

 Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(

 password.Password,

 //Encoding.UTF8.GetBytes(App.PasswordSalt));

 App.PasswordSalt, 1000);

 int maxKeySize = 256;

 int keyByteCount = maxKeySize / 8;

 aes.Key = key.GetBytes(keyByteCount);

 // Use the randomly-generated IV.

 aes.IV = App.IV;

460 PART III extended Services

 fileStream.Write(BitConverter.GetBytes(aes.IV.Length), 0, sizeof(int));

 fileStream.Write(aes.IV, 0, aes.IV.Length);

 ICryptoTransform transform = aes.CreateEncryptor();

 using (CryptoStream cryptoStream = new CryptoStream(

 fileStream, transform, CryptoStreamMode.Write))

 {

 byte[] plainText = Encoding.UTF8.GetBytes(input.Text);

 cryptoStream.Write(plainText, 0, plainText.Length);

 cryptoStream.FlushFinalBlock();

 }

}

The same randomly generated password salt must be used for successful decryption, as well. This

does mean that the application still stores this information with the ile, so this approach adds only
minimal additional security. For more robust security, you could also compute a hash, based on the

encrypted data, the IV, and the password by using HMACSHA256. You could store this hash so that

when it comes time to decrypt the data, you could recompute the hash and cross-check it with the

previous hash. This mitigates the possibility that the encrypted data has been tampered with.

sDl Tools

The internal product teams at Microsoft use a wide range of tools for building secure software, as

part of the Security Development Lifecycle (SDL). Several of these tools are relevant to Windows

Phone developers, and they have been made available for free download, as described in Table 13-4.

TABlE 13-4 SDL Tools

Tool Description

SDL Guidelines A document that describes the SDL concepts as well as guidelines on how to adopt an SDL
process in your own development. As of this writing, many aspects of the Microsoft SDL are
being adopted by the United States military. You can download the guidelines from
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=12379.

Threat Modeling Tool Used to create and analyze threat models. This is a way of describing the solution from a
security perspective, listing all the possible threats, vulnerabilities, and attack vectors, and
then devising suitable mitigations for each. Using the tool, you can map the security con-
straints of your application. It can also help you to identify problem areas. You can down-
load the tool from http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx.

FxCop Used for static analysis of managed code assemblies. The tool includes hundreds of com-
mon rules for maintainability, reliability, security, and so on. The tool is extensible, and
you can add your own custom rules. The concept being that you run FxCop as part of your
build process to lag areas in your code that don’t meet the required standards.

Note that Microsoft Visual Studio 2010 Premium includes an enhanced version of
FxCop built in to the IDE. For other versions of Visual Studio, or to use FxCop stand-
alone, an installer for FxCop is included in the Windows SDK. On a 32-bit computer,
this is typically locates at %ProgramFiles%\Microsoft SDKs\Windows\<version>\Bin\
FXCop; on a 64-bit computer, you can ind it at %ProgramFiles(x86)%\Microsoft SDKs\
Windows\<version>\Bin\FXCop. Be aware that a default install of the SDK doesn’t neces-
sarily install the FxCop installer, so you might need to go back to the SDK install and select
Add Features. You can download it from http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=6544.

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=12379
http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=6544
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=6544

 ChAPTER 13 Security 461

Microsoft offers a range of SDL tools, but not all of them are relevant for Windows Phone devel-

opment. In particular, MiniFuzz (ile fuzzing tool), BinScope (binary ile veriication), and Banned.h
(banned native APIs) are not useful.

threat Modeling
Threat modeling is a structured approach to mapping the security context of your solution. It pro-

vides a process framework for describing your architecture in security terms, identifying vulnerabili-

ties and threats to your system, and ensuring that you implement mitigations to all identiied threats.

This is how you use the SDL Threat Modeling tool. First, you draw a diagram—this uses an embed-

ded Microsoft Visio design surface within the tool. The diagram includes the major logical processes,

data stores, and external interactors. It also includes the signiicant logical data lows between these
various entities, as shown in Figure 13-6.

FIguRE 13-6 A simple threat model context diagram.

462 PART III extended Services

The tool analyzes the solution based on your diagram and generates a list of potential threats. You

then go through all the threats and provide mitigations, as shown in Figure 13-7. You would also typi-

cally open bugs in your bug database for each one until you have implemented the mitigation.

FIguRE 13-7 Analyzing the threats and determining mitigations.

In a rigorous SDL process, you would submit your inal threat model for review with designated
security experts within your organization. By using this tool, you can identify threats in a structured

way, track them, and ensure that you have addressed all of them with acceptable mitigations.

Static Code Analysis/FxCop
FxCop ships with a command-line launcher, FxCopCmd.exe. For Visual Studio Premium and above,

there’s a slightly enhanced version built into the IDE itself. For any project, you can go to the Analyze

menu, and then in the Project settings, select the Code Analysis tab. From there, you can conigure
code analysis; that is, choose the rule sets that you want to apply, and then run the tool, as shown in

Figure 13-8. Results will be displayed in the standard Output window.

When you specify a rule set to use, this identiies an XML ile such as the SecurityRules.ruleset. This
is found typically in a location such as %ProgramFiles%\Microsoft Visual Studio 10.0\Team Tools\Static

Analysis Tools\Rule Sets\SecurityRules.ruleset. The XML ile, in turn, points to one or more managed
assemblies that actually contain the rules; in this example, it would be a ile such as %ProgramFiles%\
Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\FxCop\Rules\SecurityRules.dll.

 ChAPTER 13 Security 463

FIguRE 13-8 Coniguring static code analysis in Visual Studio.

If you like, you can create a custom rule set by selecting your own combination of existing rules.

To do this, you can open one or more standard rule sets in the rule set editor in Visual Studio (via

the Open button on the Code Analysis tab). You can then add or remove speciic rules in the set, and
you can change the action that occurs when code analysis determines that the rule has been violated

(None, Warning, Error).

You can also create a custom rule assembly, and then use this rule in a custom rule set. You can

see this at work in the MyCodeAnalysisRule solution in the sample code. To start, create a new regular

Windows class library project (not a Windows Phone project), and then add references to these two

FxCop assemblies (assuming that you installed FxCop to the default location):

%ProgramFiles%\Microsoft Fxcop 10.0\FxCopSdk.dll

%ProgramFiles%\Microsoft Fxcop 10.0\Microsoft.Cci.dll

Because these two assemblies are not in the Global Assembly Cache (GAC), adding them to a proj-

ect like this means that they will be added by using relative paths. These paths will be relative to the

current project (the custom rules project) on the current computer. When the consuming developer

wants to use this custom rule in his project on his computer, the paths will almost certainly be invalid.

To ix this, you need to change the relative paths in the project ile to use the $(CodeAnalysisPath)

MSBuild property, instead. To do this, in Solution Explorer, right-click the project, and then select

Unload Project. When the project has been unloaded, right-click it again, and then select Edit xxx.

csproj. You can then edit the project XML. Speciically, replace:

<Reference Include="FxCopSdk">

 <HintPath>..\..\..\..\..\..\..\Program Files\Microsoft Fxcop 10.0\FxCopSdk.dll</HintPath>

</Reference>

<Reference Include="Microsoft.Cci">

464 PART III extended Services

 <HintPath>..\..\..\..\..\..\..\Program Files\Microsoft Fxcop

10.0\Microsoft.Cci.dll</HintPath>

</Reference>

with this:

 <Reference Include="FxCopSdk">

 <HintPath>$(CodeAnalysisPath)\FxCopSdk.dll</HintPath>

 <Private>False</Private>

 </Reference>

 <Reference Include="Microsoft.Cci">

 <HintPath>$(CodeAnalysisPath)\Microsoft.Cci.dll</HintPath>

 <Private>False</Private>

 </Reference>

Next, you must add a rule metadata ile to the project. This is an XML ile that describes your rule.
The following rule metadata can be deined in the RuleMetadata ile:

 ■ The name of the rule. The FriendlyName, Category, and CheckId will be surfaced to the devel-

oper in Visual Studio when she composes a rule set that includes this rule.

 ■ Rule description.

 ■ One or more rule resolutions; that is, instructions to the developer on how to resolve the rule

violation.

 ■ The MessageLevel (severity) of the rule. This can be set to one of the following:

• CriticalError

• Error

• CriticalWarning

• Warning

• Information

 ■ An attribute of the MessageLevel element is the Certainty of the violation. This represents the

accuracy percentage of the rule. In other words, this ield describes the rule author’s coni-

dence in how accurate she estimates the rule to be.

 ■ The FixCategory of this rule. This speciies whether ixing this rule would require a break-

ing change; that is, a change that could break other assemblies that reference the one being

analyzed.

 ■ The help Url for this rule.

 ■ The support Email to contact about this rule.

 ■ The name of the Owner of this rule.

 ChAPTER 13 Security 465

For example:

<?xml version="1.0" encoding="utf-8" ?>

<Rules FriendlyName="My Code Analysis Rule">

 <Rule TypeName="MustNotUsePInvokes" Category="CustomRules.Interop" CheckId="CR0001">

 <Name>Phone apps must not use P/Invokes</Name>

 <Description>A Windows Phone 7 application must not use P/Invokes, or it will fail

 marketplace certification.</Description>

 <Resolution>The use of {0} is not permitted - you must remove this.</Resolution>

 <MessageLevel Certainty="100">CriticalError</MessageLevel>

 <FixCategories>NonBreaking</FixCategories>

 <Url>http://www.contoso.com</Url>

 <Email />

 <Owner />

 </Rule>

</Rules>

You must set the build action property of the rule metadata ile to EmbeddedResource so that it is

included in the compiled assembly.

In the code, you need to deine at least two classes: one is an abstract class that derives from
BaseIntrospectionRule; the second is a concrete class that derives from your abstract class.

In the abstract class, you must deine a constructor that takes three parameters: the irst param-

eter is the type name of the rule; the second is the resource name (that is, a string composed of the

default namespace plus whatever you named the rule metadata XML resource); and the last is your

rule assembly. All of the individual rules in your custom rule assembly will typically derive from the

same abstract base class. This allows you to specify the XML resource only once.

public abstract class BaseRule : BaseIntrospectionRule

{

 protected BaseRule(string ruleName)

 : base(ruleName, "MyCodeAnalysisRule.MyCodeAnalysisRule", typeof(BaseRule).Assembly)

{ }

}

For your one and only concrete rule class, deine a class that encapsulates the rule that you must
not use p/invokes in a Windows Phone application. The use of p/invokes would be lagged during
marketplace ingestion as well as by the Capabilities Detection tool. In fact, it would fail to run on the

emulator or a developer-unlocked phone, but it is useful to pre-empt these by using a code analysis

rule as part of your regular build cycle.

Apart from deriving from your abstract base class, the only other requirement is that you must

override the Check method. The BaseIntrospectionRule base class has six overloads of this method,

taking in parameters of different types that correspond to the type of code entity that is to be

checked (type names, class members, parameters, and so on). In this example, you’re interested in

class members, which is where p/invokes (DllImports) would be declared. For simplicity, focus on the

p/invoke methods (as opposed to other imported types). For each method declared in the project, if

the PInvokeFlags are not None, this must be a p/invoke declaration, in which case you add this to the

466 PART III extended Services

ProblemCollection. The GetResolution method formats an array of parameters into the resolution text

deined in the XML ile (using string substitution); in this example, you feed the method signature into
the resolution string that ends up being displayed in the errors list in the output window in Visual

Studio when code analysis is run.

public class MustNotUsePInvokes : BaseRule

{

 public MustNotUsePInvokes() : base("MustNotUsePInvokes")

 {

 }

 public override ProblemCollection Check(Member member)

 {

 Method method = member as Method;

 if ((method == null) || (method.NodeType != NodeType.Method))

 {

 return null;

 }

 if (method.PInvokeFlags == PInvokeFlags.None)

 {

 return null;

 }

 Problem item = new Problem(base.GetResolution(new object[] { method }));

 base.Problems.Add(item);

 return base.Problems;

 }

}

When you’ve built your rule assembly, you must copy it to the FxCop Rules folder, typically this

resides at %ProgramFiles%\Microsoft Visual Studio 10.0\Team Tools\Static Analysis Tools\FxCop\Rules.

You’ll have to shut down Visual Studio and restart before this will be picked up.

To use the custom rule, you must irst create an editable custom rule set. You can either open one
of the standard rule sets and save it with a new name or create one from scratch. To start from an

existing rule set, go to the Analyze menu, and then select Conigure Code Analysis for this project.
From the drop-down list of rule sets, select the one that you want to start from, and then click Open.

In the rule set editor, click Show Rules That Are Not Enabled to see all of the custom rule assemblies in

the FxCop Rules folder. Select your custom rule assembly, and then select one or more of your custom

rules (in this example, there’s only one), as shown in Figure 13-9.

FIguRE 13-9 Selecting a custom rule set in the rule set editor.

 ChAPTER 13 Security 467

When you save your rule set (with a .ruleset extension), the rule set ile will contain a reference to
each custom rule that you added. If you want to create a rule set ile from scratch, you can use the
listing that follows as a starting point. Observe that the only custom entries are one or more Rule Id

elements, each of which corresponds to a rule that you want to include in the rule set.

<?xml version="1.0" encoding="utf-8"?>

<RuleSet Name="Custom Security Rules" Description="This rule set contains custom security rules

for Contoso." ToolsVersion="10.0">

 <Rules AnalyzerId="Microsoft.Analyzers.ManagedCodeAnalysis" RuleNamespace="Microsoft.Rules.

Managed">

 <Rule Id="CR0001" Action="Error" />

 </Rules>

</RuleSet>

The following phone application includes a DllImport declaration, which, in fact, will violate your

custom rule.

public partial class MainPage : PhoneApplicationPage

{

 [DllImport("user32.dll")]

 static extern bool ExitWindowsEx(uint uFlags, uint dwReason);

 public MainPage()

 {

 InitializeComponent();

 }

}

When code analysis for this project is conigured to include your custom rule set, and code analysis
is run, it will produce a build error, as shown in Figure 13-10.

FIguRE 13-10 A build error caused by a custom rule in the custom rule set.

Web service security

It is a common pattern for a Windows Phone client application to communicate with a remote web

service. Web service–speciic security comes into play, regardless of whether you are building a closed
system for which you own both the client application and the web service (and the hosting server), or

a system wherein your client application is communicating with a public web service that you do not

own. There are two levels of security to consider: authentication and authorization. Authentication is

about conirming identity. For example, your client application might need to provide some creden-

tials such as a username and password to prove that it is known to the web service. Authorization is

468 PART III extended Services

about controlling what access an authenticated application has to secured resources. For example, a

web service might constrain the type of data it returns according to the role to which your application

belongs. The server must irst authenticate the user/client application, and can then make authoriza-

tion decisions for that authenticated user/application.

Authentication
There are three types of web service authentication that are relevant to Windows Phone applications:

 ■ Basic authentication This is a simple protocol, supported by virtually all browsers. With

Basic authentication, when the browser makes a request to a web service (or web application),

the server returns an HTTP 401 status code. This code informs the user agent that authentica-

tion is needed. This prompts the browser to present a logon dialog box to the user. The user

then enters his username and password, and these are returned to the server. The credentials

are base-64 encoded, which simply transforms the text to ensure that only HTTP-supported

characters are used. Herein is the main law in Basic authentication: credentials are effectively
passed “on the wire” in clear text. For this reason, Basic authentication should be used only in

combination with Secure Sockets Layer (SSL), which encrypts the entire communication. Basic

authentication plus SSL is a perfectly valid, secure, and very commonly used authentication

scheme.

 ■ Forms authentication With this approach, requests to the server from unauthenticated

users are redirected to a logon page deined by the server application. The UX is therefore
very similar to using basic authentication; the difference being that a custom server-side logon

page is used instead of a standard client browser dialog. Again, credentials are passed from

client to server in clear text, so forms authentication should also only be used with SSL.

 ■ Windows authentication This also employs username and password credentials, but the

difference is that these are taken implicitly from the context of the currently logged-on user

rather than explicitly via a dialog box or logon page. For these credentials to be useful, the

current user must have a valid account on the server or in the server’s trusted domain. This is

only really useful in intranet scenarios. Clearly, it is not useful for public-facing web services,

nor is it useful for Windows Phone client applications.

Forms Authentication
To explore Forms authentication, you can build a web application that combines UI elements with

web services. This is the FormsAuthClient and FormsAuthServer applications in the sample code. In this

solution, you want your client phone application to connect to a web service, and you’ll use the web

application to provide the server-side logon functionality. Figure 13-11 illustrates the end result from

the client perspective.

 ChAPTER 13 Security 469

Note If you want to open the sample code version of the FormsAuthServer solution in

Visual Studio, you must irst set up an application directory for the solution in the Internet
Information Services (IIS) Manager. This is part of what Visual Studio does for you when you

create a website solution from scratch. To do this, from the Start menu, run the IIS Manager,

and then in the Connections tree list, expand out the Default Web Site node. Right-click this

node, and then select the Add Application option. In the Add Application dialog, specify

FormsAuthServer as the alias, and then point the Physical Path to the folder for the solution.

The correct folder is the one that contains the web.conig ile.

FIguRE 13-11 Successful (on the left) and unsuccessful (right) attempts to connect to a web service with forms
authentication.

Forms Authentication: Server Side

First, you’ll create the server-side pieces. In Visual Studio, create a new website. Rather than creat-

ing a project, go to the File menu, select New, and then click Web Site. Specify a regular ASP.NET

website, select HTTP for the web location, and then provide a suitable URL. For example, enter http://

localhost/FormsAuthServer. This will generate the project iles in the local IIS ilesystem. This will create
a virtual directory in IIS under the Default website for your computer. This folder will contain all the

project code and other iles. Note, however, that the solution iles (.sln and .suo) will be in the default
project location for Visual Studio on your computer, typically in a path such as C:\Users\<username>\

Documents\Visual Studio 2010\Projects\.

http://localhost/FormsAuthServer
http://localhost/FormsAuthServer

470 PART III extended Services

Now, create a new folder in the solution, named Hello. Later on, you will restrict access to your

custom web service by virtue of restricting access to the folder where you put the web service imple-

mentation. Add a Windows Communications Foundation (WCF) Service to the project. By default,

the generated contract and implementation iles will be in the special App_Code folder, and the
HelloService.svc ile will be in the root folder of the application. If you want to restrict access to the
HelloService, you must move the HelloService.svc ile into the Hello folder. Do not, however, move the
generated .cs iles; leave them in the App_Code folder. You might wonder why it’s necessary to go to
the bother of creating a Hello folder, particularly when you already have an App_Code folder; why not

simply put the HelloService.svc in the App_Code folder, and protect that instead? The answer is that

the App_Code folder has special meaning to IIS. If you attempt to expose a web service from there,

you’ll get an “invalid segment” error.

Next, although it’s not technically necessary, you would generally want to rename the default

IService contract and Service implementation class to something slightly more distinct. For this case,

use IHelloService and HelloService, respectively. Also, change the contract to return a string that you

can display in the phone application UI. Here’s the contract:

[ServiceContract]

public interface IHelloService

{

 [OperationContract]

 String GetData();

}

The implementation of this contract returns a dynamically generated string that will be unique

for each call, which will help to simplify testing. Note that you must set the service to use Microsoft

ASP.NET compatibility mode; this is required if you want to apply forms authentication to a WCF

service.

[AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.

Allowed)]

public class HelloService : IHelloService

{

 public String GetData()

 {

 return String.Format("Hello ({0})", DateTime.Now.ToLongTimeString());

 }

}

The behavior with a forms authentication web application is that when the user navigates to the

site in the browser, if she’s not already authenticated, she will be redirected to a logon page. You

don’t actually want to force the user to switch from your phone application to a browser session to

enter her username and password credentials in the server-side logon page. Instead, you’ll set up

the phone application UI to allow her to enter her credentials in the application itself, and you’ll then

forward these to the authentication service, programmatically.

 ChAPTER 13 Security 471

This means that you must expose the authentication service to the application. You’re not going

to create a custom authentication service from scratch. Instead, you can simply expose the default

authentication service that ships with ASP.NET. So, you don’t need any code-behind, and you can sim-

ply add a text ile to expose the service. To do this, add a text ile to the root of the web application
folder, named AuthenticationService.svc.

<%@ ServiceHost

 Language="C#"

 Service="System.Web.ApplicationServices.AuthenticationService"

 Factory="System.Web.ApplicationServices.ApplicationServicesHostFactory" %>

Note that the standard ASP.NET Visual Studio project template enables forms authentication

by default (although only, of course, for the generated web application, not for the additional web

services that you’re adding). Visual Studio generates a default logon page as part of the application

and includes an authentication mode element in the primary web.conig. You won’t make use of the
logon page in this solution (because your client application is not browser-based), but you do need

the authentication mode set to Forms. This should be set by default in the primary web.conig at the
root of the project.

<authentication mode="Forms">

 <forms loginUrl="~/Account/Login.aspx" timeout="2880" />

</authentication>

The irst change you need to make in the web.conig is to the service hosting environment. You
need to make this use ASP.NET compatibility mode so that you can use Forms authentication with

your WCF service. The serviceHostingEnvironment element is a child of the system.ServiceModel

element.

<serviceHostingEnvironment aspNetCompatibilityEnabled="true"/>

Next, enable the WCF AuthenticationService endpoint in your web application, by adding a service

node in the web.conig. At the same time, add a second service node for the HelloService. Note that

you specify a binding coniguration that allows cookies. The reason for this is that you need to persist
security information across calls to two different services. The client application will irst call the
AuthenticationService to supply logon credentials. When these are accepted by the server, the client

will then call the HelloService and will need to present proof that the credentials have in fact been

accepted. This proof is supplied in the form of a cookie, so you enable both services to use cookies.

<services>

 <service

 name="System.Web.ApplicationServices.AuthenticationService"

 behaviorConfiguration="StandardBehavior">

 <endpoint

 binding="basicHttpBinding" bindingConfiguration="CookiesBinding"

 bindingNamespace="http://asp.net/ApplicationServices/v200"

 contract="System.Web.ApplicationServices.AuthenticationService"/>

 </service>

 <service

 name="HelloService"

 behaviorConfiguration="StandardBehavior">

472 PART III extended Services

 <endpoint

 binding="basicHttpBinding" bindingConfiguration="CookiesBinding"

 contract="IHelloService" />

 <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" />

 </service>

</services>

Note For simplicity, in this example, the cookie-enabled binding coniguration is unse-

cured. For an actual production service, you would use SSL (Transport security) with Forms

authentication.

<bindings>

 <basicHttpBinding>

 <binding name="CookiesBinding" allowCookies="true">

 <security mode="None"/>

 </binding>

 </basicHttpBinding>

</bindings>

<behaviors>

 <serviceBehaviors>

 <behavior name="StandardBehavior">

 <serviceMetadata httpGetEnabled="true" />

 <serviceDebug includeExceptionDetailInFaults="true" />

 </behavior>

 </serviceBehaviors>

</behaviors>

Finally, enable the AuthenticationService by adding a system.web.extensions section.

<system.web.extensions>

 <scripting>

 <webServices>

 <authenticationService enabled="true" requireSSL="false"/>

 </webServices>

 </scripting>

</system.web.extensions>

So far, you’ve done all the core work for your web application to use Forms authentication, for

your WCF web service to work with the ASP.NET web application, to hook up the standard ASP.NET

authentication service, and to expose everything from the one website. Now, you need to determine

the security constraints. In other words, now that you’ve set up Forms authentication, you need to set

up some users, and then set up their authorizations.

Some of this work can be done by manually creating and editing text iles, but you want to take
advantage of the standard SQL membership provider that ASP.NET provides, so you need to use a

tool to update the user/roles database. At the top of the Solution Explorer, right-click the ASP.NET

Coniguration tool button. This brings up the Web Site Administration tool. Navigate to the Security
tab, and then create a new user. For this exercise, you can use an arbitrary username, password, and

email address, as shown in Figure 13-12.

 ChAPTER 13 Security 473

FIguRE 13-12 Creating a new user in the Web Site Administration tool.

Next, on the main Security tab, select Create Access Rules and constrain access to the Hello folder

(where the HelloService.svc is found), such that anonymous users are denied and all authenticated

users are allowed, as shown in Figure 13-13.

FIguRE 13-13 Denying access to anonymous users.

474 PART III extended Services

This will generate a new web.conig in the speciied folder with the speciied authorization settings.
Note that this security constraint covers only the Hello folder, and therefore, the HelloService web

service. It does not cover the AuthenticationService, because that is exposed at the root folder of the

web application, and you need that service to be accessible to anonymous users.

<configuration>

 <system.web>

 <authorization>

 <deny users="?" />

 </authorization>

 </system.web>

</configuration>

Be aware that this tool is part of Visual Studio, and is not likely to be available on a production

server. For production servers (and, indeed, on your development computer), you can use the IIS

Administration Tool to manage users and authorization. When Visual Studio generated the initial web

application project, it also set up the website in IIS. So, when you open the IIS Administration tool,

you’ll see the website listed in the connections tree. You can expand this out, and select the Hello

folder. Then, in the main panel, double-click the Authentication item. This should give you a list of

possible authentication schemes, as shown in Figure 13-14. If Forms authentication is not listed, you

need to go to Control Panel | Programs And Features | Windows Features, and then turn on IIS Forms

Authentication. Also, ensure that this is enabled for the default website and for the FormsAuthServer

website.

FIguRE 13-14 Authentication schemes in the IIS Administration tool.

 ChAPTER 13 Security 475

When Forms authentication is enabled, select the Hello folder, and then in the main panel, double-

click the .NET Authorization item to see the same authorization rules that you set in Visual Studio, as

shown in Figure 13-15.

FIguRE 13-15 Authorization rules for the Hello service in the IIS Administration tool.

Forms Authentication: Client Side

Now, it’s time to address the phone client application. First, set up the UI. This should include a few

TextBlock and TextBox controls, a PasswordBox for the password ield, and a Button to invoke the

service. Next, add service references to both the AuthenticationService and the HelloService. Given the

virtual directory structure used on the server side, these will likely be at URLs such as

http://localhost/FormsAuthServer/AuthenticationService.svc and http://localhost/FormsAuthServer/

Hello/HelloService.svc.

Adding service references will generate the client-side service proxy code, as normal. It will also

generate a ServiceReferences.ClientConig ile, which speciies the service connections and conigura-

tions. The endpoints should match the referenced services.

<endpoint address="http://localhost/FormsAuthServer/Hello/HelloService.svc"

 binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding_IHelloService"

 contract="HelloReference.IHelloService" name="BasicHttpBinding_IHelloService" />

<endpoint address="http://localhost/FormsAuthServer/AuthenticationService.svc"

 binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding_AuthenticationService"

 contract="AuthenticationReference.AuthenticationService" name="BasicHttpBinding_

AuthenticationService" />

http://localhost/FormsAuthServer/AuthenticationService.svc
http://localhost/FormsAuthServer/Hello/HelloService.svc
http://localhost/FormsAuthServer/Hello/HelloService.svc

476 PART III extended Services

The only change you need to make to this is to ensure that cookie containers can be used across

the two services. To do this, add the enableHttpCookieContainer attribute to both service bindings,

and then set it to true.

<binding

 name="BasicHttpBinding_IHelloService"

 maxBufferSize="2147483647" maxReceivedMessageSize="2147483647"

 enableHttpCookieContainer="true">

 <security mode="None" />

</binding>

<binding

 name="BasicHttpBinding_AuthenticationService"

 maxBufferSize="2147483647" maxReceivedMessageSize="2147483647"

 enableHttpCookieContainer="true">

 <security mode="None" />

</binding>

The remaining work is relatively straightforward. When the user taps the Go button, you create a

CookieContainer and add it to the AuthenticationService proxy object. Then, hook up the Login

Completed event and invoke the LoginAsync method to pass the user-supplied username and pass-

word credentials to the server. You can use the third parameter to this method to pass additional

user credentials, if the service requires it. When this asynchronous call returns, you can retrieve the

returned cookie and add it to the proxy for the HelloService. Next, handle the GetDataCompleted

event, and then invoke the GetDataAync method. Finally, when that method returns, you can extract

the result and display it in the UI—or an error message if the call failed. In this case, the most likely

cause is that the user credentials were invalid, although that’s not the only possibility.

private void Go_Click(object sender, RoutedEventArgs e)

{

 AuthenticationServiceClient authClient = new AuthenticationServiceClient();

 authClient.CookieContainer = new CookieContainer();

 authClient.LoginCompleted += authClient_LoginCompleted;

 authClient.LoginAsync(this.Username.Text, this.Password.Password, "", true);

}

private void authClient_LoginCompleted(object sender, LoginCompletedEventArgs e)

{

 if (e.Error == null)

 {

 AuthenticationServiceClient client = (AuthenticationServiceClient)sender;

 HelloServiceClient helloClient = new HelloServiceClient();

 helloClient.CookieContainer = client.CookieContainer;

 helloClient.GetDataCompleted += helloClient_GetDataCompleted;

 helloClient.GetDataAsync();

 }

 else

 {

 this.Result.Text = "Login failed";

 }

}

 ChAPTER 13 Security 477

private void helloClient_GetDataCompleted(object sender, GetDataCompletedEventArgs e)

{

 if (e.Error == null)

 {

 this.Result.Text = e.Result;

 }

 else

 {

 this.Result.Text = "Invalid credentials";

 }

}

If the user supplies credentials that match one of the users created on the server, all will be good.

If not, then the server will attempt to redirect the user to a logon page. The phone application sup-

presses this (because you want the user to stay in your phone logon UI, not a server-side logon page)

and instead displays an error message to the user.

So far, you’ve restricted access to your web service to only authenticated users. However, this is a

fairly open security policy. It is more common to restrict different subsets of authenticated users to

different sets of resources. One way to achieve this is to laboriously list all individual users who you

either want to allow or deny access to some protected resource.

<authorization>

 <deny users="?" />

 <allow users="Andrew, Sally, Joe, Bill, Millie"/>

</authorization>

Clearly, this is not a scalable approach. The alternative is to make use of roles. That is, create logical

groupings that map conveniently to the different sets of protected resources, and then assign indi-

vidual users to one or more of those groups. This is another feature offered by the standard ASP.NET

SQL membership provider and the standard Web Site Administration tool.

To set up roles in the tool, go to the Security tab, click the Roles panel, and then select Enable

Roles. When the page refreshes, it brings up an additional link, Create Or Manage Roles. Click this link

to add a new role; for example, the Employees role. Once you’ve created a role, you can then start

adding users—either existing users, or new ones. For now, just add the one user to the role.

Next, create a new user, but do not add this user to the Employees role. You now have roles

enabled, and you have at least one role set up with at least one user as a member and another user

who is not a member of this role. Now you can set up authorization based on this role. First, add a

new access rule in the tool: select the Hello folder, and add a rule to allow access to the Employees

role. Then, add another access rule to deny access to all users. The order of these rules is important,

which is why the tool provides Move Up and Move Down buttons, as shown in Figure 13-16. The ASP.

NET rules will be evaluated in order, top to bottom. So, in this example, you irst deny access to all
anonymous users. Then, you allow access to any users in the Employees role. Finally, you deny access

to all other users. The last rule, which allows access to all users, is the default rule which cannot be

removed (because it is inherited from the parent website). This rule must be last in the list; this means

that because the previous rule (deny all) already covers all other users, the default rule becomes a

no-op.

478 PART III extended Services

FIguRE 13-16 Coniguring access for roles and users.

This coniguration should update the web.conig for the Hello folder, and the authorization section
should list the explicit rules.

<authorization>

 <deny users="?" />

 <allow roles="Employees" />

 <deny users="*" />

</authorization>

Now, when the user enters her credentials on the phone, the user who is a member of the Employees

role will successfully call the Hello service, but any users who are not a member of the Employees role

will fail.

Note that the users and roles are stored in a SQL database for your website. By default, this will

be in a ile named ASPNETDB.MDF in the App_Data folder of your website. You can double-click this
in Visual Studio to open it in the Server Explorer, and then you can drill down to examine the table

structure and the table data, as shown in Figure 13-17. As you would expect, the passwords and other

sensitive credentials in this database are encrypted (email addresses, however, are not).

 ChAPTER 13 Security 479

FIguRE 13-17 A standard ASP.NET SQL database.

It’s worth repeating that so far, you have still been passing user credentials across the wire in clear

text. Forms authentication should only be used in combination with SSL to encrypt the data on the

wire. SSL is discussed later in this chapter.

Basic Authentication
In theory, Basic authentication is the simplest method to implement. Certainly, setting up Basic

authentication for a web application or web service, and then connecting to these from a traditional

browser client or Windows clients of various kinds, is simple and well understood. However, setting up

a connection from a Windows Phone client is only minimally documented, and not at all obvious.

In this section, you’ll re-implement the MagicalManateeService WCF web service from earlier

chapters and conigure it for Basic authentication. Before you start, ensure that IIS on your developer

computer has Basic authentication installed. If not, go to Control Panel | Programs And Features, and

then click Turn Windows Features On Or Off. From the list, check the Basic Authentication item. This is

the BasicAuth client and server solutions in the sample code.

In Visual Studio, create a new WCF Service Application project and call it MagicalManateeService.

Rename the default IService contract and Service implementation class to IMagicalManateeFacts and

MagicalManateeFacts, respectively. Implement MagicalManateeFacts to return a string from a static

collection of strings. For implementation speciics, see the version described in Chapter 11, “Web and
Cloud.”

480 PART III extended Services

In the web.conig for the WCF service, deine a binding coniguration that speciies a security
mode of TransportCredentialOnly, and then set the transport clientCredentialType attribute to Basic.

Assign this binding coniguration to the endpoint for the service.

<behaviors>

 <serviceBehaviors>

 <behavior name="basicAuthBehavior">

 <serviceMetadata httpGetEnabled="true"/>

 <serviceDebug includeExceptionDetailInFaults="true"/>

 </behavior>

 </serviceBehaviors>

</behaviors>

<bindings>

 <basicHttpBinding>

 <binding name="basicAuthBinding">

 <security mode="TransportCredentialOnly">

 <transport clientCredentialType="Basic"/>

 </security>

 </binding>

 </basicHttpBinding>

</bindings>

<services>

 <service

 name="MagicalManateeService.MagicalManateeFacts"

 behaviorConfiguration="basicAuthBehavior">

 <endpoint

 binding="basicHttpBinding"

 bindingConfiguration="basicAuthBinding"

 contract="IMagicalManateeFacts"/>

 </service>

</services>

Go to the Project settings, select the Web tab, and then click Use Local IIS Web Server. Enter a

suitable URL or accept the default, which is something like http://localhost/MagicalManateeService.

Next, click the Create Virtual Directory button. This will provision the application virtual directory in

IIS. In the IIS Administration tool, refresh the connections list if necessary, then navigate to the new

MagicalManateeService virtual directory. Double-click the Authentications item in the main panel,

and then enable Basic Authentication, as shown in Figure 13-18. That’s all the work you need to do

for the server, but do take note of the warning in the tool: Basic authentication should be used only in

combination with SSL. You’ll see how to ix this later.

 ChAPTER 13 Security 481

FIguRE 13-18 Enabling Basic Authentication for the MagicalManatee WCF Service.

The client phone application project provides a TextBox for the user to enter a username, and a

PasswordBox to enter a password, as shown in Figure 13-19.

FIguRE 13-19 Basic authentication in a client application.

482 PART III extended Services

In the client project, add a service reference, specifying the URL to the running MagicalManatee

Service; for example, http://localhost/MagicalManateeService/MagicalManateeFacts.svc. Because this

is now set to use Basic authentication, the Add Service Reference Wizard will throw up a logon dialog

when it tries to connect to the service. At this point, you should enter your domain credentials, and

then click OK to continue. In addition to generating the service proxy class, this will create or update

the client-side ServiceReferences.ClientConig. The binding for the service in the client conig will
include the security mode element, set to TransportCredentialOnly. This maps to the equivalent set-

ting in the server-side web.conig.

<system.serviceModel>

 <bindings>

 <basicHttpBinding>

 <binding

 name="BasicHttpBinding_IMagicalManateeFacts"

 maxBufferSize="2147483647" maxReceivedMessageSize="2147483647">

 <security mode="TransportCredentialOnly" />

 </binding>

 </basicHttpBinding>

 </bindings>

 <client>

 <endpoint

 address="http://localhost/MagicalManateeService/MagicalManateeFacts.svc"

 binding="basicHttpBinding" bindingConfiguration="BasicHttpBinding_

IMagicalManateeFacts"

 contract="MagicalManateeService.IMagicalManateeFacts" name="BasicHttpBinding_

IMagicalManateeFacts" />

 </client>

</system.serviceModel>

If you run the client now and try to connect to the service, you’ll get a NotFound WebException.

Obviously, you need to supply credentials on the call. The documentation on WCF client proxies states

that you have the option to pass username and password details in the ClientCredentials property of

the proxy object, as shown in the code example that follows. This code retrieves the username and

password entered by the user in the Username TextBox and the Password PasswordBox.

if (service == null)

{

 service = new MagicalManateeFactsClient();

 service.GetFactCompleted += service_GetFactCompleted;

 service.ClientCredentials.UserName.UserName = Username.Text;

 service.ClientCredentials.UserName.Password = Password.Password;

}

service.GetFactAsync();

However, the documentation is for general-purpose client proxies only; the preceding code will

work with Windows clients of all kinds, but not with Windows Phone clients. The reason is that a

mobile device has additional security challenges, and the Windows Phone application platform is

therefore more security constrained than a desktop. Speciically, the ClientCredentials values are

ignored if the communication is using HTTP and not HTTPS.

 ChAPTER 13 Security 483

Now, the correct thing to do here is to use HTTPS/SSL. This is the only way Basic authentication

should be used in production. However, during development it can sometimes be useful to test your

solution without enforcing SSL. In this context, you can force the use of Basic authentication over

HTTP. The credentials would normally be added to the message headers as a base-64 encoded string.

To achieve this by using the wizard-generated proxy classes, you need to work with the InnerChannel

property of the service proxy object. Use this to initialize an OperationContextScope object. Then,

construct a base-64 encoded string from your credentials, in the form “<domain>\<username>:password”.

Finally, add this string to the current OperationContext. Under the covers, this ultimately adds it to the

message headers.

Note NOT_SSL is a custom conditional compilation symbol that is deined in this example
for a corresponding custom solution coniguration. The solution includes a custom conigu-

ration based on the standard Debug coniguration as well as a custom coniguration based
on the standard Release coniguration. The reason why you’re doing this here instead of
simply using the standard Debug coniguration and the standard DEBUG compilation sym-

bol is that it is common to test a Release build against internal servers as well as test the

Debug build.

if (service == null)

{

 service = new MagicalManateeFactsClient();

 service.GetFactCompleted += service_GetFactCompleted;

#if !NOT_SSL

 service.ClientCredentials.UserName.UserName = Username.Text;

 service.ClientCredentials.UserName.Password = Password.Password;

#endif

}

#if NOT_SSL

using (OperationContextScope scope = new OperationContextScope(service.InnerChannel))

{

 HttpRequestMessageProperty message = new HttpRequestMessageProperty();

 message.Headers[System.Net.HttpRequestHeader.Authorization] =

 "Basic " + Convert.ToBase64String(Encoding.UTF8.GetBytes(

 Username.Text + ":" + Password.Password));

 OperationContext.Current.OutgoingMessageProperties.Add(

 HttpRequestMessageProperty.Name, message);

 service.GetFactAsync();

}

#else

 service.GetFactAsync();

#endif

Both Basic authentication and Forms authentication have the vulnerability that, if used with an

unsecured channel (such as the default HTTP), the user credentials are passed across the wire in clear

text. An attacker could intercept the communication and gain access to the user credentials. Both

types of authentication should only be used in production systems in combination with SSL.

484 PART III extended Services

SSL
SSL is a standard for securing Internet connections. its main purpose is to encrypt HTTP communica-

tions. The encryption keys are contained in SSL certiicates, also known as Transport Layer Security
(TLS) certiicates—typically, X.509 documents—which are used by both the client and the server. SSL
provides two critical assurances: irst, that the server is authentic, and second, that an attacker cannot
intercept and read or tamper with the data being exchanged between the client and the server (so

long as you don’t use a null cipher for the connection). It is an effective defense against server spoof-

ing, channel tampering, and man-in-the-middle attacks.

Note A man-in-the-middle attack is a form of eavesdropping or message tampering, in

which an attacker manages to intercept communications between two parties and fools

them into thinking that they’re talking directly to each other, when in fact the conversation

is controlled by the attacker.

The server provides the SSL certiicate for the session and sends the certiicate to the client in
the handshake phase of establishing the communication channel. The server’s certiicate must be
valid and issued by a trusted authority. It must chain to one of the certiicate authorities (CAs) in the
phone’s trusted authorities list. You can add a CA to the trusted authorities list. Note that SSL mutual

authentication (whereby the client sends its certiicate to the server) is not supported, because you
cannot add a client certiicate to the phone’s trusted authorities list.

During development, you can create a self-signed root certiicate and install this on the phone. Of
course, you must not use a self-signed certiicate in production, but this is a common approach dur-
ing development. There is no certiicate management UI on the phone, but installing a certiicate on
the phone can be done in two ways, as described in the following:

 ■ Email the certiicate to yourself as an attachment, and then open the email and the attach-

ment on the phone. This approach works only on the phone, not the emulator.

 ■ Make the certiicate available on a website accessible to the phone. This approach works with
both the emulator and a physical phone.

In both cases, you would tap the certiicate to open it; the default behavior when opening a certii-

cate ile on the phone is to install it into the trusted authorities list.

In the following exercise, you’ll create a web service that uses Basic authentication secured with

SSL. You’ll also set up a self-signed certiicate and conigure the HTTPS binding for the website to use
this certiicate. Then, you’ll install the certiicate on the phone so that the phone client application
can connect to the secured service. You can see this at work in the SSL client and server solutions in

the sample code. There’s also a Windows Phone Certiicate Installer helper library on codeplex that
automates most of the following steps. This is described at the end of this section.

 ChAPTER 13 Security 485

First, create a new WCF Service Application and rename the contract and implementation class to

ISafeService and SafeService, respectively. Code a simple implementation of the service to return a

unique string on each call.

[AspNetCompatibilityRequirements(

 RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]

public class SafeService : ISafeService

{

 public String GetData()

 {

 return String.Format("Hello ({0})", DateTime.Now.ToLongTimeString());

 }

}

On the Properties page for the project, on the Web tab, under Servers, select Use Local IIS Web

Server, and then modify the default URL to use HTTPS instead of HTTP (for example, https://localhost/

SafeService). Then, click Create Virtual Directory. This sets up the website, the virtual directory in IIS,

and conigures it for HTTPS.

Now for the certiicate. There are two ways to create this: if you’re using Internet Information
Services (IIS) 7.0, you can use the IIS Manager tool to create self-signed certiicates, or alternatively,
you can use the makecert command-line tool. Using the irst approach, click the Start button on your
computer, type IIs, and then select Internet Information Services (IIS) Manager. In the IIS Manager

tool, in the Connections list, select your local computer. In the main panel, under IIS, double-click

Server Certiicates. From the panel on the right side, click the link to create a new self-signed certii-

cate, and then specify a friendly name such as MyCertiicate.

Apart from ease of use, using the IIS Manager tool has the added advantage that it installs the

certiicate in both your personal user certiicate store and also the Trusted Root Certiication Authori-
ties (CA) store on the computer. The disadvantage is that you have no choice about the Common

Name (CN) for your certiicate. The CN is the internal name; this is the name the certiicate is “issued
to.” This is not the friendly name. When using self-signed certiicates in a phone application, the CN
must be the same as the computer name you’re testing against. For example, if your computer name

is andrew.contoso.com, then your certiicate CN must also be andrew.contoso.com. IIS Manager will
set the CN to the local computer name. This will work, so long as you continue to develop/test on the

same computer.

While still in the IIS Manager tool, select the website to which you deployed the SafeService (typi-

cally, the default website). In the Actions panel, click Bindings. In the Site Bindings dialog, add a new

site binding, and then specify type HTTPS. Click the SSL certiicate drop-down list, and then select
MyCertiicate, as shown in Figure 13-20. Conirm everything and close all dialogs.

486 PART III extended Services

FIguRE 13-20 Coniguring the website HTTPS bindings.

Next, select the SafeService application, double-click SSL settings, select the Require SSL check

box, and then in the Actions panel, click Apply. This forces all communications with this website to

go through HTTPS. Now, conigure the web service for Basic authentication. For details on how to do
this, review the previous section on Basic authentication.

Next, you need to make the certiicate available to the phone. Recall that the IIS Manager tool
generated the certiicate and added it to the certiicate store on the developer computer. So, you now
need to export the certiicate to a ile. To do this, use the MMC Certiicate Snap-in. From the Start
button, type MMC to run the Microsoft Management Console. From the ile menu, click Add/Remove
Snap-In, and then select Certiicates. Specify that this snap-in will always manage certiicates for the
Computer account (that is, the local developer computer). When the certiicate snap-in is installed,
expand out the Trusted Root Certiication Authorities node, and then the Certiicates node. From the
list, select the MyCertiicate certiicate. Right-click, select All Tasks, and then click Export. The Cer-

tiicate Export Wizard opens. In the wizard, export the certiicate, including the private key (which
will need password protection), as a Personal Information Exchange PKCS #12 (PFX) ile, as shown in
Figure 13-21. You can use any arbitrary name for this (for example, MyCertiicate.pfx).

 ChAPTER 13 Security 487

FIguRE 13-21 Exporting the self-signed certiicate from the Trusted Root CA store.

If you’re working directly with a device, you can now email the certiicate to an email account
that you have access to on the phone. If you’re working with the emulator (where there are no email

accounts), you need to make this PFX ile available on a website. You can’t use your existing website,
because that is conigured to require HTTPS, and you won’t be able to access it until you’ve installed

the certiicate (catch-22). We could conigure your website so that it doesn’t require SSL; that wouldn’t
mean that you can’t use SSL, just that it’s not mandated. This would be one way to proceed.

Alternatively, you can create another website to host this certiicate ile. This is not an unreason-

able approach (to house our certiicate in one place, while you might have multiple other sites for
your web services). Taking this approach, in Visual Studio, create a new WCF Service Application

project called, for example, CertiicateHost, and then delete the IService and Service.svc iles (which
also deletes the Service.svc.cs ile). This leaves you with a blank website. On the Properties page, on
the Web tab, change the settings to use the local IIS instead of the Visual Studio server, and then click

the Create Virtual Directory button. In the IIS Administration tool, turn on directory browsing for this

website. This ensures that you can browse to ind iles on the site. Add the exported MyCertiicate.pfx
ile to the project, at the root folder.

Build the solution, and then run it (press F5, or right-click the SafeService.svc ile in the Solution
Explorer, and then select View In Browser). In Internet Explorer, you should see the “Problem With

This Website’s Security Certiicate” anti-phishing warning page. Click the Continue To This Website
(Not Recommended) option. You will be prompted to enter domain user credentials; enter these, and

then conirm that you can get to the virtual directory and see the MyCertiicate.pfx ile listed there.

488 PART III extended Services

Note If you want a simpler alternative to creating a special virtual directory, you could just

drop the MyCertiicate.pfx ile into the default website folder; that is, \inetpub\wwwroot.
This might be appropriate if the certiicate is used across multiple web applications and/or
services for that website, although you should consider carefully before adding arbitrary

iles to your default website folder.

Now that everything is set up on the server side, you can create a client phone application. Figure

13-22 presents a simple example, wherein you expect the user to supply logon credentials and then

tap the button to go to the web service.

FIguRE 13-22 A client application connecting to an SSL-secured web service

Add a service reference, using the SafeService.svc URL. Enter your domain credentials to go ahead

and generate the proxy code. At this point, build and run the client. The following error should

appear:

"There was no endpoint listening at https://localhost/SafeService/SafeService.svc that

could accept the message. This is often caused by an incorrect address or SOAP action. See

InnerException, if present, for more details."

What’s missing is that you have not yet installed the root CA certiicate on the phone. To ix this,
use Internet Explorer on the phone to navigate to the MyCertiicate.pfx ile on the CertiicateHost
website (using HTTP not HTTPS). The phone will recognize the .pfx ile type and prompt you to install
the certiicate on the phone. Accept all the prompts to install, as shown in Figure 13-23 (using the
same password with which you exported the certiicate).

 ChAPTER 13 Security 489

FIguRE 13-23 Installing the self-signed certiicate on the phone.

Finally, go back (or forward) to the application on the phone and try connecting again. This time, it

should work.

The preceding steps to set up a self-signed certiicate, make it available on a website, and install it
to the phone are complicated and error-prone. David Hardin of Microsoft has released a very useful

helper library that dramatically streamlines this whole process. This is freely available for download in

source-code format from http://wp7certinstaller.codeplex.com/. The WP7CertInstaller project includes

the following pieces:

 ■ A batch ile that contains makecert commands to create a Root CA certiicate and a second
SSL certiicate that chains to this Root CA.

 ■ Source code for a website for hosting your certiicates.

 ■ Helper classes to automate the process of fetching certiicates and installing them.

 ■ A sample Windows Phone application that shows how to use the helpers.

 ■ A Windows Azure cloud project, in case you want to host your certiicates in Windows Azure.

The general low for using WPCertInstaller is as follows:

 ■ Modify the names in the makecert batch ile to create the certiicates you want, and then run it.

 ■ Build the website or Windows Azure cloud project.

 ■ Apply the SSL certiicate to the HTTPS bindings for the website that you want to secure.

490 PART III extended Services

 ■ At a suitable point in your phone application, before you want to connect to the secured

website, you use the helper class to install the certiicate. The sample project does this in the
Loaded event handler for MainPage, which is a good early point to perform the certiicate
check.

 ■ The helper class checks to see if the certiicate is already installed; if it is not, the helper class
launches a WebBrowserTask, and then navigates to the certiicate URL.

 ■ The user taps the certiicate to install it, and then taps Back to return to your application. This
time, the check for installed certiicate succeeds, and the application can now connect to the
secure website.

Push Notiication Security

Chapter 12, “Push Notiications,” discusses push notiications and the Microsoft Push Notiication
Service (MPNS). Recall that there are three main pieces:

 ■ A custom web service that generates the push notiication messages, and then sends them to
the MPNS.

 ■ The MPNS, which distributes the messages to each subscribed phone.

 ■ A client phone application that handles the notiications.

The communications between MPNS and the Push Client on the phone are secured via SSL. This

is set up by Microsoft. However, communications between the phone and your push web service are

secured only if you explicitly secure them. The general recommendation is the same as for any web

service that can exchange sensitive data: you should protect it with SSL.

Setting up SSL authentication for your web service is no different for a push web service than for

any other web service. An additional beneit of securing your service is that you are no longer con-

strained to a daily limit on the number of push notiications that you can send. Recall that, by default,
unsecured web services are throttled at a rate of 500 notiications per day. To enable this feature,
you must upload a TLS (SSL) certiicate to the marketplace. The key-usage value of this certiicate
must be set to include client authentication, and the Root CA for the certiicate must be one of the
CAs that are trusted on the Windows Phone platform (these are listed in the documentation on the

marketplace).

 ChAPTER 13 Security 491

After you have submitted the certiicate to marketplace, you can associate any subsequently sub-

mitted applications with this certiicate. This option will be available during the application submission
process. There is obviously a gap between setting up your secured web service and submitting your

certiicate on the one hand, and having a submitted application approved and published in the mar-
ketplace on the other hand. To bridge this gap, Microsoft will lag your web service as authenticated
for a period of four months only; however, this time constraint is removed when your application is

successfully published to marketplace.

To use the authenticated channel from your phone client application, when creating the Http

NotiicationChannel, set the service name to the CN in the certiicate. Note that you cannot use a self-
signed certiicate for this purpose.

If you do authenticate your push web service in this way, you can also take advantage of a call-

back registration feature. This feature enables the MPNS to callback on your registered URI when it

determines that it cannot deliver a message to the device as a result of the device being in an inactive

state.

It’s also worth keeping in mind that the push service does not guarantee message delivery, so

you should not use it in scenarios for which failure to deliver one or more messages has serious

consequences.

oAuth 1.0

As of this writing, some public web services, such as Twitter, Flickr, Vimeo, Yahoo!, and SmugMug, use

the OAuth 1.0 speciication for security. OAuth is an Open Web speciication that provides a method
for users to grant third-party access to their resources without sharing their passwords. So, as a Twit-

ter user, you can grant some arbitrary Windows Phone application permissions to access your Twitter

information, without handing over your Twitter credentials to that application.

The sequence of operations is shown in Figure 13-24. Essentially, the phone client application asks

for a Request token from the secured website. This token represents temporary credentials that are

not user-speciic. The token is only good for the next step of requesting user authorization, and does
not provide any direct access to the protected user data. The user must directly logon to the secured

website and grant the requested authorization. This cannot be done programmatically. Once authori-

zation is granted, the secured website will return an Access token to the requesting client application.

This access token can then be used to gain access to the user’s protected data on his behalf.

492 PART III extended Services

Developer User Phone Client App Secured WebSite Protected Data

Request Client-App Credentials

Return Client-App Credentials

Use Client-App Credentials in Phone App

Use Client App

Request REQUEST Token

Grant REQUEST Token

Redirect to AuthZ URL

Redirect to Client App

Request ACCESS Token

Grant ACCESS Token

Access User’s Data

Login and Confirm Authorization

FIguRE 13-24 The OAuth 1.0 authorization sequence.

The key is that the username and password credentials of the user are utilized only by the user

directly in the secured server’s authorization page; they are never accessible to the client application

at all. The authorization request speciies exactly what kind of access to which protected resources is
being requested. The speciics of this will vary with each secured website. It might be that the devel-
oper needs to specify a list of speciic data items to which it wants to be granted access, or a speciic
list of categories of data. Typically, the type of access is also required; that is, read-only, read-write,

create, delete, and so on.

 ChAPTER 13 Security 493

Note As stated here, the user enters his credentials in the secured server’s authorization

page, not in the client application. However, it is important to note that a malicious applica-

tion could attempt to steal the user’s credentials by injecting script into the web browser or

by spooing the entire authorization site. So, the most secure approach would be to gather
the access token in a way that is completely outside the application. For example, you could

instruct the user to press the Start button on the phone, navigate to Internet Explorer, log

on to the real site, obtain the secure access token and copy it to the clipboard, and then

return to the application and paste it in. Unfortunately, very few users would understand

why you’re asking them to do this, when they see other applications that host the browser

inside the application, as just described.

oAuth 2.0

As of this writing, some public web services, such as Facebook, Google, and MySpace, use the OAuth

2.0 speciication for security. The sequence of operations is shown in Figure 13-25. OAuth 2.0 is sim-

pler to use than OAuth 1.0, but offers the same security model, and behind the scenes, it behaves in

essentially the same manner.

The phone client application constructs an authorization URL string, which includes the developer’s

client application credentials and the target site to be accessed. Then, the client application navi-

gates to the secured server’s authorization site using this URL string. The server presents logon and

authorization UI to the user. As with OAuth 1.0, the user must directly log on to the secured website

and grant the requested authorization. This cannot be done programmatically. Once authorization is

granted, the secured website will redirect to the originally requested target secured site. The phone

client application handles the Navigated event on the WebBrowser control, and extracts the access

token from the navigation event arguments. This access token can then be used to gain access to the

user’s protected data on his behalf.

494 PART III extended Services

Developer User Phone Client App Secured WebSite Protected Data

Request Client-App Credentials

Return Client-App Credentials

Use Client-App Credentials in Phone App

Use Client App

Navigate to AuthZ URL

Login and Confirm Authorization

Redirect to Protected Pages

Access User’s Data

Intercept the redirect

Extract
Access
Token

FIguRE 13-25 The OAuth 2.0 authorization sequence.

securing Web service IDs

Chapter 11 looked at a wide range of web connectivity scenarios. Many of these involved secured,

third-party web services, for which your application is required to provide some credentials (an

App ID or Client Secret, for example) in order to connect. In Chapter 11, you focused on setting up

the connections by using the third-party SDK class libraries as well as the sequences of operations

required to interact with each of the different web services. However, in all cases for which you were

required to supply credentials, these were—simplistically—hard-coded into the client application.

This is not secure.

 ChAPTER 13 Security 495

As a matter of best practice, you should never hard-code security credentials in your application. A

better approach is to eliminate the credentials from your client application, and instead, provide your

own web service to hold them. Then, the client application can connect to this web service to fetch

the credentials before invoking the secured public web service, as shown in Figure 13-26.

Client App

Client App
Public Web

Service

Credential
Web Service

Pass Credentials to
Invoke Service

1. Get Developer/
App Credentials

2. Return
Credentials

3. Invoke Service

Public Web
Service

Less Secure

More Secure

Developer/App
Credentials

FIguRE 13-26 Eliminating connection IDs from the client application.

You could further secure this by using SSL for your credential web service, although the main con-

cern here is to avoid having hard-coded credentials in the client application, which is achieved even

without SSL. This approach can be applied to public web services such as Bing maps and geocode ser-

vices, bitly, Twitter, Facebook, Windows Live, Windows Azure storage account keys, and so on. Most

of these services use either OAuth 1.0 or OAuth 2.0, and therefore require the client application to

provide developer/application credentials. It is these credentials that you want to protect.

This approach is slightly more secure than hard-coding credentials on the phone, but it is still not

completely secure. With hard-coded credentials, an attacker could extract the credentials from your

application’s XAP with relative ease. With an indirect web service, the attacker would irst have to
reverse-engineer your code in order to discover your web service URL and interface, and then make

calls to your web service to fetch the credentials. This is harder, but it is still not impossible. The bot-

tom line is that while OAuth security works well for web applications, for which the credentials never

leave the server, it works less well for mobile applications.

496 PART III extended Services

Implementing security for the WebBrowser Control

Although the WebBrowser control can be used to render HTML content—including some scripting

capability—it is important to note that the control is not the same as full-ledged Internet Explorer.
Many features of the full browser, including security features, are not provided in the control. On top

of that, there are some differences in behavior between the WebBrowser control in Desktop Silverlight

and the version in Windows Phone, which are described here:

 ■ Unlike Internet Explorer’s padlock icon, the WebBrowser control does not offer any visual indi-

cation to inform the user whether a site is being accessed over SSL or not.

 ■ Unlike Internet Explorer, the WebBrowser control does not display URLs for links anywhere,

which can make it dificult for a user to be certain where the link will take them.

 ■ Unlike Internet Explorer, users cannot navigate in the WebBrowser control from HTTPS pages

to HTTP pages.

 ■ Any cookies used by the sites to which the WebBrowser control has navigated are stored in

an application-speciic location. These are not accessible to other applications or via Internet
Explorer, and vice versa. Even the hosting application cannot programmatically access these

cookies.

 ■ If validation of the SSL Server certiicate for an SSL-conigured website fails, then the Web

Browser control restricts access that site.

 ■ If you have a WebBrowser control in your application, you must specify an x:Name for it, so

that the marketplace ingestion process can properly detect and grant the correct capabilities

for your application.

 ■ Silverlight provides Cross-Site Scripting (XSS) protection when rendering HTML content

directly from a URL. In this situation, scripting is disabled by default. However if the page is

cached locally in isolated storage, then XSS protection is not enforced. Locally cached content

is considered implicitly trusted, even though it might have originated from an untrusted site.

Content loaded by using NavigateToString also has no XSS protection.

 ■ The default setting for the IsScriptEnabled property is false; you should clearly change this only

if you have an explicit need for scripting.

 ■ When using the InvokeScript method with untrusted scripts, at a minimum, you should ensure

that you do not provide any valuable or sensitive data. Better yet, simply do not use Invoke

Script with any untrusted or unknown script.

 ChAPTER 13 Security 497

summary

The Windows Phone application platform is very security-conscious. It includes a range of security

features, from the certiication process of marketplace publication, through the install, load and run-

time veriication, and sandboxing features, the constraints on using less-secure coding practices, and
support for a inite set of security APIs. Even with this support, there is still scope for a developer to
build an application that is vulnerable to security attacks.

Applications should never store any valuable or personally identiiable data on the phone—
especially if it is unencrypted—without explicit user consent (and use the new cryptography features

in version 7.1). Even with the cryptographic support in the platform, it is still possible to use the APIs

improperly and end up with an application that might be less secure than you think. When communi-

cating with remote services (web services or web applications) you should never pass user credentials

(or any other sensitive data) in the clear. For websites you own, you should set up standard authen-

tication and authorization, and protect the channel with SSL. For public websites, you will almost

certainly have to use SSL or OAuth.

 499

C h A P T E R 1 4

Go to Market

This chapter focuses on the end-game of bringing your application to market. There are three

aspects to this: ine-tuning the design and implementation to make it robust and perform well;
the certiication and publication process; and approaches to monetization of the application. In fact,
many of the so-called “ine-tuning” techniques are really best practices that you would adopt earlier
in the development cycle. They’re merely collected here as a kind of inal checklist. It almost makes
sense to read this chapter irst so that you can see what you’re going to end up doing later on in
order to get your application to market.

Threading

In traditional desktop applications, you have a main user interface (UI) thread, and you have the

option to create background worker threads if you want. Windows Phone does provide an additional

rendering thread, and version 7.1 also introduces a separate input thread. In general, however, you

have the same threading opportunities in Windows Phone as you do for desktop Microsoft Silverlight.

In addition, Silverlight for Windows Phone also forces all network calls to be non-blocking. You want

the phone to be responsive at all times, so you should consider ofloading work to a background
thread wherever it makes sense. In particular, you should avoid blocking the UI whenever you need to

perform work that takes a non-trivial amount of time. Blocking the UI is annoying to the user, and it

might even lead him to believe that your application has hung.

In most scenarios, you can predict the cases for which you will need to use additional threads, but

sometimes the need comes to light only after user-acceptance testing. Fortunately, the coding work

to ofload some operation to another thread is usually trivial, so this is something you can easily do
late in the cycle. There is a small set of threading APIs that you can use, including Thread, Background

Worker, and ThreadPool. Table 14-1 summarizes these APIs.

500 PART III extended Services

TABlE 14-1 Threading APIs

API Description
Results Raised on the uI
Thread?

Thread A restricted version of the standard Microsoft .NET Thread type,
wherein you have access to the properties of the Thread object
you create.

No.

BackgroundWorker A useful wrapper for doing work on a background thread
while reporting progress and results on the UI thread. A
BackgroundWorker can also be stopped before completion, if re-
quired. Especially useful if you only need a small number of back-
ground threads and if the results need to be displayed in the UI.

Progress and results are
reported on the calling
thread, which can be the
UI thread.

ThreadPool A ire-and-forget approach: you ask for your method to be
queued up and executed by an arbitrary thread from the .NET
threadpool. You have no direct access to the Thread object.
Especially useful if you need to batch-process multiple operations
that require multiple threads, and you don’t need ongoing prog-
ress reports. In general, this is the preferred approach because it
will yield the best overall performance in the long term, especially
as the application becomes more complicated.

No.

Here’s a simple application (the TestThreading solution in the sample code) that demonstrates the

use of these APIs, as shown in Figure 14-1. These are no different from standard Silverlight behavior.

In each case, the Click event handler for the button creates another thread to perform some opera-

tion while the UI remains unblocked and responsive. As each thread completes its work, you report

the results in the corresponding TextBox. The BackgroundWorker version additionally reports ongoing

progress.

FIguRE 14-1 Threading APIs.

 ChAPTER 14 Go to Market 501

You can use the Thread class in the System.Threading namespace, but you probably don’t need to

because most scenarios are covered by either the BackgroundWorker class or the ThreadPool. One

commonly applied rule of thumb is that if you are essentially running an ininite loop inside your
background thread—such as a network socket listener, for example—then you should consider using

a Thread. On the other hand, if it is a single operation, even if it is a long-running one, then use the

ThreadPool.

Regardless, here’s a simple example for illustration. You construct a Thread object, passing in a

ThreadStart or ParameterizedThreadStart delegate object (or simply a method, which the compiler

will resolve to a delegate). The only other property that you can set is the Name, which can be any

arbitrary string. This can be useful for disambiguation in the debugger window, and it is generally

recommended to set this. Then, call Start; this will run the delegate method on a new thread.

If you want to touch any of the UI elements from any thread apart from the main UI thread, you

must be careful to marshal back to the UI thread. You do this with the Dispatcher property of a UI

element (typically, of the current page). The reason for this is that the UI components are not com-

pletely thread-safe. Making components thread-safe is notoriously dificult and fragile. So, behind the
scenes, each UI component records the identity of the thread that created it, checks to make sure that

only that thread accesses it, and throws an exception if another thread attempts to use it.

private void threadButton_Click(object sender, RoutedEventArgs e)

{

 threadResult.Text = "";

 Thread t = new Thread(thread_DoWork);

 t.Name = "My Thread";

 t.Start();

}

public void thread_DoWork()

{

 Thread.Sleep(5000);

 Dispatcher.BeginInvoke(

 () => { threadResult.Text = "Thread done"; });

}

In each of the thread worker functions, you simulate a time-consuming operation with a Thread.

Sleep, and then report results. Note that if you’re in a situation for which you don’t have a UI element

at hand that you can use to access a UI Dispatcher (any UI element, including the page), you can use

the Deployment object, instead.

 Deployment.Current.Dispatcher.BeginInvoke(

 () => { threadResult.Text = "Thread done"; });

Rather than using the low-level Thread type, it is generally more useful to use the Background

Worker class. This class takes care of all the thread marshaling for you. It also provides a simple way

to check ongoing progress, and it supports cancellation.

502 PART III extended Services

private BackgroundWorker bw = new BackgroundWorker();

private void startBwButton_Click(object sender, RoutedEventArgs e)

{

 if (!bw.IsBusy)

 {

 bwResult.Text = "";

 bw.WorkerReportsProgress = true;

 bw.WorkerSupportsCancellation = true;

 bw.DoWork += bw_DoWork;

 bw.ProgressChanged += bw_ProgressChanged;

 bw.RunWorkerCompleted += bw_RunWorkerCompleted;

 bw.RunWorkerAsync();

 }

}

private void stopBwButton_Click(object sender, RoutedEventArgs e)

{

 if (bw.WorkerSupportsCancellation)

 {

 bw.CancelAsync();

 }

}

You would typically provide three event handlers: one for the primary work itself; one for handling

progress changes; and one for handling the ”completed” event. If you want to support cancellation,

your primary work method must check to see if a cancel request has been raised. If you want to sup-

port progress reports, your primary work method must invoke the ReportProgress method, passing

a value that corresponds to the percentage of work completed. It’s up to you to decide to what this

percentage relates.

private void bw_DoWork(object sender, DoWorkEventArgs e)

{

 BackgroundWorker worker = sender as BackgroundWorker;

 for (int i = 1; (i <= 10); i++)

 {

 if ((worker.CancellationPending == true))

 {

 e.Cancel = true;

 break;

 }

 else

 {

 Thread.Sleep(500);

 worker.ReportProgress((i * 10));

 }

 }

}

When you call ReportProgress, this internally raises the ProgressChanged event. In this example,

you’re reporting the percentage progress in the UI. When the BackgroundWorker terminates, you

should check the reason for termination. Was it cancelled, was there an error, or did it terminate

because it inished its work?

 ChAPTER 14 Go to Market 503

private void bw_ProgressChanged(object sender, ProgressChangedEventArgs e)

{

 bwResult.Text = (e.ProgressPercentage.ToString() + "%");

}

private void bw_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)

{

 if ((e.Cancelled == true))

 {

 bwResult.Text = "BackgroundWorker cancelled";

 }

 else if (!(e.Error == null))

 {

 bwResult.Text = ("Error: " + e.Error.Message);

 }

 else

 {

 bwResult.Text = "BackgroundWorker done";

 }

}

If your requirement is to perform some number of operations, for each of which you need a back-

ground thread, and where UI reporting is a lesser requirement, then the simplest option is to queue

work up and let the ThreadPool take care of it. A fresh (or recycled) thread will be used to service the

operations in the queue. The ThreadPool internally will manage threads in the pool and will spin up

new threads as appropriate, in a manner that balances CPU use on the device. This means that if you

were to queue up, for example, 100 operations by using the ThreadPool, this would not result in 100

threads getting spun up all at once. Instead, the ThreadPool will run what it thinks is appropriate for

the current hardware, and then queue the rest.

private void threadpoolButton_Click(object sender, RoutedEventArgs e)

{

 threadpoolResult.Text = "";

 ThreadPool.QueueUserWorkItem(threadpool_DoWork);

}

private void threadpool_DoWork(object stateInfo)

{

 Thread.Sleep(5000);

 Dispatcher.BeginInvoke(

 () => { threadpoolResult.Text = "ThreadPool thread done"; });

}

Note that you have a further choice: rather than using the Dispatcher to marshal calls to the

UI thread, you can use SynchronizationContext, instead. The Dispatcher is speciic to UI elements,
whereas you can use SynchronizationContext for any thread. So, in this example, in the two places

where you explicitly used Dispatcher, you could re-code to use SynchronizationContext. You can see

this at work in the TestThreading_SyncContext solution in the sample code. The Synchronization

Context object must be initialized on the thread to which you’re going to marshal back; in this case,

that would be the UI thread. So, you can declare a SynchronizationContext object as a ield in the
page class, and then use this object in your event handlers that is invoked on background threads.

504 PART III extended Services

private SynchronizationContext context = SynchronizationContext.Current;

public void thread_DoWork()

{

 Thread.Sleep(5000);

 //Deployment.Current.Dispatcher.BeginInvoke(

 // () => { threadResult.Text = "Thread done"; });

 context.Post(new SendOrPostCallback(

 arg => threadResult.Text = "Thread done"), null);

}

Note Under the covers, the BackgroundWorker class actually uses the ThreadPool to queue

its work. It also uses an AsyncOperation object to take care of the thread marshaling, and

AsyncOperation uses the SynchronizationContext internally.

Recall that all phone application network calls are asynchronous, consistent with desktop Silver-

light. This includes web service calls, WebClient, and HttpWebRequest method calls. Consider the

example that follows, using the MagicalManatee web service (for more details on this, go to Chapter

11, “Web and Cloud”). You must irst instantiate the web service client proxy. Then, set up a handler
for the method call-completed event (in this case, GetFactCompleted). Finally, invoke the web method

asynchronously.

private void appbarGetFact_Click(object sender, EventArgs e)

{

 client = new MagicalManateeFactsClient();

 client.GetFactCompleted += client_GetFactCompleted;

 client.GetFactAsync();

}

The call then happens on a background thread, and the UI is not blocked. When the call returns,

this invokes your event handler. If an exception occurred during the call, it won’t be raised on the

main thread; instead, it will be sent back with the EventArgs in the xxxCompleted event handler. So,

you should always test to determine if there was an exception before processing the method call

results:

private void client_GetFactCompleted(object sender, GetFactCompletedEventArgs e)

{

 String result = String.Empty;

 if (e.Error == null)

 {

 result = e.Result;

 }

 else

 {

 result = e.Error.ToString();

 }

 Debug.WriteLine(result);

}

 ChAPTER 14 Go to Market 505

By contrast, the WebClient’s events are always raised on the UI thread in Windows Phone 7, even

if you create the WebClient on a background thread. Although this offers you the convenience that

all your work is on the UI thread (no need for Dispatcher calls), the downside is that it risks blocking

the UI. For this reason, the recommendation is to avoid it as much as you can. Instead, you should use

HttpWebRequest. Be aware that this behavior changes in version 7.1, in which the WebClient events

are raised on the thread where the WebClient was created (which is not necessarily the UI thread).

When you use HttpWebRequest, the responses are raised on a background thread. So, you have the

minor inconvenience of manually marshaling to the UI thread (if you need to) by using a Dispatcher.

On the other hand, HttpWebRequest calls will not block the UI. The HttpWebRequest does some work

internally on the thread on which it was created. For this reason, you might want to create it on a

background thread to further minimize its impact on the UI thread. The HttpWebRequest still needs to

post some work to the UI thread in order to start. The system will deadlock if you have your UI thread

wait on the web request, even if it is initiated from a background thread.

Performance

Application performance is always important, and it is especially important for applications on mobile

devices, which have relatively low processor and memory speciications, as compared to desktop
computers. There are several performance issues to consider, including the following:

 ■ Improving application responsiveness by ofloading work from the UI thread to the Render
thread.

 ■ Designing eficient visual elements in your application UI.

 ■ Miscellaneous performance tips related to speciic controls or control usage.

 ■ Performance issues related to non-UI application features, such as network calls, data formats,

and code structure.

UI vs. render thread, and BitmapCache Mode
Desktop Silverlight has one UI thread, which does all the work. The Silverlight rendering engine used

on Windows Phone is optimized for devices. It includes a second thread for rendering the UI, known

as the Render or compositor thread. These two threads function as follows:

 ■ uI thread The UI thread is still the primary thread in the application. It handles all input

(including input events), parsing and creating objects from XAML, visual layout, property

change notiications, data binding, and other managed code execution that has not explicitly
been placed on a background thread. The UI thread also handles animations that are imple-

mented through per-frame callbacks, for which the render thread needs the UI thread to

perform work for each frame rendered.

506 PART III extended Services

 ■ Render thread This is designed to be very lightweight, and it is mainly responsible for

stitching together textures to hand off to the Graphics Processing Unit (GPU). The Render

thread handles simple (double) animations, translate, scale, rotate and perspective transforms,

opacity (but not opacity masks), and rectangular clipping—all of which can be hardware-

accelerated via the GPU. Note that for scale transforms, whenever the scale crosses the 50 per-

cent threshold of the original (or previously rasterized) texture size, the visual is re-rasterized

on the UI thread.

Briely, the initial template expansion and rasterization for an element occurs on the UI thread.
These rendered elements are then cached in memory as bitmaps and handed off to the Render

thread which works with the GPU to draw the frame and add it to the back buffer for display. From

this point, if you don’t make any changes to the cached element, it doesn’t have to be redrawn. Any

changes you might make to the cached element fall into two categories:

 ■ A change that can be handled by the GPU. Some examples are rectangular clipping, Translate

Transform, or ScaleTransform.

 ■ A change that requires the element to be re-rendered. This can include a color change, non-

rectangular clipping, opacity mask, padding or margin changes, an so on. In this case, the

cached bitmap will be deleted, and the element will be re-rendered on the UI thread to gener-

ate a fresh bitmap for caching.

So, there are at least two threads in the system, plus one or more additional threads that the appli-

cation itself can choose to create, either indirectly or directly, as summarized in Figure 14-2.

Note Version 7.1 also introduces a third system thread that is intended speciically to
handle input.

In general, you want to take advantage of the Render thread as much as you can to ofload work
from the UI thread. To see where there might be opportunities for optimizing between the UI thread

and the Render thread, you can turn on display of redraw regions and bitmap caching by using the

Application settings, as shown in the following code snippet. Note that the standard Microsoft Visual

Studio project templates generate code for this in the App.xaml.cs, which you can uncomment.

Application.Current.Host.Settings.EnableRedrawRegions = true;

Application.Current.Host.Settings.EnableCacheVisualization = true;

 ChAPTER 14 Go to Market 507

Render Thread UI Thread Background Thread(s)

Per-Frame Callback

Per-Frame Callback

Do Work

Create ThreadPer-Frame Callback

(Report Progress)

Pass Rastered Images

(Cancel Thread)Pass Rastered Images

Per-Frame Callback

Per-Frame Callback

Per-Frame Callback

FIguRE 14-2 The Render thread, UI thread, and background threads.

Consider an application that moves a ball around the screen. Depending on how you write the

code, this will result in different rendering behavior. The following sample application (the Bouncing

Ball solution in the sample code) does not take advantage of the Render thread and GPU; instead, it

implements timer-based callbacks on the UI thread. The application also responds to user touch, via

a GestureListener, so even more work is being done on the UI thread. The application provides four

AppBar buttons. With the irst three, the user can toggle EnableRedrawRegions, BitmapCache mode,

and EnableCacheVisualization, respectively. This allows you to see the effects of the design choices on

the UI rendering behavior (you’ll examine the purpose of the fourth button later).

private void appbarRedraw_Click(object sender, EventArgs e)

{

 Application.Current.Host.Settings.EnableRedrawRegions =

 !Application.Current.Host.Settings.EnableRedrawRegions;

}

private void appbarCache_Click(object sender, EventArgs e)

{

 if (ball.CacheMode == null)

 {

 ball.CacheMode = new BitmapCache();

 }

508 PART III extended Services

 else

 {

 ball.CacheMode = null;

 }

}

private void appbarCacheViz_Click(object sender, EventArgs e)

{

 Application.Current.Host.Settings.EnableCacheVisualization =

 !Application.Current.Host.Settings.EnableCacheVisualization;

}

Figure 14-3 illustrates the application with EnableRedrawRegions turned on, showing which ele-

ments are being redrawn with each frame (the colors are arbitrary; they cycle between purple, yellow,

and magenta). As the ball bounces around the screen, the redraw region is a rectangle that expands

or contracts to include all UI elements. Thus, the redraw rectangle varies in size, depending on where

the ball is in relation to the other UI elements.

FIguRE 14-3 The regions of your application that need to be redrawn can vary over time.

The redrawing highlighted when the EnableRedrawRegions lag is turned on is essentially draw-

ing in software (on the CPU) and does not ofload any work to the Render thread and the GPU. In all
cases, the irst time a visual is drawn, it will be drawn in software, but the aim generally should be to
draw a visual once on the UI thread, and then hand it off to the Render thread (which in turn, hands

it off to the GPU) for all subsequent drawing. So, what you want to avoid is the situation in which you

can see the same region being drawn repeatedly (as evidenced by the colors changing repeatedly).

The bottom line is that if you see something in your application that’s frequently changing color,

it means it’s being frequently redrawn. You should therefore examine your code to see if you can

reduce this.

 ChAPTER 14 Go to Market 509

Figure 14-4 demonstrates the application again, this time with EnableCacheVisualization turned

on, which shows the areas of the application that are cached. The un-cached surfaces are rendered

in software and the cached surfaces are passed to the GPU and rendered in hardware. With this lag
turned on, each element/texture that is handed off to the GPU is tinted blue and has a transparency

applied. This way, you can see where textures are overlapping. The darkest shades indicate that mul-

tiple textures are lying atop one another.

Note Turning on EnableCacheVisualization degrades performance, so you should not

attempt to measure frame rates while this is active. Note also that the behavior of this

lag on Windows Phone is different from the behavior on desktop Silverlight: on desk-

top Silverlight, the tinted areas are areas that are not drawn by the GPU; on Silverlight for

Windows Phone, the tinted areas are those that are drawn by the GPU.

FIguRE 14-4 Cache visualization with BitmapCache mode turned off (on the left) and on (right).

You can specify that an element should have its rendered bitmap cached in XAML, as shown here:

<Ellipse x:Name="ball" Width="80" Height="80" CacheMode="BitmapCache" >

Or, you can specify that it should be cached in code:

ball.CacheMode = new BitmapCache();

510 PART III extended Services

The effect of setting BitmapCache mode is to skip the render phase for the element, which will

have a signiicant effect on performance. The screenshot on the right in Figure 14-4 shows what
happens if you set the CacheMode on the ball to BitmapCache. The UI thread works considerably less

to display the ball, the frame rate on this application goes up, and the ill rate goes down. The frame
rate, ill rate, and the other performance counters are discussed in more detail in Chapter 8, “Diagnos-
tics and Debugging.”

When you use bitmap caching, you should group cached elements together, following non-cached

elements in the visual tree. Do not interleave cached/non-cached elements. This way, non-cached ele-

ments can be included in a single intermediate background texture, which improves performance.

Note There’s a downside to caching: it takes up additional memory, and the more you

cache, the higher your ill rate will be. Therefore, you shouldn’t simply cache every-

thing. Instead, you should proile your application by using EnableRedrawRegions and

EnableCacheVisualization, and look for opportunities to optimize caching. If you do this

right, you should see the frame rate go up, and the FillRate count go down.

The fourth App Bar button is implemented to simulate an operation that needs to do work on the

UI thread:

private void appbarBlockUI_Click(object sender, EventArgs e)

{

 Thread.Sleep(3000);

}

If you start the ball bouncing and then tap this button, the bouncing will stop for three seconds.

This demonstrates the critical law in this application’s design, because so much relies on work being
done on the UI thread.

The previous example relied on user interaction, and a lot of work was done on the UI thread.

Figure 14-5 shows an alternative example of a bouncing ball (the BouncingStoryboard solution in the

sample code); this one involves only minimal user interaction (start and stop App Bar buttons) and

does most of the work on the Render thread. In addition, the animation is ixed and declared in XAML
via a storyboard. This contains two main animations: one that moves the ball from top to bottom

(using the Canvas.Top attached property), and another that moves the ball from left to right (using

Canvas.Left). The top-bottom animation itself contains a third animation, which uses one of the Silver-

light EasingFunctions to provide a bouncing motion.

<Canvas.Resources>

 <Storyboard x:Name="bounceStory">

 <DoubleAnimation From="130" To="616"

 Duration="0:0:12" Storyboard.TargetName="ball"

 Storyboard.TargetProperty="(Canvas.Top)">

 <DoubleAnimation.EasingFunction>

 <BounceEase Bounces="12" Bounciness="1.2"

 EasingMode="EaseInOut"></BounceEase>

 </DoubleAnimation.EasingFunction>

 ChAPTER 14 Go to Market 511

 </DoubleAnimation>

 <DoubleAnimation From="24" To="400"

 Duration="0:0:12" Storyboard.TargetName="ball"

 Storyboard.TargetProperty="(Canvas.Left)">

 </DoubleAnimation>

 </Storyboard>

</Canvas.Resources>

The big change here is to move the per-frame manual animation (which was all done on the UI

thread) to a double animation implemented via a storyboard, which can all be done by the Render

thread.

The App Bar buttons are there to start and stop the storyboard. There is also a button to toggle

redraw regions, and one to block the UI thread. Because this ball is part of a simple animation and

is automatically cached, there’s no button to set CacheMode. Observe also that if you block the UI

thread, in this application, the ball will continue to bounce because the animation is all being done on

the Render thread.

FIguRE 14-5 Using the Render thread for animations reduces the amount of redrawing.

The following objects will be automatically cached:

 ■ The target of any storyboard-driven animation that uses the Render thread (as shown in the

BouncingStoryboard solution).

 ■ The target of any plane projection, either static or animated.

 ■ All MediaElement objects.

 ■ Child items in a ScrollViewer or ListBox.

512 PART III extended Services

As discussed in Chapter 8, the three most important performance counters to monitor are the UI

Thread Frame Rate, the Render Thread Frame Rate, and the Fill Rate. If your UI thread is overloaded,

you’ll see the UI Thread Frame Rate drop, which is a sign that you need to ofload work from the UI
thread. From the other end, the Fill Rate corresponds to how hard the GPU is working, and as the Fill

Rate exceeds 2, the Render Thread Frame Rate will drop. So, a high Fill Rate is a sign that you need to

minimize your use of UI elements (by reducing the number and/or complexity of your elements, set-

ting BitmapCache mode, avoiding interleaved cached/non-cached elements, and so on).

UI Layout and ListBoxes
The ListBox is an obvious element for which scale has signiicant performance implications. UI layout
is the most expensive operation performed on the UI thread. There’s nothing to stop you from creat-

ing complex layouts with nested Grids, StackPanels, nested ListBoxes, plus complex ValueConverters,

custom controls, and so on. This is bad enough if you only have one of these on your page, but as

soon as you use such a complex element as an item within a ListBox, the scale issues become more

obvious. Plus, of course, there’s nothing to stop you from putting many thousands of these items into

your ListBox. On top of that, you could be sourcing your data from a remote service over the Inter-

net, and the data might include large images or large volumes of redundant metadata. The potential

permutations implied in this kind of model represent a potential recipe for bad performance and an

unresponsive UI.

Here are some UI best practice guidelines for optimizing runtime performance and responsiveness

when using ListBoxes:

 ■ Avoid using complex item data templates. Most particularly, don’t use nested ListBoxes,

and don’t use UserControls or custom controls. Also, ensure that you have the data template

in a ixed-size container such as a Grid with an explicit Height set on it. As a performance opti-

mization, the ListBox calculates the height of three screen’s worth of items (the one currently

visible, plus one above and below), and this doesn’t work if your items vary in size.

 ■ Avoid using complex converters. If possible, try to perform conversions in the data source

request or as you pull the data into a local cache, before attempting to render it in the UI.

 ■ Ofload work to background threads. Typical candidates for this include the retrieval,

processing, and caching of item data, leaving only the inal data-binding on the UI thread. The
trade-off here is that doing work on a background thread before dispatching to the UI thread

might cause items to load more slowly. However, the advantage is that the UI will remain

responsive. If you do it right, even the slower load might be apparent only on the initial batch

of items, because you can continue working on the background while the user is exercising the

UI. As you’re doing work on the background thread, be sure to yield control frequently (per-

haps by a simple Thread.Sleep) so that the OS can schedule the UI thread more frequently.

 ■ virtualize your data if you can. This is particularly relevant if you need to manipulate raw

data and compute the inal data for rending in the UI. The ListBox virtualizes the UI (via the

VirtualizingStackPanel, which is the default items host for the ListBox), such that if you have,

for example, 1,000 items, only 3 screen’s worth of UI elements are created, and then these

 ChAPTER 14 Go to Market 513

are recycled as the user scrolls other items into view. However, the data is not virtualized; the

ListBox property you data-bind is ItemsSource, which is deined as an IEnumerable. This means

that the only way the ListBox knows the size of the list is to enumerate all the items. This infor-

mation is required so that the ListBox can conigure itself correctly; for example, to calculate
the scrollbar indicator. More signiicantly, it assumes that all of your data items are constructed
completely before handing off to the UI. You can mitigate this by binding to collections that

implement IList, which provides Count, IndexOf, and indexer (this[]) methods. In your imple-

mentation, you can be smart about constructing each of your computed items for the list.

For example, you can defer the composition/computation processing for items until they’re

required for the UI.

 ■ Consider your caching strategy. If you’re virtualizing your data, you have the opportunity

to do some intelligent caching. Depending on the context, you might also be able to seg-

ment your data into static and dynamic components. You can also consider the standard .NET

technique of WeakReferences.

 ■ Minimize work while scrolling. First, don’t do anything on the UI thread while the user is

scrolling, because that would make the UI less responsive. Second, don’t do any work for items

that are not visible to the user; this implies waiting for the user to stop scrolling before you can

calculate which items are now visible. You could also segment your data templates according

to whether the user is scrolling; that is, use a simple template if she’s scrolling (perhaps just

text, or a low-resolution image), and a more sophisticated template for items that are visible

when she has stopped.

More UI Performance tips
Apart from the aforementioned ListBox-speciic issues, there are other UI-related performance opti-
mizations that you can consider:

 ■ JPg versus Png It is faster to decode JPG images than PNG images, so you should prefer

JPG over PNG. The only case for which you need to use PNG is if your images have transpar-

ency; otherwise, you should default to JPG in the absence of other constraints. Note that the

difference is often very small, so it is not worth spending a lot of effort on this.

 ■ static versus dynamic images It is often faster to render static images than to create

them dynamically at runtime. A complex image could be constructed in XAML, in code, or by

loading an image ile. Constructing it in XAML involves more steps, and is the slowest of the
three approaches. Loading from a ile is generally the fastest—decoding an image is relatively
cheap, and the beneits mount up if you are reusing the visual multiple times. Of course, if the
visual depends on something at runtime, then you might have no option but to create it in

code.

 ■ Image scaling It is common to use a ixed-size Image control and then pull in the image

source from a ile or resource, which might or might not be the same size as the control.
There’s an obvious performance penalty when scaling images. This is particularly so with

respect to wasted memory for images that are larger than you need, so you should try to

514 PART III extended Services

get the source images at the right size in advance. This is another technique that becomes

more critical if you’re adding image items to a ListBox. Furthermore, Windows Phone has a

maximum image size of 2048x2048 pixels. If you use larger images, they will automatically be

sampled at a lower resolution. The algorithm to perform this sampling picks a simple ratio,

so your image can end up with a resolution that is signiicantly less than 2048x2048. And of
course, it will be slower to render.

 ■ Custom decoding If you are scaling images manually, you should use the PictureDecoder

API. You can use this to specify how to decode, and to what target size. Without this, the nor-

mal behavior would be to irst decode at the image’s native resolution, and then scale down.
There’s a slight performance gain and a signiicant memory gain in using PictureDecoder.

 ■ Visibility versus Opacity If you need to hide/show UI elements, you have a choice between

using the Visibility property or the Opacity property. An element with Visibility=Collapsed

incurs no cost, the system will not walk the visual tree for the element, and events will not be

propagated for the element. On the other hand, when the time comes to unhide it, setting

Visibility=Visible will incur a heavy cost in creating the element’s tree, so it might be slower

to appear. Using Opacity=0 means that the element’s visual tree is in existence at all times,

which will add to the overall cost of your UI. On the other hand, when the time comes to set

Opacity>0, this will be extremely quick, provided the element is cached. If the element is not

cached, you will pay a penalty. To recap, using Opacity to show/hide a visual that is not cached

is the worst thing you can do, from a performance standpoint. Conversely, the optimal strat-

egy is generally to use Opacity and to enable BitmapCache mode.

 ■ Resource versus Content An image embedded as a resource becomes part of your assem-

bly. One side-effect of this is that it is read twice at startup. The reason for this is that the

Windows Phone application platform has to read your assemblies for security purposes to

ensure that this is a valid, certiied Windows Phone application. Then, the Common Language
Runtime (CLR) also has to read it (for veriication purposes, type resolution, JIT buffering, and
so on). So, if you embed a large amount of images into your assembly, they’ll all be read twice.

If, instead, you set their build action to be Content, then they’ll simply be added to your XAP,

but not to your assembly. The trade-off is that while embedded resources slow down startup

time, they are faster to load subsequently.

 ■ Desktop versus phone Be very careful about reusing code or controls from desktop Sil-

verlight applications. Even though they might work, they might work very slowly. The Rating

control from the Silverlight toolkit is one example: this has a very large number of UI elements.

Using even one instance of this should give you pause, but you should deinitely avoid making
this a part of an item control in a ListBox.

 ■ Inline xAMl It is very easy to declare complex UI elements in XAML, as opposed to dein-

ing the same elements in code directly. You can use the XamlReader class to dynamically load

XAML at runtime. However, you will pay a performance penalty for this; parsing the XAML

and executing the resulting code is always going to be slower than executing code that you’ve

written to do the same work directly.

 ChAPTER 14 Go to Market 515

 ■ Panorama versus Pivot Although the Panorama control is an ItemsControl, it is not virtual-

ized: all of the content inside each of the PanoramaItems is rendered on initial load. If you

think about it, this is what enables the Panorama to show part of the next (and sometimes,

previous) items immediately upon load. You should stick to the Metro guidelines, which

suggest that you should not be using a Panorama for heavy work anyway. The Panorama is

intended to be a front-page “magazine” experience. It should be an attractive entry to your

application that encourages the user to explore further. It should not be used for complex

controls or complex lists. The standard themes used on Panorama further encourage this; for

instance, the heading is huge and takes up a lot of space. That’s not a reason to ill up the
remaining space, it’s an encouragement to be minimalist on the Panorama. By contrast, the

Pivot does virtualize its content. Only the irst PivotItem is populated on initial load, although

the system does immediately trigger a load for the items to the right and left. So, effectively,

three items are loaded at or shortly after startup. A three-item Panorama will have similar

startup time to a three-item Pivot, but the more items you have, the more the load times

diverge. The Panorama user experience (UX) encourages users to navigate back and forth

between the items, so you can mostly assume that all items need to be available at all times.

This is not true of the Pivot, for which some items might never be seen by the user in any given

session. Thus, if you have, for example, complex lists or animations on an item, you should be

proactive about creating/starting/stopping such elements.

 ■ Progress bars The standard library provides a ProgressBar. The Toolkit provides a

PerformanceProgressBar. For determinate scenarios (that is, where you can determine the

percentage progress), use the standard ProgressBar. For indeterminate scenarios, use the

PerformanceProgressBar. The critical difference is that the Toolkit PerformanceProgressBar

does most of its work on the Render thread, whereas the standard ProgressBar uses the UI

thread heavily, and also uses about three times more video memory. You can compare the

difference by running the TestProgressBars solution in the sample code and turning on redraw

regions. Applications built to target version 7.1 can take advantage of the built-in progress

indicator in the SystemTray. Doing this affords performance beneits over using any XAML-
based progress bars.

Non-UI Performance tips
 ■ WebClient versus HttpWebRequest In Windows Phone 7, when you make a web request

by using WebClient, regardless of which thread you make it on, the result will always be

returned on the UI thread. In fact, the WebClient class is a wrapper around HttpWebRequest,

whose primary purpose is to simplify making web requests. This has performance implica-

tions; especially in data-binding scenarios in which your data-bound items are being sourced

from the web. Conversely, requests made by using HttpWebRequest return on the background

thread, as expected, so you should opt for HttpWebRequest in most cases. On top of that, even

though HttpWebRequest responses are raised on a background thread, it still uses resources

on the thread where it was created. So, the optimal approach for a network-heavy scenario is

to use HttpWebRequest, and to create it on a background thread.

516 PART III extended Services

 ■ network calls Avoiding chatty network calls is a well understood performance optimiza-

tion technique, but one worth repeating here. If your ListBox items are data-bound to a web

service, you ideally want to pull in a batch of items in one network call and cache them locally

in a list of some kind. You deinitely don’t want to be making an individual web method call
for each item. You should also default to iltering on the server, as opposed to bringing down
high volumes of redundant data which you then ilter on the client.

 ■ Web service data formats Traditional web services typically send data in Simple Object

Access Protocol (SOAP) format. Newer web services, including Windows Communications

Foundation (WCF) Data Services, expose data with the OData protocol, in either XML or JSON

format. OData formats involve signiicantly less overhead than traditional SOAP formats.
OData JSON, in turn, offers signiicantly less overhead than OData XML.

 ■ static versus dynamic Bing maps If all you need to do in your scenario is show a few static

maps, you should use the Bing web services. Don’t use the standard Bing dynamic maps unless

you need their inherent richer interactive capabilities. If you’re not using the Bing Maps con-

trol, you save on the control, and you also save on the assembly itself, which is not pulled into

your XAP.

 ■ Pages in separate assemblies If your application has pages that are rarely visited, consider

factoring them out to a separate assembly. That way, you save on startup time and memory

usage. It’s important to minimize startup time; irst, because slow startup is a bad UX, and
second, because if your startup is too slow, you will fail marketplace ingestion. Factoring pages

out to secondary assemblies means that the additional page(s), and their containing assembly,

are only loaded if and when they’re actually used at runtime. To do this, you would create a

class library project and add the page(s) to that project. Then, add a reference to the class

library from your main project. The syntax of the URI needed for a page in another assembly

is “<OtherAssemblyName>;component/<PageName>.xaml”, which appears as follows in actual

code:

NavigationService.Navigate(new Uri(

 "/MyPageLibrary;component/Page2.xaml", UriKind.Relative));

 ■ Minimize constructors Constructors for UI elements as well as handlers for the Loaded

event are executed before the irst frame of an application is presented. You can reduce
startup time by reducing the work that you do on constructors and Loaded event handlers.

Wherever it makes sense, you should move work from these methods to later methods. After

the Loaded event, the next most commonly used methods are the OnNavigatedTo override

and the LayoutUpdated event handler. It is generally better to do work in either of these meth-

ods than in the constructor or Loaded event handler. However, note that OnNavigatedTo is also

 ChAPTER 14 Go to Market 517

called during the main initialization low for a page, so you should also minimize code here.
Plus, if you implement LayoutUpdated for initialization (that is, one-time only) code, you must

ensure that you immediately unhook the handler once it has been called the irst time. This
method will be called very frequently, so if you don’t unhook the handler as soon as its work is

done, the performance penalty will be extreme.

 ■ Isolated storage Accessing isolated storage can be slow. First, you should be doing any

such work on a background thread. Second, you should consider how you’re structuring your

isolated storage. If you have a large number of iles, you’ll experience poor performance if you
need to search them or fetch a list or count of them. In this scenario, consider a hierarchical

subfolder structure instead.

silverlight unit Testing Framework

Jeff Wilcox, a senior developer at Microsoft, built the Silverlight Unit Testing Framework (SLUTF), and

has been maintaining it as a codeplex project for several years. The SLUTF is now part of the Silver-

light Toolkit and is available as a free download from http://silverlight.codeplex.com/. The codeplex site

includes downloads that target Silverlight 3, 4, and 5, and Windows Phone versions 7 and 7.1.

The idea of unit testing is to examine small units of code independent of the rest of the applica-

tion, typically at the method level. It is not uncommon for an organization’s development process

to mandate method-level unit tests as a code check-in requirement. Unit testing is also a primary

mechanism in test-driven development (TDD). Even if you don’t adopt TDD, you’re still encouraged to

build unit tests for your application. The SLUTF can make this relatively painless. Here’s how it works:

 ■ Create your main application project.

 ■ Create a test application (another Windows Phone application project).

 ■ In your test application, add a reference to the SLUTF assemblies.

 ■ In your test application, add a reference to your main application.

 ■ In your test application, add one or more classes that contain methods to test your main

application.

The SLUTF facilitates the last step by providing helper classes to manage and control your tests. Try

it out. First, create a regular Windows Phone application, called SimpleApp, as shown in Figure 14-6.

http://silverlight.codeplex.com/

518 PART III extended Services

FIguRE 14-6 A simple application to exercise the Silverlight Unit Testing Framework.

The application is very simple: you offer the user a Button, a TextBlock label, and a TextBox. Note

the names of these items, because you’ll be using them later in your test application.

<Button x:Name="goButton" Content="go" Click="goButton_Click"/>

<TextBlock Text="result"/>

<TextBox x:Name="resultText"/>

When the user taps the Button, you ill in the TextBox with the current DateTime.

private void goButton_Click(object sender, RoutedEventArgs e)

{

 resultText.Text = DateTime.Now.ToLongTimeString();

}

Next, create a second Windows Phone application. This will be used for running tests on the phone

against the main application. The test application will not use the standard XAML content for the

MainPage, but you can’t eliminate it altogether because it is used to generate the initialization code

for the MainPage class. You can, however, reduce it to the bare minimum, as shown in the following:

<phone:PhoneApplicationPage

 x:Class="UnitTestApp.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"/>

 ChAPTER 14 Go to Market 519

Add a reference to Microsoft.Silverlight.Testing.dll and Microsoft.VisualStudio.QualityTools.Unit

Testing.Silverlight.dll, both of which are deployed with the Silverlight Toolkit. You’ll get a warning

about mismatched frameworks, but you can safely ignore this. Also, add a reference to your main

application. Update the MainPage constructor to initialize the page content with the main test page

from the SLUTF. Internally, this checks for the current platform, and in the case of Windows Phone, will

return a MobileTestPage. Because the same testing framework is used for desktop Silverlight appli-

cations, too, it does not use conventional page navigation internally. Instead, it uses a “slide”-based

model, wherein each slide is a UI element that takes up part or all of a phone page. For this reason,

you need to hook up the BackKeyPress to perform the internal pseudo-navigation by invoking the

IMobileTestPage.NavigateBack method. Without this, then any time the user presses the Back key,

from any page, this would exit the test application.

public MainPage()

{

 InitializeComponent();

 Content = UnitTestSystem.CreateTestPage();

 IMobileTestPage testPage = Content as IMobileTestPage;

 if (testPage != null)

 {

 BackKeyPress += (s, e) => e.Cancel = testPage.NavigateBack();

 }

}

Now it’s time to write some tests. If your application employs good Separation of Concerns (SoC),

it should be easy to test the viewmodel, the view, and the model independently. You could instantiate

your non-visual viewmodel and model types, and exercise their methods and properties. For this sim-

ple example application, which doesn’t have a viewmodel, you can start by exercising the MainPage

constructor. This should always succeed, so you add an assertion that should always be true. The class

for your tests is attributed with the TestClass attribute, and each method has at least a TestMethod

attribute. You can optionally add a Description, which will show up in the test UI at runtime.

[TestClass]

public class Tests : SilverlightTest

{

 [TestMethod]

 [Description("Construct the MainPage - always succeeds")]

 public void MainPageConstructor()

 {

 SimpleApp.MainPage mp = new SimpleApp.MainPage();

 Assert.IsNotNull(mp);

 }

}

When you run the test application, it inds any TestClass types in the assembly, and runs through

all the TestMethods, as shown in Figure 14-7. Either tap the Run Everything button, or wait for the

ive-second timeout, when all tests will be executed.

520 PART III extended Services

FIguRE 14-7 You can run the test application to exercise each of the test methods.

So far, you have only one TestMethod, which you expect to succeed. You’ll notice the results

include a count of passes and failures at the bottom. The green color is used throughout to indicate a

successful test run (all tests passed).

In cases for which you expect certain operations to throw exceptions, you can exercise these code

paths with a test that includes the ExpectedException attribute. In the listing that follows, you also

include a method that performs the exact same test, but does not have the ExpectedException attri-

bute. This test should fail; it is included here to illustrate what happens when you have an unexpected

failure (as opposed to an expected failure).

[TestMethod]

[Description("Assign negative height - throws ArgumentException")]

[ExpectedException(typeof(ArgumentException))]

public void BadPageSizeThrows()

{

 SimpleApp.MainPage mp = new SimpleApp.MainPage();

 mp.Height = -1;

}

[TestMethod]

[Description("Fake failure - to illustrate failure UI")]

[Tag("Dummy")]

public void UnexpectedFailure()

{

 SimpleApp.MainPage mp = new SimpleApp.MainPage();

 mp.Height = -1;

}

 ChAPTER 14 Go to Market 521

Note the Tag attribute on the second method. This can be used in the test UI to ilter out (or ilter
in) selected methods, based on their Tag values. Figure 14-8 (left) shows the result of running the irst
method, which includes the ExpectedException attribute; the exception is thrown, and the test method

succeeds. Figure 14-8 (right) shows the result of running the second method, which does not include

the ExpectedException attribute, thus, the same exception is thrown, and the test method fails. Any

failure of any test method causes the entire test run to fail, and this is lagged as red in the report.

FIguRE 14-8 Test results for an expected exception (on the left) and an unexpected exception (right).

Figure 14-9 (left) shows how to use a Tag. In this case, any methods that have the Tag attribute

“Dummy” are excluded. Figure 14-9 (right) is a screenshot of a later test run, which shows the history

list for tags that you have used previously. The history list items are buttons, so you can select an item

from the list to reapply it for the next run. Tag expressions use a language based on Extended Backus-

Naur Form (EBNF) grammar, which is a remarkably rich feature that allows for inclusion, exclusion,

union, intersection, complement, and difference. In other words, you can build complex expressions

where you ilter in or ilter out tests, based on their tags.

522 PART III extended Services

FIguRE 14-9 You can ilter out methods by specifying an arbitrary tag.

In addition to using tags for iltering, you can explicitly exclude tests directly in your code by using
the Ignore attribute. You can use the TestInitialize attribute for methods to be run before the other

tests start, and TestCleanup for any post-run operations that you want to perform.

Exercising non-UI units of your solution is relatively straightforward. Exercising UI elements and

simulating UI gestures, is a little more involved. The code that follows shows how you can achieve this.

This test method instantiates a page, and then invokes the FindName method to ind the “go” Button

by name. Rather than assigning this to a Button variable, it is assigned to a ButtonAutomationPeer

object. This type is deined in the standard System.Windows.dll; it includes an Invoke method so that

you can call up the default behavior. In this case, this simulates the user tapping the button. As a

result of this operation, you expect that the current DateTime value is inserted into the Result TextBox

so that you can get hold of that directly and examine its Text property.

UI gestures will tend to be asynchronous. You can queue up any asynchronous method call via the

EnqueueCallback method. All queued operations will be executed asynchronously, and the results will

be deferred until you call the EnqueueTestComplete method.

 ChAPTER 14 Go to Market 523

[TestMethod]

[Asynchronous]

[Description("Invoke the goButton asynchronously")]

[Tag("Async")]

public void InvokeGoButton()

{

 SimpleApp.MainPage mp = new SimpleApp.MainPage();

 ButtonAutomationPeer goButtonPeer =

 new ButtonAutomationPeer(mp.FindName("goButton") as Button);

 IInvokeProvider goButtonInvoker = (IInvokeProvider)goButtonPeer;

 TextBox resultText = mp.FindName("resultText") as TextBox;

 EnqueueCallback(() => goButtonInvoker.Invoke());

 EnqueueCallback(() => Assert.IsTrue(!String.IsNullOrEmpty(resultText.Text)));

 EnqueueTestComplete();

}

The SLUTF is a great tool for building unit tests for Windows Phone applications, and you are

strongly encouraged to make use of it in your own solutions.

Certiication and Publication

The only supported way to install an application onto a retail phone (that is, a phone that has not

been developer-unlocked) is via the Windows Phone Marketplace. The portal to the marketplace is

called AppHub, and you can access it at http://create.msdn.com. This is the same place for submitting

Xbox 360 XNA indie games.

When you’re ready to submit your application to the marketplace, you should ensure that you

have the following information ready:

 ■ Your Apphub registration To submit an application, you need to log on to AppHub by

using your Windows Live ID (WLID).

 ■ Your application’s xAP This must be the release build.

 ■ A title This should match the title you used in your WMAppManifest.xaml

 ■ The category and sub-category under which you want your application to be

listed You can choose from the drop-down lists supplied on the marketplace at the time of

submission.

 ■ version number of your application This is arbitrary, although it should obviously be

meaningful to your own versioning scheme.

http://create.msdn.com

524 PART III extended Services

 ■ A full description This will appear in the marketplace. This is not the same as the description

in the WMAppManifest.xaml (which, anyway, is restricted to 255 characters). The marketplace

description is limited to 2,000 characters.

 ■ (optional) short description This will be used if your application is used as the feature

application in marketplace. The maximum is 25 characters.

 ■ one or more keywords These are arbitrary, but you must supply at least one.

 ■ (optional) support contact email address This can be any contact address; it is not typi-

cally the same as your WLID.

 ■ Three icon images These must all be 96-dpi PNGs and be very similar to the images used in

your application’s tile (except that they should not use transparency):

• 173x173 pixels This should be the same as the image that you use for when the user pins

your application to the Start page, but without transparency.

• 99x99 pixels A slightly larger version of the standard icon used in the application list on

the phone.

• 200x200 pixels This is displayed in the marketplace, in the Zune PC client.

 ■ (optional) panorama background art This must be a 1000x800–pixel, 96-dpi PNG. It will

be used if your application is presented as the feature application in the marketplace and in

Zune.

 ■ one or more screenshots These must be 480x800 pixel, 96-dpi PNGs, all in portrait mode.

You must supply at least one, but you can supply up to eight.

 ■ Pricing and primary offer currency You can choose $0.00 if your application is free.

 ■ (optional) tester notes. These are useful to provide special testing instructions for the

testing and certiication of your application, in case it is not clear from the UI. This is limited to
1,000 characters.

Note For version 7.1 projects, you can also use the Marketplace Test Kit to analyze your

application prior to submitting it to the marketplace. You can read more on this in Chapter

20, “Tooling Enhancements.”

 ChAPTER 14 Go to Market 525

The submission tool is intuitive, and there are only four pages in total. You can save at any point,

so you can pause if you need to, and then go back to complete the submission later. Or, you can

abandon the process at any point before inal submission. The irst page asks you to provide the
application name and version, and to upload the XAP via the AppHub portal, as shown in Figure

14-10. The supported language(s) and required capabilities are detected automatically when your

XAP is uploaded and scanned. Note the Requires Technical Exception ield; this option is there in case
your application requires an exception to the certiication approval process for technical reasons. You
would not normally select this option, because doing so will slow down the approval process, and

approval could be withheld.

FIguRE 14-10 The irst page of the submission tool, in which you enter your app’s name and XAP.

526 PART III extended Services

Figure 14-11 depicts the second page, where you provide more metadata, including the descrip-

tions to be used in the marketplace.

FIguRE 14-11 Certiication, page 2: the app descriptions and images.

 ChAPTER 14 Go to Market 527

The bottom of the second page is where you upload your artwork, including screenshots, as

shown in Figure 14-12. Be aware that although these must be in PNG format, they should not use

transparency because they might be used in the Zune PC client, where transparency would be poorly

rendered. So, for example, you should not use the same 173x173–pixel image here that you use within

the application for the background, if that image uses transparency.

FIguRE 14-12 Certiication, page 2: preparing to upload images.

528 PART III extended Services

On the third page (Figure 14-13), you specify the pricing that you want to apply for the app, and

the regional distribution. If you want your application to be free, set the price to zero.

FIguRE 14-13 The third page of the submission tool is where you specify the price and market availability for
your app.

On the fourth and inal page, you can add any notes that you think would be useful to the testers.
If your application behaves in an unexpected way in any scenario, you should document it here so

that the testers don’t fail it simply because they don’t understand how it’s supposed to work. On this

page, you can also choose whether or not to publish automatically as soon as your application passes

testing, as shown in Figure 14-14.

 ChAPTER 14 Go to Market 529

FIguRE 14-14 The inal page of the submission tool.

When you’re done illing in the submission form—assuming that you haven’t missed any required
ield—you’ll be returned to your dashboard, where your new application will be listed as pending
certiication.

When you submit your application, it goes through both static validation and automated testing

to verify that it meets all the policies and requirements. If it passes certiication, it is repackaged and
signed before it is made available to the marketplace. The Windows Phone Application Certiication
Requirements are described at http://go.microsoft.com/FWLink/?LinkID=183220.

You can cancel a submission before or after it has been certiied, but you cannot do anything to it
while it is actually going through the certiication process.

http://go.microsoft.com/fwlink/?LinkID=183220

530 PART III extended Services

Note At the time of this writing, the marketplace does not encrypt XAPs. This means that

if you’re concerned about piracy, you might opt to obfuscate your application before you

upload it to the marketplace.

Updates
You can update the marketplace catalog information for your application at any time. This includes

the descriptions, artwork, keywords, pricing and regional availability, and so on. Although this goes

through the same ingestion pipeline as a full submission, if you do not update the XAP, the time-

consuming steps of validating and testing the XAP are skipped, so this kind of update is relatively

quick. You can also upload a new version of your XAP at any time, and in all cases, you use the same

submission form and upload mechanism. Just as with a full submission, you can check the progress of

an update in marketplace through the portal.

When you perform an incremental build of your application in Visual Studio, and run it in the emu-

lator or a device, the fresh XAP replaces the previous version. However, it does not replace any data

stored in isolated storage. On the other hand, if you perform a clean and rebuild, this does wipe out

isolated storage. This is because a clean/rebuild performs a complete uninstall/reinstall, as opposed

to an update. In the marketplace, when you submit an update, this behaves the same way as an

incremental build: it replaces the XAP, but does not touch isolated storage. The only way that isolated

storage is automatically cleaned out is when the user uninstalls the application.

So, when you publish an update to your application, you might want to clean out isolated stor-

age yourself, upon the irst run of the updated application. Alternatively, if you want to keep the old
data, you might need to make allowances for any changes in data schema that you have made. For

example, you might want to convert all the old data to the new format upon irst run. Be aware that
this applies only to data stored in isolated storage iles; it does not apply to IsolatedStorageSettings,

application state, or page state, none of which are persisted across runs of the application.

A common requirement is for an application to check the marketplace periodically to see if there is

an updated version and to prompt the user if it detects one. Although the platform includes Market

placeXXXTask Launchers, which will bring up marketplace UI pages, there is no marketplace API with

which you can fetch marketplace data programmatically, without showing UI. That said, it is fairly easy

to construct web requests to the marketplace to fetch metadata for a given application, assuming

that you know what you’re looking for. That might not be as simple as it sounds, however, because

some of the values in your WMAppManifest.xml will be modiied during marketplace ingestion. This
includes the Author, Publisher, Capabilities, and—crucially—your application’s ProductID.

The screenshot presented in Figure 14-15 shows a simple implementation of the key techniques

in this approach (the MarketplaceData solution in the sample code). Using this application, you can

check marketplace metadata for any application, and then display the data in the UI, but more realis-

tically, you would use this approach to check for the current application’s updates.

 ChAPTER 14 Go to Market 531

FIguRE 14-15 Fetching marketplace metadata.

The application would also realistically know its own application name, but in this example, you’re

asking the user to input the name. You then construct an HttpWebRequest to fetch the Zune market-

place atom feed for this product. The query template string speciies a clientType value of WinMobile

7.1 (or rather, the URL-encoded “WinMobile%207.1”). This narrows down the query to Windows Phone

products, eliminating PC, Zune, and Xbox products. By specifying “7.1,” you will get back version

information for both versions 7 and 7.1. If you want to narrow the search to version 7 only, you need

to specify a clientType value of WinMobile%207.0.

private String queryTemplate =

 @"http://catalog.zune.net/v3.2/en-US/apps?q={0}&clientType=WinMobile%207.1&store=zest";

private XNamespace ns = "http://schemas.zune.net/catalog/apps/2008/02";

private void getData_Click(object sender, RoutedEventArgs e)

{

 String zuneQuery = String.Format(queryTemplate, appName.Text);

 HttpWebRequest webRequest =

 (HttpWebRequest)HttpWebRequest.Create(new Uri(zuneQuery, UriKind.Absolute));

 webRequest.BeginGetResponse(httpRequestCallback, webRequest);

}

Note also that you need to specify the default namespace. Most elements in the feed use either

the default namespace or the atom namespace (aliased as “a”). If you want to extract any of these ele-

ments, for example, <a:content> or <a:author>, you’d need to specify the following namespace, also:

private XNamespace ns2 = "http://www.w3.org/2005/Atom";

532 PART III extended Services

When the web request returns, you load it into an XDocument, and then parse the document to

ind certain elements; speciically, the title, version number, release date, and average user ratings.
You populate the UI with these element values. Note that the average user ratings are reported on a

scale of 1 to 10, which maps 2:1 to the star rating you see in marketplace.

private void httpRequestCallback(IAsyncResult result)

{

 HttpWebRequest request = (HttpWebRequest)result.AsyncState;

 using (WebResponse response = request.EndGetResponse(result))

 {

 using (StreamReader reader = new StreamReader(response.GetResponseStream()))

 {

 XDocument doc = XDocument.Load(reader);

 XElement appVersion = doc.Descendants(ns + "version").First<XElement>();

 XElement releaseDate = doc.Descendants(ns + "releaseDate").First<XElement>();

 XElement userRating = doc.Descendants(

 ns + "averageUserRating").First<XElement>();

 Dispatcher.BeginInvoke(() =>

 {

 version.Text = appVersion.Value;

 release.Text = releaseDate.Value;

 rating.Text = userRating.Value;

 });

 }

 }

}

Using this approach, it would be simple to ind the number of the latest version in the marketplace,
compare it with the version number of the currently executing application, and then prompt the user

if necessary to inform her that there’s an updated version available. You could even take this a step

further: if she indicates that she indeed wants to load the update, navigate to your application’s page

on the marketplace by using the MarketplaceDetailTask Launcher.

Note that the marketplace ingestion process changes over time, with new features added periodi-

cally. If you submit an update to an application that was originally published before some marketplace

ingestion change, you might ind that you need to do extra work to satisfy the new requirements.
One classic example of this is the neutral resources language. At one point, the marketplace was

changed to require that you add the NeutralResourcesLanguage attribute to your assembly. It will

reject your uploaded XAP if it doesn’t have this. You can do this by going to the project properties,

assembly information dialog, and selecting the default language from the list. This adds the corre-

sponding declaration to your assemblyinfo.cs. One twist to this is that if you select a language that is

more speciic than what you had previously (even implicitly), you will again be rejected. For example,
if you select “en-US”, this is more speciic than an implicit default of “en”. So, it is common to set the
value to a less speciic language; for example, add this line to your assemblyinfo.cs:

[assembly: NeutralResourcesLanguageAttribute("en")]

 ChAPTER 14 Go to Market 533

Marketplace reports
The marketplace portal also provides reports on your application, including the number of down-

loads, payment history (for non-free applications), ratings and reviews, and crash dumps (if any). It

is a certiication requirement that your application should not allow any unhandled exceptions to
propagate out of the application. However, the testing done during the ingestion process is not very

comprehensive, so it is easy to miss some code path where an exception might escape. This means

that your application might pass certiication even if it does throw unhandled exceptions. To assist in
mitigation efforts, whenever an application crashes, a tiny crash dump is collected and sent back to

Microsoft. This eventually makes its way to the marketplace servers, where a summary is produced,

and made available to the application publisher for retrieval.

To fetch marketplace crash dumps, log on to the AppHub, go to My Dashboard, select Windows

Phone, and then click the Reports link. The reports page shows charts and tables of daily downloads

and crash counts for all your applications, as shown in Figure 14-16.

FIguRE 14-16 A marketplace download and crash-count report.

There are links at the bottom of the charts that you can click to drill down into the details for

downloads and crashes. On the details pages, there are further links with which you can download

the reports in Excel spreadsheet format. This is especially useful for crash dumps, because the spread-

sheets will include the stack traces for each crash. These are obviously indispensable for diagnosing

the cause of the crash.

534 PART III extended Services

Beta testing
The marketplace supports a simple beta testing mode for applications. When you irst submit your
application, you have the option to make it available to only a selected set of users. You choose the

users by specifying their WLIDs in the submission form. The system allows you to enter up to 100

users for beta testing. When you do this, AppHub will send you an email containing the download link

for your application, which you can then send to your selected users. The marketplace will hide the

application from general availability, and instead make it visible for download only to those users you

selected. You need to handle test results from your beta users directly; there is no marketplace mecha-

nism to support feedback in this scenario. There is a 90-day limit to the beta testing period, and this

is enforced by installing a 90-day license for the application on the phone. After this time, your users

will no longer be able to launch the application. You can add more test users at any time during this

period. Note also that there is no option to terminate your test period before the 90 days is expired.

Submitting an application for beta distribution is free, and it does not count against your allowed

number of application submissions. Anyone with a Windows phone (and a WLID) can be a beta tester,

and he does not need to have a developer-unlocked device. The process is also fast because the

application does not go through the full set of certiication tests, and will generally become available
to your beta testers within hours of submitting it to the program.

There is no special “beta-to-release” upgrade path, so when your beta test is complete, you will

need to submit a fresh, full submission to publish your application in the normal way.

versions

Apart from ixing bugs, improving the UI, providing fresher data, and adding features, the other main
reason for updating is to take advantage of new features in the latest version of the platform and

SDK. As of this writing, this means updating from version 7 to 7.1. However, some users will not have

upgraded their devices to 7.1, so you would typically want to maintain both major versions of your

application. This means forking your source code and applying bug ixes in two places, but it also
means that users can continue to get the beneit of your updates, regardless of which platform ver-
sion they use.

The marketplace allows you to maintain two versions, and to submit updates to each one indepen-

dently. Note, however, that some of the marketplace metadata for your application is shared across

both versions. Speciically, the catalog details (descriptions and screenshots), pricing and regional
availability, ratings and reviews, and the hidden/live status are all shared by both versions. Apart from

the XAP itself, the only marketplace data that is kept separate for each version is the version number

and the published/unpublished status. This means the version number of your 7 version doesn’t need

to be the same as the version number for your 7.1 version. You might submit, for example, four ver-

sion updates for your 7 version, and only two version updates for your 7.1 version, and so on.

 ChAPTER 14 Go to Market 535

There are a few other non-obvious issues:

 ■ If you add new language support to your 7 version, and you also have a 7.1 version in the

marketplace, then you must add the new languages to the 7.1 version irst.

 ■ If you currently have an update in progress going through marketplace ingestion for any ver-

sion, you cannot start another update until the previous one has completed the process.

 ■ The hidden/live status was introduced with version 7.1. Because of this, if you remove (unpub-

lish) your 7.1 version, then you cannot change the value of the hidden/live status of your 7

version. The only way to change this is to republish a 7.1 version.

 ■ You can submit an update to a version while it is in the hidden state. This is a useful step to

take if your update includes signiicant bug ixes. Thus, while the ixed version is going through
marketplace ingestion, you can keep the application hidden so that new users cannot down-

load the old buggy version.

 ■ When you publish a 7.1 version, users with 7 phones can only download the 7 version, and

users with 7.1 phones can download only the 7.1 version. If you remove (unpublish) your 7.1

version, then users with 7.1 phones will still not be able to download the 7 version.

 ■ You cannot update a 7.1 version with a 7 version; that is, platform downgrade is not possible.

 ■ You can change your application name as part of an update, if you wish, although this would

probably be confusing to users. Regardless, you may not change the ProductID. A change of

the ProductID is considered as an entirely different application, not an update.

 ■ If you have no previous version of your application, and your irst published version is a 7.1
version, you will not be able to submit a 7 version, ever. For this reason, you should generally

submit a 7 version irst, even if you intend to submit a 7.1 version immediately thereafter.

Note An additional minor version, 7.1.1, was announced in February 2012. For details of

this, including how it affects marketplace publication, see Chapter 16, “Enhanced Phone

Services.”

Light-Up Features
One reason to publish an update for an old version 7 application is to enable a “light-up” scenario.

That is, to take advantage of version 7.1 features if the application is running on Windows Phone 7.1.

Be aware that this approach is not supported by Microsoft. To be clear, this strategy is not the same as

publishing a 7.1 version of your application. Rather, it means publishing a 7 update to a 7 application,

but including 7.1 features. How is this possible? The answer is runtime relection. Consider the follow-

ing line of code:

ApplicationBar.Mode = Microsoft.Phone.Shell.ApplicationBarMode.Minimized;

536 PART III extended Services

This code is version 7.1–speciic: it uses the Mode property and the ApplicationBarMode enumera-

tion, both of which were introduced in version 7.1, and were not available in version 7. The purpose of

these is to allow you to switch your App Bar between the default size and the new Minimized mode,

which takes up less real estate on the screen, as shown in Figure 14-17. This is the TestLightUp solution

in the sample code. The Minimized mode was designed to be used on Panorama controls (and also

with Opacity set to something less than 1); it should generally not be used, otherwise.

FIguRE 14-17 This application shows the ApplicationBar in Default mode (on the left) and Minimized mode (right).

If you tried to include the preceding line of code in a version 7 application, it would fail at compile

time. Instead, if the application inds itself running on OS 7.1, it can gain access to the Mode property

of the ApplicationBar object at runtime via the relection APIs.

private bool isAppbarMinimized;

private const int Default = 0;

private const int Minimized = 1;

private void toggleAppbarMode_Click(object sender, RoutedEventArgs e)

{

 Type t = typeof(ApplicationBar);

 PropertyInfo pi = t.GetProperty("Mode");

 if (pi != null)

 {

 pi.SetValue(this.ApplicationBar, isAppbarMinimized ? Default : Minimized, null);

 isAppbarMinimized = !isAppbarMinimized;

 }

}

 ChAPTER 14 Go to Market 537

Using this approach, you can build in any number of light-up features in your application. When

running on version 7, the test fails, and the code continues without the feature. On the other hand,

when running on version 7.1, the test succeeds and the feature lights up. Note that relection is a
costly operation at runtime, in terms of performance. It also adds to your code size (albeit trivially);

this is code that, by deinition, is inoperative when running on 7 devices. Also, recall that if you have
the version 7.1 SDK installed, then the emulator is always running 7.1, and although it emulates ver-

sion 7 when you run a 7 solution, this is still the version 7.1 emulator running in compatibility mode.

This means that even though it’s easy to test the case where you’re running on version 7.1, it is not

possible to test the opposite, unless you have access to a version 7 device or another development PC

that has the version 7.0 SDK installed.

obfuscation

As of this writing, the marketplace does not encrypt XAPs. For this reason, if you want to increase the

protection of your intellectual property, you might want to consider obfuscation. Visual Studio ships

with a version of the PreEmptive Dotfuscator Community Edition, but this does not work very well

with Silverlight XAPs. Instead, you can download the Dotfuscator Windows Phone Edition. This is free

to use and has all of the features of the commercial version, but is speciically designed for Windows
Phone applications. There are two main features in Dotfuscator: obfuscation and analytics instrumen-

tation. You can download the tool from http://www.preemptive.com/windowsphone7.html.

More Info PreEmptive had a joint agreement with Microsoft to provide free runtime ana-

lytics reporting for Windows Phone, but this service was terminated at the end of 2011.

Dotfuscator no longer collects or processes analytics data from instrumented phone appli-

cations, and the portal has been taken ofline. On the other hand, the obfuscation features
still work perfectly well.

This installation includes the Dotfuscator engine, a command-line version of the tool, and a GUI

version, plus a couple of sample applications for demonstration purposes. Run the Dotfuscator GUI

application, and then create a new project. Open your XAP or simply drag it on to the Input tab. By

default, all obfuscation is disabled, and all analytics instrumentation is enabled. If you’re interested

only in obfuscation, you need to reverse this coniguration. To set up a Dotfuscator project for obfus-
cation only, go to the Settings tab, and then disable instrumentation. At the same time, conigure the
Global options to enable Control Flow, Linking, PreMark, Removal, Renaming, and String Encryption,

as shown in Figure 14-18. These settings are described in the following:

 ■ Control Flow Dotfuscator transforms your control low patterns to output code that is
semantically equivalent to your original code, but contains no clues as to how the code was

originally written.

 ■ linking This option links multiple assemblies into a smaller number of output assemblies,

thereby reducing the size of your deployment.

http://www.preemptive.com/windowsphone7.html

538 PART III extended Services

 ■ PreMark Also called watermarking, this is used to embed data such as copyright information

or unique identiiers into your assembly without impacting its behavior. The purpose of this is
to allow you to track unauthorized/pirated copies of your software back to the source.

 ■ Removal Also called pruning, this feature removes unused types, methods, and ields.

 ■ Renaming This feature renames your identiiers (classes, methods, ields, properties, and
so on) to short (space-saving) names, which also has the beneit of making your code more
dificult to understand when viewed in a decompiler such as Red Gate’s Relector or Telerik’s
JustDecompile.

More Info Relector is a tool for browsing, analyzing, decompiling, and debugging .NET
assemblies. This is a commercial tool that you can buy from http://www.relector.net/.
Telerik has also recently produced a tool that does the same job, called JustDecompile. This

is available as a free download from http://www.telerik.com/products/decompiler.aspx.

 ■ string Encryption Per the guidelines in Chapter 13, “Security,” your code should not include

any embedded security credentials or any other sensitive data. However, it might include

non-sensitive or non-valuable strings, and this feature encrypts those strings to make the code

even more dificult for an attacker to understand. Keep in mind that there is a runtime perfor-
mance penalty: the encrypted strings need to be decrypted upon use.

FIguRE 14-18 Dotfuscator project coniguration for obfuscation only.

You should experiment with varying levels of obfuscation to ind a compromise that meets your
needs. This is particularly the case with Silverlight applications because of the extensive use of XAML,

http://www.reflector.net/
http://www.telerik.com/products/decompiler.aspx

 ChAPTER 14 Go to Market 539

which in turn makes extensive use of relection. Relection makes it dificult for the tool to statically
analyze the assemblies to determine what level of obfuscation is safe, and will not result in runtime

errors.

In addition to obfuscation, while Dotfuscator is transforming your code, it can also eliminate

unused code and data, coalesce strings, merge assemblies, and so on, all of which have the added

beneit of reducing the size of your assemblies. On the Input tab, select all options except Library.
On the Rename tab, under Built-In Rules, clear the Fields Of Silverlight And WPF UserControls check

box, because this would otherwise almost certainly introduce errors when the corresponding XAML is

processed. On the Removal tab, under Options, select the check box to Remove Only Literals (Const

Deinitions). Removing unused metadata and code can end up removing code and metadata that in
fact is not unused. Again, this is because of the way XAML is processed.

When you’re happy with your coniguration, save the project. This saves the coniguration settings
as an XML ile. The location of this is arbitrary; however, you would typically put it in a subfolder of
your solution. You can also specify the target folder for Dotfuscator output as part of your conigura-

tion, and by default this will be in a subfolder of the folder containing the XML coniguration ile.

When you build the project, this runs the analysis and obfuscation transforms. Build output is

displayed in the list at the bottom, along with any build errors or warnings that might require you to

change coniguration settings. The resulting obfuscated code can be seen in the Output tab, as shown
in Figure 14-19. Dotfuscator does not produce output source code; the Output tab is just for informa-

tion. Instead, Dotfuscator will produce an output XAP, which you can then deploy to the emulator or

device, or upload to the marketplace just like a normal XAP.

FIguRE 14-19 Obfuscated output code.

540 PART III extended Services

Note that some of the transforms that Dotfuscator performs can result in unexpected runtime

behavior. Obfuscation with this kind of tool is an iterative process, and you might need to ine tune
your coniguration, especially in terms of what elements to exclude from obfuscation, until you
achieve a build that is error-free at runtime.

Ads

One of the ways to monetize your application is to incorporate advertisements. There are several

third-party options for this, although the standard Microsoft option is one of the best. To put adver-

tisements in your application, you put one or more instances of the AdControl into your XAML or your

code. By default, the AdControl includes a test advertisement banner. To use real advertisements, you

also need to register your application with the Microsoft pubCenter, as shown in Figure 14-20.

FIguRE 14-20 Registering an application and creating an ad unit.

The general steps are as follows:

 ■ Sign up with pubCenter at https://pubcenter.microsoft.com/Login. You can use your WLID to

sign in, and thereby link your pubCenter user name to your WLID. Apart from your name and

email address—which will be automatically extracted from your WLID proile—you just need
to specify the country/region where you live, and the currency in which you prefer to be paid.

https://pubcenter.microsoft.com/Login

 ChAPTER 14 Go to Market 541

 ■ (Optionally) register your irst application, and then create an ad unit. To register the applica-

tion, you need to supply the application name. For an ad unit, you provide some arbitrary

ad unit name, and then specify the ad unit size. An ad unit is the space in your application

UI where ads appear. Ad units can contain one or more ads. You decide where you want the

ad unit to appear on a page, and you can add different ad units to different pages in your

application, or use a single ad unit for all pages. The standard size options are 350x50 pixels

or 480x80 pixels. The 480x80 size tends to work better with the standard Windows Phone 7

screen size.

 ■ You can also choose up to three ad categories (for example, Arts & Entertainment, Food &

Drink, and so on). This is an important step, because the mechanism for retrieving ads for your

application depends largely on the categories that you select. Ideally, you would pick catego-

ries that closely match the content and theme of your application, to increase the likelihood

that the ads will be seen by the target audience selected by the ad network. The more people

who see your ads, the more ad revenue you will receive.

 ■ Finally, you have the option to exclude ads that link to speciic URLs. You might want to do this
to prevent ads from linking to your competitors’ sites, for example.

 ■ When you conirm all your entries, you’ll be given an application ID (a GUID) and an ad unit ID
(an integer value). To show ads in your application, you set these IDs into the corresponding

properties on the instance(s) of the AdControl in your application, either in XAML or in code.

 ■ After you publish your application, you will receive ads automatically.

The Microsoft Advertising SDK for Windows Phone is installed by default with the Windows Phone

7.1 SDK. It is also available as a separate, free download from http://www.microsoft.com/download/

en/details.aspx?id=8729, which is useful if you’re still using the version 7 SDK. Also, be aware that the

Advertising SDK is updated independently of the Windows Phone SDK; therefore, you might want to

use a later version of the Advertising SDK than the one that ships with the Windows Phone SDK. Here

are some points to keep in mind about ads in your application:

 ■ You cannot choose speciic advertisements, although you can ilter out ads that link to
speciic URLs.

 ■ You will be paid 70 percent of the revenue received by Microsoft for your ads, less taxes. Pay-

ments are made monthly for any month where the pay-out is $50.00 or more (including any

unpaid amounts brought forward from previous months).

 ■ As of this writing, the Microsoft Advertising SDK only functions in the Unites States, although

this is set to expand worldwide. Consequently, the feature is available only to developers

who have a company registered in the United States or a personal tax identiier issued by the
United States government.

 ■ Under the covers, the AdControl in your application requests an ad via a web service call to the

Microsoft Ad Exchange. The Ad Exchange is a system wherein multiple ad networks can bid for

the opportunity to display their ad in your application. The network with the highest bid wins

the right to have their ad returned to the AdControl and displayed.

http://www.microsoft.com/download/en/details.aspx?id=8729
http://www.microsoft.com/download/en/details.aspx?id=8729

542 PART III extended Services

 ■ Users will see a standard banner or text ad in your AdControl instance(s), and they can interact

with the ad in standard ways. This means that they can initiate click-to-web, click-to-call, and

click-to-marketplace actions. The terms “click-to-web,” and so on, are standard in the industry,

even though a phone user will “tap” with a inger rather than “click” with a mouse. Click-to-
web ads launch a browser task, and when the user taps the Back button, she returns to where

she was in your application. Click-to-call ads launch the phone dialer. After the user completes

her call to the advertiser, control is returned to your application.

 ■ Using the AdControl increases the size of your application. Speciically, the Silverlight Ad Con-

trol assembly is approximately 98 KB.

 ■ The AdControl makes use of the user’s data service, and in many cases this incurs a cost to the

user. This is one reason why developers adopt the model of ads in the free version of their

application, and no ads in the paid version.

 ■ After publication, you can obtain reports on how your ads are performing by logging on to

the pubCenter portal.

The simplest way to incorporate ads in your application is to drag the AdControl from the toolbox

onto the page designer. This will add references to the two main advertising assemblies, Microsoft.

Advertising.Mobile.dll and Microsoft.Advertising.Mobile.UI.dll. These are installed with the SDK,

typically in %ProgramFiles% \Microsoft SDKs\Advertising for Phone\Libraries\ (32-bit computers) or

%ProgramFiles(x86)% \Microsoft SDKs\Advertising for Phone\Libraries\ (64-bit computers). Dropping

the AdControl also adds the corresponding namespace to your XAML, as shown here:

xmlns:my="clr-namespace:Microsoft.Advertising.Mobile.UI;assembly=Microsoft.Advertising.Mobile.UI"

Finally, the declaration of the AdControl instance itself. Initially, you would use the speciic test
values for ApplicationId and AdUnitId; that is, “test_client” and “Image480_80”, respectively.

<my:AdControl

 Grid.Row="2"

 AdUnitId="Image480_80" ApplicationId="test_client" Height="80" HorizontalAlignment="Left"

 Name="adControl1" VerticalAlignment="Top" Width="480" />

You want the ads to be seen by your users, but you don’t want them to make the overall UI clut-

tered or dificult to navigate. For this reason, it is generally better to put the AdControl either at the

top or the bottom of your page. Most developers prefer the bottom, but if you have an App Bar, it

might be more pleasing to position it at the top. Also recall that the standard grid sizes on wizard-

generated pages will give you a content panel of 456x535 pixels, which won’t work very well with an

AdControl sized at 480x80. To avoid this, you would generally put the AdControl outside any such

content panel, to ensure that it can display at its full 480x80–pixel size.

The code that follows shows how you can add the AdControl programmatically, instead of declara-

tively. Again, you would replace the test AppId and AdUnitId prior to publication.

 ChAPTER 14 Go to Market 543

private void InitializeAds()

{

 String AppId = "test_client";

 String AdUnitId = "Image480_80";

 AdControl ac = new AdControl(AppId, AdUnitId, true);

 ac.Width = 480;

 ac.Height = 80;

 ac.VerticalAlignment = VerticalAlignment.Top;

 ac.HorizontalAlignment = HorizontalAlignment.Left;

 Grid grid = (Grid)this.LayoutRoot;

 ac.SetValue(Grid.RowProperty, 2);

 grid.Children.Add(ac);

}

Figure 14-21 shows the standard wizard-generated data-bound app (the DataBoundAppWithAds

solution in the sample code) with two instances of the AdControl, one on the main page, and one on

the details page. For the main page, the title bar is displayed in the normal way, and the AdControl is

positioned at the bottom. For the details page, there is a visible AppBar, so you need to position the

AdControl at the top, while at the same time you must turn off the SystemTray and reduce the title

panel to just the page name.

FIguRE 14-21 It’s common to position the AdControl at either the bottom or top of a page.

544 PART III extended Services

Be aware that when you use the AdControl in your application, you must also specify the following

capabilities:

<Capability Name="ID_CAP_IDENTITY_USER"/>

<Capability Name="ID_CAP_MEDIALIB"/>

<Capability Name="ID_CAP_NETWORKING"/>

<Capability Name="ID_CAP_PHONEDIALER"/>

<Capability Name="ID_CAP_WEBBROWSERCOMPONENT"/>

These will be identiied by the Marketplace TestKit for version 7.1 projects. Unfortunately, they will

not be identiied by the Capabilities Detection tool, which is the only pre-publication capabilities tool

you can use for a version 7 project. Networking is obviously required in order to request and retrieve

the ads. The media library is used because of the way the control caches images. The phone dialer

and web browser are used in click-to-call and click-to-web scenarios. Despite the potentially mislead-

ing capability, the AdControl doesn’t actually make use of user identity; rather, it uses anonymized

demographic data for your identity such as age and gender.

Note Looking forward, the ease with which you can incorporate advertising into your ap-

plication will become increasingly important as the phone becomes available in regional

markets, such as China and India, where users for the most part expect applications to be

free to install.

Trial Mode

It is common to provide a trial mode for an application. The idea is to give users an opportunity to try

your application for free, before they commit to buying it. In your code, you can detect whether the

application is running in trial mode and restrict your features accordingly. It is entirely up to you what

form this constraint takes. You might disable certain features, or hide certain pages, or you might

enable ads in trial mode and turn them off in the paid version. Tying ads to trial mode is a common

pattern, but be aware that these features are strictly unrelated, and it is not uncommon to implement

ads in the paid version of your application as well as in the free version.

That having been said, the trial-with-ads approach is common, and easily implemented. You would

typically need to detect which mode you’re in across multiple pages. Also, fetching the trial mode

status is relatively time consuming. For these reasons, it makes sense to cache the information, and to

do so in the App class, perhaps with a static property, as shown in the code that follows. You can see

this at work in the DataBoundAppWithAds_TrialMode solution in the sample code.

private static LicenseInformation license;

private static bool isTrial;

public static bool IsTrial

{

 get

 {

 ChAPTER 14 Go to Market 545

#if DEBUG

 return true;

#else

 if (license == null)

 {

 license = new LicenseInformation();

 isTrial = license.IsTrial();

 }

 return isTrial;

#endif

 }

 private set { }

}

On the emulator, the LicenseInformation.IsTrial method always returns false; hence the conditional

debug statements. Then, in your page code, you can set up AdControls (or not), based on the trial

mode status.

private void InitializeAds()

{

 if (App.IsTrial)

 {

 String AppId = "test_client";

 String AdUnitId = "Image480_80";

 AdControl ac = new AdControl(AppId, AdUnitId, true);

 ac.Width = 480;

 ac.Height = 80;

 ac.VerticalAlignment = VerticalAlignment.Top;

 ac.HorizontalAlignment = HorizontalAlignment.Left;

 Grid grid = (Grid)this.LayoutRoot;

 ac.SetValue(Grid.RowProperty, 2);

 grid.Children.Add(ac);

 }

}

This is one good reason for setting up your AdControls in code as opposed to declaratively in

XAML. If your layout is complex enough to warrant setting up the AdControl in XAML, then instead

of conditionally creating it, you could alternatively simply set its Visibility property so that it is depen-

dent on the trial mode status. Also, observe how this is one scenario for which using the Visibility

property is more appropriate than using the Opacity property.

To allow the user to switch from trial mode to the paid version of your application, you simply

redirect him to the marketplace page for your application, from which he can choose to buy the paid

version. To do this, you could provide him with a link, a button, or an App Bar button on one or more

of your pages. Or, you could simply trigger the marketplace navigation when he selects a paid-only

feature somewhere in your UI; for instance, by selecting an item from a list, or navigating to a given

page. However, this last approach should be used very carefully, because it could confuse the user

546 PART III extended Services

by arbitrarily sending him to an entirely different UX in an unexpected way. The code to go to your

application’s marketplace page is trivial, as is demonstrated here:

MarketplaceDetailTask task = new MarketplaceDetailTask();

task.Show();

By default, if you don’t set any properties on it, the MarketplaceDetailTask will navigate to

the page for the calling application. You can’t completely test this in an unpublished application,

because this would always produce a marketplace exception (both on the emulator, and on a physi-

cal device). Also, when you switch to the full version, don’t forget to remove the artifacts of the trial/

full purchase UI.

private void InitializeAds()

{

 if (App.IsTrial)

 {

 // ... set up AdControl as before

 ApplicationBar.IsVisible = true;

 }

 else

 {

 ApplicationBar.IsVisible = false;

 }

}

silverlight Analytics Framework

An early version of the Microsoft Silverlight Analytics Framework (MSAF) has been released as open-

source on codeplex at http://msaf.codeplex.com/. This is an extensible framework for supporting ana-

lytics in Silverlight, Windows Presentation Foundation (WPF), and Windows Phone applications. The

MSAF is itself based on the Managed Extensibility Framework (MEF), which is a composition-based,

loosely coupled framework for supporting plug-ins. In this way, the MSAF can support an open-

ended range of third-party vendors’ analytics engines, including Google, Comscore, Webtrends, and

so on. In essence, it allows you to apply tracking to any event in your application. The tracking data is

sent to the analytics server(s) you choose, and you can then get reports from the corresponding ser-

vice portal. Be aware that it is a marketplace requirement to list your application’s privacy policy. You

must also obtain user consent before sending any tracking information to a third-party service.

MEF (pronounced “mef”) provides support for composing applications dynamically at runtime, as

opposed to statically at compile-time. It is a common pattern for an application to have a composite

model, where the total functionality is provided by a number of component parts. In some cases,

these components are all known at design-time, so the composition is static. However, it is sometimes

useful to be able to build the composition dynamically, where the set of components to be loaded is

discovered only at runtime. MEF components (or “composable parts”) do not directly depend on one

another; instead, they depend on a contract. The idea is that the application speciies the contracts
(interfaces) that it wants to consume, or “import,” and at runtime it loads the assemblies that imple-

ment those interfaces (that is, assemblies that “export the contract types”).

http://msaf.codeplex.com/

 ChAPTER 14 Go to Market 547

To get this all working in a phone application, you irst need to add references to the MSAF assem-

blies, speciically:

 ■ ComponentModel

 ■ ComponentModel.Initialization

 ■ Microsoft.WebAnalytics

 ■ Microsoft.WebAnalytics.Behaviors

 ■ System.Windows.Interactivity

 ■ One or more analytics service MEF component assemblies that you want to work with, such as

Google.WebAnaltyics or Webtrends.WebAnalytics.WP7

You can see this at work in the TestAnalytics solution in the sample code. Next, create a class that

implements IApplicationService, which is a standard Silverlight extensibility mechanism. This is used

when you have a need for some global “service” in your application that you want the Silverlight

runtime to invoke. The interface declares two methods: StartService and StopService. The Silverlight

runtime will call StartService during application initialization, and it will call StopService just before the

application terminates.

public class AnalyticsAppplicationService : IApplicationService

{

 public void StartService(ApplicationServiceContext context)

 {

 CompositionHost.Initialize(

 new AssemblyCatalog(Application.Current.GetType().Assembly),

 new AssemblyCatalog(typeof(Microsoft.WebAnalytics.AnalyticsEvent).Assembly),

 new AssemblyCatalog(typeof(

 Microsoft.WebAnalytics.Behaviors.TrackAction).Assembly),

 new AssemblyCatalog(typeof(Google.WebAnalytics.GoogleAnalytics).Assembly));

 }

 public void StopService() { }

}

This code initializes a MEF CompositionHost, which acts like a container for each AssemblyCatalog

in which you’re interested, and invokes the Compose method. This method matches up all the import

requirements in the MSAF with the speciic export implementations in the component assemblies
and makes them available in the container.

To make use of this application service, you need to add a couple of namespaces to the App.

xaml, for the Microsoft.WebAnalytics assembly, which acts as a bridge to third-party analytics ser-

vices, plus one or more third-party services. This example uses the Google Analytics service. You also

need to add an XML namespace declaration for the current assembly, where you’ll be deining the
AnalyticsApplicationService.

xmlns:mwa="clr-namespace:Microsoft.WebAnalytics;assembly=Microsoft.WebAnalytics"

xmlns:ga="clr-namespace:Google.WebAnalytics;assembly=Google.WebAnalytics"

xmlns:local="clr-namespace:TestAnalytics"

548 PART III extended Services

Then, update the ApplicationLifetimeObjects section by adding the Google Analytics service to the

collection of web analytics services that you want to use. The WebPropertyId must be set to a valid

Google Analytics Account ID. To get an ID, you need to sign up with the Google Analytics service here

at http://www.google.com/analytics/ (this is a free service).

<Application.ApplicationLifetimeObjects>

 <shell:PhoneApplicationService

 Launching="Application_Launching" Closing="Application_Closing"

 Activated="Application_Activated" Deactivated="Application_Deactivated"/>

 <local:AnalyticsAppplicationService/>

 <mwa:WebAnalyticsService>

 <mwa:WebAnalyticsService.Services>

 <ga:GoogleAnalytics WebPropertyId="UA-12345-1"/>

 </mwa:WebAnalyticsService.Services>

 </mwa:WebAnalyticsService>

</Application.ApplicationLifetimeObjects>

In this simple application, you’ll put a Button on the main page, and then track when the user

clicks this Button. To do this, in the MainPage.xaml, you need to add two further namespaces for the

System.Windows.Interactivity and Microsoft.WebAnalytics.Behaviors assemblies. Using these, you can

attach behaviors to your UI elements, speciically so that you can apply tracking to them.

xmlns:i="clr-namespace:System.Windows.Interactivity;assembly=System.Windows.Interactivity"

xmlns:mwb="clr-namespace:Microsoft.WebAnalytics.Behaviors;assembly=Microsoft.WebAnalytics.

Behaviors"

With these namespaces in place, you can attach a TrackAction behavior to the button’s Click event,

assigning an arbitrary value for the Category and Value attributes that will be meangingful in the

analytics report.

<i:Interaction.Behaviors>

 <mwb:ConsoleAnalytics/>

</i:Interaction.Behaviors>

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Button x:Name="helloButton" Content="hello">

 <i:Interaction.Triggers>

 <i:EventTrigger EventName="Click">

 <mwb:TrackAction Category="MainPage" Value="2"/>

 </i:EventTrigger>

 </i:Interaction.Triggers>

 </Button>

</StackPanel>

Now, when the user taps the Button, tracking information will be sent to the Google Analytics ser-

vice, and the developer will be able to log on to the portal to retrieve the analytics reports. As of this

writing, the MSAF is still under development, so although the concepts and design will continue to

be valid, the exact steps you need to incorporate MSAF in your application can vary over time. If you

cannot get MSAF to work out of the box, you always have the option to download the source code so

that you can make any necessary modiications to get it to work in your scenario.

http://www.google.com/analytics/

 ChAPTER 14 Go to Market 549

Also note that the ability to track your application’s runtime behavior carries with it a responsibil-

ity regarding privacy. Speciically, you must be very careful not to collect any personally identiiable
information, and most especially no personal user data, medical, inancial, or other potentially sensi-
tive information.

summary

Before you start on a project, it’s always a good idea to have an understanding of all the things you

have to do before you inally ship the product. This chapter looked at the end-game of bringing
your application to market: performance tuning, automated testing, the certiication and publication
process itself, and options for monetization. The Windows Phone marketplace is becoming increas-

ingly more sophisticated with each update, introducing features such as trial mode and private beta

testing, which give you even more options for publishing your application. Simple analytics are avail-

able for the data that the marketplace collects on download proiles and crash statistics, and more
sophisticated tracking can be incorporated within your code by using third-party services such as

Google Analytics.

 551

Part IV

Version 7.5
Enhancements

ChAPTER 15 Multi-Tasking and Fast App Switching553

ChAPTER 16 Enhanced Phone Services. .589

ChAPTER 17 Enhanced Connectivity Features.627

ChAPTER 18 Data Support .667

ChAPTER 19 Framework Enhancements .711

ChAPTER 20 Tooling Enhancements .745

The basic building blocks, application model, and extended

phone services can be used by all versions of Windows Phone 7.

This part examines the enhancements and additional features

that were introduced with version 7.1, including multi-tasking,

background agents, enhanced sensor support, camera manipu-

lation, augmented reality, and local database support. It also

covers the enhanced tooling support, including the application

proiler.

 553

C h A P T E R 1 5

Multi-tasking and
Fast App Switching

The irst 14 chapters in this book have focused on the features that are common to both Windows
Phone 7 and Windows Phone 7.1/7.5. From this point forward, the focus shifts to the new features

and platform enhancements introduced in Windows Phone “Mango.” This encompasses product

version 7.5, which consists of OS version 7.1 and the Windows Phone 7.1 SDK. In this chapter, you will

start by looking at how the platform supports multi-tasking. There are two broad categories here: fast

application switching, and the various multi-tasking features themselves. Fast application switching

is more of an infrastructure enhancement, by which users can switch rapidly from one application to

another. The new multi-tasking features provide a range of options for an application to divide work

into multiple processes.

Fast Application switching

This is an infrastructure improvement that enhances the application-switching behavior such that an

application is less likely to be tombstoned and more likely to be able to resume more quickly. Under

the covers, what the application platform actually implements is fast application resume. The user

perceives this as fast application switching, because it allows her to switch rapidly between applica-

tions, and it’s the switching that a user cares about, not so much the resuming.

In Windows Phone 7, when the user is running an application and then taps the Start button, one

of two things can happen: either the application is deactivated and then tombstoned, or it is merely

deactivated and not tombstoned. Typically, the application is tombstoned, but if the user taps Back

immediately after tapping Start, there is a chance that the application will avoid being tombstoned

and will be reactivated immediately.

In version 7.1, from the user’s perspective, this behavior continues, with the modiication that the
tombstoning case is less common, and the fast deactivation/reactivation case is more common. The

difference between the tombstone scenario and the fast application resume (non-tombstone) sce-

nario is illustrated in Figures 15-1 and 15-2.

554 PART Iv Version 7.5 enhancements

Note In version 7.1.1 (announced in February 2012), which speciically targets low-memory
devices (that is, devices with no more than 256 MB of physical memory), the tomb stoning

case is likely to occur more often than in version 7, and is also likely to happen faster. This

ensures the overall health of the phone, but at the cost of slower reactivation times.

IsApplicationInstancePreserved
== false

User Phone OS Application MainPage

(Use Running Application)

Navigate away (Start etc)

Application Constructor

Navigate back (Back etc)

Application Deactivated

Process Terminated

MainPage OnNavigatedTo

(Use Running Application)

Application Activated

MainPage OnNavigatedFrom

MainPage Constructor

FIguRE 15-1 The tombstone case.

In the fast application resume case, the application process is not terminated; it is deactivated, but

it remains in memory, taking up space. This is what allows the system to reactivate and resume the

application quickly, if and when the user navigates back to the application.

To make it easier for developers to determine whether their application has been reactivated after

dormancy (as opposed to after tombstoning), version 7.1 exposes a new property on the Activated

EventArgs named IsApplicationInstancePreserved. If this is set to true, then the application doesn’t

need to restore state from persistent storage because state is still in memory.

 ChAPTER 15 Multi-Tasking and Fast App Switching 555

IsApplicationInstancePreserved
== false

User Phone OS Application MainPage

(Use Running Application)

Navigate away (Start etc)

Application Activated

Navigate back (Back etc)

Application Deactivated

(Use Running Application)

MainPage OnNavigatedFrom

MainPage OnNavigatedTo

FIguRE 15-2 The fast application resume (non-tombstone) scenario.

As you can see from the sequence diagrams in Figures 15-1 and 15-2, there are two critical

differences:

 ■ In the fast application resume scenario, the application is maintained in memory, which means

that the various application objects are not destroyed after deactivation, and there is there-

fore no need to run the App, MainPage, or other constructors upon subsequent activation. In

the tombstone scenario, the application’s memory is reclaimed by the system, so constructors

must therefore be run again when the user switches back to the application.

 ■ In the fast application resume scenario, the IsApplicationInstancePreserved property is true on

Application.Activated, whereas in the tombstone scenario, the IsApplicationInstancePreserved

property is false on Application.Activated.

If memory pressure increases to the point where the system needs to reclaim memory from dor-

mant applications, it will irst start tombstoning applications from the end of the backstack; that is,
the least-recently used application is tombstoned irst.

A further consideration is resource management. Figure 15-3 shows the sequence when an

application becomes dormant. In this scenario, you don’t want it consuming resources, especially

hardware resources such as sensors, and most especially resources such as the camera, which can only

be used by one application at a time. The standard OnNavigatedFrom and Deactivated events are

the developer’s opportunity to relinquish resources. However, if the developer does not proactively

release resources, then the framework will do the job for you. When an application is deactivated,

its resources are detached, and threads and timers are suspended. The application enters a dormant

556 PART Iv Version 7.5 enhancements

state in which it cannot execute code, it cannot consume runtime resources, and it cannot consume

any signiicant battery power. The sole exception to this is memory: the dormant application remains
in memory.

User Phone OS

Start etc

Application MainPage

(Use Running Application)

MainPage OnNavigatedFrom

Application Deactivated

Detach Resources

Suspend Timers & Threads

Set App to
Dormant
State

Release Resources

MediaPlayer.Pause
MediaElement.Pause
SoundEffectInstance.Pause
VibrateController.Stop
PhotoCamera.Dispose

Pause XNA audio
Suppress sensor notifications
Cancel network calls
Disconnect sockets
Disconnect media
Dispose PhotoCamera

FIguRE 15-3 Bringing an application to the dormant state.

Conversely, when an application is reactivated from the dormant state, the framework resumes

timers and threads, and reattaches some (but not all) resources that it previously detached (see Figure

15-4). The developer is responsible for reconnecting/resuming media playback, HTTP requests, sock-

ets, and camera.

User Phone OS Application MainPage

Start etc

Resume Timers & Threads

Re-attach (some) Resources

Application Activated

MainPage OnNavigatedTo

Re-acquire Resources

Resume XNA audio
Resume sensor notifications
Complete network calls

Sockets remain disconnected
MediaElement remains
 disconnected
PhotoCamera remains
 disposed

MediaPlayer.Play
Socket.ConnectAsync
new PhotoCamera
Reconnect HTTP requests

FIguRE 15-4 Resuming an application from the dormant state.

 ChAPTER 15 Multi-Tasking and Fast App Switching 557

Multi-Tasking

Windows Phone 7 has technically been a multi-tasking system from the start, but it is perceived as

a single-tasking system in the sense that there can only be one foreground application running at a

time. Compared to a desktop application environment, the resources on the phone are signiicantly
constrained. For this reason, the user experience (UX) is optimized by giving the foreground applica-

tion a very large proportion of these resources, to the exclusion of other applications. For example,

the limited amount of screen real estate on a phone means that it makes sense to run only one appli-

cation in the foreground at a time. That said, certain other applications, notably system services such

as incoming phone calls, SMS messages, or toasts, will continue to run even when an application is

running in the foreground, and are allowed to impinge partially on the foreground user interface (UI).

In version 7.1, the following features were added to give you greater lexibility over when your
code runs:

 ■ generic Background Agents Application developers can use this to run code in the back-

ground when their foreground application is not running.

 ■ Alarms and Reminders A simple programmatic way to invoke one-off or periodic alerts

that run independently of your main application.

 ■ Background Transfer service You can use this to direct an application to queue up ile
downloads and uploads in the background.

 ■ Background Audio Developers can use this to have an application initiate audio playback

and have it continue to run, even when the user navigates away from the application.

These features support two broad user scenarios:

 ■ The scenario in which the user wants to start some application in the foreground, then switch

to another application, yet have some features of the initial application continue to run in the

background. An example of this is audio: you might start playing audio, and then switch to

email, but you want the audio to continue running in the background.

 ■ The scenario in which you set something up in the foreground, but it doesn’t actually start

running until some future point, at which time it starts running in the background, even

though the user might be doing something else at that moment in the foreground. Examples

of this are alarms and reminders.

To enable user applications to run code both in the foreground and in the background clearly runs

an increased risk of resource contention. In designing the permitted behaviors, considerable thought

went into achieving the best possible overall UX. Consider this possible scenario: application A runs

in the foreground; at the same time, application B is running multiple resource-intensive operations

in the background, to the point where the performance, responsiveness, and UX in application A is

noticeably degraded. Application A might be playing by the rules and using resources conservatively,

whereas application B is being reckless. This won’t help the developer of application A because the

user’s perception will be that application A is performing poorly. Also consider that the phone is by

nature resource-constrained. Compared to a desktop computer, it has signiicantly less memory,

558 PART Iv Version 7.5 enhancements

persistent storage, CPU power, and connectivity. It also cannot rely on constant power. To mitigate

these issues and maintain the health of the phone as well as the overall UX, there are a number of

constraints in how you can set up and run background tasks. One critical constraint is that certain

types of background features are actually prohibited from running while any foreground application

is running. Further limitations for each class of background feature are described in the following

sections.

Alarms and Reminders

Alarms and reminders are two forms of the same type of UX. In both cases, they trigger a notiication
to the user according to some schedule deined in your application. The notiication is presented to
the user in the form of a dialog box that pops up on the screen at a speciied time. The dialog box can
display some text that you determine and offer buttons with which the user can dismiss the notiica-

tion or postpone it until later. If the user taps the notiication, this launches your application. You can
set up alarms and reminders to be either single or recurring events.

There are minor differences between alarms and reminders. For instance, with an alarm, you can

specify a sound ile to play when the notiication is launched. On the other hand, with a reminder, you
can specify a page in your application to go to when the user taps the reminder UI. Note that there

is a limit of 50 alarms and/or reminders at a time, per application, and that they are accurate only to

within 60 seconds.

Alarms
There has been an Alarms application built into the phone from version 7. Version 7.1 adds to that by

providing a way for developers to build alarms and reminders programmatically. Under the covers,

both custom alarms and the built-in Alarms application use the same scheduling system. From a user’s

perspective, custom alarms are similar to the built-in Alarms application in that the alarm alert UX

is the same, the options to snooze or dismiss are the same, both adhere to user settings, and so on.

Here’s the basic usage: create an Alarm object, set its properties, and then add it to the Scheduled

ActionService, as demonstrated in the following:

Alarm alarm = new Alarm("Coffee");

alarm.BeginTime = DateTime.Now.AddMinutes(30);

alarm.Content = "Time for a break.";

ScheduledActionService.Add(alarm);

Figure 15-5 shows a simple example, which is an interval training tool (the IntervalTraining appli-

cation in the sample code). The user enters each interval item into a list, and then starts the training

session. At the start of the session, you create an Alarm for each item that starts at the end of the

previous item.

 ChAPTER 15 Multi-Tasking and Fast App Switching 559

FIguRE 15-5 An interval training application that utilizes alarms.

The code is very simple. First, you declare a class to hold the session item data, including the Alarm

for each item. Note in the following example that each Alarm has a unique name:

public class SessionItem

{

 public int Minutes { get; set; }

 public string Name { get; set; }

 public Alarm EndAlarm { get; set; }

 public SessionItem(int minutes, string name)

 {

 Minutes = minutes;

 Name = name;

 EndAlarm = new Alarm(Guid.NewGuid().ToString());

 EndAlarm.Content = name;

 }

}

On the main page, you set up a collection of session items in the constructor (this could also be

done in the OnNavigatedTo override), and then data-bind these as the ItemsSource for a ListBox.

You’re also taking this opportunity to clean up any old alarms for this application that haven’t already

been triggered. Calling ScheduledActionService.GetActions will retrieve the scheduled actions of the

speciic type for this application only; there’s no danger that you’d interfere with alarms/reminders for
any other application. So far, you’re only considering Alarm and Reminder types, but note that this will

also get other scheduled actions for this application, such as periodic or resource-intensive back-

ground tasks (discussed later in this chapter).

560 PART Iv Version 7.5 enhancements

When the user taps the “+” button, you’ll add a new session item to the list. Finally, when the user

taps the Start Session button, you’ll walk through the collection and schedule an Alarm for the end

of each item. There’s a conditional statement in there that affects the timing of each alarm. This is

because, while testing, you can reduce the time of the alarm so that you don’t have to wait so long for

it to ire. Note, however, that the alarm scheduling system does not work well with alarms scheduled
within a very short time of each other. The inest granularity that is guaranteed is 60 seconds, and

you can be pretty sure that alarms within ~30 seconds of each other might not be scheduled in the

correct order.

public ObservableCollection<SessionItem> SessionItems { get; set; }

public MainPage()

{

 InitializeComponent();

 SessionItems = new ObservableCollection<SessionItem>();

 SessionItemsList.ItemsSource = SessionItems;

 IEnumerable<Alarm> oldAlarms = ScheduledActionService.GetActions<Alarm>();

 foreach (Alarm alarm in oldAlarms)

 {

 if (alarm.ExpirationTime <= DateTime.Now)

 {

 ScheduledActionService.Remove(alarm.Name);

 }

 }

}

private void AddButton_Click(object sender, RoutedEventArgs e)

{

 SessionItems.Add(new SessionItem(Int32.Parse(ItemMinutes.Text), ItemName.Text));

 ItemMinutes.Text = String.Empty;

 ItemName.Text = String.Empty;

}

private void StartButton_Click(object sender, RoutedEventArgs e)

{

 DateTime startTime = DateTime.Now;

 foreach (SessionItem item in SessionItems)

 {

#if DEBUG

 startTime = item.EndAlarm.BeginTime = startTime.AddSeconds(item.Minutes * 10);

#else

 startTime = item.EndAlarm.BeginTime = startTime.AddMinutes(item.Minutes);

#endif

 ScheduledActionService.Add(item.EndAlarm);

 }

}

 ChAPTER 15 Multi-Tasking and Fast App Switching 561

reminders
Reminders are also very similar to the standard calendar reminders that are built into the phone: they

behave like standard reminders, and will stack with all the other reminders in the system from the

user’s calendar. They are slightly richer than alarms, with more scope for providing additional data

for the reminder. Standard calendar reminders provide for a navigation target; that is, when the user

clicks on a reminder, it takes her to the corresponding item in the calendar. With custom remind-

ers, you have the same behavior: you can specify to navigate to a page in your application when the

user responds to the reminder. Figure 15-6 shows an example (the TrailReminders application in the

sample code). This is a trail application that you can use to set a reminder for when you’re planning to

hike a given trail.

FIguRE 15-6 Using the TrailReminders application, the user can add a reminder for a selected trail, which later
triggers a reminder alert.

To represent the trail data, there is a simple Trail class, as shown in the following:

public class Trail

{

 public string Title { get; set; }

 public string Photo { get; set; }

 public string Description { get; set; }

 public Trail(string title, string photo, string description)

 {

 Title = title;

 Photo = photo;

 Description = description;

 }

}

562 PART Iv Version 7.5 enhancements

The App class holds the data (as a simple viewmodel) with a new method, InitializeData, which is

called at the end of the constructor. In this method, you set up a few trail data items. For debugging,

clear out any old reminders. Realistically, you might want to keep an independent list of the reminders

for this application within the application itself, which you could then manage appropriately (remov-

ing expired reminders, providing a list to the user of all remaining reminders, and so on).

public static ObservableCollection<Trail> Trails { get; set; }

private void InitializeData()

{

 Trails = new ObservableCollection<Trail>();

 Trails.Add(new Trail("Frog Ridge", "images/FrogRidge.jpg", "This is a 16-mile roundtrip

hike, set deep in the North Cascades forests. It boasts a wide range of wildlife, including

black and grizzly bears, mountain lions, elk, deer and marmots - but no frogs."));

 Trails.Add(new Trail("Frost Creek", "images/FrostCreek.jpg", "Frost Creek is almost never

free of snow and ice, as it is at 7000ft elevation in the Olympics, on the east-facing side, so

it gets very little sun, and only for half an hour or so, once a year."));

 Trails.Add(new Trail("Blue Divide", "images/BlueDivide.jpg", "Trappers and loggers in

the early 1800s first mapped this trail. The name comes not from the blue-tinted snow-capped

mountains, nor from the slate-blue mists that surround them, but from the meanies that live

here."));

#if DEBUG

 IEnumerable<Reminder> oldReminders = ScheduledActionService.GetActions<Reminder>();

 foreach (Reminder r in oldReminders)

 {

 ScheduledActionService.Remove(r.Name);

 }

#endif

}

The main page offers a ListBox populated with trail Titles via data binding, and implements the

SelectionChanged handler to navigate to the corresponding individual trail page.

public MainPage()

{

 InitializeComponent();

 TrailList.ItemsSource = App.Trails;

}

private void TrailList_SelectionChanged(object sender, SelectionChangedEventArgs e)

{

 if (TrailList.SelectedIndex == -1)

 {

 return;

 }

 String navigationString =

 String.Format("/TrailPage.xaml?Title={0}", ((Trail)TrailList.SelectedItem).Title);

 NavigationService.Navigate(new Uri(navigationString, UriKind.Relative));

}

 ChAPTER 15 Multi-Tasking and Fast App Switching 563

The only interesting work is done in the TrailPage. In the XAML, you must data-bind UI elements to

the properties on the Trail class. Take notice of the DatePicker from the Silverlight Toolkit; this is how

you allow the user to pick a date for his reminder.

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Image Source="{Binding Photo}" Height="300" Width="410"/>

 <Grid Height="30"/>

 <TextBlock

 Text="{Binding Description}" Height="210" Width="410"

 Style="{StaticResource PhoneTextNormalStyle}" TextWrapping="Wrap"/>

 <StackPanel Orientation="Horizontal">

 <toolkit:DatePicker x:Name="ReminderDate" Width="220" Margin="12,0,0,0"/>

 <Button

 x:Name="AddButton" Content="add reminder"

 Height="70" Width="212" Click="AddButton_Click"/>

 </StackPanel>

</StackPanel>

In the code-behind, override OnNavigatedTo to extract the trail Title from the navigation Query

String. You use this to ind the corresponding Trail data from the viewmodel collection, and set it as

the DataContext for the page:

private string thisTitle;

private Trail trail;

private string thisPageUri;

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 thisTitle = NavigationContext.QueryString["Title"];

 thisPageUri = e.Uri.ToString();

 foreach (Trail t in App.Trails)

 {

 if (t.Title == thisTitle)

 {

 DataContext = trail = t;

 break;

 }

 }

}

Finally, implement the Add Reminder Button to create a new Reminder using data from the Trail

object, and the user’s selected DateTime from the DatePicker.

private void AddButton_Click(object sender, RoutedEventArgs e)

{

 Reminder reminder = new Reminder(Guid.NewGuid().ToString());

 reminder.BeginTime = (DateTime)ReminderDate.Value;

 reminder.Content = thisTitle;

 reminder.Title = "Trail Reminder";

 reminder.RecurrenceType = RecurrenceInterval.None;

 reminder.NavigationUri = new Uri(thisPageUri, UriKind.Relative);

 ScheduledActionService.Add(reminder);

}

564 PART Iv Version 7.5 enhancements

Later, when the reminder is triggered, the user can tap it to navigate directly to the corresponding

trail page, regardless of which application is running at the time. There are two caveats to this: irst, if
the phone is locked, nothing happens; second, if the application that owns the reminder is currently

the active application, nothing happens.

Observe the seamless way in which custom alarms and reminders are integrated with built-in

alarms and calendar reminders. They even survive reboots, just like the built-in versions.

Background Transfer service

The standard approach to downloading iles to (and uploading iles from) the phone has been to use
WebClient or HttpWebRequest, or custom web service proxies. You can carry on using these in ver-

sion 7.1 projects, but you now have the additional option of using the Background Transfer Service.

This is a very simple API to use: you make a BackgroundTransferRequest, specifying the source and

destination URLs, and then add that request to the BackgroundTransferService queue. You can also

subscribe to progress events on the operation. Then, the service takes over and executes your request

asynchronously, continuing on to completion, even if your application terminates—and even in the

face of reboots. There is also a built-in retry mechanism. In addition, you have the ability to stop and

restart requests or delete them from the queue.

Behind the scenes, the BackgroundTransferService uses the same infrastructure as that used by the

Xbox Live and Zune marketplace, and therefore, applies the same constraints; that is, ile downloads
are limited to 20 MB maximum for any one request over the cell network. You can transfer bigger

iles, but the request will be queued until the phone switches from cell network to WiFi. File uploads
are limited to 5 MB.

Figure 15-7 illustrates a simple example (the BackgroundTransferDemo application in the sample

code), wherein the UI has two Button controls: a ProgressBar and a MediaElement. The scenario is

that the user taps the download button to initiate a background download of an arbitrary video ile.
While this is ongoing, you report progress in the ProgressBar. Then, when the download is complete,

you enable the Play button so that the user can play the newly downloaded video. After initiating the

download, the user is free to navigate away from the application, if she so wishes; the download will

continue to run in the background.

 ChAPTER 15 Multi-Tasking and Fast App Switching 565

FIguRE 15-7 Starting a background transfer (on the left) and completing it (right).

In the code, you irst set up some ields for the BackgroundTransferRequest and the target Isolated

StorageFile, and initialize the storage ile in the page constructor. When you download a ile, it must
be stored in the application’s isolated storage, and it must be in the shared/transfers folder (or a

subfolder, thereof).

private static readonly Uri remoteFileUri =

 new Uri(

 @"http://media.ch9.ms/ch9/4b58/de9f7501-2a51-4875-8b2f-9f4d014b4b58/

IWP22PtorrBkgrndAgnt_ch9.wmv",

 UriKind.Absolute);

private static readonly Uri localFileUri =

 new Uri("/shared/transfers/movie.wmv", UriKind.Relative);

private IsolatedStorageFile isf;

private BackgroundTransferRequest btr;

public MainPage()

{

 InitializeComponent();

 isf = IsolatedStorageFile.GetUserStoreForApplication();

}

566 PART Iv Version 7.5 enhancements

When the user taps the Download Button, you create a new BackgroundTransferRequest and hook

up the progress and status events. You’ll get progress events while the transfer is ongoing, and status

events when the status changes (for example, from ongoing transfer to completed, or error). The

application goes a bit further and disables the download button to prevent the user from starting the

transfer again while it is already in progress.

private void downloadButton_Click(object sender, RoutedEventArgs e)

{

 btr = new BackgroundTransferRequest(remoteFileUri, localFileUri);

 BackgroundTransferService.Add(btr);

 btr.TransferProgressChanged += btr_TransferProgressChanged;

 btr.TransferStatusChanged += btr_TransferStatusChanged;

 downloadButton.IsEnabled = false;

}

In the TransferProgressChanged event, you should ensure that the ProgressBar is updated to match

its maximum value to the total ile size, and its current value to the number of bytes received at that
point.

private void btr_TransferProgressChanged(object sender, BackgroundTransferEventArgs e)

{

 Dispatcher.BeginInvoke(() =>

 {

 progressBar.Maximum = btr.TotalBytesToReceive;

 progressBar.Value = btr.BytesReceived;

 });

}

In the TransferStatusChanged event, check to see if the new status is Completed; if it is, open the

downloaded ile and attach it to the MediaElement. At the same time, ensure that the ProgressBar

value is set to the number of bytes received on the download. This is necessary because if the user

switches away from the application and then back again, if the download has completed by the time

she switches back, you won’t get any more transfer events (for which you would normally update the

ProgressBar). For this example, you’re going to ignore all other status events. In a more sophisticated

application, you would probably handle other cases, as well.

private void btr_TransferStatusChanged(object sender, BackgroundTransferEventArgs e)

{

 if (btr.TransferStatus == TransferStatus.Completed)

 {

 UpdateUi();

 }

}

private void UpdateUi()

{

 Dispatcher.BeginInvoke(() =>

 {

 progressBar.Value = btr.BytesReceived;

 try

 {

 using (IsolatedStorageFileStream file = isf.OpenFile(

 ChAPTER 15 Multi-Tasking and Fast App Switching 567

 btr.DownloadLocation.ToString(), FileMode.Open, FileAccess.Read))

 {

 mediaElement.SetSource(file);

 }

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.ToString());

 }

 });

}

When you attach the ile to the MediaElement, this triggers the MediaOpened event. When this

event ires, you enable the Play Button and disable the Download Button. The user can then tap the

Play Button to start the video. Observe how the MediaOpened event is hooked up in the XAML.

private void mediaElement_MediaOpened(object sender, RoutedEventArgs e)

{

 playButton.IsEnabled = true;

 downloadButton.IsEnabled = false;

}

private void playButton_Click(object sender, RoutedEventArgs e)

{

 mediaElement.Play();

}

Finally, you need to override OnNavigatedTo: check to see if you’re coming back to the application

with an existing transfer request. If so, this indicates that the user must have started the request and

then navigated forward away from the application. In this scenario, you hook up the transfer status

event handlers again, check to see if the transfer has already completed, and then update the UI if it

has. You want to also set the IsEnabled state of the Download button according to whether there is a

transfer in progress.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 btr = BackgroundTransferService.Requests.FirstOrDefault();

 if (btr != null)

 {

 downloadButton.IsEnabled = false;

 btr.TransferProgressChanged += btr_TransferProgressChanged;

 btr.TransferStatusChanged += btr_TransferStatusChanged;

 if (btr.TransferStatus == TransferStatus.Completed)

 {

 UpdateUi();

 }

 }

 else

 {

 downloadButton.IsEnabled = true;

 }

}

568 PART Iv Version 7.5 enhancements

Background transfers add to the existing techniques for asynchronous web requests by providing

for requests that can continue beyond the lifetime of the application that initiated them, and even

beyond a phone reboot.

generic Background Agents

Alarms, reminders, background transfers, and background audio are all speciic types of background
agent. There is also a class of agent known as generic background agents (GBAs). These are not lim-

ited to one speciic set of functionality; rather, you can implement them to perform an open-ended
range of functionality, per your speciic domain requirements. Windows Phone 7.1 supports two types
of GBA:

 ■ Periodic Represented by the PeriodicTask class, this type of agent runs for a short time on

a regular recurring interval. It is only allowed 25 seconds to run, roughly every 30 minutes

(the exact timing is unpredictable, because the system will attempt to align the execution of

periodic agents with other system activities; the interval will be in the range 20–40 minutes).

There is a hard limit on the number of periodic agents that can be scheduled on the phone.

This varies per device, but it can be as low as 6 and no more than 18.

 ■ Resource-intensive Represented by the ResourceIntensiveTask class, this type of agent runs

for a relatively long period of time and is only executed when a speciic set of conditions are
satisied. A ResourceIntensiveTask can run for a maximum of 10 minutes at a time but only

when all the following conditions are met (keep in mind that it is quite possible that these

conditions will never be met on a given phone, so you must allow for the possibility that your

agent never in fact has the opportunity to run):

• The phone is on external power.

• The phone has network connectivity over WiFi or through a PC.

• Battery power is >90 percent.

• The device screen must be locked.

• There is no active phone call.

Here’s how the platform schedules resource-intensive tasks: the scheduler runs them in a round-

robin manner at 10 minutes apiece until the task calls NotifyComplete. So, suppose that you have 25

minutes’ worth of work to do. At the appropriate time, the platform starts the task, and then termi-

nates it after 10 minutes. The platform can then run other scheduled tasks and will eventually return

to the task that was terminated. The platform then runs that task again. When another 10 minutes

elapses, the task is again terminated so that the platform can run other scheduled tasks. Finally, the

irst task runs again, and after 5 more minutes of work, the task completes and calls NotifyComplete.

At this point, the platform will no longer schedule this task until the original conditions are met again.

For such a long-running task, it is clearly important that it is resilient to being terminated, and that it

 ChAPTER 15 Multi-Tasking and Fast App Switching 569

performs checkpoints on the progress of work completed so that it can pick up and carry on the next

time it is invoked.

Under the covers, the application platform treats both periodic and resource-intensive tasks as the

same kind of background agent. The only distinction internally is that each task happens to follow a

different schedule and have different resource constraints. The task type implicitly deines the sched-

ule and resource set.

A GBA has a default expiry of 14 days, which also happens to be its maximum. That is, you cannot

create a GBA with an expiration date beyond 14 days. However, you can renew the agent any time

your application runs in the foreground. So, if the user keeps running your application, you can keep

renewing your background agents indeinitely. Conversely, if the user doesn’t run your application for
a while, then they’re probably also not interested in the application’s background agents—hence, the

limited expiry.

There are also memory limitations: a GBA cannot take up more than 6 MB of memory. Further-

more, there are restrictions as to the types of operation your background agent can perform. These

restrictions are summarized in Table 15-1.

TABlE 15-1 Permitted and Prohibited Operations in GBAs

Permitted operations Prohibited operations

Create and show Tiles and Toast Display arbitrary UI

Use location functionality Use of the XNA libraries

Access the network Use sensors, including microphone and camera

Read/write isolated storage Play audio (outside the BackgroundAudioPlayer)

Use sockets Schedule alarms, reminders, or background transfers

Use most framework APIs

Finally, version 7.1 also includes new user settings that inform the user as to which applications

have registered background agents. The user can turn off/on the background agents for an applica-

tion, individually.

To make use of GBAs in your application, you produce an XAP ile that contains your main applica-

tion assembly (or assemblies) and an additional assembly for your background agent. Dividing your

code in this manner allows the phone system services to launch your background agent in a separate

process, independent of your main application. This allows your background agents to run in the

background when your main application is not running. An application is allowed to have only one

background agent; this can be a PeriodicTask, a ResourceIntensiveTask, or both. The two parts of your

application are associated via the main application’s manifest, which deines the background agent(s),
including the assembly and entrypoint type for your agent.

In addition, the application and agent can optionally be connected in two other ways:

 ■ Your agent can create a ShellToast object and show it. At this point, the user can click the toast,

which will navigate to the page in your main application that you speciied when you created it.

 ■ Both the application and agent have access to the same application isolated storage; there-

fore, they can share iles.

570 PART Iv Version 7.5 enhancements

The relationships are summarized in Figure 15-8.

Define Background Agent
 - Assembly
 - Agent Type

WMAppManifest

Create PeriodicTask
- Description
- ExpirationTime

Some Page

Application

OnInvoke
 - Create ShellToast
 - Title
 - Content
 - NavigationUri

Agent Type

Phone System ServicesAdd
to Queue

Show
Toast

Toast Title ... Toast Content

Background Agent Assembly

2

3

1

8

9

4

5

67

Launch
App

Tap
Toast

Navigate
to Page

Invoke
Agent

FIguRE 15-8 The relationships between background agent components.

The Windows Phone 7.1 SDK includes Microsoft Visual Studio template support for adding GBAs

to your application. Figure 15-9 presents a simple “geo-fencing” example (the BackgroundAgentDemo

solution in the sample code). The main application offers Start and Stop Button controls to start and

stop its background agent. The middle of the screen is taken up with a ListBox that will be populated

with time-stamped location information. This data will come from the background agent. Every time

it wakes up on schedule, it will ind the current location and add the information to a collection, per-
sisted to isolated storage, and then stop. Each time the user enters the main application, it will fetch

the location data from isolated storage, and then data-bind it to the ListBox.

The list of locations is not updated in real time in the UI, because this kind of synchronization is

dificult to get right. Figure 15-9 (right) depicts the situation when the main application is not run-

ning. In this case, as there is no application in the foreground, the platform allows up to six back-

ground agents to run. In this example, the background agent pops a toast message with each new set

of location data. The user can tap this, and it will launch the main application, which in turn will fetch

the latest list of location data.

 ChAPTER 15 Multi-Tasking and Fast App Switching 571

FIguRE 15-9 A foreground application (on the left) that controls a periodic background agent, and toast from the
background agent (right).

Note If you want the UI to be updated by the background agent in real time while the

foreground application is running, then you’d need to implement some kind of polling

mechanism. For example, the foreground application could check every few seconds (or

minutes, depending on the nature of the application) to fetch updated data from the ile.
Polling is always a dificult technique to get right: poll too frequently, and you’re wasting
time and resources (which is especially critical on a mobile device); poll too infrequently,

and your UX suffers because the user is often looking at stale data.

In the example code that follows, the data is represented by a custom PositionLite class, which

exposes Timestamp and Location properties. This class is deined in an independent class library,
which is shared by both the main application and the agent. You’ll be fetching the raw data by using

a GeoCoordinateWatcher. This fetches data in the form of GeoPosition<GeoCoordinate> objects, which

contain more information than you need. You want to extract only the speciic data items that you
need (latitude, longitude, and timestamp) and use them to initialize a PositionLite for each set. From

the PositionLite objects, you’ll be using the Timestamp and Location properties for data binding. How-

ever, you will serialize (and deserialize) only the raw Latitude, Longitude, and Timestamp values.

572 PART Iv Version 7.5 enhancements

public class PositionLite

{

 public double Latitude;

 public double Longitude;

 private DateTime timestamp;

 public DateTime Timestamp

 {

 get { return timestamp; }

 set { timestamp = value; }

 }

 [XmlIgnore]

 public String Location

 {

 get

 {

 return String.Format("{0:N4},{1:N4}", Latitude, Longitude);

 }

 }

}

In the MainPage code-behind, initialize an ObservableCollection of these objects, fetching it from

isolated storage in the OnNavigatedTo override. Of course, the irst time the application is run, there
will be no previous storage. At some point after that irst run, the data will have been written out by
the background agent.

public ObservableCollection<Utilities.PositionLite> Positions;

private string storageFile = "positions.xml";

private string agentId = "GeoAgent";

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (Positions == null)

 {

 Positions = Utilities.StorageHelper.ReadFromStorage<

 ObservableCollection<Utilities.PositionLite>>(storageFile);

 }

 if (Positions == null)

 {

 Positions = new ObservableCollection<Utilities.PositionLite>();

 }

 PositionList.ItemsSource = Positions;

}

This code uses a helper library for reading and writing isolated storage. This same helper is used

by both the main application and the background agent. The helper is genericized so that it can read

and write objects of any serializable type. It is important to note that it also uses a named Mutex in

order to ensure exclusive access to the ile. This is required because both the foreground application
and the background agent could attempt to read or write the same ile at the same time.

 ChAPTER 15 Multi-Tasking and Fast App Switching 573

public class StorageHelper

{

 private static Mutex StorageMutex = new Mutex(false, "StorageMutex");

 public static void SaveToStorage<T>(T data, string storageFile)

 {

 try

 {

 StorageMutex.WaitOne();

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(storageFile, FileMode.OpenOrCreate))

 {

 XmlSerializer xs = new XmlSerializer(typeof(T));

 xs.Serialize(isoStream, data);

 }

 }

 }

 finally

 {

 StorageMutex.ReleaseMutex();

 }

 }

 public static T ReadFromStorage<T>(string storageFile)

 {

 T data = default(T);

 try

 {

 StorageMutex.WaitOne();

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (isoFile.FileExists(storageFile))

 {

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(storageFile, FileMode.Open))

 {

 XmlSerializer xs = new XmlSerializer(typeof(T));

 data = (T)xs.Deserialize(isoStream);

 }

 }

 }

 }

 finally

 {

 StorageMutex.ReleaseMutex();

 }

 return data;

 }

}

574 PART Iv Version 7.5 enhancements

The Start button creates a new PeriodicTask and adds it to the ScheduledActionService. You should

use a suitable name, a suitable description, and (optionally) a time after which you no longer want

the agent to be scheduled. It is generally considered best practice to set the ExpirationTime in those

scenarios when you know the useful life of the agent. The description is required for periodic agents:

this is the string that the user will see in the background services Settings page on the phone. The

Stop button removes the task from the service. Notice that this code wisely puts the calls to Add

and Remove in try/catch blocks: this protects you in the event that the user has disabled background

agents for this application.

Also note the call to LaunchForTest: this is a test-only method. The idea is that you can cause the

agent to be invoked faster and/or more frequently than it would be normally, just for testing pur-

poses. This method must not be used in your published version; it will fail certiication. In this exam-

ple, you cause the agent to be invoked for the irst time only 10 seconds after you set it up.

private void StartButton_Click(object sender, RoutedEventArgs e)

{

 PeriodicTask task = new PeriodicTask(agentId);

 task.Description = "Timestamped position data";

 task.ExpirationTime = DateTime.Now.AddDays(1);

 if (ScheduledActionService.Find(agentId) != null)

 {

 ScheduledActionService.Remove(agentId);

 }

 try

 {

 ScheduledActionService.Add(task);

#if DEBUG

 ScheduledActionService.LaunchForTest(agentId, TimeSpan.FromSeconds(10));

#endif

 }

 catch (InvalidOperationException ex)

 {

 if (ex.Message.Contains("BNS Error: The action is disabled"))

 {

 MessageBox.Show(

 "The user has disabled background agents for this application.");

 }

 }

}

private void StopButton_Click(object sender, RoutedEventArgs e)

{

 if (ScheduledActionService.Find(agentId) != null)

 {

 ScheduledActionService.Remove(agentId);

 }

}

The display makes use of a custom type converter, which is used during data-binding to convert

the Timestamp value (which is a DateTime) to a simple string.

 ChAPTER 15 Multi-Tasking and Fast App Switching 575

public class DateTimeConverter : IValueConverter

{

 public object Convert(

 object value, Type targetType, object parameter, CultureInfo culture)

 {

 DateTime dt = (DateTime)value;

 return dt.ToShortTimeString();

 }

 public object ConvertBack(

 object value, Type targetType, object parameter, CultureInfo culture)

 {

 throw new NotImplementedException();

 }

}

So much for the main application; now for the background agent. In Visual Studio, right-click the

solution to add a new project. Choose a Windows Phone Scheduled Task Agent project, as shown in

Figure 15-10.

FIguRE 15-10 Adding a scheduled task agent project.

This will generate a class library project with a starter class derived from ScheduledTaskAgent. The

constructor for this class hooks up an UnhandledException handler—the same behavior that you

get in the standard App class for a phone application. Apart from that, the class has just one other

method: a skeleton override of the base class OnInvoke method.

576 PART Iv Version 7.5 enhancements

In this application, you implement the OnInvoke to start a GeoCoordinateWatcher for just long

enough to gather location information. The agent uses an ObservableCollection of PositionLite

objects, mirroring the data model in the main application. The agent will gather the data and save it

to isolated storage. Clearly, both the agent and the main application are part of a single installation,

and share the same isolated storage. As before, you have a debug-only call to LaunchForTest, which

ensures that the agent is invoked again 10 seconds after the current invocation.

Notice the call to NotifyComplete: it is the developer’s responsibility to do all work in the agent

within 25 seconds and to notify the system when its work is complete. If you don’t do this, the system

will terminate the agent after 25 seconds, anyway. Furthermore, if it has to cancel your agent very

often, the system might decide that your agent is badly behaved and might choose not to schedule

it again. You must stop the GeoCoordinateWatcher as soon as you’ve obtained the information that

you need. Be aware that when used in a background agent, the GeoCoordinateWatcher uses a cached

location value instead of real-time data. This cache is primed right before the irst agent runs, and
then is updated every 10 minutes if agents are still running. Also keep in mind that when you add an

agent to the schedule service, it will be invoked subsequently, according to the schedule or idle condi-

tions, depending on the type of agent.

private GeoCoordinateWatcher coordWatcher;

public ObservableCollection<Utilities.PositionLite> Positions;

private string storageFile = "positions.xml";

protected override void OnInvoke(ScheduledTask task)

{

 if (Positions == null)

 {

 Positions = Utilities.StorageHelper.ReadFromStorage<

 ObservableCollection<Utilities.PositionLite>>(

 storageFile);

 }

 if (Positions == null)

 {

 Positions =

 new ObservableCollection<Utilities.PositionLite>();

 }

 if (coordWatcher == null)

 {

 coordWatcher = new GeoCoordinateWatcher();

 }

 coordWatcher.Start();

 GeoPosition<GeoCoordinate> pos = coordWatcher.Position;

 Utilities.PositionLite lastPosition = new Utilities.PositionLite

 {

 Latitude = pos.Location.Latitude,

 Longitude = pos.Location.Longitude,

 Timestamp = pos.Timestamp.DateTime

 };

 coordWatcher.Stop();

 Positions.Add(lastPosition);

 ChAPTER 15 Multi-Tasking and Fast App Switching 577

 Utilities.StorageHelper.SaveToStorage<

 ObservableCollection<Utilities.PositionLite>>(Positions, storageFile);

#if DEBUG

 ScheduledActionService.LaunchForTest(task.Name, TimeSpan.FromSeconds(10));

#endif

 NotifyComplete();

}

The same starter code is used for either a PeriodicTask or a ResourceIntensiveTask. If you want both

types of agent, you don’t add multiple agent projects to your application; instead, you use the single

class for both types. You can use the ScheduledTask parameter passed into the OnInvoke method and

check its type to determine which type of agent is being invoked. Your code then takes the appropri-

ate path.

If you want to notify the user when your background agent runs, and perhaps allow the user to

link back easily to your main application, you can provide a toast at the end of the OnInvoke.

protected override void OnInvoke(ScheduledTask task)

{

 ... previously-listed code omitted for brevity.

 if (lastPosition != null)

 {

 ShellToast toast = new ShellToast();

 toast.Title = "New Location";

 toast.Content = lastPosition.Location;

 toast.NavigationUri = new Uri("/MainPage.xaml", UriKind.Relative);

 toast.Show();

 }

 NotifyComplete();

}

When you do add the agent project to your solution, the WMAppManifest is updated with the

agent attributes. The key attributes are the Source assembly and the Type of the agent. Of course, if

you change the name and/or namespace of your agent class, or the assembly name, then everything

will break until you manually update this ile.

<ExtendedTask Name="BackgroundTask">

 <BackgroundServiceAgent Specifier="ScheduledTaskAgent" Name="GeoAgent" Source="GeoAgent"

Type="GeoAgent.ScheduledAgent" />

</ExtendedTask>

The agent assembly must be added as a reference in the main application project. This ensures

that the two assemblies are packaged together in one installation XAP. It would be nice if Visual Stu-

dio were to add this reference at the point where you add the agent project to the solution, but this is

not done. You should not actually use the agent assembly in your main application.

578 PART Iv Version 7.5 enhancements

Note The Visual Studio debugger provides additional support for background agents.

When you debug a solution which contains a main application and a background agent,

Visual Studio allows you to step seamlessly between the two projects. You can also show

the “Debug Location” toolbar which indicates whether you’re in the main application or the

background agent.

Background Audio

As with GBAs, you can set up an agent to play audio in the background. You would typically start the

audio playing from your foreground application, and then have the audio continue playing, even after

the user navigates away from your main application. Background audio agents share some similari-

ties with GBAs: you create a background audio agent in much the same way, and the architecture is

very similar. In both cases, you build a main phone application, with a UI, and then add a background

agent project to the solution so that it is referenced in the WMAppManifest. In the case of a GBA,

your agent class is derived from ScheduledTaskAgent, but in the case of a background audio agent,

it's derived from AudioPlayerAgent.

All media on Windows Phone is actually played through the Zune media queue (ZMQ). However,

your application does not interact directly with the ZMQ; instead, it uses the BackgroundAudio

Player class, which acts as a kind of proxy to the ZMQ. Typically, your main application would set up

and maintain the playlist of tracks (including, optionally, both iles in isolated storage as well as iles
at remote URLs) and save this playlist to isolated storage. Then you would provide suitable UI with

which the user can play, pause, skip, fast-forward, rewind, and so on. You would implement the han-

dlers for these UI elements to invoke the corresponding methods (Play, Pause, and so forth) on the

BackgroundAudioPlayer.

However, this does not play the audio directly; rather, the BackgroundAudioPlayer negotiates with

your background audio agent. Your agent fetches the playlist and conirms the action to be taken.
The BackgroundAudioPlayer works with the ZMQ to actually play the audio tracks. The Background

AudioPlayer also feeds state change events back to both the main application (if it is running) and to

the agent.

 ChAPTER 15 Multi-Tasking and Fast App Switching 579

Your application does not directly launch the agent. This is done implicitly by the BackgroundAudio

Player when your application makes calls to Play, Pause, and so on. The BackgroundAudioPlayer

launches the correct agent, based on its association with your application deined in the application
manifest.

If you start audio playing in your main application, and the user then navigates away, the audio

will continue, under the control of your agent. While your application is not in the foreground (or

even if it is), the user can use the Universal Volume Control (UVC) to control both the volume and the

tracks. On a physical device, the UVC is invoked when the user taps the hardware volume controls. On

the emulator, you can drop down the UVC by pressing F10. Figure 15-11 illustrates the relationships

between these components. Note that a background audio agent is capped at 15 MB of memory, and

no more than 10 percent of CPU time.

Application

Fetch Playlist

Background
Agent

Isolated Storage

WMAppManifest

Play/Pause

State Events

State EventsPlay/PauseUI

Audio
Files

Audio
Files

BAP

Zune
Media
Queue

UVC

FIguRE 15-11 The relationships between background audio agent components.

580 PART Iv Version 7.5 enhancements

The sequence of operations between these various components involves a fairly straightforward

handshake. Figure 15-12 illustrates the sequence for playing tracks.

User Main App Agent BAP

OnUserAction

BAP.Play

OnPlayStateChanged (TrackReady)

OnPlayStateChanged (TrackEnded)

Set BAP Track to Play

Update UI

PlayStateChanged

Tap Play Button BAP.Play

FIguRE 15-12 Playing audio tracks with the BackgroundAudioPlayer.

When you add an Audio Playback Agent project to your solution, the wizard-generated code in

the class derived from AudioPlayerAgent includes almost everything you might need for playing,

pausing, skipping, rewinding, and so on. The two main methods that are generated for you are the

OnUserAction override and the OnPlayStateChanged override. OnUserAction is called as a result of

user action, either from your main application, or from the UVC. You would typically implement this

to invoke the BackgroundAudioPlayer method that corresponds to the required action. For example, if

you get a UserAction.Play, you would typically invoke BackgroundAudioPlayer.Play. Alternatively, you

can set the track to be played, which will cause an OnPlayStateChanged event to be raised. You can

then handle this event by calling BackgroundAudioPlayer.Play.

 ChAPTER 15 Multi-Tasking and Fast App Switching 581

If your main application is running, you’ll also receive state change events; this is your opportu-

nity to update your UI, typically to show the current track information. Figure 15-13 shows the pause

sequence.

User Main App Agent BAP

OnUserAction

OnPlayStateChanged (Paused)

Set BAP Track to Play

Update UI

PlayStateChanged

Tap Play Button BAP.Play

FIguRE 15-13 Pausing audio with the BackgroundAudioPlayer.

The pause sequence follows the same model as the play sequence: the user indicates that he wants

to pause; you invoke the BackgroundAudioPlayer.Pause, which invokes your agent’s OnUserAction, and

so on. It is important to note that your foreground application should not directly update its UI based

on user action, but should instead wait for the associated event from the BackgroundAudioPlayer to

ensure everything proceeded as you planned.

582 PART Iv Version 7.5 enhancements

Figure 15-14 shows a simple application (the BapApp solution in the sample code) that has an

associated background audio agent. The screenshot on the left shows the main application running

in the foreground; the other shows the UVC displayed when the user has navigated away from the

application, and the background audio agent is running. The section that follows describes how to

create this application.

FIguRE 15-14 A foreground application (on the left) running background audio, and the background audio agent
continuing to run in the background (right).

Here’s a summary of the main tasks:

 ■ Create a regular Windows Phone application.

• Add one or more audio iles as loose iles to be deployed as part of the main applica-

tion XAP. Also add code to copy these iles from the application install folder to isolated
storage.

• Add UI elements such as Buttons, to allow the user to play audio. In the Click handlers, call

into the BackgroundAudioPlayer methods to play, pause, and so on.

• Respond to BackgroundAudioPlayer state change events and update the UI accordingly.

 ■ Add a Windows Phone Audio Playback Agent project and reference this project in the main

application.

• Deine a list of AudioTrack items as the playlist for this agent. The items in this list must be

either audio iles in the application’s isolated storage or remote audio iles speciied by
absolute URI, or a mixture of both. In this example, the playlist is not maintained by the

main application.

 ChAPTER 15 Multi-Tasking and Fast App Switching 583

Background Audio: the Main Application
The main application has one TextBlock on the page for displaying the current track, and three

ApplicationBar buttons, for skip-back, play, and skip-forward.

<Grid x:Name="LayoutRoot">

 <StackPanel x:Name="ContentPanel">

 <TextBlock x:Name="currentTrack"/>

 </StackPanel>

</Grid>

<phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar IsVisible="True">

 <shell:ApplicationBarIconButton

 x:Name="appBarPrev" IconUri="prev.png" Text="prev" Click="appBarPrev_Click"/>

 <shell:ApplicationBarIconButton

 x:Name="appBarPlay" IconUri="play.png" Text="play" Click="appBarPlay_Click"/>

 <shell:ApplicationBarIconButton

 x:Name="appBarNext" IconUri="next.png" Text="next" Click="appBarNext_Click"/>

 </shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

You’ll have just one local audio ile and one remote audio ile. In a more sophisticated application,
you would allow the user to add and remove items from the playlist via the UI, perhaps download-

ing iles to isolated storage from the Internet. For the purposes of this example, just copy any suitable
audio ile from the local PC into the project, and then set its Copy To Output Directory property to
Copy If Newer. This will be deployed as a loose ile in the application’s install folder, and you then
need to copy it to the application’s isolated storage. For this simple sample, you can do this is at the

end of the App class constructor, but you would generally avoid doing this at this critical startup time

in a real application.

using (IsolatedStorageFile storage = IsolatedStorageFile.GetUserStoreForApplication())

{

 String fileName = " MySampleAudioFile.mp3";

 if (!storage.FileExists(fileName))

 {

 StreamResourceInfo sourceFile =

 Application.GetResourceStream(new Uri(fileName, UriKind.Relative));

 using (IsolatedStorageFileStream targetFile = storage.CreateFile(fileName))

 {

 byte[] bytes = new byte[sourceFile.Stream.Length];

 sourceFile.Stream.Read(bytes, 0, bytes.Length);

 targetFile.Write(bytes, 0, bytes.Length);

 }

 }

}

Next, you can implement the App Bar button Click handlers in the MainPage code-behind. These

are trivial to implement; you just need to call into the BackgroundAudioPlayer methods to Play, Pause,

and so on. Notice that the BackgroundAudioPlayer is a singleton object.

584 PART Iv Version 7.5 enhancements

private void appBarPlay_Click(object sender, EventArgs e)

{

 if (BackgroundAudioPlayer.Instance.PlayerState == PlayState.Playing)

 {

 BackgroundAudioPlayer.Instance.Pause();

 }

 else

 {

 BackgroundAudioPlayer.Instance.Play();

 }

}

private void appBarNext_Click(object sender, EventArgs e)

{

 BackgroundAudioPlayer.Instance.SkipNext();

}

private void appBarPrev_Click(object sender, EventArgs e)

{

 BackgroundAudioPlayer.Instance.SkipPrevious();

}

In the MainPage constructor, hook up the PlayStateChanged event for the BackgroundAudio

Player—you’ll get these events when the state changes from Playing to Paused or Stopped, and so

forth. This is your opportunity to update the UI; you’ll toggle the icon and text for the dual-purpose

Play/Pause button and fetch the current track information to display in your one and only TextBlock.

private void Bap_PlayStateChanged(object sender, EventArgs e)

{

 switch (BackgroundAudioPlayer.Instance.PlayerState)

 {

 case PlayState.Playing:

 appBarPlay.IconUri = new Uri("pause.png", UriKind.Relative);

 appBarPlay.Text = "pause";

 break;

 case PlayState.Paused:

 case PlayState.Stopped:

 appBarPlay.IconUri = new Uri("play.png", UriKind.Relative);

 appBarPlay.Text = "play";

 break;

 }

 if (null != BackgroundAudioPlayer.Instance.Track)

 {

 currentTrack.Text = BackgroundAudioPlayer.Instance.Track.Title;

 }

 else

 {

 currentTrack.Text = String.Empty;

 }

}

 ChAPTER 15 Multi-Tasking and Fast App Switching 585

You do need to initialize the AppBar button ields. Recall from Chapter 5, “Touch UI,” that these
need to be initialized explicitly, and this kind of one-time setup should be done in the page con-

structor (not in the OnNavigatedTo override, which is called more frequently). You can add code to

OnNavigatedTo to accommodate the user returning back to the application after having navigated

away. In this scenario, you should check to see if background audio is still playing, and then update

the UI accordingly.

public MainPage()

{

 InitializeComponent();

 BackgroundAudioPlayer.Instance.PlayStateChanged += new EventHandler(Bap_PlayStateChanged);

 appBarPrev = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 appBarPlay = ApplicationBar.Buttons[1] as ApplicationBarIconButton;

 appBarNext = ApplicationBar.Buttons[2] as ApplicationBarIconButton;

}

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 switch (BackgroundAudioPlayer.Instance.PlayerState)

 {

 case PlayState.Playing:

 appBarPlay.IconUri = new Uri("pause.png", UriKind.Relative);

 appBarPlay.Text = "pause";

 currentTrack.Text = BackgroundAudioPlayer.Instance.Track.Title;

 break;

 case PlayState.Paused:

 case PlayState.Stopped:

 appBarPlay.IconUri = new Uri("play.png", UriKind.Relative);

 appBarPlay.Text = "play";

 currentTrack.Text = "";

 break;

 }

}

Background Audio: the Background Agent
That’s it for the main application. Now, for the agent. Add an audio playback agent project to the

solution, and then reference this project in the main application. The wizard generates a great deal

of placeholder code, including overrides of OnPlayStateChanged and OnUserAction. The main thing

you need to do is to deine the playlist. This simple example is not retrieving the playlist itself from
isolated storage; instead, it hard-codes the list, which consists of just two AudioTrack items (one local

ile in isolated storage, and one remote URL).

private static List<AudioTrack> playList = new List<AudioTrack>

{

 new AudioTrack(new Uri("MySampleAudioFile.mp3", UriKind.Relative),

 "My Track Title",

 "Author's Name",

 "Album Title",

 null),

586 PART Iv Version 7.5 enhancements

 new AudioTrack(new Uri(

 "http://media.ch9.ms/ch9/6e9a/9d148183-4683-41c6-8b70-9f1001346e9a/

 AboladeGbadegesinInsideMango_ch9.mp3"),

 "Inside Windows Phone Mango",

 "Abolade Gbadegesin",

 "Channel 9",

 null)

};

You also need to make minor changes to the GetNextTrack and GetPreviousTrack methods,

because the placeholder code simply returns null in each case.

static int currentTrack = 0;

private AudioTrack GetNextTrack()

{

 //AudioTrack track = null;

 //return track;

 if (++currentTrack >= playList.Count)

 {

 currentTrack = 0;

 }

 return playList[currentTrack];

}

private AudioTrack GetPreviousTrack()

{

 //AudioTrack track = null;

 //return track;

 if (--currentTrack < 0)

 {

 currentTrack = playList.Count - 1;

 }

 return playList[currentTrack];

}

Also, a minor modiication to the OnUserAction method: the wizard-generated code for the User

Action.Play case calls the Play method; however, you’re relying on the fact that every time you change

the Track property, you’ll get a PlayStateChanged event. That’s where you actually invoke the Play

method. So replace, the two lines of code in this case to simply set the current track.

protected override void OnUserAction(

 BackgroundAudioPlayer player, AudioTrack track, UserAction action, object param)

{

 switch (action)

 {

 case UserAction.Play:

 //if (player.PlayerState != PlayState.Playing)

 //{

 // player.Play();

 //}

 player.Track = playList[currentTrack];

 break;

 case UserAction.Stop:

 player.Stop();

 break;

 ChAPTER 15 Multi-Tasking and Fast App Switching 587

 case UserAction.Pause:

 player.Pause();

 break;

 case UserAction.FastForward:

 player.FastForward();

 break;

 case UserAction.Rewind:

 player.Rewind();

 break;

 case UserAction.Seek:

 player.Position = (TimeSpan)param;

 break;

 case UserAction.SkipNext:

 player.Track = GetNextTrack();

 break;

 case UserAction.SkipPrevious:

 player.Track = GetPreviousTrack();

 break;

 }

 NotifyComplete();

}

Finally, you need to make one correction to the OnPlayStateChanged method. The wizard generated

code in the PlayState.TrackEnded case gets the previous track. However, the user would probably nor-

mally expect that when a track ends, the player moves on to play the next track, not the previous one.

case PlayState.TrackEnded:

 //player.Track = GetPreviousTrack();

 player.Track = GetNextTrack();

 break;

summary

From Chapter 15 through the end of the book, the focus shifts from the common core features to

the new features and platform enhancements introduced in Windows Phone 7.1. In this chapter,

you started by looking at how the platform has been enhanced to support multi-tasking in a more

seamless way than before. Fast application switching reduces the likelihood that an application will

be tombstoned, and therefore allows it to be resumed much more quickly than before, giving the

user a more traditional perception of a multi-tasking platform. The multi-tasking features provide a

range of options for an application to divide work into multiple processes, with part of the functional-

ity running in the background. Using generic background agents, you can write code that will wake

up periodically and perform some operation on a schedule or opportunistically. You can use back-

ground transfers to initiate network uploads or downloads, and have them continue even when the

user navigates away from your application. Finally, with background audio, you can take advantage

of much the same model but with audio playback in place of network transfers. These are just some

of the ways that Windows Phone 7.1 has introduced improvements and new features. The remaining

chapters look at all the other new features.

 589

C h A P T E R 1 6

enhanced Phone Services

In addition to the infrastructure improvements to support fast application switching and the range

of background task types, Windows Phone 7.1 also introduces many new and enhanced phone

services. Sensor programmability is now richer and more lexible, the platform adds support for
(optional) front-facing cameras, and camera preview frames are now exposed to the developer for the

irst time. The combination of sophisticated sensor APIs and access to the camera data brings consid-

erable opportunities for building compelling augmented reality applications. Apart from these major

improvements, version 7.1 also brings many additional Launchers and Choosers, and a replacement

for DeviceExtendedProperties.

sensor APIs

In Windows Phone 7, the only sensor exposed to marketplace developers was the accelerometer,

which is discussed in Chapter 9, “Phone Services.” Windows Phone 7.1 additionally exposes the com-

pass (magnetometer) and gyroscope. On top of that, version 7.1 introduced the Motion class, which is

a logical fusion of multiple sensors.

The APIs for the three physical sensors and one logical sensor share a high degree of consistency,

and they all derive from the SensorBase<T> base class, where T is a sensor reading type. All public

sensor methods are actually methods deined in SensorBase<T>. This is because most of the function-

ality required by developers is actually common to all sensors: the ability to start and stop the sensor,

and the CurrentValueChanged event, which is raised whenever the sensor data is changed.

Windows Phone 7.1 supports both the existing version 7 chassis (hardware) speciication as well as
a modiied chassis speciication designed to target the enhanced version 7.1 user experience (UX). In
version 7, there were no optional sensors, but from version 7.1 onward, certain sensors are optional.

As a developer, therefore, you should design your application to allow for the possibility that some of

the sensors you expect to use might not in fact be present on a given device. This is summarized in

Table 16-1.

590 PART Iv Version 7.5 enhancements

TABlE 16-1 Sensor Availability in Versions 7 and 7.1

sensor version 7 version 7.1

Accelerometer Yes. Yes.

Compass Sensor is required, but there is no API exposure. Optional (but if you have a gyroscope, you must
have a compass).

Gyroscope No. Optional.

Note that some sensors, such as the magnetometer, are susceptible to environmental conditions

(in particular, electromagnetic interference from nearby objects or the phone itself), which intro-

duce signiicant errors in the reported readings. As a result, the sensor needs recalibration from time
to time, in order to report meaningful values. Depending on the sensor, this calibration might be

handled automatically by the hardware/driver or it might involve user interaction. The compass is the

only sensor in version 7.1 for which user calibration is required.

Accelerometer
The only sensor exposed programmatically in version 7 was the accelerometer, represented by the

Accelerometer class, as discussed in Chapter 9. Code written for version 7 using this class will continue

to work, of course, on both version 7 and version 7.1 devices. In addition, you can even continue to

use the same code in version 7.1 projects, and it will still work. However, note that IntelliSense will

intervene and you’ll get compiler warnings if you do this. Speciically, the ReadingChanged event was

superseded in version 7.1 by the CurrentValueChanged event. Behind the scenes, the Accelerometer

class itself was changed signiicantly. In particular, it is now derived from the new SensorBase<T> class,

whereas previously it was not derived from any base class. However, in the interest of maintaining

backward compatibility, very little of the change is surfaced to the developer.

So, if you revisit the simple accelerometer application from Chapter 9—the TestAccelerometer

solution in the sample code—to bring it up to date, you would make this event type change. You can

see an updated version in the MangoAccelerometer solution in the sample code. At the same time,

the version 7.1 Accelerometer class also has the option to specify the preferred time interval between

reading updates; this is another property inherited from SensorBase<T>.

accelerometer = new Accelerometer();

//accelerometer.ReadingChanged +=

// new EventHandler<AccelerometerReadingEventArgs>(

// accelerometer_ReadingChanged);

accelerometer.CurrentValueChanged +=

 new EventHandler<SensorReadingEventArgs<AccelerometerReading>>(

 accelerometer_CurrentValueChanged);

accelerometer.TimeBetweenUpdates = TimeSpan.FromMilliseconds(33);

 ChAPTER 16 Enhanced Phone Services 591

When you deine event handlers, Microsoft Visual Studio generates very explicit code; in fact, more
than is strictly necessary. The previous code snippet lists the full auto-completed event handler code

so that you can compare it with the version 7 code that is commented out. However, you can safely

replace this auto-completed code

accelerometer.CurrentValueChanged +=

 new EventHandler<SensorReadingEventArgs<AccelerometerReading>>(

 accelerometer_CurrentValueChanged);

with this:

accelerometer.CurrentValueChanged += accelerometer_CurrentValueChanged;

You should keep in mind that the speciic sensor on any given device might not support the
requested interval. The API layer for the sensor (that is, the Accelerometer, Compass, Gyroscope, and

Motion classes) will round the input value to the closest value that is actually permitted on the device.

If you want to see the actual value used, you can examine the TimeBetweenUpdates property after

you set it. Typical values for shipping devices at the time of writing are given in Table 16-2. In the

examples in this chapter, each application is handling the incoming sensor data to display some user

interface (UI). For this reason, the TimeBetweenUpdates property is set consistently to 33 ms, to cor-

respond with the optimum screen frame rate.

TABlE 16-2 TimeBetweenUpdates Interval Settings for All Sensors

sensor
TimeBetweenUpdates interval (minimum
and multiples, thereof)

Accelerometer 20 ms

Compass 25 ms

Gyroscope 5 ms

Motion 17 ms

You can also update the event handler accordingly. Speciically, because the CurrentValueChanged

event is deined on the SensorBase<T> base class, it is more generic than the older ReadingChanged

event. This means that the event arguments are also more generic, which means that you need to do

a little more work in order to extract the speciic accelerometer readings from them. Where previ-
ously you could get to the X, Y, and Z values directly off the event argument object, in version 7.1, you

need to drill down a couple of levels to get to the properties that you want.

//private void accelerometer_ReadingChanged(

// object sender, AccelerometerReadingEventArgs e)

//{

// Dispatcher.BeginInvoke(() =>

// {

// statusText.Text = String.Format("X={0}, Y={1}, Z={2}",

// e.X.ToString("0.00"), e.Y.ToString("0.00"), e.Z.ToString("0.00"));

// });

//}

592 PART Iv Version 7.5 enhancements

private void accelerometer_CurrentValueChanged(

 object sender, SensorReadingEventArgs<AccelerometerReading> e)

{

 Dispatcher.BeginInvoke(() =>

 {

 statusText.Text = String.Format("X={0}, Y={1}, Z={2}",

 e.SensorReading.Acceleration.X.ToString("0.00"),

 e.SensorReading.Acceleration.Y.ToString("0.00"),

 e.SensorReading.Acceleration.Z.ToString("0.00"));

 });

}

Note As with any of the sensor classes derived from SensorBase<T>, you need to include a

reference to Microsoft.Xna.Framework.dll, because they all use XNA-deined types such as
the three and four-dimensional matrices, Vector3 and Quaternion.

The version 7.1 SDK includes an extension to the emulator for testing the accelerometer, as shown

in Figure 16-1. You access this from the additional tools button on the main emulator, which brings up

a window that includes an Accelerometer tab. To test your application’s accelerometer code, drag the

pink dot around the window. As you drag the dot, the X, Y, and Z coordinates are updated based on

the rotation calculations, and those same values are passed into your application via the accelerom-

eter readings.

FIguRE 16-1 The accelerometer application and simulator.

 ChAPTER 16 Enhanced Phone Services 593

Compass
The compass—that is, the magnetometer—in the phone contains a magnetic sensor component that

interacts with the earth’s magnetic ield that can be aligned to point to magnetic north. The device
driver also incorporates the necessary code to compute the declination—the variation between mag-

netic north and true north. The magnetic declination is different at different points on the earth, and

changes with time.

The Compass class provided in the application platform encapsulates the functionality of the

magnetometer sensor and exposes properties and methods for determining both true north and

magnetic north as well as the accuracy of the readings. The Compass class also exposes raw magne-

tometer readings, which can be used to detect magnetic forces around the device.

Figure 16-2 shows a simple compass application that uses the Compass class to gather magne-

tometer sensor readings (the SimpleCompass solution in the sample code). The application provides a

button in the App Bar to start/stop the compass sensor, and a simple graphical display based on the

true north readings. Note that the emulator does not support a compass; therefore, you must test

compass applications on a physical device.

FIguRE 16-2 A simple compass application.

594 PART Iv Version 7.5 enhancements

First, you add references to Microsoft.Devices.Sensors.dll and Microsoft.Xna.Framework.dll. In the

XAML, deine an inner Grid that contains an Ellipse for the compass border, and a Line for the com-

pass needle. Observe that the application uses the current accent color for both the compass border

and the needle. Below that is a TextBlock to display errors and other status messages.

<Grid x:Name="ContentPanel">

 <Grid.RowDefinitions>

 <RowDefinition Height="*"/>

 <RowDefinition Height="80"/>

 </Grid.RowDefinitions>

 <Grid Grid.Row="0">

 <Ellipse

 x:Name="compassBorder" Width="455" Height="455" StrokeThickness="3"

 Stroke="{StaticResource PhoneAccentBrush}"/>

 <Line

 x:Name="trueNorth" X1="228" Y1="227" X2="228" Y2="0" StrokeThickness="8"

 Stroke="{StaticResource PhoneAccentBrush}"/>

 </Grid>

 <TextBlock x:Name="status" Grid.Row="1" TextWrapping="Wrap" />

</Grid>

In the MainPage code-behind, you declare ields for the Compass object and for the center point

of the compass needle. In the constructor, you irst test to see if this device actually supports a
compass. If not, hide the App Bar—and because everything else you do in the application follows on

from the App Bar button interaction, this means that if there is no compass, then the application does

nothing.

private Compass compass;

private double centerX;

private double centerY;

public MainPage()

{

 InitializeComponent();

 if (!Compass.IsSupported)

 {

 status.Text = "This device does not support a compass.";

 ApplicationBar.IsVisible = false;

 }

 else

 {

 appBarStopGo = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 Loaded += new EventHandler(MainPage_Loaded);

 }

}

private void MainPage_Loaded(object sender, EventArgs e)

{

 centerX = compassBorder.ActualWidth / 2.0;

 centerY = (compassBorder.ActualHeight - status.ActualHeight) / 2.0;

}

 ChAPTER 16 Enhanced Phone Services 595

The page constructor is too early to calculate actual UI element sizes, so you defer to the Loaded

event. In this handler, you can get the measurements you need to position the needle at the center of

the grid (allowing for the status box at the bottom).

Assuming this device does support a compass, then when the user taps the App Bar button, you

either start or stop the compass. There is no IsStopped or IsStarted property on the Compass type,

but you can determine if the compass readings are ongoing by inspecting the IsDataValid property,

which is inherited from the SensorBase<T> base class. If the compass is non-null and the IsDataValid

property returns true, this must mean that the readings are ongoing, and therefore, that the user has

tapped the App Bar to stop the compass. In this case, you stop acquiring sensor readings, and update

the App Bar accordingly.

On the other hand, if IsDataValid is false, then it means that you are not currently receiving sensor

readings. This could be because the user has never started the compass in this session or because she

previously started it and then stopped it. You therefore instantiate the Compass object (if you haven’t

already done so) and specify the required time interval between data updates. Once this conigura-

tion is done, you can start the low of compass readings.

private void appBarStopGo_Click(object sender, EventArgs e)

{

 if (compass != null && compass.IsDataValid)

 {

 compass.Stop();

 appBarStopGo.IconUri = new Uri("play.png", UriKind.Relative);

 appBarStopGo.Text = "go";

 }

 else

 {

 if (compass == null)

 {

 compass = new Compass();

 compass.TimeBetweenUpdates = TimeSpan.FromMilliseconds(33);

 compass.CurrentValueChanged += compass_CurrentValueChanged;

 }

 try

 {

 compass.Start();

 appBarStopGo.IconUri = new Uri("stop.png", UriKind.Relative);

 appBarStopGo.Text = "stop";

 }

 catch (InvalidOperationException)

 {

 status.Text = "Error starting compass.";

 }

 }

}

596 PART Iv Version 7.5 enhancements

To examine the readings, you hook up the CurrentValueChanged event. In this handler, you’re

interested only in the TrueHeading (that is, the true north reading, not the magnetic north reading).

You can extract this from the event arguments, and convert it to radians so that you can use it to cal-

culate the new endpoint for the needle line. These events obviously come in on a background thread,

so you need to marshal the UI changes to the UI thread with a Dispatcher.

private void compass_CurrentValueChanged(

 object sender, SensorReadingEventArgs<CompassReading> e)

{

 double trueHeading = e.SensorReading.TrueHeading;

 float headingRadians = MathHelper.ToRadians((float)trueHeading);

 Dispatcher.BeginInvoke(() =>

 {

 trueNorth.X2 = centerX - centerY * Math.Sin(headingRadians);

 trueNorth.Y2 = centerY - centerY * Math.Cos(headingRadians);

 });

}

The preceding code is enough to get and render compass readings; however, there’s one piece

missing: calibration. After each reboot, the compass will need recalibration. Accuracy also luctuates
over time, especially if the phone is moving considerable distances (perhaps the user is lying cross-
country, for example). So, if the user has not calibrated the compass recently, then the readings will

be inaccurate. In this case, this fact is surfaced to your code by the Calibrate event on the Compass

object. So, before you can have conidence in the readings, you need to ensure that you respond to
the Calibrate events. To do this, hook up the event when the Compass object itself is created.

if (compass == null)

{

 compass = new Compass();

 compass.TimeBetweenUpdates = TimeSpan.FromMilliseconds(20);

 compass.CurrentValueChanged += compass_CurrentValueChanged;

 // For calibration.

 compass.Calibrate += compass_Calibrate;

}

Also, when you get a reading, you cache the HeadingAccuracy property value, as follows:

private double headingAccuracy;

private void compass_CurrentValueChanged(

 object sender, SensorReadingEventArgs<CompassReading> e)

{

 double trueHeading = e.SensorReading.TrueHeading;

 float headingRadians = MathHelper.ToRadians((float)trueHeading);

 // For calibration.

 headingAccuracy = Math.Abs(e.SensorReading.HeadingAccuracy);

...previous code unchanged, and omitted for brevity.

}

 ChAPTER 16 Enhanced Phone Services 597

To calibrate the sensor, you need to instruct the user to rotate the phone several times over a

period of a few seconds so that you can gather a range of readings for the sensor driver to compute

the declination. In the Calibrate event handler itself, you set up a DispatcherTimer to update every

frame. So long as the current HeadingAccuracy is still not within our acceptable range (≤10 degrees),
you continue to update the status message to encourage the user to keep moving the phone. As

you’re updating the UI, you could either use a standard Timer and then invoke the page Dispatcher to

marshal to the UI thread, or simply use the combined DispatcherTimer class, which effectively per-

forms both aspects of the task for you.

private DispatcherTimer timer;

private void compass_Calibrate(object sender, CalibrationEventArgs e)

{

 Dispatcher.BeginInvoke(() =>

 {

 timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromMilliseconds(30);

 timer.Tick += new EventHandler(timer_Tick);

 timer.Start();

 });

 compass.Calibrate -= compass_Calibrate;

}

private void timer_Tick(object sender, EventArgs e)

{

 if (headingAccuracy <= 10)

 {

 status.Text = String.Format(

 "Calibration is complete: heading accuracy = {0:00} deg.",

 headingAccuracy);

 timer.Stop();

 }

 else

 {

 status.Text = String.Format(

 "Rotate the phone to calibrate (heading accuracy is only {0:00} deg).",

 headingAccuracy);

 }

}

As you can see, it’s fairly easy to use the Compass type to work with the compass sensor. As is

often the case, all the signiicant work in a compass-based application is likely to be in creating a
compelling UI rather than in the use of the sensor itself.

598 PART Iv Version 7.5 enhancements

Gyroscope
A gyroscope sensor is used to determine the angular momentum of the device in each of the three

primary axes. Compare this with the accelerometer, which measures acceleration in each of the three

axes. So, with the accelerometer, the reading increases with the size of the rotation. With the gyro-

scope, on the other hand, the reading increases with the speed of the rotation. The gyroscope sensor

in Windows Phone appliances is a Micro-Electromechanical Systems (MEMS) device, which uses vibra-

tion or resonance to generate the readings. The axes are illustrated in Figure 16-3.

X Y

Z

FIguRE 16-3 Rotation about the x, y, and z axes.

Sensors in Windows Phones use a 3D world coordinate system that is based on the system used in

the XNA framework. Note that the sensor’s reference point deliberately does not auto-rotate as the

screen auto-rotates. This is to allow for applications that wish to use sensors in combination with the

orientation of the device as a whole in reference to the Earth, not in reference to the current viewport

orientation. The rotations above are known as pitch, roll, and yaw (summarized in Table 16-3), along

with their line representations in the sample application that follows.

TABlE 16-3 Descriptions of Pitch, Roll, and Yaw

Movement Description sample Application line

Pitch Rotation around the device’s X axis Red

Roll Rotation around the device’s Y axis Green

Yaw Rotation around the device’s Z axis Blue

A developer can use the values obtained from the gyroscope sensor to determine which way a

device is facing. The rotational velocity is measured in units of radians per second. Because a gyro-

scope measures rotational velocity and not angle, it is susceptible to drift. Figure 16-4 shows a simple

gyroscope application (the SimpleGyro solution in the sample code), with three colored bars, each bar

representing the rotational velocity along one of the three axes. The X and Y bars are aligned with the

X and Y axes on the phone; the Z bar is angled in a way that represents the Z axis on a 2D surface.

 ChAPTER 16 Enhanced Phone Services 599

FIguRE 16-4 A gyroscope application with three axes of rotation.

As mentioned previously, all the sensor classes are now based on SensorBase<T>, which gives them

a high degree of consistency. So, the code for creating a gyroscope-based application is very similar

to the code for a compass or accelerometer application. For this display, you can set up the XAML in a

very similar way to your previous compass application; this example has a Grid containing three Lines,

and a TextBlock below that for status messages.

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="80"/>

 </Grid.RowDefinitions>

 <Grid Height="440" Grid.Row="0">

 <Line x:Name="currentX" X1="228" Y1="240" X2="328" Y2="240" Stroke="Red"

StrokeThickness="8"/>

 <Line x:Name="currentY" X1="228" Y1="240" X2="228" Y2="160" Stroke="Green"

StrokeThickness="8"/>

 <Line x:Name="currentZ" X1="228" Y1="240" X2="188" Y2="300" Stroke="Blue"

StrokeThickness="8"/>

 </Grid>

 <TextBlock x:Name="status" Grid.Row="1" Margin="{StaticResource PhoneHorizontalMargin}"/>

</Grid>

600 PART Iv Version 7.5 enhancements

In the MainPage constructor, test to verify that this device does in fact support a gyroscope sensor,

and then set up the App Bar accordingly.

private Gyroscope gyroscope;

private double centerX;

public MainPage()

{

 InitializeComponent();

 if (!Gyroscope.IsSupported)

 {

 status.Text = "This device does not support a gyroscope.";

 ApplicationBar.IsVisible = false;

 }

 else

 {

 appBarStopGo = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 }

}

The code model in the App Bar button Click handler is also very similar. As before, you check to

see if the sensor is currently running and providing valid readings. If it is, stop it, and then reset the

App Bar button accordingly. Otherwise, instantiate the Gyroscope object (if you haven’t already done

so) and conigure the time between updates. The same restrictions apply as for compass reading
intervals, although the exact numbers will vary per device. As before, the critical operation is to hook

up the CurrentValueChanged event.

private void appBarStopGo_Click(object sender, EventArgs e)

{

 if (gyroscope != null && gyroscope.IsDataValid)

 {

 gyroscope.Stop();

 appBarStopGo.IconUri = new Uri("play.png", UriKind.Relative);

 appBarStopGo.Text = "go";

 }

 else

 {

 if (gyroscope == null)

 {

 gyroscope = new Gyroscope();

 gyroscope.TimeBetweenUpdates = TimeSpan.FromMilliseconds(33);

 gyroscope.CurrentValueChanged += gyroscope_CurrentValueChanged;

 }

 try

 {

 gyroscope.Start();

 appBarStopGo.IconUri = new Uri("stop.png", UriKind.Relative);

 appBarStopGo.Text = "stop";

 }

 ChAPTER 16 Enhanced Phone Services 601

 catch (InvalidOperationException)

 {

 status.Text = "Error starting gyroscope.";

 }

 }

}

In the CurrentValueChanged event handler, you extract the current rotation rate from the event

arguments. This value is in radians per second, so it is a simple calculation to render a line of a suit-

able size for each of the axes.

private void gyroscope_CurrentValueChanged(

 object sender, SensorReadingEventArgs<GyroscopeReading> e)

{

 Vector3 currentRotationRate = e.SensorReading.RotationRate;

 Dispatcher.BeginInvoke(() =>

 {

 currentX.X2 = currentX.X1 + currentRotationRate.X * 50;

 currentY.Y2 = currentY.Y1 - currentRotationRate.Y * 50;

 currentZ.X2 = currentZ.X1 - currentRotationRate.Z * 50;

 currentZ.Y2 = currentZ.Y1 + currentRotationRate.Z * 50;

 });

}

As with the compass, the emulator does not support a gyroscope, so you must test gyroscope

applications on a physical device. Also, developers interested in knowing the attitude of the device

(pitch, roll, yaw) can use the Motion class, instead.

Note If you’re wondering why the Compass reports values in degrees, whereas the

Gyroscope reports values in radians, this is purely for historical reasons. Most people are

used to working with compasses in degrees. On the other hand, the Gyroscope and Motion

types are dependent on classes in the XNA framework that internally use radians. For the

same reason, the Motion class uses loats like the rest of the XNA framework rather than
doubles, as with the rest of Silverlight.

Motion APIs
The managed sensor APIs all expose raw sensor data for those scenarios in which the developer needs

a iner level of granularity. However, the raw data can be dificult to work with, and is often not what
most applications want to use. In some cases, complex geometrical calculations are required in order

to convert the low-level readings into the true orientation of the device.

Hardware sensors are susceptible to a variety of errors, including bias (for example, as a result

of temperature luctuations), drift (loss of accuracy between calibrations), and accuracy limitations
(mostly arising from the constant electromagnetic interference from outside and within the phone).

602 PART Iv Version 7.5 enhancements

Each sensor has unique strengths and weaknesses with respect to these factors. Gyroscopes, for

example, are sensitive to electromagnetic interference and are prone to drift errors because they

measure angular velocity as opposed to angle. Accelerometers, on the other hand, do not suffer from

drift errors, but they produce poor readings while the device is in motion because the sensor is actu-

ally measuring linear acceleration along with gravitational pull.

By taking advantage of multiple sensors simultaneously, applications can compensate for these

kinds of errors and produce more accurate readings than can be obtained through a single sensor

alone. Although you could build your own processing logic to produce combined readings based

on multiple raw sensor readings, the version 7.1 application platform makes this unnecessary. To

use combined—or “fusion”—readings, you can use the Motion class, which internally takes readings

across multiple sensors. The Motion class takes the raw sensor readings and surfaces a higher-level

abstraction, speciically the device’s attitude (pitch, roll, and yaw), rotational acceleration, and linear
acceleration. Augmented-reality applications beneit most from consuming this processed form of
sensor data because they typically need to gather readings simultaneously across multiple sensors.

The screenshot in Figure 16-5 shows an application that uses the Motion type to represent device

rotation rate in a similar way to the earlier gyroscope example as well as attitude (pitch, roll, yaw). This

is the SimpleMotion solution in the sample code.

FIguRE 16-5 Using the Motion API.

As with the gyroscope application, you start off with three lines to represent the X, Y, and Z axes.

Below that, you have three more lines; these represent the device’s attitude (pitch, roll, and yaw,

respectively). For each of the attitude lines, you deine a RotateTransform so that you can rotate these

lines in response to the corresponding sensor readings.

 ChAPTER 16 Enhanced Phone Services 603

<Grid Height="330">

 <Line x:Name="gyroscopeX" X1="228" Y1="170" X2="328" Y2="170"

 Stroke="Red" StrokeThickness="8"/>

 <Line x:Name="gyroscopeY" X1="228" Y1="170" X2="228" Y2="80"

 Stroke="Green" StrokeThickness="8"/>

 <Line x:Name="gyroscopeZ" X1="228" Y1="170" X2="188" Y2="230"

 Stroke="Blue" StrokeThickness="8"/>

</Grid>

<Grid Height="120" >

 <Line x:Name="currentPitch" X1="80" Y1="60" X2="150" Y2="60"

 Stroke="Red" StrokeThickness="8">

 <Line.RenderTransform>

 <RotateTransform CenterX="115" CenterY="60"/>

 </Line.RenderTransform>

 </Line>

 <Line x:Name="currentRoll" X1="200" Y1="60" X2="270" Y2="60"

 Stroke="Green" StrokeThickness="8">

 <Line.RenderTransform>

 <RotateTransform CenterX="235" CenterY="60"/>

 </Line.RenderTransform>

 </Line>

 <Line x:Name="currentYaw" X1="320" Y1="60" X2="390" Y2="60"

 Stroke="Blue" StrokeThickness="8">

 <Line.RenderTransform>

 <RotateTransform CenterX="355" CenterY="60"/>

 </Line.RenderTransform>

 </Line>

</Grid>

In the MainPage code-behind, declare a Motion ield, and then implement the page constructor
to test to see if the Motion API is supported on this device, coniguring the App Bar as in previous
examples. Be aware that the Motion class has two different sensor conigurations:

 ■ Normal Motion, which uses the compass and the accelerometer sensor.

 ■ Enhanced Motion, which uses the compass, the accelerometer, and the gyroscope.

These modes are conigured internally and are not exposed in the API. However, if your application
requires the accuracy of Enhanced motion, you should check to verify that the device on which the

application is running supports the gyroscope sensor. Here’s an additional test for this:

private Motion motion;

public MainPage()

{

 InitializeComponent();

 if (!Motion.IsSupported)

 {

 status.Text = "This device does not support the Motion API.";

 ApplicationBar.IsVisible = false;

 }

604 PART Iv Version 7.5 enhancements

 else

 {

 if (Gyroscope.IsSupported)

 {

 status.Text = "Enhanced Motion supported";

 }

 else

 {

 status.Text = "Normal Motion supported";

 }

 appBarStopGo = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 }

}

In the App Bar button Click handler, you start or stop the Motion object, which under the covers

will start/stop the two or three sensors that the Motion class is using. As with all SensorBase<T> types,

you can set the TimeBetweenUpdates property and hook up the CurrentValueChanged event.

private void appBarStopGo_Click(object sender, EventArgs e)

{

 if (motion != null && motion.IsDataValid)

 {

 motion.Stop();

 appBarStopGo.IconUri = new Uri("play.png", UriKind.Relative);

 appBarStopGo.Text = "go";

 }

 else

 {

 if (motion == null)

 {

 motion = new Motion();

 motion.TimeBetweenUpdates = TimeSpan.FromMilliseconds(33);

 motion.CurrentValueChanged += motion_CurrentValueChanged;

 }

 try

 {

 motion.Start();

 appBarStopGo.IconUri = new Uri("stop.png", UriKind.Relative);

 appBarStopGo.Text = "stop";

 }

 catch (InvalidOperationException)

 {

 status.Text = "Error starting the Motion sensors.";

 }

 }

}

When you get a CurrentValueChanged event, you irst extract the DeviceRotationRate, and then

use the X, Y, and Z property values to determine the endpoints of the axis rotation lines. You then

extract the Attitude property and set the angle of the RenderTransform for each of the three attitude

lines to correspond to the Pitch, Roll, and Yaw property values.

 ChAPTER 16 Enhanced Phone Services 605

private void motion_CurrentValueChanged(

 object sender, SensorReadingEventArgs<MotionReading> e)

{

 Vector3 rotationRate = e.SensorReading.DeviceRotationRate;

 AttitudeReading attitude = e.SensorReading.Attitude;

 Dispatcher.BeginInvoke(() =>

 {

 gyroscopeX.X2 = gyroscopeX.X1 + rotationRate.X * 50;

 gyroscopeY.Y2 = gyroscopeY.Y1 - rotationRate.Y * 50;

 gyroscopeZ.X2 = gyroscopeZ.X1 - rotationRate.Z * 50;

 gyroscopeZ.Y2 = gyroscopeZ.Y1 + rotationRate.Z * 50;

 ((RotateTransform)currentPitch.RenderTransform).Angle =

 MathHelper.ToDegrees(attitude.Pitch);

 ((RotateTransform)currentRoll.RenderTransform).Angle =

 MathHelper.ToDegrees(attitude.Roll);

 ((RotateTransform)currentYaw.RenderTransform).Angle =

 MathHelper.ToDegrees(attitude.Yaw);

 });

}

The Motion type not only exposes gyroscopic rotation rates and device attitude, it also exposes

acceleration and gravity readings. So, you could add another couple of grids comprised of three lines,

with the irst set to represent the accelerometer readings, and the second set to represent the gravity
readings. You can see this at work in the Motion4 solution in the sample code.

<Grid x:Name="accelerometerGrid" Height="80" Grid.Row="2">

 <Line x:Name="accelerometerX" X1="225" Y1="20" X2="230" Y2="20"

 Stroke="Red" StrokeThickness="8"/>

 <Line x:Name="accelerometerY" X1="225" Y1="40" X2="230" Y2="40"

 Stroke="Green" StrokeThickness="8"/>

 <Line x:Name="accelerometerZ" X1="225" Y1="60" X2="230" Y2="60"

 Stroke="Blue" StrokeThickness="8"/>

</Grid>

<Grid Height="80" Grid.Row="3">

 <Line x:Name="gravityX" X1="225" Y1="20" X2="230" Y2="20" Stroke="Red" StrokeThickness="8"/>

 <Line x:Name="gravityY" X1="225" Y1="40" X2="230" Y2="40"

 Stroke="Green" StrokeThickness="8"/>

 <Line x:Name="gravityZ" X1="225" Y1="60" X2="230" Y2="60"

 Stroke="Blue" StrokeThickness="8"/>

</Grid>

You could add a center-point calculation, as in the earlier compass example. Then, in the Current

ValueChanged handler, you could update the UI by redrawing these two sets of lines according to the

DeviceAcceleration and Gravity properties of the SensorReading.

accelerometerX.X2 = centerX + acceleration.X * 200;

accelerometerY.X2 = centerX + acceleration.Y * 200;

accelerometerZ.X2 = centerX + acceleration.Z * 200;

gravityX.X2 = centerX + gravity.X * 200;

gravityY.X2 = centerX + gravity.Y * 200;

gravityZ.X2 = centerX + gravity.Z * 200;

606 PART Iv Version 7.5 enhancements

Working with each of the SensorBase<T> types is very similar, and the Motion logical fusion sensor

follows exactly the same model. The Motion type really comes into its own when used in an aug-

mented reality scenario, as discussed in the upcoming self-named section.

Camera Pipeline

In Chapter 9, you looked at the core support for taking photos programmatically by using the Camera

CaptureTask Chooser. Windows Phone 7.1 introduces support for working directly with the cam-

era input. This gives you signiicantly greater lexibility for camera-based functionality within your
application.

Figure 16-6 shows a simple application (the SimpleCamera solution in the sample code) that uses

the PhotoCamera class to take photos and store them to the local media library on the phone. This

application doesn’t provide any more functionality than is already available to the user via the stan-

dard hardware camera button, but it does act as a good starting point for software-based camera

operations.

FIguRE 16-6 A simple camera application.

In the application, there is an added reference to the Microsoft.Xna.Framework.dll; this is because

you’re using the MediaLibrary type deined in that assembly. Notice also that all new projects created
to target Windows Phone 7.1 include the camera capability in the WMAppManifest.xml, by default.

However, if you’re porting a project that originally targeted version 7, you’ll need to add this line

manually, as follows:

<Capability Name="ID_CAP_ISV_CAMERA"/>

In the MainPage XAML, you irst set the SupportedOrientations and the Orientation attributes both

to Landscape. This is because the PhotoCamera defaults to landscape viewing mode (and you don’t

want to do the work in this simple example to support portrait mode). Strictly speaking, this is true for

rear-facing cameras, but not necessarily for front-facing cameras. If you wanted to support a front-

facing camera, you’d want to look at the Camera.Orientation property to know how much (if at all)

you need to rotate the preview window. You then deine a Canvas and a StackPanel for the usual title

 ChAPTER 16 Enhanced Phone Services 607

information. Be aware that the order in which these are deined is important; you want the title panel
to overlay the canvas. On a realistic camera application, you would probably dispense with the titles

altogether. The Canvas speciies a VideoBrush for the Background property. At runtime, you’ll take the

camera data stream as the source for this VideoBrush, thereby implementing a simple viewinder.

<Grid x:Name="LayoutRoot" Background="Transparent">

 <Canvas>

 <Canvas.Background>

 <VideoBrush x:Name="viewfinderBrush"/>

 </Canvas.Background>

 </Canvas>

 <StackPanel x:Name="TitlePanel" Margin="12,17,0,28">

 <TextBlock x:Name="ApplicationTitle" Text="CONTOSO"

 Style="{StaticResource PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="camera" Margin="9,-7,0,0"

 Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

</Grid>

<phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar IsVisible="True">

 <shell:ApplicationBarIconButton x:Name="appBarCamera" IconUri="camera.png" Text="go"

 Click="appBarCamera_Click"/>

 </shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

You also deine a single-button App Bar. The idea is that the user can tap this button to operate
the camera shutter (to take a photo). In the code-behind, you deine ields for the PhotoCamera and

the MediaLibrary. At some suitable early point (the page constructor or the OnNavigatedTo override),

you need to check whether this device actually supports a camera. If so, instantiate the PhotoCamera

object, specifying the primary (backward-facing) camera device. Then, you can set the viewinder
VideoBrush source to this camera. You also hook up the Initialized and CaptureImageAvailable events.

You only enable the Take A Photo UI (the App Bar button) after you get the Initialized event; this

prevents the narrow window of opportunity in which the user might try to take a photo before the

camera is ready. You’ll get the CaptureImageAvailable event when the user actually takes a photo.

private PhotoCamera camera;

private MediaLibrary library = new MediaLibrary();

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (PhotoCamera.IsCameraTypeSupported(CameraType.Primary))

 {

 appBarCamera = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 camera = new PhotoCamera(CameraType.Primary);

 camera.Initialized += camera_Initialized;

 camera.CaptureImageAvailable += camera_CaptureImageAvailable;

 viewfinderBrush.SetSource(camera);

 }

 else

 {

608 PART Iv Version 7.5 enhancements

 ApplicationBar.IsVisible = false;

 }

}

private void camera_Initialized(object sender, CameraOperationCompletedEventArgs e)

{

 Dispatcher.BeginInvoke(() => {appBarCamera.IsEnabled = true; });

}

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 if (camera != null)

 {

 camera.CaptureImageAvailable -= camera_CaptureImageAvailable;

 camera.Dispose();

 camera = null;

 }

}

The camera is an exclusive-use device; that is, only one application can take control of the camera

at a time, and it is imperative to release the camera as soon as possible. For this reason, you want

to override the OnNavigatedFrom method to unhook the event handler, dispose the PhotoCamera

object, and set the object reference to null. This allows garbage collection of the object, and relin-

quishes the underlying device resource. This also assists in terminating the application more quickly,

and inally it serves to minimize power consumption, because the camera driver can shut down the
device as soon as the reference is disposed.

Note Performing the camera clean-up work in the OnNavigatedFrom covers the pos-

sibility of the user navigating (either forward or backward) away from the application.

For maximum robustness, you could also perform the same work in an override of the

OnRemovedFromJournal method. This would be invoked in other cases than application

navigation, such as programmatically clearing the backstack. For more details on backstack

management, see Chapter 19, “Framework Enhancements.”

The CaptureImageAvailable event is raised when the capture sequence is complete and an image

is available; in other words, when a photo has been taken. You implement this to save the photo to

the local media library. You do this inside a using statement to ensure that the image stream is closed

when you’re done.

private void camera_CaptureImageAvailable(object sender, ContentReadyEventArgs e)

{

 String fileName = DateTime.Now.ToLongTimeString() +".jpg";

 using (e.ImageStream)

 {

 library.SavePictureToCameraRoll(fileName, e.ImageStream);

 }

}

 ChAPTER 16 Enhanced Phone Services 609

That’s all there is to it—a fully functioning camera application in about half a dozen lines of code.

Of course, the camera supports a wider range of features, including lash mode, auto-focus, orienta-

tion, inal and preview resolutions, and so on. All of these features are exposed through the Photo

Camera class. For example, it’s easy enough to add a second App Bar button to allow the user to cycle

through the available lash mode options. You can see this at work in the SimpleCamera+Flash solu-

tion in the sample code.

private void appBarFlash_Click(object sender, EventArgs e)

{

 switch (camera.FlashMode)

 {

 case FlashMode.Off:

 if (camera.IsFlashModeSupported(FlashMode.On))

 {

 camera.FlashMode = FlashMode.On;

 appBarFlash.Text = "on";

 }

 break;

 case FlashMode.On:

 if (camera.IsFlashModeSupported(FlashMode.RedEyeReduction))

 {

 camera.FlashMode = FlashMode.RedEyeReduction;

 appBarFlash.Text = "redeye";

 }

 else if (camera.IsFlashModeSupported(FlashMode.Auto))

 {

 camera.FlashMode = FlashMode.Auto;

 appBarFlash.Text = "auto";

 }

 else

 {

 camera.FlashMode = FlashMode.Off;

 appBarFlash.Text = "off";

 }

 break;

 case FlashMode.RedEyeReduction:

 if (camera.IsFlashModeSupported(FlashMode.Auto))

 {

 camera.FlashMode = FlashMode.Auto;

 appBarFlash.Text = "auto";

 }

 else

 {

 camera.FlashMode = FlashMode.Off;

 appBarFlash.Text = "off";

 }

 break;

 case FlashMode.Auto:

 if (camera.IsFlashModeSupported(FlashMode.Off))

 {

 camera.FlashMode = FlashMode.Off;

 appBarFlash.Text = "off";

 }

 break;

 }

}

610 PART Iv Version 7.5 enhancements

Apart from features formalized in the PhotoCamera API, the most critical innovation in version 7.1

is the ability for the developer to get hold of the raw camera data stream. This gives you considerable

opportunity to manipulate the view and the photo image. In the next section, you’ll look at how you

can take this a step further, by combining the Motion API with the PhotoCamera API to build aug-

mented reality applications.

Augmented Reality

An augmented reality (AR) application is one with which you enhance the user’s view of the real world

with some additional information. Typically, you would use the camera to allow the user to view the

world, and then overlay onto the view some other data. For example, you could overlay data about

nearby cafés and restaurants, or overlay a map onto the view. If you had face-recognition software,

you could overlay contact details whenever the user views a person known to the user, and so on.

Think of irst-person shooter arcade games, in which target information and ordinance resources are
usually overlaid onto the scene ahead.

Figure 16-7 shows an AR application (the DirectionalViewinder solution in the sample code) in

which directional information (compass readings) is overlaid on top of the camera viewinder. As the
user pivots around, you track which direction he’s facing.

FIguRE 16-7 An AR application that combines compass sensor readings with the camera.

To build the UI for this application, deine a VideoBrush-based camera viewinder as you did with
the earlier camera applications. Layered on top of that, there are four TextBlocks, one each for the

major points of the compass (reading clockwise, North, East, South, and West).

 ChAPTER 16 Enhanced Phone Services 611

<Canvas>

 <Canvas.Background>

 <VideoBrush x:Name="viewFinder"/>

 </Canvas.Background>

</Canvas>

<Grid Width="800" Height="480" >

 <TextBlock Text="North">

 <TextBlock.Projection>

 <PlaneProjection

 x:Name="northProjection" CenterOfRotationZ="400" LocalOffsetZ="-400"/>

 </TextBlock.Projection>

 </TextBlock>

 <TextBlock Text="East">

 <TextBlock.Projection>

 <PlaneProjection

 x:Name="eastProjection" CenterOfRotationZ="400" LocalOffsetZ="-400"/>

 </TextBlock.Projection>

 </TextBlock>

 <TextBlock Text="South">

 <TextBlock.Projection>

 <PlaneProjection

 x:Name="southProjection" CenterOfRotationZ="400" LocalOffsetZ="-400"/>

 </TextBlock.Projection>

 </TextBlock>

 <TextBlock Text="West">

 <TextBlock.Projection>

 <PlaneProjection

 x:Name="westProjection" CenterOfRotationZ="400" LocalOffsetZ="-400"/>

 </TextBlock.Projection>

 </TextBlock>

</Grid>

At runtime, you’ll be rotating each TextBlock on its Y axis so that each one is positioned in space

around the viewer. By default, the axes of rotation run directly through the center of an object, which

would cause the object to rotate around its center, but that’s not what you want. Here, you’re moving

the center of rotation to the outer edge of the object on the Z axis so that it rotates around that edge.

You also set the LocalOffsetZ to a large negative number, to reposition the text further away from the

viewpoint on the Z axis. In this way, when you rotate the text on the Y axis, it doesn’t rotate in place;

rather, it rotates at a distance away from the center point.

612 PART Iv Version 7.5 enhancements

As part of the page resources, you deine an implicit style (new in Microsoft Silverlight 4.0,
included with Windows Phone SDK 7.1) for the TextBlocks in the application. You can use this to

provide a default value for selected properties for all TextBlocks (unless manually overridden, subse-

quently). Speciically, set the FontSize to huge, the Foreground color to Mango, and the Opacity to 50

percent, as demonstrated in the following:

<phone:PhoneApplicationPage.Resources>

 <Style TargetType="TextBlock">

 <Setter Property="FontSize" Value="{StaticResource PhoneFontSizeHuge}"/>

 <Setter Property="Foreground" Value="#FFF09609"/>

 <Setter Property="Opacity" Value="0.5"/>

 </Style>

</phone:PhoneApplicationPage.Resources>

In the code-behind, declare a couple of ields for the Motion sensor and the PhotoCamera object,

and then initialize these in the OnNavigatedTo override. As before, hook up a handler for the Current

ValueChanged event. You should also perform due diligence clean-up operations in the OnNavigated

From override.

private Motion motion;

private PhotoCamera camera;

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (PhotoCamera.IsCameraTypeSupported(CameraType.Primary))

 {

 camera = new PhotoCamera(CameraType.Primary);

 camera = new PhotoCamera();

 viewFinder.SetSource(camera);

 }

 if (Motion.IsSupported)

 {

 motion = new Motion();

 motion.TimeBetweenUpdates = TimeSpan.FromMilliseconds(33);

 motion.CurrentValueChanged += motion_CurrentValueChanged;

 motion.Start();

 }

}

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 if (camera != null)

 {

 camera.Dispose();

 }

 if (motion != null)

 {

 motion.CurrentValueChanged -= motion_CurrentValueChanged;

 motion.Stop();

 }

}

 ChAPTER 16 Enhanced Phone Services 613

All the interesting work is done in the handler for the CurrentValueChanged event. First, you get

the matrix representation of the attitude reading data from the event arguments. You want to know

the X,Y coordinates of the position in space that you’re currently looking at, along the Z axis. You can

get the values in the Z column of the matrix. The device coordinate system on the phone has the Z

axis pointing out of the phone back toward the user, but what you want is the opposite direction; that

is, looking through the viewinder, your perspective relative to the device is negative on the Z axis, so
you get the negative of these two values.

Next, use Atan2 to establish the angle between the X axis and the coordinates, and then convert

from radians to degrees. You’re going to use the inal value to rotate your TextBlocks on the Y axis.

Silverlight assumes a clockwise rotation angle, but Motion measures rotation counter-clockwise. To

ix this, set the value to negative.

This will give you the Y coordinate at the center of the position to which you want to set the North

TextBlock. Finally, offset the East, South, and West TextBlocks by 90 degrees cumulatively, and then

update the UI accordingly, via the PlaneProjection. (Many thanks to Mark Paley for explaining the

math to me in simple terms.)

private void motion_CurrentValueChanged(

 object sender, SensorReadingEventArgs<MotionReading> e)

{

 Matrix rotation = e.SensorReading.Attitude.RotationMatrix;

 double heading = Math.Atan2(-rotation.M13, -rotation.M23);

 heading = -(MathHelper.ToDegrees((float)heading)) % 360;

 Dispatcher.BeginInvoke(() =>

 {

 northProjection.RotationY = heading;

 eastProjection.RotationY = heading + 90;

 southProjection.RotationY = heading + 180;

 westProjection.RotationY = heading + 270;

 });

}

Building an AR experience involves two fairly easy techniques, and two potentially very complex

issues. The easy techniques are presenting a camera viewinder to the user, and overlaying data onto
that view. The potentially complex issues are identifying which items of data to surface and deter-

mining where in the view to position each item. A sophisticated AR application might also add and

remove data items dynamically as the user moves through the world. For example, adding details

about nearby cafés as the user walks or drives down the street.

614 PART Iv Version 7.5 enhancements

the Geo Augmented reality toolkit
Some of the more complex issues that arise with AR applications can be alleviated by using a dedi-

cated AR toolkit. One such toolkit, the Geo Augmented Reality Toolkit (GART) has been released

under the Microsoft Limited Permissive License (MS-LPL) on codeplex at http://gart.codeplex.com. The

screenshot in Figure 16-8 shows an application built with the GART. This is the TestGart solution in the

sample code.

FIguRE 16-8 A GART-based application.

To build a GART-based application, you irst need to add a reference to GART.dll. Next, add a
namespace declaration in your page XAML for the GART assembly, and then add an ARDisplay control

to your page. This control contains the core AR engine in the toolkit. You can add other GART controls

as children to your ARDisplay. This example application adds OverheadMap, HeadingIndicator, and

VideoPreview controls. In the screenshot, the map takes up the whole screen, the HeadingIndicator (a

primitive compass display) is overlaid on top of the map, and the VideoPreview is the top layer, sized

to it into the lower-right corner (offset from the edge by 12 pixels).

xmlns:gart="clr-namespace:GART.Controls;assembly=GART"

<Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <gart:ARDisplay x:Name="gartDisplay">

 <gart:OverheadMap

 ZoomLevel=".8" CredentialsProvider="{StaticResource BingCredentials}"/>

 <gart:HeadingIndicator/>

 <gart:VideoPreview

 Width="250" Height="200" Margin="12"

 ChAPTER 16 Enhanced Phone Services 615

 HorizontalAlignment="Right" VerticalAlignment="Bottom"/>

 </gart:ARDisplay>

</Grid>

In this example, the map ZoomLevel on the OverheadMap is set to something a little wider than

street level (0.8); accept all the defaults for the HeadingIndicator, and then set the VideoPreview to a

smaller rectangle in the lower-right corner of the page. The OverheadMap control uses Bing maps

under the covers; therefore, need to add your Bing developer credentials to the application in order

to use the map service. (This is described in Chapter 11, “Web and Cloud.”) One way to go about

doing this is to add an ApplicationCredentialsProvider to your App.xaml. To do that, you need to add

a reference to the Microsoft.Phone.Controls.Maps assembly in your project, and then add an XML

namespace for this in your App.xaml. Using this approach, you can set the named CredentialsProvider

to the corresponding property in the OverheadMap declaration.

xmlns:maps="clr-namespace:Microsoft.Phone.Controls.Maps;assembly=Microsoft.Phone.Controls.Maps"

<Application.Resources>

 <maps:ApplicationIdCredentialsProvider x:Key="BingCredentials"

 ApplicationId="<< YOUR BING MAPS CREDENTIALS >>" />

</Application.Resources>

Then, all you have to do is to start and stop the GART services, typically in the OnNavigatedTo and

OnNavigatedFrom overrides, respectively.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 gartDisplay.StartServices();

}

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 gartDisplay.StopServices();

}

The GART includes other views that you can layer onto the page, and you can also create your own

views by writing custom controls that implement the IARView interface. By implementing IARView,

you can indicate where the user is located, or the location for which he’s searching. If you also want

to create a view that shows data for items in the immediate surroundings of the user (buildings,

shops, restaurants, people, and so on), then you need to implement the IARItemsView interface.

The download on codeplex includes sample applications to get you started. Although as of this

writing the GART is a very early release and has some rough edges, it’s a great way to build simple

geocoordinate-based AR applications, quickly.

More Info There’s another good AR toolkit on codeplex that you can use in both desk-

top Silverlight and Windows Phone applications. It’s called the SLARToolkit, and you

can download it from http://slartoolkit.codeplex.com/. In addition to supporting the

phone’s PhotoCamera model, this toolkit has support for Silverlight’s Webcam API and

CaptureSource model.

616 PART Iv Version 7.5 enhancements

new Photo Extensibility

In Chapter 9, you looked at how you could add your application to the Extras menu in the stan-

dard photo/picture library on the phone. The concept being that the user selects a picture from the

library, and then selects your application from the menu to perform some operation on that picture.

This involved adding an extras.xml ile to your project and overriding OnNavigatedTo to see if the

NavigationContext query string includes the key “token”; this is how you know your application has

been launched via the Extras menu, as opposed to the normal Start menu.

Windows Phone SDK 7.1 introduces an alternative mechanism to extend the picture functional-

ity on the phone. This feature supersedes the previous Extras mechanism. It should be used instead

for version 7.1 projects. In version 7.1, the Extras menu itself has been replaced with an Apps menu.

This Apps menu leads to a list of installed applications that extend the picture library. In fact, there

are now three jumping off points in the phone for picture extensions, which are described in Table

16-4. In each case, to implement the extension, you must provide an Extensions section in your

WMAppManifest.xml as a child of the App element, following this format:

<Extensions>

 <Extension ExtensionName="XXX" ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5632}"

 TaskID="_default" />

</Extensions>

Note that “XXX” is a placeholder for the speciic type of picture extension, listed in the table. All
other entries are identical across all three types of extension.

TABlE 16-4 Three Methods for Adding Picture Extension Applications

launch Point in the uI Description Application Behavior Manifest Extensionname

The apps menu in the
viewer for an individual
picture in the library

This is the version 7.1
replacement for the old
Extras menu, and closely
follows the version 7 UX.

Your application is
launched, and then a pa-
rameter named token is
passed in, corresponding
to the picture the user is
viewing.

Photos_Extra_Viewer

The new apps pivot on the
pictures hub.

Note that this will not be
visible unless the user has
at least one picture exten-
sion application installed.

Your application is
launched in the same way
as from the Start page; no
additional parameters are
passed in.

Photos_Extra_Hub

The share link in the
individual picture viewer.

Intended for your applica-
tion to share the selected
picture via a custom web
service.

Your application is
launched, and a parameter
named FileId is passed in,
corresponding to the
picture the user is viewing.

Photos_Extra_Share

You can also specify multiple extension points. For example, you could have your application

launched from both the picture viewer and the picture hub, or even from all three launch points.

The following sample application (the MyPictureExtension solution in the sample code), which is

shown in Figure 16-9, closely follows the behavior of the photo extras sample in Chapter 9. The exten-

sion is set up to be listed in the picture viewer menu. When the user navigates to the application, you

simply fetch the selected picture and display it in the application UI.

 ChAPTER 16 Enhanced Phone Services 617

FIguRE 16-9 A pictures extension application.

To create this application, you irst need to add the appropriate extension to the WMAppManifest.
xml, as shown here:

<Extensions>

 <Extension ExtensionName="Photos_Extra_Viewer"

 ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5632}" TaskID="_default" />

</Extensions>

Next, in the MainPage.xaml, declare a TextBlock for a message, and an Image control for the

selected picture.

<StackPanel x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">

 <TextBlock Text="this is the picture you selected"

 Margin="{StaticResource PhoneHorizontalMargin}"

 FontSize="{StaticResource PhoneFontSizeLarge}" />

 <Image Height="350" HorizontalAlignment="Left"

 Name="selectedPicture" VerticalAlignment="Top" Width="450" />

</StackPanel>

Override OnNavigatedTo to examine the NavigationContext for the “token” query string and use

that value to fetch the corresponding picture from the media library. As always, this requires add-

ing a reference to Microsoft.Xna.Framework, it won’t work on the emulator, and it won’t work while

the device is tethered and connected to Zune. So, you need to deploy the application to an attached

device, and then detach it before testing the application. Alternatively, use the WPConnect tool, as

described in Chapter 8, “Diagnostics and Debugging.”

618 PART Iv Version 7.5 enhancements

private bool launchedFromStart;

private PhotoChooserTask chooser;

public MainPage()

{

 InitializeComponent();

 launchedFromStart = true;

 chooser = new PhotoChooserTask();

 chooser.Completed +=

 new System.EventHandler<PhotoResult>(chooser_Completed);

}

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (NavigationContext.QueryString.ContainsKey("token"))

 {

 launchedFromStart = false;

 MediaLibrary library = new MediaLibrary();

 Picture picture = library.GetPictureFromToken(

 NavigationContext.QueryString["token"]);

 DoSomethingWithSelectedImage(picture.GetImage());

 }

 else

 {

 if (launchedFromStart)

 {

 launchedFromStart = false;

 chooser.Show();

 }

 }

}

private void DoSomethingWithSelectedImage(Stream imageStream)

{

 BitmapImage bitmap = new BitmapImage();

 bitmap.SetSource(imageStream);

 selectedPicture.Source = bitmap;

}

private void chooser_Completed(object sender, PhotoResult e)

{

 DoSomethingWithSelectedImage(e.ChosenPhoto);

}

As with the previous example, you also add code to allow for the possibility that the user has

launched the application directly from the Start menu. To test the application, go to the pictures hub,

navigate to a picture in the viewer, and then bring up the viewer menu. From the Apps menu, select

your application. Also test the alternative code path, whereby the user launches the application from

Start. The behavior so far should be identical to the version in Chapter 9.

Now it’s time to add support for launching from the pictures hub. All you need to do is to add a

second extension entry in the WMAppManifest.xml.

<Extensions>

 <Extension ExtensionName="Photos_Extra_Viewer"

 ChAPTER 16 Enhanced Phone Services 619

 ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5632}" TaskID="_default" />

 <Extension ExtensionName="Photos_Extra_Hub"

 ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5632}" TaskID="_default" />

</Extensions>

With this line, the application should now also be available from the apps pivot in the pictures hub.

launcher and Chooser Enhancements

Windows Phone 7.1 adds a range of enhancements to the original set of Launchers and Choosers.

These include:

 ■ Choosing contact information (phone, email, or address) now also returns the contact name.

 ■ The EmailComposeTask has additional properties, Bcc and CodePage, for the BCC recipients

and message character set, respectively.

 ■ The MediaPlayerLauncher has an additional Orientation property, which you can set to specify

the orientation of the player when it is launched.

 ■ The WebBrowserTask now has an additional Uri property (also named Uri). This should be used

instead of the deprecated URL property, which was a simple string.

 ■ The PhotoResult object that is returned by the PhotoChooserTask now returns the real ile
name of the selected photo, not just a GUID.

In addition, version 7.1 introduces several completely new Launchers and Choosers, as described in

Table 16-5.

TABlE 16-5 New Version 7.1 Launchers and Choosers.

Type Task Description

Launchers BingMapsDirectionsTask Launches the Bing Maps application, specifying a starting and/or ending
location, for which driving or walking directions are displayed.

BingMapsTask Launches the Bing Maps application centered at the speciied or current
location.

ConnectionSettingsTask Launches a settings dialog with which the user can change the device’s
connection settings.

ShareLinkTask Launches a dialog with which the user can share a link on the social
networks of their choice. If the user does not have any social networks
setup, the launcher silently fails.

ShareStatusTask Launches a dialog with which the user can share a status message on the
social networks of their choice. If the user does not have any social networks
setup, the launcher silently fails.

Choosers AddressChooserTask Launches the Contacts application with which the user can ind an address.

GameInviteTask Shows the game invite screen with which the user can invite players to a
multiplayer game session.

SaveContactTask Launches the contacts application with which the user can save a contact.

SaveRingtoneTask Launches the ringtones application with which the user can save a ringtone
from your application to the system ringtones list.

620 PART Iv Version 7.5 enhancements

Figure 16-10 demonstrates the new BingMapsDirectionsTask. You can see this at work in the

NewBingMaps solution in the sample code.

FIguRE 16-10 Using the BingMapsDirectionsTask Launcher.

Using this in your application is about as simple as it gets. The irst thing to note is that you do
not need to set up an ApplicationIdCredentialsProvider; in other words, you do not need a Bing Maps

development account in order to use the BingMapsTask and BingMapsDirectionsTask. Next, provide a

Button or similar mechanism with which the user can trigger the use of the BingMapsDirectionsTask.

An example implementation is shown in the code that follows. You simply instantiate the task object,

and then specify a label and/or GeoCoordinates for the target location (the end point). If you supply

a location, then the label is used as a descriptive label. If you don’t supply a location, then the label is

used as a search string. You can optionally also specify a location start point, but if you don’t, then the

current location is used as the default starting point. Finally, invoke the Show method to execute the

Launcher.

private void getDirections_Click(object sender, RoutedEventArgs e)

{

 BingMapsDirectionsTask bingTask = new BingMapsDirectionsTask();

 bingTask.End = new LabeledMapLocation("Smith Tower", null);

 bingTask.Show();

}

For more information about the new Launchers and Choosers that were introduced in version 7.1

for integrating with contacts and the calendar, see Chapter 18, “Data Support.”

 ChAPTER 16 Enhanced Phone Services 621

The DeviceStatus and DeviceNetworkInformation classes

Recall from Chapter 8, that you used the DeviceExtendedProperties class to report information about

the device and current memory usage. From version 7.1, you can now also use the new DeviceStatus

class to report almost the same information. The only difference in the data reported is that Device

Status provides additional information for the power source and hardware keyboard. Figure 16-11

depicts an application that uses DeviceStatus (the NewDeviceInfo solution in the sample code). This

application also uses the new DeviceNetworkInformation class to retrieve information about the cur-

rent network coniguration and availability.

FIguRE 16-11 Using the new DeviceStatus class.

In addition to the set of properties, DeviceStatus exposes two events, KeyboardDeployedChanged

and PowerSourceChanged, which are raised when the physical keyboard is either opened or closed

and when the power source of the device changes, respectively. Similarly, DeviceNetworkInformation

exposes a NetworkAvailabilityChanged event when anything changes, including connection/discon-

nection for the cellular and WiFi networks, airplane mode, data roaming, and so on.

Important Do not assume that “external power equates to ininite power.” If the device is
attached to a low-power USB hub, a low-performing USB charger, car cigarette lighter, or

similar low-output device, then the phone might still be discharging even though it’s on

external power, because it is using more power than is being supplied by the charger.

622 PART Iv Version 7.5 enhancements

In the sample application, you build a collection of the DeviceStatus values either when the

user taps the App Bar button, or when either of the two events is raised. You do the same for

DeviceNetworkInformation.

private ObservableCollection<String> deviceItems;

private ObservableCollection<String> networkItems;

public MainPage()

{

 InitializeComponent();

 deviceItems = new ObservableCollection<string>();

 deviceList.ItemsSource = deviceItems;

 networkItems = new ObservableCollection<string>();

 networkList.ItemsSource = networkItems;

 DeviceStatus.KeyboardDeployedChanged += DeviceStatus_KeyboardDeployedChanged;

 DeviceStatus.PowerSourceChanged += DeviceStatus_PowerSourceChanged;

 DeviceNetworkInformation.NetworkAvailabilityChanged +=

 DeviceNetworkInformation_NetworkAvailabilityChanged;

}

private void DeviceStatus_PowerSourceChanged(object sender, EventArgs e)

{

 RefreshList();

}

private void DeviceStatus_KeyboardDeployedChanged(object sender, EventArgs e)

{

 RefreshList();

}

private void DeviceNetworkInformation_NetworkAvailabilityChanged(

 object sender, NetworkNotificationEventArgs e)

{

 RefreshList();

}

private void appbarRefresh_Click(object sender, EventArgs e)

{

 RefreshList();

}

The RefreshList helper method simply retrieves the current value of each of the DeviceStatus and

DeviceNetworkInformation properties, and then adds a corresponding string to the data-bound

collection.

private void RefreshList()

{

 deviceItems.Clear();

 networkItems.Clear();

 deviceItems.Add(String.Format("ApplicationCurrentMemoryUsage={0:N} Mb",

 DeviceStatus.ApplicationCurrentMemoryUsage / 1024 / 1024));

 ChAPTER 16 Enhanced Phone Services 623

 deviceItems.Add(String.Format("ApplicationMemoryUsageLimit={0:N} Mb",

 DeviceStatus.ApplicationMemoryUsageLimit / 1024 / 1024));

 deviceItems.Add(String.Format("ApplicationPeakMemoryUsage={0:N} Mb",

 DeviceStatus.ApplicationPeakMemoryUsage / 1024 / 1024));

 deviceItems.Add(String.Format("DeviceTotalMemory={0:N} Mb",

 DeviceStatus.DeviceTotalMemory / 1024 / 1024));

 deviceItems.Add(String.Format("DeviceFirmwareVersion={0}",

 DeviceStatus.DeviceFirmwareVersion));

 deviceItems.Add(String.Format("DeviceHardwareVersion={0}",

 DeviceStatus.DeviceHardwareVersion));

 deviceItems.Add(String.Format("DeviceManufacturer={0}",

 DeviceStatus.DeviceManufacturer));

 deviceItems.Add(String.Format("DeviceName={0}",

 DeviceStatus.DeviceName));

 deviceItems.Add(String.Format("IsKeyboardPresent={0}",

 DeviceStatus.IsKeyboardPresent));

 deviceItems.Add(String.Format("IsKeyboardDeployed={0}",

 DeviceStatus.IsKeyboardDeployed));

 deviceItems.Add(String.Format("PowerSource={0}",

 DeviceStatus.PowerSource));

 networkItems.Add(String.Format("CellularMobileOperator={0}",

 DeviceNetworkInformation.CellularMobileOperator));

 networkItems.Add(String.Format("IsCellularDataEnabled={0}",

 DeviceNetworkInformation.IsCellularDataEnabled));

 networkItems.Add(String.Format("IsCellularDataRoamingEnabled={0}",

 DeviceNetworkInformation.IsCellularDataRoamingEnabled));

 networkItems.Add(String.Format("IsNetworkAvailable={0}",

 DeviceNetworkInformation.IsNetworkAvailable));

 networkItems.Add(String.Format("IsWiFiEnabled={0}",

 DeviceNetworkInformation.IsWiFiEnabled));

}

For new projects, you are encouraged to use DeviceStatus rather than DeviceExtendedProperties.

Indeed, the older mechanism is likely to be deprecated over time.

version 7.1.1

Version 7.1.1 was announced in February 2012. This is a minor release, based on the 7.1 release,

designed speciically to support low-memory devices (devices with only 256 MB of RAM). There is one
major change to the platform in this release, and two programmability features. The major change

is system paging. The programmability additions consist of a new memory-related property on the

DeviceExtendedProperties API and a new manifest element.

In Windows Phone 7, you can ascertain the total amount of memory on the device and the amount

that your application is currently using by checking the DeviceTotalMemory and Application

CurrentMemoryUsage properties of the DeviceExtendedProperties API. These are superseded in ver-

sion 7.1 by the same properties on the DeviceStatus API. Note that DeviceTotalMemory is not really

useful; you should certainly not use it for performing any calculations about your application and

memory. Windows Phone 7.1 introduces the ApplicationMemoryUsageLimit property, which indicates

624 PART Iv Version 7.5 enhancements

the maximum amount of memory that your application can allocate. Subtracting ApplicationCurrent

MemoryUsage from ApplicationMemoryUsageLimit tells you how much more space you have to grow.

The version 7.1.1 release introduces one new property on the DeviceExtendedProperties API,

named ApplicationWorkingSetLimit. You check this property to see how much physical memory you

have available to your application. On Windows Phone 7.0 and 7.1, the working set is always ≥90 MB,
but on a version 7.1.1 device, it will be some value <90 MB. You can check the value and then make

an informed decision about how to tune your functionality to it within the available memory.

The key point is that the version 7.1.1 release introduces memory paging. Memory paging is famil-

iar in the desktop PC context, where the amount of physical memory is augmented by a disk-based

page ile. The operating system can page-out sections of memory to disk to free up real memory, and
then bring those pages back into memory when required. This increases the total amount of virtual

memory on the system. In versions 7 and 7.1, an application’s commit memory is always the same as

its working set memory (and always ≥90 MB) because there is no paging in those systems. However,
in version 7.1.1, the commit memory on a 256 MB device will be ≥90 MB (typically ~110 MB), but
this will always be greater than the working set. The working set will always be <90 MB, and typically

around 50–60 MB, with the gap made up by virtual (paged) memory.

The second developer-related addition in the version 7.1.1 release is the introduction of a new

markeplace manifest element. This is optional, and its purpose is to give the developer the ability to

opt out of low-memory devices. If you add the new ID_REQ_MEMORY_90 element to your manifest,

two things happen: irst, the marketplace certiication process will not test your application on 256 MB
devices; second, when a user with a 256 MB device attempts to download your application from the

marketplace, she will be given a warning to the effect that this application will not work correctly on

her phone, and the download will be blocked. The UX is similar to what happens if she attempts to

download an application that requires a sensor that is not present on her phone.

<Deployment>

 <App>

 ... unchanged elements omitted for brevity.

 </App>

 <Requirements>

 <Requirement Name="ID_REQ_MEMORY_90"/>

 </Requirements>

</Deployment>

So, from a developer’s perspective, the idea is that you would add this requirement in the follow-

ing circumstances:

 ■ You application actually requires ≥90 MB of memory to function correctly.

 ■ Your application its within 90 MB of memory, but the 90 MB of (virtual) memory provided on
a low-memory device is not reliable enough to provide the expected UX.

 ■ Your application uses a lot of graphics memory (textures). That memory is not tracked as

part of your working set, so you could (for example) use only 50 MB of tracked working set

memory but perhaps another 50 MB of GPU memory, and thus fail to work correctly on a low-

memory device.

 ChAPTER 16 Enhanced Phone Services 625

The last point bears a little explanation. The problem is that reading from and writing to disk is

very time-consuming, so there is a signiicant performance penalty to paging. In version 7.1.1, when
the memory available to applications falls below a certain critical threshold, the system starts paging.

This can enable your application to function within the logical 90 MB, but at the price of degraded

performance. So, it might be that even though your application its in 90 MB, the performance
degrades so badly under paging that you would prefer for it not to be available on low-memory

devices. A badly performing application can negatively affect the user’s perception of your applica-

tion quality, which can lead to bad reviews and propagation of a bad public image. In this scenario,

you might be better off restricting your application to devices with ≥512 MB memory, where perfor-
mance is acceptable.

Figure 16-12 shows the TangoTest solution in the sample code, running irst on a version 7.1 device,
and then on a version 7.1.1 device.

FIguRE 16-12 You can check to determine if the application is running on a low-memory device.

The signiicant code for this is shown below. If your check reveals that you are running on a low-
memory device—that is, where working set <90 MB—you would take some mitigating action such as

constraining or disabling some of your more memory-intensive functionality. The ApplicationWorking

SetLimit will be a long value of less than 90 MB (94371840) if the device is a 256 MB device.

private void appbarRefresh_Click(object sender, EventArgs e)

{

 deviceItems.Clear();

 deviceItems.Add(String.Format(

 "OS Version={0}", System.Environment.OSVersion));

 deviceItems.Add(String.Format("ApplicationCurrentMemoryUsage={0:N} Mb",

626 PART Iv Version 7.5 enhancements

 DeviceStatus.ApplicationCurrentMemoryUsage / 1024 / 1024));

 deviceItems.Add(String.Format("ApplicationMemoryUsageLimit={0:N} Mb",

 DeviceStatus.ApplicationMemoryUsageLimit / 1024 / 1024));

 deviceItems.Add(String.Format("ApplicationPeakMemoryUsage={0:N} Mb",

 DeviceStatus.ApplicationPeakMemoryUsage / 1024 / 1024));

 deviceItems.Add(String.Format("DeviceTotalMemory={0:N} Mb",

 DeviceStatus.DeviceTotalMemory / 1024 / 1024));

 long workingSetLimit;

 try

 {

 workingSetLimit = Convert.ToInt64(

 DeviceExtendedProperties.GetValue("ApplicationWorkingSetLimit"));

 deviceItems.Add(String.Format("ApplicationWorkingSetLimit={0:N} Mb",

 workingSetLimit / 1024 / 1024));

 }

 catch (ArgumentOutOfRangeException)

 {

 workingSetLimit = DeviceStatus.ApplicationMemoryUsageLimit;

 deviceItems.Add("Commit memory == Working set");

 }

 if (workingSetLimit < 94371840)

 {

 deviceItems.Add("Low-memory device: now reducing functionality.");

 }

}

The version 7.1.1 SDK provides a 256 MB version of the emulator, and you can chose which version

of the emulator to target from the target device drop-down in Visual Studio.

Note that generic background agents are not supported on version 7.1.1. If you implement agents

in your application, then at the point where you attempt to add an agent to the schedule, this will

throw an InvalidOperationException. This is the same exception you get if you attempt to add an

agent on any device that has already reached the limit of the number of allowed agents (15). This

means that if your application uses background agents, then it should already be handling this error

case. Apart from this, all the performance and memory-optimization techniques discussed in Chapter

14, “Go to Market,” assume greater importance if you target 256 MB devices.

summary

Windows Phone 7.1 adds to the already rich support for working with built-in applications, with a

large number of additional Launchers and Choosers. All of these are almost trivial to use, and help

your applications to integrate seamlessly with standard features and services on the phone. However,

the most signiicant improvement in this area is the extensive new support for sensors, both in terms
of the number of sensors available, and the provided APIs with which your application can interact.

Exposing the raw camera data stream to marketplace application developers opens up a wide range

of application scenarios, not least of which is the ability to build compelling augmented-reality appli-

cations by using both sensors and camera.

 627

C h A P T E R 1 7

enhanced Connectivity Features

W indows Phone 7.1 builds on the already rich internet capabilities of its predecessor with signii-

cant new connectivity features. There are new tile features, for both local use of tiles and within

push notiication scenarios. The most exciting addition is the new support for sockets, by which you
can build applications that communicate remotely, outside the standard web client or web service

models. The tooling support for OData web services is greatly improved, and the use of Bing search

is enhanced by providing extensibility points. This last is another example of how the Windows Phone

user experience (UX) is very deliberately designed to be integrated, encouraging the model, wherein

marketplace applications work seamlessly with the phone’s built-in features to give the user the clear

impression that the phone is an ecosystem rather than a loose collection of independent applications.

Push, Tile, and Toast Enhancements

In Chapter 12, “Push Notiications,” you saw how you can build applications that use push notiica-

tions to keep your application data fresh and relevant to the user by using tiles, toasts, and raw

notiications. Windows Phone 7.1 adds new push-related features as well as support for local tiles that
don’t use the push system. Briely, these include the following:

 ■ You can create multiple tiles per application, each of which can optionally navigate to a differ-

ent page. Previously, this feature was only available to built-in applications.

 ■ You can create and update tiles locally without making a network round-trip through the push

system.

 ■ Tiles now have a back as well as a front side, and automatically lip between these every six
seconds or so (the timing is slightly randomized to ensure that the entire screen doesn’t lip all
at once). Your application can control the back-of-tile images and text.

 ■ You can deep-link to a speciic page in toast push notiications.

 ■ You can create toast notiications locally, without a round-trip through the push system; how-

ever, this only works from a background agent.

 ■ Miscellaneous reliability and performance improvements.

628 PART Iv Version 7.5 enhancements

Local tiles
With version 7.1, you can create and update one or more tiles without using the push notiication
system at all. Using this approach, you don’t get the beneits of real-time data pushes, but on the
other hand, there’s no need for a remote server, no network usage, and no unpredictability due to

lost updates. Your tiles are purely local: created, updated, and deleted by your client application on

the phone. The screenshots in Figure 17-1 show the LiveTiles application in the sample code. This has

two pages; the MainPage simply shows a HyperlinkButton that goes to Page2. The only purpose of

this is to have two pages in the application so that you can see the tile deep-linking at work. Page2

has a TextBlock and three Button controls. The TextBlock is set to a string that indicates whether the

user navigated to this page via a pinned tile on the Start menu or via the HyperlinkButton on the

MainPage.

FIguRE 17-1 The MainPage (on the left) and Page2 (right) of the LiveTiles sample application.

When the user taps Create, the application generates a secondary tile. When he taps the Update

button, the application inds the secondary tile, and updates some of the properties. The Delete but-

ton is used to delete the secondary tile, if it exists.

 ChAPTER 17 Enhanced Connectivity Features 629

Note This sample illustrates how to use the APIs for creating, updating, and deleting tiles,

but note that a realistic application would likely have a more sophisticated user interface

(UI) for triggering these operations through user action rather than just simple buttons.

Normally, the user would opt to pin a tile to the Start screen that corresponds to some item

in your application. Then, the application would update the tile—typically without user in-

teraction—to keep the tile fresh. Finally, deleting the tile would normally not be done in the

application code; instead, it would be triggered by the user explicitly unpinning it from the

Start screen.

All the interesting work is in the Page2 link Click handlers. You create a tile with the ShellTile.Create

method, which takes a StandardTileData parameter. This is a simple class through which you set the

properties of the tile, including images for the front and back, title text for the front and back, a count

value for the front, and a longer content string for the back. You must use JPG or PNG images, sized

at 173x173 pixels for both front and back. If you use PNG, the images can include transparency. When

you create the tile, you must use local images; if you don’t, your tile will disappear on a reboot. After

the tile is created, for any subsequent updates, you can use either local or remote images.

More Info A common pattern is to generate images dynamically according to some run-

time context, and then persist the images by using the WriteableBitmap class. The System.

Windows.Media.Imaging namespace includes extension methods for this class to save and

load JPG format images, but not PNG format. If you want to generate images on the ly,
and you want to include transparency, you can consider using the WriteableBitmapEx third-

party library, available on codeplex at http://writeablebitmapex.codeplex.com/.

private void createTile_Click(object sender, RoutedEventArgs e)

{

 StandardTileData tileData = new StandardTileData

 {

 BackgroundImage = new Uri("bananas_173x173.png", UriKind.Relative),

 Title = "Monkey Tile",

 Count = 1,

 BackTitle = "Back of Tile",

 BackContent = "Bananas today!",

 BackBackgroundImage = new Uri("monkey_173x173.png", UriKind.Relative)

 };

 ShellTile.Create(new Uri("/Page2.xaml?ID=MonkeyTile", UriKind.Relative), tileData);

 UpdateButtons();

}

630 PART Iv Version 7.5 enhancements

Figure 17-2 shows the front and back of this secondary tile just after it’s irst created (that is, before
updating the tile).

FIguRE 17-2 Front (on the left) and back (right) of the secondary tile when irst created.

In addition to the StandardTileData, you also specify the NavigationUri for this tile. This must

include the page to which to navigate within this application, plus optionally a query string with what-

ever parameters you want. In this example, you’re simply setting one ID parameter, which you can

use subsequently to determine which tile this is. When you call the ShellTile.Create method, the tile is

created with the speciied properties and pinned to the Start page on the phone. The Start page is an

application that is part of the system shell, so this action causes a navigation away from your applica-

tion, which is therefore deactivated. The reason for this is to avoid spamming the Start page: when

you create a tile, the system makes it very obvious to the user that the tile has been created, and the

user is shown where the tile is. He can then immediately interact with it, perhaps by moving it around,

or deleting it if he doesn’t want it.

Having created the tile, you also update the buttons. This ensures that in this application the user

cannot create the same tile more than once, and that the buttons for updating and deleting the tile

are only enabled if there is in fact a tile to update or delete. There’s only one secondary tile in this

application, so you can cache this as a ShellTile ield in the class. If there were more tiles, it would
make sense to use a collection, instead.

private ShellTile tile;

private void UpdateButtons()

{

 if (tile == null)

 {

 createTile.IsEnabled = true;

 updateTile.IsEnabled = false;

 deleteTile.IsEnabled = false;

 }

 else

 {

 createTile.IsEnabled = false;

 updateTile.IsEnabled = true;

 deleteTile.IsEnabled = true;

 }

}

There are two ways to get to Page2 in the application: through normal navigation via the hyperlink

on the main page of the application, or via a pinned tile on the Start page. So that you can determine

 ChAPTER 17 Enhanced Connectivity Features 631

which route was taken, you need to override the OnNavigatedTo method. This is where the ID param-

eter comes into play; the application can examine the query string to see which tile the user tapped to

get to this page. This is also where you cache the ShellTile object. Finally, you can update the buttons

so that they always correctly relect the state of the secondary tile whenever the user navigates to this
page.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 String tmp;

 if (NavigationContext.QueryString.TryGetValue("ID", out tmp))

 {

 navigation.Text = String.Format("from Start ({0})", tmp);

 }

 else

 {

 navigation.Text = "from MainPage link";

 }

 tile = ShellTile.ActiveTiles.FirstOrDefault(

 x => x.NavigationUri.ToString().Contains("ID=MonkeyTile"));

 UpdateButtons();

}

In this example, if the query string indicates that the user arrived at Page2 via a pinned tile, you

simply extract the parameter value and display it in a TextBlock. In a more sophisticated application,

you would use this identiier to govern some business logic in your solution.

Updating a tile’s properties and deleting a tile are both very straightforward. To update a tile, you

simply ind that tile and invoke the Update method, passing in a replacement set of data by using the

StandardTileData class, as before. You don’t have to provide values for all the properties, because any

properties for which you don’t provide values will simply retain their previous value. If you want to

clear a value, you can simply provide an empty string or a Uri with an empty string, depending on the

item to be cleared. To delete a tile, simply ind the tile and invoke the Delete method, but remember

that in a real application, you should normally leave tile deletion to the user and avoid doing this

programmatically. Note that neither updating nor deleting need to send the user to the Start page, so

there is no navigation away from the application in these cases.

private void updateTile_Click(object sender, RoutedEventArgs e)

{

 ShellTile tile = ShellTile.ActiveTiles.FirstOrDefault(

 x => x.NavigationUri.ToString().Contains("ID=MonkeyTile"));

 if (tile != null)

 {

 StandardTileData NewTileData = new StandardTileData

 {

 Count = DateTime.Now.Second,

 BackContent = DateTime.Now.ToLongTimeString(),

 };

 tile.Update(NewTileData);

 }

}

632 PART Iv Version 7.5 enhancements

private void deleteTile_Click(object sender, RoutedEventArgs e)

{

 ShellTile tile = ShellTile.ActiveTiles.FirstOrDefault(

 x => x.NavigationUri.ToString().Contains("ID=MonkeyTile"));

 if (tile != null)

 {

 tile.Delete();

 }

}

Pinning tiles
The ability to pin local tiles to the Start page becomes more interesting when the user can choose

from multiple possible tiles to pin within an application. Consider a typical weather application; the

user can mark individual locations as favorites, and can then pin zero or more of these favorites to the

Start page.

The screenshots in Figure 17-3 shows the PinTiles solution from the sample code. This is based on

the standard Microsoft Visual Studio Databound Application project type.

FIguRE 17-3 The MainPage (on the left) and DetailsPage (right) of the PinTiles sample application.

The idea here is that the application presents a list of items on the MainPage, and when the user

taps one of these items, it navigates to the DetailsPage, which is data-bound to that item’s viewmodel.

In addition, the UI presents an App Bar Button control which displays a “pin” image. When the user

taps this control, the application creates a local tile and pins it to the Start page. In this way, the user

can tap multiple items and pin them all to Start, as shown in Figure 17-4. When the user taps one of

 ChAPTER 17 Enhanced Connectivity Features 633

the pinned tiles, this launches the application and navigates her to that page, with the corresponding

data loaded.

Note Some applications in the marketplace adopt the practice of providing an “unpin”

feature in addition to the pin feature. As you’ve seen from the previous example, the plat-

form API does expose methods for programmatically deleting (and therefore, unpinning)

secondary tiles. However, this is not strictly compliant with Metro guidelines. This is one of

those guidelines that is not rigidly enforced; you can provide this kind of behavior, but it is

not really in the spirit of Metro. In the Metro world, the UX is always very predictable and

very simple. The user knows that she can always unpin any tile that she’s pinned to the Start

page, and that this is the standard approach for doing this. While an application could pro-

vide an alternative mechanism for unpinning tiles, there’s really no need.

FIguRE 17-4 Pinning multiple tiles from the same application.

The viewmodel for each item is very simple: just a URI for the image, and two strings.

public class ItemViewModel

{

 public Uri Photo { get; set; }

 public String Title { get; set; }

 public String Details { get; set; }

}

634 PART Iv Version 7.5 enhancements

The MainViewModel is exposed as a static property of the App class, and some dummy data is

loaded when this property is irst accessed. See Chapter 4, “Data Binding,” (or examine the sample
code) for details of this design. The ListBox.SelectionChanged handler in the MainPage navigates to

the DetailsPage, and then passes in a query string which includes an identiier for the selected item.

private void PhotoList_SelectionChanged(object sender, SelectionChangedEventArgs e)

{

 if (PhotoList.SelectedIndex != -1)

 {

 String targetUrl = String.Format(

 "/DetailsPage.xaml?Title={0}",

 ((ItemViewModel)PhotoList.SelectedItem).Title);

 NavigationService.Navigate(new System.Uri(targetUrl, UriKind.Relative));

 PhotoList.SelectedIndex = -1;

 }

}

All the interesting work is in the DetailsPage. In the XAML, you put an Image control for the item

photo and a TextBlock inside a ScrollViewer (to allow for large amounts of text in the item’s Details

property). The Image and the TextBlock are data-bound to the item properties. The App Bar has one

button that displays a “pin” image. This will be conditionally enabled, depending on whether the user

has already pinned this item to the Start page.

<Grid x:Name="LayoutRoot" Background="Transparent" d:DataContext="{Binding Items[0]}">

...

 <ScrollViewer

 Grid.Row="1" Margin="12,0,12,0"

 VerticalScrollBarVisibility="Auto" ManipulationMode="Control">

 <StackPanel >

 <Image

 Height="300" Source="{Binding Photo}"

 Stretch="UniformToFill" Margin="12,0,0,0"/>

 <Grid Height="12"/>

 <TextBlock

 Text="{Binding Details}" TextWrapping="Wrap"

 Margin="{StaticResource PhoneHorizontalMargin}" />

 </StackPanel>

 </ScrollViewer>

</Grid>

<phone:PhoneApplicationPage.ApplicationBar>

 <shell:ApplicationBar IsVisible="True" Opacity="0.8">

 <shell:ApplicationBarIconButton

 x:Name="appBarPin" IconUri="/Images/Pin.png" Text="pin to start"

 Click="appBarPin_Click"/>

 </shell:ApplicationBar>

</phone:PhoneApplicationPage.ApplicationBar>

To accommodate this pinning behavior, you override the OnNavigatedTo method. First, you need

to igure out to which item to data-bind, based on the query string parameters. In the process, you
formulate a string that you can use later as the URI for this page—this is cached in a ield object so

 ChAPTER 17 Enhanced Connectivity Features 635

that you can use it across methods. You also need to determine if there’s an active tile for this item. If

so, disable the App Bar button; otherwise, you need to enable it.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 itemTitle = NavigationContext.QueryString["Title"];

 var pinnedItem = App.ViewModel.Items.FirstOrDefault(x => x.Title == itemTitle);

 if (pinnedItem != null)

 {

 DataContext = thisItem = pinnedItem;

 }

 thisPageUri = String.Format("/DetailsPage.xaml?Title={0}", itemTitle);

 tile = ShellTile.ActiveTiles.FirstOrDefault(

 x => x.NavigationUri.ToString().Contains(thisPageUri));

 appBarPin = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 if (tile != null)

 {

 appBarPin.IsEnabled = false;

 }

 else

 {

 appBarPin.IsEnabled = true;

 }

}

In the Click handler for the Pin button, create the tile. In this method, you can rely on the fact

that you’ve already performed the search for the tile in the OnNavigatedTo override, and cached

the tile if it was found in the collection. If the cached tile is null (that is, it doesn’t exist in the collec-

tion), go ahead and create it now by using the current item’s Photo property and Title property as the

BackgroundImage and Title for the tile.

private void appBarPin_Click(object sender, EventArgs e)

{

 StandardTileData tileData = new StandardTileData

 {

 BackgroundImage = thisItem.Photo,

 Title = thisItem.Title,

 BackTitle = "Lorem Ipsum!",

 BackBackgroundImage =

 new Uri("Images/monkey_173x173.png", UriKind.Relative)

 };

 ShellTile.Create(

 new Uri(thisPageUri, UriKind.Relative), tileData);

}

By doing this, the user can pin multiple tiles, with individual control over each tile and appropriate

UI feedback (the pin button is conditionally enabled) so that it’s clear what the pinned state of each

item is. When the user taps a pinned tile, the application launches and navigates to the item page

speciied in the tile’s NavigationUri. This does not go through the MainPage; therefore, if the user

then taps the Back button, there are no more pages for this application in the navigation backstack,

so the application will terminate.

636 PART Iv Version 7.5 enhancements

There is an alternative UX model whereby the user can always return to the main page—and

therefore, to the rest of the application—regardless of whether he launched the application from

Start in the normal way or from a pinned tile. This model uses a “home” button, but you should use it

with care because it varies from the normal expected behavior. Normally, the user model of a home

button is not commonly employed, because it can result in a confusing navigation experience. How-

ever, the pinned tile technique gives the user two different ways to start the application. It can justify

the decision, ensuring that he can always navigate from the individual item page back to the rest of

the application.

Note The practice of providing a “home” feature as demonstrated in this sample is not

strictly compliant with Metro guidelines. In general, you should avoid this usage pattern

and assume by default that you do not need a Home button, unless you can prove to your-

self otherwise. A good rule of thumb is to use the built-in applications as your inspiration.

For example, with the People Hub, you can pin individual people to the Start page, but it

does not provide a home button. The same is true of Music & Videos, and so on.

To implement this behavior, you can add a second App Bar button to the DetailsPage, as shown in

Figure 17-5.

FIguRE 17-5 Adding a Home button.

 ChAPTER 17 Enhanced Connectivity Features 637

You implement the Click handler for the Home button to navigate to the main page.

private void appBarHome_Click(object sender, EventArgs e)

{

 NavigationService.Navigate(new System.Uri("/MainPage.xaml", UriKind.Relative));

}

This ensures that the user can always consistently navigate from an item page back to the main

page. However, it now introduces a different problem. Consider this scenario: the user navigates from

the Start page, through a pinned tile to an item page, and then on to the main page. This means that

pressing Back from the main page will go back to the item page. This is not what the user normally

expects: her normal expectation is that pressing Back from the application’s main page always exits

the application. Fortunately, it is very easy to ix this. All you need do is to ensure that the main page
is always the top of the page stack for this application by overriding the OnNavigatedTo in the main

page to clear the in-application page navigation stack, as shown in the following:

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 while (NavigationService.CanGoBack)

 {

 NavigationService.RemoveBackEntry();

 }

}

In addition to cleaning up the backstack, you should also ensure that the Home button is not

available unless the user has navigated to the page via the corresponding pinned tile on the Start

page. Using normal navigation within the application, the Home button is unnecessary. Enforcing this

behavior helps to maintain the UX, where home navigation is a recognizable exception to the normal

navigation behavior, and that it applies only in the speciic scenario of a pinned tile. Although you can
programmatically set the IsEnabled state of an ApplicationBarIconButton, this class does not expose

a Visibility property, as do regular controls. Disabling the button is not really good enough—under

normal navigation, you should not make this button available at all, not even in a disabled state. This

means that you need to implement this additional button programmatically, and not in XAML. To do

this, you can update the OnNavigatedTo method. First, when creating the tile, enhance the page Uri

to include an additional parameter that indicates that the user navigated to this page from a pinned

tile. Then, you can check if the current NavigationContext does include this parameter in the query

string. If so, you can create the additional Home button, and add it to the App Bar.

private ApplicationBarIconButton appBarHome;

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 itemTitle = NavigationContext.QueryString["Title"];

 var pinnedItem = App.ViewModel.Items.FirstOrDefault(x => x.Title == itemTitle);

 if (pinnedItem != null)

 {

 DataContext = thisItem = pinnedItem;

 }

638 PART Iv Version 7.5 enhancements

 thisPageUri = String.Format("/DetailsPage.xaml?Title={0}&Nav=FromPinned", itemTitle);

 tile = ShellTile.ActiveTiles.FirstOrDefault(

 x => x.NavigationUri.ToString().Contains(thisPageUri));

 appBarPin = ApplicationBar.Buttons[0] as ApplicationBarIconButton;

 if (tile != null)

 {

 appBarPin.IsEnabled = false;

 }

 else

 {

 appBarPin.IsEnabled = true;

 }

 // Did the user get here from a pinned tile?

 if (NavigationContext.QueryString.ContainsKey("Nav"))

 {

 appBarHome = new ApplicationBarIconButton();

 appBarHome.Text = "home";

 appBarHome.IconUri = new Uri("/Images/Home.png", UriKind.Relative);

 appBarHome.Click += appBarHome_Click;

 ApplicationBar.Buttons.Add(appBarHome);

 }

}

Finally, note that this is one scenario in which it can be useful during debugging to change your

WMAppManifest ile to have the application launched with a speciic page and query string, as
opposed to the default page. This is a debugging technique, and you must remember to remove the

fake navigation before submitting your application to the marketplace.

<Tasks>

 <!--<DefaultTask Name="_default" NavigationPage="MainPage.xaml" />-->

 <DefaultTask Name="_default" NavigationPage="DetailsPage.xaml?Title=Dictumst&

 Nav=FromPinned"/>

</Tasks>

Push enhancements
In Chapter 12, you saw how to build both the client and server applications for a push notiication
solution in order to send and receive raw, toast, and tile notiications. The same back-of-tile features
used in local tiles can also be used in tile notiications. In addition, toast notiications include a new
ield: the URL for the target page. With a secondary local tile, when the user taps the tile, it takes him

to the corresponding page. In the same way, when the user receives a toast notiication that includes
a deep-link URL, when he taps the toast, it takes him to that page and not to the application’s default

page, as it does in version 7.

 ChAPTER 17 Enhanced Connectivity Features 639

The PnServer_Mango and PnClient_Mango solutions in the sample code are an adaptation of the

same samples in Chapter 12, with the additional version 7.1 features added. The client application

also incorporates most of the UI functionality of the earlier PinTiles sample in this chapter. Figure 17-6

presents the enhanced server application.

FIguRE 17-6 The push notiication server with version 7.1 features.

Figure 17-6 demonstrates that the toast notiication includes an extra ield for the target URL.
Figure 17-7 shows the client application running. Here, the incoming toast notiication is reported
in a ListBox at the bottom of the main page. Contrast this with Figure 17-8, which shows the Start

page when a toast notiication is received. This looks exactly the same as in version 7, displaying the
application’s icon and the incoming toast Title and Message values. The difference is that when the

user taps the toast, this will navigate to the target URL speciied in the toast notiication payload. Any
additional parameters in the query string will be passed in to the page in the NavigationContext.

640 PART Iv Version 7.5 enhancements

FIguRE 17-7 The client application receiving a toast notiication while running (on the left), and the phone receiv-
ing a toast while the client application is not running (right).

Looking at the server-side code, the irst change is in the toast notiication string template. The
additional ield is the <wp:Param/> element. This would be set to the target URL, including query

string parameters, if required, such as in the following:

"/DetailsPage.xaml?Title=Habitant&Foo=Bar"

You can pass whatever parameter key-value pairs make sense in your application. Keep in mind

that you must escape the ampersand parameter delimiter, and specify it as “&”. The custom

helper method to send the toast is updated to include this additional ield. As before, this uses a cus-
tom SendNotiication method, which is unchanged from the 7 version.

const String toastMessageFormat =

 "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +

 "<wp:Notification xmlns:wp=\"WPNotification\">" +

 "<wp:Toast>" +

 "<wp:Text1>{0}</wp:Text1>" +

 "<wp:Text2>{1}</wp:Text2>" +

 "<wp:Param>{2}</wp:Param>" +

 "</wp:Toast>" +

 "</wp:Notification>";

private void sendToast_Click(object sender, RoutedEventArgs e)

{

 String message = String.Format(

 toastMessageFormat, toastTitle.Text, toastMessage.Text,

 toastUrl.Text);

 ShowStatus(SendNotification(message, 2));

}

 ChAPTER 17 Enhanced Connectivity Features 641

To be clear, when the user taps the toast, given the preceding URL value, she will navigate to the

DetailsPage with the Habitant item loaded. The fact that there is a pinned tile for the DetailsPage with

the Maecenas item is irrelevant at this point. On the client side, the DetailsPage code is exactly the

same as in the earlier PinTiles sample. The existing OnNavigatedTo override, which was designed to

meet the needs of navigation via local tile, also meets the needs of navigation via URL-targeted toast

notiication—and of course, navigation via a tile that might or might not have been updated via a
push notiication. The only update on the client side for this toast is to extract the additional query
string values and display them in the UI, for circumstances in which the toast is received when the

application is actually running.

Back in the server code, the tile notiication template string is also updated for version 7.1. It is
consistent with the additional back-of-tile and ID ields that are used for local tiles. Be aware that the
ID is not an independent element; rather, it is an attribute of the Tile element.

const String tileMessageFormat =

 "<?xml version=\"1.0\" encoding=\"utf-8\"?>" +

 "<wp:Notification xmlns:wp=\"WPNotification\">" +

 "<wp:Tile ID=\"{0}\">" +

 "<wp:BackgroundImage>{1}</wp:BackgroundImage>" +

 "<wp:Count>{2}</wp:Count>" +

 "<wp:Title>{3}</wp:Title>" +

 "<wp:BackTitle>{4}</wp:BackTitle>" +

 "<wp:BackContent>{5}</wp:BackContent>" +

 "<wp:BackBackgroundImage>{6}</wp:BackBackgroundImage>" +

 "</wp:Tile>" +

 "</wp:Notification>";

private void sendTile_Click(object sender, RoutedEventArgs e)

{

 tileTitle.Text = DateTime.Now.ToLongTimeString();

 String message = String.Format(

 tileMessageFormat,

 tileId.Text,

 tileBackground.Text, tileCount.Text, tileTitle.Text,

 tileBackTitle.Text, tileBackContent.Text, tileBackBackground.Text);

 ShowStatus(SendNotification(message, 1));

}

Tile notiications are never handled explicitly by your client phone application, so there is no addi-
tional client code needed to handle the version 7.1 additions. Figure 17-8 shows what happens when

the enhanced tile notiication is received. In this scenario, the user has pinned two tiles: one for the
Maecenas item on the DetailsPage, and one for the application itself. You have received tile notiica-

tions for both tiles.

642 PART Iv Version 7.5 enhancements

FIguRE 17-8 Receiving enhanced tile notiications.

In this example, you have a DetailsPage tile pinned for the Maecenas item. If you send a tile notii-

cation that includes this corresponding tile ID—that is "/DetailsPage.xaml?Title=Maecenas"—then the

tile information will be used to update that speciic tile. If the tile is not pinned, then the notiication is
simply suppressed in exactly the same way that a tile notiication is suppressed when sent to a version
7 application that is not pinned to Start. If you send a tile notiication and omit the ID, this will update

the default tile—again, assuming that tile is pinned to Start.

sockets

Windows Phone 7.1 introduces support for sockets programming. Using sockets, you can build

applications that communicate remotely to other socket-enabled devices, including servers, desk-

top computers, and other mobile devices. The classic example of a socket-based application on the

desktop is the remote peer-to-peer chat application. However, this would be dificult to build for the
phone, because the phone can’t really act as a server. Another classic example that is more relevant is

a multi-player game. Email, streaming multimedia, and ile transfer applications also often use sock-

ets. You can even use sockets to build applications that convert your phone into a remote control for

your computer. Both Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) sockets

are supported, and the differences are summarized in Table 17-1.

 ChAPTER 17 Enhanced Connectivity Features 643

TABlE 17-1 A Comparison of TCP and UDP Sockets

Item TCP uDP

Connection type Connection-oriented You must establish a connec-
tion before transmitting data.

Connectionless You do not set up a
connection before transmitting data.

Transmission type Stream-based Data is guaranteed to be received in
the order it was sent.

Datagram-based Individual packets of
data can arrive in any order.

Reliability Reliable This doesn’t mean that all data sent is
guaranteed to be received. This is because the re-
cipient device could lose power or network connec-
tivity, which could result in lost packets. Rather, it
means that you get ACKs when the data is received,
so you can attempt to resend any that were lost.

Unreliable Some packets might be
lost in transmission, and there is no
built-in way to identify that this has
happened.

Suitable applications Email, ile transfer, remote control. Streaming media, online gaming, VoIP.

Modes Unicast only (speciic client and server endpoints
must be conigured for each connection).

Unicast or Multicast (where multiple
endpoints can join a multicast group).

tCP Sockets
The SimpleSockets solutions (SocketServer and SocketClient) in the sample code demonstrate the most

clear-cut implementation of a TCP unicast socket system. The server is a Windows Presentation Foun-

dation (WPF) application that starts a socket listening, and the client is a Windows Phone application

that sends text messages to the server. When the server receives a message, it logs it in the UI. First,

you will examine the server, which is shown in Figure 17-9.

FIguRE 17-9 A simple socket server.

644 PART Iv Version 7.5 enhancements

In the MainWindow constructor, you irst create and conigure a socket. In a more sophisticated
application, you might want to do this lazily and in a background thread rather than in the construc-

tor. However, this is less critical for the server application, which is running on a desktop or server

computer. Windows Phone only supports IPv4 sockets, but resolving the host name to an IPHost

Entry object gives you a collection of addresses for this computer (multiple addresses, including IPv6

addresses), so you need to enumerate the collection to ind the irst IPv4 value. You’re also using an
arbitrary port number here. Note that the host name for the current computer is obtained by using

Dns.GetHostName, and you derive the IP address from this, so these ields in the UI are read-only. On
the other hand, the port number is user-editable. You then display the socket coniguration proper-
ties in the UI. This is useful for testing purposes, especially because the client will need to know the

endpoint that you’re using. Realistically, of course, there would be some other way for the client to get

this information (hard-coded, retrieved from a web service, and so on).

private Socket listener;

private IPAddress ipAddress;

private IPEndPoint endPoint;

private static AutoResetEvent done = new AutoResetEvent(false);

public MainWindow()

{

 InitializeComponent();

 listener = new Socket(

 AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

 String hostName = Dns.GetHostName();

 IPHostEntry hostEntry = Dns.GetHostEntry(hostName);

 ipAddress = hostEntry.AddressList.First(

 (ip) => ip.AddressFamily == AddressFamily.InterNetwork);

 hostnameText.Text = hostName;

 ipAddressText.Text = ipAddress.ToString();

 portText.Text = 12345.ToString();

}

When the user clicks the Start button, you spin up a thread from the system threadpool to do the

work, thus ensuring that you don’t block the UI. Note that even though Chapter 14, “Go to Market,”

discusses threading in the context of Windows Phone applications, most of the details are equally

relevant to WPF. The StartListening worker method irst binds the socket to the endpoint, and puts the
socket into a listening state. The parameter to the Listen method speciies the number of incoming
connections that you will accept—in this case, just one.

You’re using a connection-oriented TCP channel, so use the BeginAccept method to process incom-

ing connection attempts asynchronously. Doing this asynchronously means that the operations to

send and receive data are carried out on a separate thread. You must create a callback method that

implements the AsyncCallback delegate and pass its name to the BeginAccept method, and you must

also pass the listening socket object itself.

 ChAPTER 17 Enhanced Connectivity Features 645

Calling WaitOne on the AutoResetEvent will block this worker thread until the event is signaled,

which you will do later when you accept a connection. So, the effect here is that the thread will sit

there waiting for connections until it gets one. As you go through, you report the received data and

any interesting status changes or error conditions by adding a string to the ListBox.

private void start_Click(object sender, RoutedEventArgs e)

{

 endPoint = new IPEndPoint(ipAddress, Int32.Parse(portText.Text));

 ThreadPool.QueueUserWorkItem(StartListening);

 start.IsEnabled = false;

}

private void StartListening(object stateInfo)

{

 try

 {

 listener.Bind(endPoint);

 listener.Listen(1);

 while (true)

 {

 ShowStatus("Waiting for a connection...");

 listener.BeginAccept(ConnectionReceived, listener);

 done.WaitOne();

 }

 }

 catch (Exception ex)

 {

 ShowStatus(ex.ToString());

 }

}

private void ShowStatus(String message)

{

 Dispatcher.BeginInvoke((Action)(() => trafficList.Items.Add(message)));

}

The asynchronous callback extracts the Socket object from the result and invokes the EndAccept

method. When you call BeginAccept, the system uses another thread to execute the speciied callback
method, and blocks on EndAccept until a pending connection is retrieved. EndAccept will return a new

Socket object that you can use to send and receive data on the channel.

At this point, you signal the AutoResetEvent so that you can start listening again for another

connection. Meanwhile, on this connection, you start receiving the sent message bytes—again,

this is done asynchronously in the speciied callback method. Observe that you’re passing a custom
StateObject parameter: this neatly encapsulates all the properties you want to be able to access in the

callback method.

646 PART Iv Version 7.5 enhancements

private void ConnectionReceived(IAsyncResult result)

{

 Socket listener = (Socket)result.AsyncState;

 Socket socket = listener.EndAccept(result);

 ShowStatus("Client connected.");

 done.Set();

 StateObject state = new StateObject();

 state.Socket = socket;

 socket.BeginReceive(

 state.Buffer, 0, state.Buffer.Length,

 SocketFlags.None, DataReceived, state);

}

public class StateObject

{

 public Socket Socket;

 public byte[] Buffer = new byte[32];

 public StringBuilder Data = new StringBuilder();

}

You inally process the received message, adding the text to the state object’s buffer. This server
implements a primitive mechanism for checking to see if you’ve received all the bytes sent (you

simply test for a dummy end-of-ile marker [̂ Z]). If you haven’t yet received this marker, you need to
receive more bytes, so invoke the asynchronous callback again. When you do inally receive all the
bytes sent, shutdown the connection and close the socket.

private void DataReceived(IAsyncResult result)

{

 StateObject state = (StateObject)result.AsyncState;

 Socket socket = state.Socket;

 int bytesRead = socket.EndReceive(result);

 if (bytesRead > 0)

 {

 state.Data.Append(Encoding.UTF8.GetString(state.Buffer, 0, bytesRead));

 String dataString = state.Data.ToString();

 if (dataString.IndexOf("^Z") <= -1)

 {

 socket.BeginReceive(

 state.Buffer, 0, state.Buffer.Length,

 SocketFlags.None, DataReceived, state);

 }

 else

 {

 ShowStatus(String.Format("Received: {0}", dataString.Replace("^Z", "")));

 socket.Shutdown(SocketShutdown.Both);

 socket.Close();

 ShowStatus("Client connection closed.");

 }

 }

}

Figure 17-10 shows the client side of this communication.

 ChAPTER 17 Enhanced Connectivity Features 647

FIguRE 17-10 A simple socket client.

In the client application, you set up a collection of strings to data-bind to the ListBox, and a custom

ShowStatus method to add status and error messages to this collection. You also deine a CloseSocket

method to perform due diligence clean-up operations.

private ObservableCollection<String> statusItems = new ObservableCollection<string>();

public ObservableCollection<String> StatusItems

{

 get { return statusItems; }

 private set { }

}

private void ShowStatus(String message)

{

 Dispatcher.BeginInvoke((Action)(() => StatusItems.Add(message)));

}

public MainPage()

{

 InitializeComponent();

 statusList.ItemsSource = StatusItems;

}

private void CloseSocket(SocketAsyncEventArgs e)

{

 if (e.ConnectSocket != null)

 {

 e.ConnectSocket.Shutdown(SocketShutdown.Both);

 e.ConnectSocket.Close();

 }

}

648 PART Iv Version 7.5 enhancements

When the user taps the Send button, you extract the host and message values from the TextBox

controls. Next, add the primitive message delimiter (̂ Z) to mark the end of the message, and then
convert to a UTF8 byte array, ready for sending. The SocketAsyncEventArgs class is critical to the asyn-

chronous pattern used by socket applications. The basic pattern is as follows:

 ■ Create a new SocketAsyncEventArgs object and set its properties, including hooking up a han-

dler for the asynchronous Completed event and assigning the message buffer contents.

 ■ Call the speciic socket method you want for the current operation; that is, ConnectAsync,

ReceiveAsync, or SendAsync for connect, receive, or send operations, respectively.

 ■ If the XXXAsync method returns true, the I/O operation is now pending, and the Completed

event will be raised when the operation completes.

 ■ On the other hand, if the XXXAsync method returns false, this means that the operation com-

pleted synchronously.

So, in the irst instance, you create a Socket object, conigured appropriately to match the server’s
socket, and then invoke ConnectAsync. If the operation completed synchronously, you simply go

ahead and invoke your asynchronous handler anyway—this way, the same method is called, regard-

less of whether the operation completes synchronously or asynchronously.

private void send_Click(object sender, RoutedEventArgs e)

{

 IPAddress ipAddress = IPAddress.Parse(hostText.Text);

 IPEndPoint endPoint = new IPEndPoint(ipAddress, Int32.Parse(portText.Text));

 String message = String.Format("{0}^Z", messageText.Text);

 byte[] buffer = Encoding.UTF8.GetBytes(message);

 SocketAsyncEventArgs socketArgs = new SocketAsyncEventArgs();

 socketArgs.RemoteEndPoint = endPoint;

 socketArgs.Completed += SocketAsyncEventArgs_Completed;

 socketArgs.SetBuffer(buffer, 0, buffer.Length);

 Socket socket = new Socket(

 AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp);

 bool isAsync = socket.ConnectAsync(socketArgs);

 if (!isAsync)

 {

 SocketAsyncEventArgs_Completed(socketArgs.ConnectSocket, socketArgs);

 }

}

The Completed event handler will be invoked for any of the three possible operations (connect,

send, receive). In this example, you’re not expecting to receive anything from the server, so you only

handle the connect and send cases. If it’s the case that a connection request has completed, go ahead

and send a message on that connection by using SendAsync. This will use the same SocketAsync

EventArgs that you originally populated with the message data. When you’re notiied that a send
operation has completed, simply report the relevant information by adding a suitable string to the

ListBox.

 ChAPTER 17 Enhanced Connectivity Features 649

private void SocketAsyncEventArgs_Completed(object sender, SocketAsyncEventArgs e)

{

 if (e.SocketError != SocketError.Success)

 {

 ShowStatus(e.SocketError.ToString());

 CloseSocket(e);

 }

 else

 {

 switch (e.LastOperation)

 {

 case SocketAsyncOperation.Connect:

 ConnectCompleted(e);

 break;

 case SocketAsyncOperation.Send:

 SendCompleted(e);

 break;

 }

 }

}

private void ConnectCompleted(SocketAsyncEventArgs e)

{

 if (e.ConnectSocket != null)

 {

 bool isAsync = e.ConnectSocket.SendAsync(e);

 if (!isAsync)

 {

 SocketAsyncEventArgs_Completed(e.ConnectSocket, e);

 }

 }

}

private void SendCompleted(SocketAsyncEventArgs e)

{

 String s = UTF8Encoding.UTF8.GetString(e.Buffer, 0, e.Buffer.Length);

 ShowStatus(String.Format("Sent: {0} ({1})", s.Replace("^Z",""), e.BytesTransferred));

 CloseSocket(e);

}

With Windows Phone socket support, you can both send and receive data between the phone and

a remote server. It is a small step from sending a text message that the server displays in a window, to

sending a text message that the server interprets as a command to execute arbitrary functionality. By

doing so, you can build an application that converts the phone into a remote control.

Note It’s worth mentioning here that if you implement this kind of system, you’d also want

to consider security carefully. In particular, you shouldn’t allow your server to blindly accept

commands from unauthorized clients.

650 PART Iv Version 7.5 enhancements

oData Client

In Chapter 11, “Web and Cloud,” you saw how to build an OData client application to connect to a

WCF data service. In Windows Phone 7, there was no Visual Studio support for generating client prox-

ies for WCF data services, so the only option was to use the DataSvcUtil tool from the command line.

The version 7.1 SDK does include Visual Studio support with which you can use the Add Service Refer-

ence Wizard in Windows Phone projects.

To highlight the differences, the following section will walk you through creating a version 7.1

application to mirror the version 7 application for connecting to the CustomerWebApp WCF data

service from Chapter 11. First, run the server application and connect to the service URL in a browser

window to verify that it’s functioning correctly. For example, navigate to http://localhost:8001/

CustomerWebApp.svc/Customers. Assuming that you have Feed Reading View turned off (to see how

to do this, go to Chapter 11) this should produce an XML document containing all of the Customer

records from the AdventureWorks database.

Next, take a copy of the DataServiceClient phone application from Chapter 11, and then strip out

the data service proxies. Speciically, remove the CustomerData.cs ile altogether. Also remove the
reference to the old System.Data.Services.Client.dll. Save the project. This was originally a version 7

project, so you still will not be able to use the Add Service Reference Wizard for a WCF data service.

To ix this, change the project properties to target Windows Phone OS version 7.1. Note that this is a
one-way operation—you cannot revert a version 7.1 project to a version 7 project (unless you’re will-

ing to edit the .csproj ile manually). After that’s done, you can use the Add Service Reference Wizard
option to generate the proxies, as shown in Figure 17-11.

Note Using DataSvcUtil from the command line does not include an option to specify the

namespace; you previously had to accept the default namespace (which in this example,

was AdventureWorksLT2008R2Model). Conversely, the Add Service Reference Wizard does

give you this option, In Figure 17-12, this has been set to AdventureWorks.

Don’t worry about the message about operations: the Add Service Reference Wizard cannot

generate operation (method) proxies, but this is academic because this is a data service that doesn’t

deine any explicit service contract operations anyway. When you click OK, in addition to generating
the proxies, the wizard automatically adds a reference to the updated System.Data.Services.Client.dll

for you.

http://localhost:8001/CustomerWebApp.svc/Customers
http://localhost:8001/CustomerWebApp.svc/Customers

 ChAPTER 17 Enhanced Connectivity Features 651

FIguRE 17-11 Add a WCF data service reference to generate proxies.

There is very little difference in the proxy code generated for version 7 as compared with ver-

sion 7.1. As before, the new proxies include an entities class derived from DataServiceContext—this

loosely represents the set of tables in the database. You get a class to represent each table that

simply implements INotifyPropertyChanged. Then, the entities class encapsulates a property of type

DataServiceQuery<T> for each table, where T is the table class type. So, in this example, there will be a

Customer table class, which deines a property for each table column. The one slight difference is that
each column property is additionally attributed with the DataMemberAttribute. This simply speciies
that the property is part of a data contract and is serializable via a DataContractSerializer.

With the appropriate change to the using statement to accommodate the new namespace, there

are no further changes required in the solution; just press F5 to run it, and you should experience

exactly the same behavior as in the 7 version, as shown in Figure 17-12.

652 PART Iv Version 7.5 enhancements

FIguRE 17-12 The WCF data service client application.

This version of the application uses the exact same client code as the 7 version, the critical ele-

ments of which are listed in the following for convenience:

private AdventureWorksLT2008R2Entities entities =

 new AdventureWorksLT2008R2Entities(

 new Uri("http://localhost:8001/CustomerDataService.svc"));

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 DataServiceQuery<Customer> query = entities.Customers;

 query.BeginExecute(Customers_Callback, query);

}

private void Customers_Callback(IAsyncResult result)

{

 DataServiceQuery<Customer> query =

 (DataServiceQuery<Customer>)result.AsyncState;

 var customers = query.EndExecute(result);

 Dispatcher.BeginInvoke(() => { customerList.ItemsSource = customers; });

}

Rather than using a DataServiceQuery<T> as you did previously, you could use a

DataServiceCollection<T>, instead (see the DataServiceClient_Collection solution in the sample code).

This provides greater lexibility for composing complex queries. It also uses a more formalized Load

Async/LoadCompleted model, rather than the generic IAsyncResult callback of the DataServiceQuery

approach.

 ChAPTER 17 Enhanced Connectivity Features 653

private AdventureWorksLT2008R2Entities entities =

 new AdventureWorksLT2008R2Entities(

 new Uri("http://localhost:8001/CustomerDataService.svc"));

private DataServiceCollection<Customer> customers;

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 //DataServiceQuery<Customer> query = entities.Customers;

 //query.BeginExecute(Customers_Callback, query);

 customers = new DataServiceCollection<Customer>(entities);

 customers.LoadCompleted += customers_LoadCompleted;

 var query = from c in entities.Customers select c;

 customers.LoadAsync(query);

}

//private void Customers_Callback(IAsyncResult result)

//{

// DataServiceQuery<Customer> query =

// (DataServiceQuery<Customer>)result.AsyncState;

// var customers = query.EndExecute(result);

// Dispatcher.BeginInvoke(() => { customerList.ItemsSource = customers; });

//}

private void customers_LoadCompleted(object sender, LoadCompletedEventArgs e)

{

 if (e.Error == null)

 {

 customerList.ItemsSource = customers;

 }

}

The LoadCompleted event is raised on the UI thread, so you no longer need to marshal UI opera-

tions via a Dispatcher object. The preceding changes to the code should produce exactly the same

results as before. Another optimization that might be worth making is to support paging of the data.

This requires changes on both the server (to send the data in pages) and on the client (to handle

paged data coming in). First, on the server, add the following line to the end of the InitializeService

method in the CustomerDataService.svc.cs (this speciies a 20-record page size for the Customers

table):

config.SetEntitySetPageSize("Customers", 20);

Next, in the client application, in the MainPage.xaml, insert a TextBlock below the title panel, and

above the ListBox. This will report the current count of data records received, updated dynamically.

<TextBlock Grid.Row="1" x:Name="customerCount" Text="count = " Margin="24,0,12,0"/>

654 PART Iv Version 7.5 enhancements

Finally, in the MainPage.xaml.cs, move the initialization of the ListBox.ItemsSource from the

LoadCompleted handler to the OnNavigatedTo override, and then change the LoadCompleted han-

dler to update the count of records as they come in from the service:

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 customers = new DataServiceCollection<Customer>(entities);

 customers.LoadCompleted += customers_LoadCompleted;

 var query = from c in entities.Customers select c;

 customers.LoadAsync(query);

 customerList.ItemsSource = customers;

}

private void customers_LoadCompleted(object sender, LoadCompletedEventArgs e)

{

 if (e.Error == null)

 {

 if (customers.Continuation != null)

 {

 customers.LoadNextPartialSetAsync();

 customerCount.Text =

 String.Format("count = {0}", customerList.Items.Count);

 }

 }

}

By using paged data, the application is more responsive to user interaction; for example, the user

can start working with the data, including scrolling through it, before it has all arrived from the server.

Another optimization that you can use is to avoid loading the data on every navigation, because

the current application does. To achieve this, you can serialize the data in the application or page

state dictionaries (see the DataServiceClient_State solution in the sample code). The key to this is the

Serialize and Deserialize methods exposed by the DataServiceState class. To add this functionality to

the application, add a couple of bool ields in the page class to track when data is loaded. Set these to
true in the LoadCompleted handler when all pages of the data are received.

private bool isAllDataReceived;

private bool isDataLoaded;

private void customers_LoadCompleted(object sender, LoadCompletedEventArgs e)

{

 if (e.Error == null)

 {

 if (customers.Continuation != null)

 {

 customers.LoadNextPartialSetAsync();

 customerCount.Text =

 String.Format("count = {0}", customerList.Items.Count);

 ChAPTER 17 Enhanced Connectivity Features 655

 }

 else

 {

 isAllDataReceived = true;

 isDataLoaded = true;

 }

 }

}

When the user navigates away from the current page (or the current application), the application

persists the data received from the data service to page state. The DataServiceState.Serialize method

takes an entities (that is, a DataServiceContext) object, and a dictionary of all the table class object

data. Note that there are two overloads of this method, which you can use to serialize either the

DataServiceContext object alone or the object with all its DataServiceCollections. If you choose the

second option, you must serialize all the collections. In this example, there is only one: the customers

collection.

There’s an additional complication if the data is paged. It is not possible to know how many rows

of data the server is going to send you at any given time. The only way to determine if all the data

is received is if the Continuation object is null in the LoadCompleted handler. When the application

persists the data received, it’s simpler if this is only done if all the data has been received. So, in the

OnNavigatedFrom override, you need to verify that all of the data is received before trying to persist

it. If not, you should remove the corresponding state dictionary so that the application does not

attempt to read in partial data when the user navigates back to the page.

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 if (isAllDataReceived)

 {

 Dictionary<String, Object> data = new Dictionary<String, Object>();

 data.Add("Customers", customers);

 State["DataServiceState"] = DataServiceState.Serialize(entities, data);

 }

 else

 {

 State.Remove("DataServiceState");

 }

}

The OnNavigatedTo override needs updating to match this behavior. If you haven’t yet loaded the

data, irst try to fetch it from page state, and if that fails, go out and get it from the remote service.
So, you test irst to see if data is loaded, and then use State.TryGetValue to try to get the data from

storage. If that is successful, you can deserialize the DataServiceState object to memory, extract the

persisted entities and customer data, and then load the data into the UI.

656 PART Iv Version 7.5 enhancements

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 if (!isDataLoaded)

 {

 object tmp;

 if (State.TryGetValue("DataServiceState", out tmp))

 {

 DataServiceState state = DataServiceState.Deserialize(tmp as String);

 var stateEntities =

 (AdventureWorksLT2008R2Entities)state.Context;

 var stateCustomers =

 (DataServiceCollection<Customer>)state.RootCollections["Customers"];

 LoadDataFromPageState(stateEntities, stateCustomers);

 }

 else

 {

 LoadDataFromService();

 }

 }

}

There are two custom methods: one that takes in the data retrieved from storage, and the other

that goes back to the remote service to get the data.

public void LoadDataFromPageState(

 AdventureWorksLT2008R2Entities stateEntities,

 DataServiceCollection<Customer> stateCustomers)

{

 entities = stateEntities;

 customers = stateCustomers;

 isDataLoaded = true;

}

private void LoadDataFromService()

{

 entities = new AdventureWorksLT2008R2Entities(

 new Uri("http://localhost:8001/CustomerDataService.svc"));

 customers = new DataServiceCollection<Customer>(entities);

 customers.LoadCompleted += customers_LoadCompleted;

 var query = from c in entities.Customers select c;

 customers.LoadAsync(query);

 customerList.ItemsSource = customers;

}

There’s one inal caveat with this approach. It is entirely possible that the data set returned from
the server is just too big to persist to state storage. Recall from Chapter 7, “Navigation State and Stor-

age,” that no single page is allowed to store more than 2 MB of data, and the application overall is

not allowed to store more than 4 MB. The simplest way to test this is to serialize representative (and

boundary) volumes of data, and then just measure the length. If the data is too big for state storage,

the alternative is to use isolated storage, instead, for which there is no enforced cap. This also assumes

that you have already trimmed the query to return only the data in which you’re interested, so that

you’re not retrieving or storing redundant data.

 ChAPTER 17 Enhanced Connectivity Features 657

search Extensibility

Another connectivity enhancement in version 7.1 is the ability to extend the Bing search experience

with custom behavior, integrating your application with the search results. There are two ways that

you can extend the Bing search behavior in your applications: App Connect, and App Instant Answer.

With both features, you can set up your application so that it shows up in the Bing search results

when the user taps the hardware Search button. The differences are summarized in Table 17-2.

TABlE 17-2 Bing Search Extensibility

Requirement App Connect App Instant Answer

WMAppManifest.xml Requires Extensions entries for each Bing cat-
egory that you want to extend.

No speciic changes required.

Extras.xml Required: Speciies captions to be used in the
search results apps pivot item.

Not used.

UriMapper Recommended: Allows you to reroute to a spe-
ciic page on application startup.

Not required.

Target page You can reroute to multiple different pages, de-
pending on the search item, if you want.

No option: Your application is launched
as normal, with its default startup page.

Query string You should parse the incoming query string for
categories and item names for which you want to
provide extensions.

You should parse the incoming query
string for the bing_query value.

Search connection Bing includes your application in the search re-
sults when the user’s search matches the catego-
ries for which you registered extensions.

Bing includes your application in the
search results if your application name
exactly matches the search string.

In both cases, your application is launched with a particular query string, and you are responsible

for parsing that query string to get the search context. It is then up to the application to decide what

behavior to execute, based on this search context. Each of these two approaches is discussed in more

detail in the following sections.

App Connect
The App Connect approach is the more complex of the two extensibility models. You register your

application in a way that gives you more ine-grained control over the conditions that Bing will use
to identify it as a suitable extension. You register your application for the search categories, or search

“extensions,” for which you believe your application has relevance.

Note It is important to choose the extensions carefully, and to avoid spamming the system

by registering for unrelated extensions. Applications that register excessive unrelated ex-

tensions will be removed from the marketplace.

If and when the user chooses to launch your application from the search results list, your applica-

tion is given a richer query string, with which you can ine-tune the consequent behavior. The overall
model for App Connect is illustrated in Figure 17-13. In summary, the user initiates a Bing search, and

then taps one of the items in the search results. This navigates to a Quick Card, which is a pivot page

658 PART Iv Version 7.5 enhancements

that offers an “about” pivot with basic information, a “reviews” pivot, and an “applications” pivot. Your

application can be listed in the applications pivot.

Bing extensions to
register for

WMAppManifest.xml

Captions for the apps
pivot

Install registers
extensions

Bing fetches registered
extension apps

User launches
selected app

Extras.xml

Map launch querystring
to target page

RootFrame.UriMapper

Extract item name from
navigation querystring

Target Page

Application

Application Platform

Bing Search
Results

(web pivot)

Item Quick
Card

apps
pivot

8

9

1

3

Install
App

User
performs a
Bing search

User taps
a search

result

User
swipes to
apps pivot

App DB

2

5

4 6

7

FIguRE 17-13 The App Connect extensibility model.

The following steps walk through how to create an App Connect search extension. A completed

example is in the SimplestAppConnect solution in the sample code.

First, create a new Windows Phone application project. Add a second page to the project, named

MyTargetPage. This will be the target page to which to navigate when the application is launched via

App Connect. In the XAML for this page, add a simple TextBlock; the application will set the text for

this dynamically, from the item information in the Bing search results.

<TextBlock x:Name="Target" TextWrapping="Wrap" Margin="{StaticResource PhoneHorizontalMargin}"/>

 ChAPTER 17 Enhanced Connectivity Features 659

Then, add an Extensions section to your WMAppManifest.xml, within the App element, after the

Tokens section. Note that the Extension entry must specify one of the deined extension identiiers,
as listed in the Search Registration and Launch Reference for Windows Phone, which you can ind at
http://msdn.microsoft.com/en-us/library/hh202958(VS.92).aspx. In this example, the application reg-

isters for just one extension: Bing_Products_Gourmet_Food_and_Chocolate. The ConsumerID is always

the same: “{5B04B775-356B-4AA0-AAF8-6491FFEA5661}”. This speciies that this is an extension to
Bing search. The TaskID is always “_default”, and the ExtraFile must be a relative path to the Extras.xml

ile in your project.

<Extensions>

 <Extension

 ExtensionName="Bing_Products_Gourmet_Food_and_Chocolate"

 ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5661}"

 TaskID="_default"

 ExtraFile="Extensions\\Extras.xml" />

</Extensions>

This ile doesn’t exist yet, so you should next add a new XML ile to the project and name it Extras.
xml. The build action for Extras.xml should be set to Content. The Extras.xml must be in a folder in

your project named Extensions. However, the path you specify in the ExtraFile attribute can omit the

Extensions root path, and just specify “Extras.xml”—either will work, so long as the ile itself is in the
right place. This ile is where you specify the strings to be used in the Bing search results list for your
application.

<?xml version="1.0" encoding="utf-8" ?>

<ExtrasInfo>

 <AppTitle>

 <default>My Fab Search Extension</default>

 </AppTitle>

 <Consumer ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5661}">

 <ExtensionInfo>

 <Extensions>

 <ExtensionName>Bing_Products_Gourmet_Food_and_Chocolate</ExtensionName>

 </Extensions>

 <CaptionString>

 <default>All you need to know about coffee</default>

 </CaptionString>

 </ExtensionInfo>

 </Consumer>

</ExtrasInfo>

You must supply an AppTitle with at least one string for the default language. In the Consumer sec-

tion, the ConsumerID is again the same Bing search ID. Under this, you list all the Extensions that you

want to register for Bing search. Again, you must provide at least one default CaptionString. These

two strings are used in the search results, which you can see in Figure 17-14. The speciic search item
is displayed as the page title, and the application’s title string and caption strings are used on the

apps pivot item, alongside the application’s icon. The application’s icon (the 62x62–pixel image) for an

extension application should not use transparency.

http://msdn.microsoft.com/en-us/library/hh202958(VS.92).aspx

660 PART Iv Version 7.5 enhancements

FIguRE 17-14 App title and caption strings in the Bing search results.

The next item you need is a custom URI mapper. Add a new class ile to your project, and then
change the code to derive your class from UriMapperBase. The purpose of the custom URI mapper is

to map the navigation query string that Bing search passes to your application to the correct target

page. For example, map this incoming URI:

/SearchExtras?ProductName=coffee&Category=Bing_Products_Gourmet_Food_and_Chocolate

to this target page, including the original query string parameters:

/MyTargetPage.xaml?ProductName=coffee&Category=Bing_Products_Gourmet_Food_and_Chocolate.

In addition to determining the correct target page, you’re free to modify the parameter list

according to your requirements before passing it on, if you need to. When the application has been

launched via Bing search App Connect, the URI will include the “/SearchExtras” substring. So, if you

examine the URI and ind that it does not include this substring, you should immediately return,
because this means that the application has been launched normally, not via Bing search.

public class MyUriMapper : UriMapperBase

{

 public override Uri MapUri(Uri uri)

 {

 String inputUri = uri.ToString();

 if (inputUri.Contains("/SearchExtras"))

 {

 if (inputUri.Contains("Bing_Products_Gourmet_Food_and_Chocolate"))

 {

 ChAPTER 17 Enhanced Connectivity Features 661

 String outputUri = inputUri.Replace(

 "/SearchExtras", "/MyTargetPage.xaml");

 return new Uri(outputUri, UriKind.Relative);

 }

 }

 return uri;

 }

}

In the code, the one and only public MapUri method takes in the search URI, as supplied by Bing.

So, the MapUri method parses the URI, and irst looks for the “/SearchExtras” substring. If this is
found, it then goes on to look for the Products category (that is, “Bing_Products_Gourmet_Food_and_

Chocolate”).

In this example, you have only one target page for all search requests. In a sophisticated applica-

tion, you might have multiple pages; therefore, you would need to implement a more complex deci-

sion tree to determine which page to return from the URI mapper. You would also typically search for

more than one category and one product.

To use the URI mapper in your application, you create an object of this type, and then set this as

the value of the UriMapper property in the RootFrame. The best place to do this is at the end of the

InitializePhoneApplication method in the App class:

RootFrame.UriMapper = new MyUriMapper();

This causes the system to load the speciied target page and pass in the navigation URI, including
the query string, as part of the NavigationContext. This comes in to the page in the form of a diction-

ary of key-value pairs.

In the target page, override the OnNavigatedTo method to examine the incoming query string.

Look for an incoming ProductName. Having found the corresponding value for the key-value pair—in

this case, “coffee”—you then make a decision as to whether you know anything about this speciic
product. If so, you can then go on to do whatever domain logic you want, based on this value. In this

example, you simply indicate that this is a known product by setting the TextBlock.Text value.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 String tmp;

 if (NavigationContext.QueryString.TryGetValue("ProductName", out tmp))

 {

 String product = (String)tmp;

 if (product.ToLowerInvariant().Contains("coffee"))

 {

 Target.Text = String.Format("We know about {0}.", product);

 }

 else

 {

 Target.Text = String.Format("We don't know about {0}.", product);

 }

 }

}

662 PART Iv Version 7.5 enhancements

With the code complete, you can test this, either in the emulator or on a physical device. Tap the

Bing search button, and then enter coffee. In the primary search results, swipe over to the web pivot

item, if it’s not already selected. Then, scroll down to ind the products list. If necessary, tap the Next
Product Results link to get to a coffee product that contains the string “coffee”. Tap any such item:

this takes you to the Quick Card for that item. In the Quick Card, swipe over to the apps pivot item;

your application should be listed there. When you tap the application to launch it, the URI mapper is

invoked, and the application navigates to the target page and updates the text with the Bing search

information.

If you want to test the functionality of the application in a more deterministic way, you can provide

a fake launch query string in the WMAppManifest.xml ile. For example, replace the DefaultTask entry

with an entry that speciies a SearchExtras query string (without a leading slash). You can also test

the negative case by providing a query string that should not result in listing your application in the

search results. Be aware that this technique must only be used for testing—and the manifest submit-

ted to marketplace for publication must use your default page, without additional parameters.

<Tasks>

 <!--<DefaultTask Name ="_default" NavigationPage="MainPage.xaml"/>-->

 <DefaultTask Name="_default" NavigationPage="SearchExtras?ProductName=coffee&

 Category=Bing_Products_Gourmet_Food_and_Chocolate"/>

 <!--<DefaultTask Name="_default" NavigationPage="SearchExtras?ProductName=bananas&

 Category=Bing_Products_Gourmet_Food_and_Chocolate"/>-->

</Tasks>

Suppose that you want to support more than one extension category, and perhaps provide differ-

ent caption strings for some or all of these? Or, suppose that you want to map the launch URI to one

of several different target pages, according to some part of the query string? All of these behaviors

are possible (see the SimpleAppConnect solution in the sample code). Consider irst, the require-

ment to support multiple extension categories. To do this, simply add each additional category in the

Extensions section in your WMAppManifest.xml ile. In the listing that follows, the application sup-

ports one of each of the three major categories: Products, Places, and Movies.

 <Extensions>

 <Extension ExtensionName="Bing_Products_Gourmet_Food_and_Chocolate"

 ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5661}" TaskID="_default"

 ExtraFile="Extensions\\Extras.xml" />

 <Extension ExtensionName="Bing_Places_Food_and_Dining"

 ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5661}" TaskID="_default"

 ExtraFile="Extensions\\Extras.xml" />

 <Extension ExtensionName="Bing_Movies" ConsumerID="{5B04B775-356B-4AA0-AAF8-6491FFEA5661}"

 TaskID="_default" ExtraFile="Extensions\\Extras.xml" />

 </Extensions>

Note that there’s a difference between Bing_Movies and Bing_Products_Movies—the latter will

include results for movies that are not found to be showing in theatres; for example, if the user is

searching for movies to buy on DVD. In the Extras.xml, you could group multiple ExtensionName

entries to share the same caption strings. You can also divide your supported categories into groups,

each with its own caption strings.

 ChAPTER 17 Enhanced Connectivity Features 663

<ExtensionInfo>

 <Extensions>

 <ExtensionName>Bing_Products_Gourmet_Food_and_Chocolate</ExtensionName>

 <ExtensionName>Bing_Places_Food_and_Dining</ExtensionName>

 </Extensions>

 <CaptionString>

 <default>All you need to know about coffee</default>

 </CaptionString>

</ExtensionInfo>

<ExtensionInfo>

 <Extensions>

 <ExtensionName>Bing_Movies</ExtensionName>

 </Extensions>

 <CaptionString>

 <default>Coffee in movies</default>

 </CaptionString>

</ExtensionInfo>

You could also enhance your URI mapper to target different pages for the different categories.

public override Uri MapUri(Uri uri)

{

 String inputUri = uri.ToString();

 if (inputUri.Contains("/SearchExtras"))

 {

 String targetPageName = "/MainPage.xaml";

 if (inputUri.Contains("Bing_Products"))

 {

 targetPageName = "/ProductTargetPage.xaml";

 }

 else if (inputUri.Contains("Bing_Places"))

 {

 targetPageName = "/PlaceTargetPage.xaml";

 }

 else if (inputUri.Contains("Bing_Movies"))

 {

 targetPageName = "/MovieTargetPage.xaml";

 }

 String outputUri = inputUri.Replace("/SearchExtras", targetPageName);

 return new Uri(outputUri, UriKind.Relative);

 }

 return uri;

}

Clearly, you could take this a step further by pivoting your decisions off any of the elements of the

query string. To ensure robustness, you should also decode the incoming URI (typically, with Http

Utility.UrlDecode) before processing it, and then re-encode it (with HttpUtility.UrlEncode) before

returning from your MapUri method.

664 PART Iv Version 7.5 enhancements

App Instant Answer
The second search extensibility model is simpler. It requires no special manifest entries, no Extras.xml,

and no URI mapper. You have no choice about which page to launch based on the search results, and

Bing will always launch your application using its default page. The way Bing identiies your applica-

tion as being suitable for listing in the search results is internal to Bing. As of this writing, the deter-

mining factor is the application name; however, keep in mind that this could change at any time. The

overall model for App Instant Answer is summarized in Figure 17-15.

Extract bing_query from
navigation context

Default Page

Download app

Application

Application Platform

Bing Search
Results

(web pivot)

If app is installed,
Bing provides launch link,
otherwise download link

User taps
an app in

the list

6

Bing finds matching
app names in
marketplace

Launch installed appUser
performs a
Bing search

App DB

5a

Marketplace

4

1

2

3

5b

FIguRE 17-15 The App Instant Answer extensibility model.

To create an App Instant Answer application, create a Windows Phone application as normal.

An example of this is in the SimpleAppInstantAnswer solution in the sample code. When the user

performs a Bing search, it might include applications in the web pivot. Currently, it will do so only if

your application name starts with the whole of the user’s search term, ignoring case. For example, if

the user searches for “banana”, and your application name is “Banana Instant Answer”, then this will

match, and Bing will potentially add your application to the results list. On the other hand, if your

application name is “Banoffee Instant Answer”, then the match fails. To set your application name,

you set the Title attribute of the App element in your WMAppManifest.xml. Typically you set this in

 ChAPTER 17 Enhanced Connectivity Features 665

the project properties page in Visual Studio, although you can also edit the manifest manually, if you

prefer, as follows:

Title="Banana Instant Answer"

Recall from Chapter 1, “Vision and Architecture,” that there are two Title entries in the manifest:

one is an attribute of the application element, the other is a subelement of the Tokens element. The

application element’s Title attribute is the one that you want here. Also note that even if your applica-

tion name exactly matches the user’s search term, there’s no guarantee that your application will be

listed in the search results.

If you want to allow for the possibility that you’ll be included in search results for App Instant

Answers, you should test for the bing_query parameter in the navigation query string.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 String query;

 if (NavigationContext.QueryString.TryGetValue("bing_query", out query))

 {

 // Do something useful with this information.

 }

}

As with App Connect, you can test an App Instant Answer application by providing a fake launch

URI in your WMAppManifest.xml ile. And also just as before, this must be removed before submitting
your application to marketplace.

<Tasks>

 <!--<DefaultTask Name ="_default" NavigationPage="MainPage.xaml"/>-->

 <DefaultTask Name="_default" NavigationPage="MainPage.xaml?bing_query=Banana" />

</Tasks>

Finally, be aware that this is the only way that you can test your application, because even on the

emulator, Bing will only include App Instant Answer applications from the published catalog in mar-

ketplace. If it inds an application in marketplace that is already installed on the phone, it will change
the link from a marketplace download link to an installed application link, but it will not include an

installed application unless it irst inds a match for the application in the marketplace.

summary

In this chapter, you saw how the Metro tiles feature has been extended and made available to third-

party developers so that you can build applications that align with the system features and give the

user a sense of an integrated ecosystem. The tile enhancements, along with toast enhancements, are

also used by the push notiication system, allowing your server to target multiple secondary tiles,
both back and front. Sockets is the major new connectivity feature, which opens up a wide range of

possibilities for building data transfer, remote control, and multi-party remote connected experiences.

Finally, Bing search extensibility does very much the same thing, allowing you to make your applica-

tion a seamless part of the user’s day-to-day experience.

 667

C h A P T E R 1 8

Data Support

In Windows Phone 7, you can store small amounts of application and page state in the standard state

dictionaries. You can also store large amounts of data in your application’s isolated storage. Isolated

storage is based on a simple concept of folders and iles, but there is no structured storage support
in version 7. On the other hand, Windows Phone 7.1 introduces support for local databases. These

provide a rich set of database capabilities, both in terms of data structure and that of Language-Integrated

Query (LINQ). You can also encrypt your database (either some or all of the data stored there), and,

most important, you can encrypt the user credentials that secure any application data on the phone.

In keeping with the user experience (UX) paradigm of encouraging seamless integration with stan-

dard features, you now also have the ability to integrate with the user’s aggregated contact and

calendar data. Finally, Microsoft has released an early version of the Sync Framework, by which phone

applications (among others) can establish synchronization contexts with remote data servers.

local Database and lInQ-to-sQl

From Windows Phone 7.1, your application can create a database in isolated storage and perform

standard create/read/update/delete (CRUD) operations on it via LINQ-to-SQL statements. The data-

base ile can be either in your application install folder or in the application’s isolated storage. Loose
iles that are packaged as content in your XAP—potentially including a local database ile—all end
up in the application install folder. Your application can access this location, but only for read opera-

tions. On the other hand, your application has full read/write access to its isolated storage. Each local

database is local to its application; it is not accessible outside that application. This contrasts with the

traditional desktop or server database model, in which there is typically a database service running

continuously, with access to all attached databases.

You can create a local database as part of your application code, and you can also prepare a data-

base ile in advance and deploy it with your application. Under the covers, the database will effec-

tively be a SQL Compact Edition (SQL-CE) database ile (.sdf). This means that you can use external
tools such as the Isolated Storage Explorer Tool (which ships with the version 7.1 SDK) and SQL Server

Management Studio (SSMS) to work with the database independently of the application. That having

been said, developers are encouraged to think in terms of local databases, not in terms of SQL-CE.

Exactly what this means will be discussed in the following sections. Figure 18-1 illustrates the develop-

ment model at a high level.

668 PART Iv Version 7.5 enhancements

Application

DataContext

Isolated Storage

SDF

ISEToolSSMS

LINQ-to-SQL

T-SQL Upload/
Download

Upload/
Download

Desktop Filesystem

SDF

FIguRE 18-1 The local database development model.

From a code perspective, you use the DataContext class to represent your database, and LINQ

mapping types such as Table and Column to represent the database schema. Access in code is via

LINQ-to-SQL only; for example, you cannot use Micrisift ADO.NET or T-SQL in your code. You derive a

custom class from System.Data.Linq.DataContext. This is completely different from the Framework

Element.DataContext property (which you recall is typed as an object). The general model is shown

in Figure 18-2, using Employees and Customers as examples of tables in the database, and Name and

Salary as examples of columns in the Employees table.

Page (View)

ListBox

TextBlock: Name

TextBlock: Salary

ViewModel

List<Employee>

List<Customer>

Table<Employee>

Table<Customer>

Column: Name

Column: Salary

DataContext
(Model)

Table

FIguRE 18-2 Local database support: code model.

 ChAPTER 18 Data Support 669

To use a local database in your application, the minimum requirement is to have a custom Data

Context with at least one Table, where that Table deines at least one Column. You would typically

have multiple Column objects per Table, and often multiple Table objects. If you’re using some form

of Model-View-ViewModel (MVVM), you would also typically have a viewmodel bridging your page

user interface (UI) and your DataContext, which represents your overall model.

Create and read
Figure 18-3 is a screenshot of the ShoppingList_CR solution in the sample code. This provides a UI in

which the user can add new items to build a shopping list. This list is displayed in a ListBox at the bot-

tom of the page. As she adds each item, the application adds the item to a local database. The ListBox

is data-bound to a viewmodel. The viewmodel sends and receives the data to and from the local

database via a DataContext. In this example, there is only one Table, and the application displays only

one Column (although the schema for the database table includes a second column for row identity,

which is not displayed in the UI).

FIguRE 18-3 A simple shopping list application.

To build this application, you would typically start with the model. Deine a class for each database
table, specifying the columns with which you’re going to work. For the shopping list application, you

can deine a ShoppingItem class, decorated with the Table attribute, which is deined in the System.

Data.Linq.Mapping namespace. For each column, you deine a public property with the Column

attribute. In this attribute, you specify properties that map to the database schema properties for this

column, including the data type and size, whether the column is nullable, whether it is a primary key,

whether it is auto-generated by the database engine, and so on. Each shopping list has a simple string

column for the Name, and an integer column for the Id. The Id column is an auto-generated identity

670 PART Iv Version 7.5 enhancements

column in the database, which will not be used in the UI. This is not essential, but it is very common

and serves to illustrate some of the typical schema options that are available to you. The class imple-

ments INotifyPropertyChanged so that it can take part in a data-binding chain that runs between the

UI and the database.

[Table]

public class ShoppingItem : INotifyPropertyChanged

{

 private int id;

 [Column(

 IsPrimaryKey = true, IsDbGenerated = true,

 DbType = "INT NOT NULL Identity", CanBeNull = false,

 AutoSync = AutoSync.OnInsert)]

 public int Id

 {

 get { return id; }

 set

 {

 if (id != value)

 {

 id = value;

 NotifyPropertyChanged("Id");

 }

 }

 }

 private String name;

 [Column]

 public String Name

 {

 get { return name; }

 set

 {

 if (name != value)

 {

 name = value;

 NotifyPropertyChanged("Name");

 }

 }

 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler!= null)

 {

 handler(

 this, new PropertyChangedEventArgs(propertyName));

 }

 }

}

 ChAPTER 18 Data Support 671

Next, you must deine a custom DataContext class to hold your Table objects. This is very simple: it

must derive from DataContext, it must initialize the base class with the data source properties (effec-

tively, a connection string), and it must contain one or more Table<T> collections, for which each one

represents the collection of database rows for a given Table type. In this example, the database is in

isolated storage—this is the normal location, which gives you full CRUD capabilities on the database ile.

public class ShoppingDataContext : DataContext

{

 public ShoppingDataContext()

 : base("Data Source=isostore:/ShoppingList.sdf")

 {

 }

 public Table<ShoppingItem> ShoppingItems;

}

Moving up a level, although a viewmodel is not required, it is common practice for all the reasons

discussed in Chapter 4, “Data Binding.” To deine a suitable viewmodel, your class should include a
ield for the custom DataContext object, and you initialize this in the viewmodel constructor. If the

database doesn’t already exist, you can create it at this time by using CreateDatabase. The viewmodel

also exposes a data-bindable public property for the collection of shopping items.

public class MainViewModel

{

 private ShoppingDataContext shoppingDb;

 public ObservableCollection<ShoppingItem> Items { get; private set; }

 public MainViewModel()

 {

 shoppingDb = new ShoppingDataContext();

 if (!shoppingDb.DatabaseExists())

 {

 shoppingDb.CreateDatabase();

 }

 }

 public void LoadData()

 {

 if (Items == null)

 {

 IQueryable<ShoppingItem> shoppingQuery =

 from ShoppingItem item in shoppingDb.ShoppingItems select item;

 Items = new ObservableCollection<ShoppingItem>(shoppingQuery);

 }

 }

 internal void AddItem(string name)

 {

 ShoppingItem item = new ShoppingItem() { Name = name };

 Items.Add(item);

 shoppingDb.ShoppingItems.InsertOnSubmit(item);

 }

 internal void SaveChanges()

672 PART Iv Version 7.5 enhancements

 {

 shoppingDb.SubmitChanges();

 }

 internal void DisposeDb()

 {

 shoppingDb.Dispose();

 }

}

Take a look at the last two methods in the viewmodel. These both wrap calls to the underlying

DataContext: one for persisting any changes to the database, and the other for disconnecting the

database. The wrappers are exposed so that other parts of the system can access them—speciically,
in this example, the view classes—without directly exposing the DataContext object.

Note Unlike earlier database technologies in Microsoft .NET, the DataContext is actually

very aggressive about releasing the underlying database connection, so disposing of it is

not normally necessary. You should examine your use of the DataContext to see if you need

to call Dispose at any time.

The user will be adding items via the UI, but the UI of course should not work directly with

the database. Instead, the UI will make calls into the viewmodel—speciically, to the AddItem and

SaveChanges methods—which internally add the new item to the data-bound collection and also to

the underlying database. The most interesting method is the custom LoadData method: this performs

a LINQ-to-SQL query to extract the selected data rows from the database and populate the data-

bound collection property. In this example, the query simply fetches all rows from the ShoppingItems

table, but you could provide any suitable LINQ query to ilter data or combine data from multiple
tables. The viewmodel is initialized and exposed in the standard fashion as a public property of the

App class.

private static readonly object myLock = new object();

private static MainViewModel viewModel = null;

public static MainViewModel ViewModel

{

 get

 {

 lock (myLock)

 {

 if (viewModel == null)

 {

 viewModel = new MainViewModel();

 //viewModel.LoadData();

 }

 }

 return viewModel;

 }

}

 ChAPTER 18 Data Support 673

You could load the data when the viewmodel is created, but this could pose a performance issue

if there’s a lot of data to read from the database. In this scenario, you should consider deferring the

data-loading operation to a separate LoadData method, or perhaps a property getter such as a

GetViewModel method. You should also consider whether the potential performance penalty is severe

enough to warrant making this operation asynchronous, and moving it off to another thread, so as to

avoid the risk of negatively impacting the behavior of the UI.

Up at the top of the stack, the view deines a TextBox and a Button for the user to add a new item,

and a ListBox whose items are data-bound to the Name property exposed from the viewmodel.

<StackPanel Grid.Row="1" Margin="12,0,12,0">

 <Grid>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="380" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <TextBox Grid.Column="0" x:Name="newItem" />

 <Button Grid.Column="1" x:Name="addItem" Content="+" Click="addItem_Click"/>

 </Grid>

 <ListBox x:Name="shoppingList" ItemsSource="{Binding Items}" >

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock Text="{Binding Name}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

 </ListBox>

</StackPanel>

When the user adds a new item, the page code-behind responds by invoking the AddItem method

on the viewmodel. It is also common practice to save and load the data when the user navigates to

and from the page.

private void addItem_Click(object sender, RoutedEventArgs e)

{

 App.ViewModel.AddItem(newItem.Text);

}

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 App.ViewModel.LoadData();

 shoppingList.ItemsSource = App.ViewModel.Items;

}

protected override void OnNavigatedFrom(NavigationEventArgs e)

{

 App.ViewModel.SaveChanges();

}

674 PART Iv Version 7.5 enhancements

That’s all the functionality you need for basic use of a local database. With this code, you can cre-

ate the database, write to it, and read from it with suitably loosely coupled data-binding to the UI.

As a developer convenience during testing, it is often useful to have dummy data to work with. There

are two simple ways to build this in. First, you can simulate the user adding multiple new items. In this

example, there is an App Bar, which is conditionally hidden.

public MainPage()

{

 InitializeComponent();

 DataContext = App.ViewModel;

#if TEST_DATA

 ApplicationBar.IsVisible = true;

#endif

}

private void appBarClear_Click(object sender, System.EventArgs e)

{

 App.ViewModel.DeleteAll();

}

private void appBarLoad_Click(object sender, System.EventArgs e)

{

 App.ViewModel.LoadTestData();

}

The test-only view methods call down to invoke test-only DeleteAll and LoadTestData methods in

the viewmodel, which delete all rows in the table or add multiple new items, respectively. When you

want to delete items in the database—either a single item, or a collection—you must pass the item(s)

to the corresponding delete method. Under the covers, this is executing the equivalent of a T-SQL

DELETE WHERE statement.

internal void DeleteAll()

{

 Items.Clear();

 shoppingDb.ShoppingItems.DeleteAllOnSubmit(shoppingDb.ShoppingItems);

 SaveChanges();

}

internal void LoadTestData()

{

 Items.Add(new ShoppingItem() { Name = "coffee" });

 Items.Add(new ShoppingItem() { Name = "bacon" });

 Items.Add(new ShoppingItem() { Name = "wine" });

 Items.Add(new ShoppingItem() { Name = "croissants" });

 Items.Add(new ShoppingItem() { Name = "more coffee" });

 Items.Add(new ShoppingItem() { Name = "strawberries" });

 shoppingDb.ShoppingItems.InsertAllOnSubmit(Items);

 SaveChanges();

}

 ChAPTER 18 Data Support 675

A second developer convenience is to provide a designer-only set of dummy data. The project

includes an XML ile called MainViewModelSampleData.xaml, which deines an arbitrary set of dummy
data, based on the ShoppingItem type.

<local:MainViewModel

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="clr-namespace:ShoppingList" >

 <local:MainViewModel.Items>

 <local:ShoppingItem Name="design one" />

 <local:ShoppingItem Name="design two" />

 <local:ShoppingItem Name="design three" />

 <local:ShoppingItem Name="design four" />

 <local:ShoppingItem Name="design five" />

 <local:ShoppingItem Name="design six" />

 </local:MainViewModel.Items>

</local:MainViewModel>

This is referenced in the page deinition in the MainPage.xaml. Finally, this allows you to declare
the ItemsSource for the ListBox in XAML, which in turn is what allows the UI designer to display data in

the emulator design surface.

<phone:PhoneApplicationPage

 x:Class="ShoppingList.MainPage"

 d:DataContext="{d:DesignData Models/MainViewModelSampleData.xaml}"

...unchanged code omitted for brevity

 <ListBox x:Name="shoppingList" ItemsSource="{Binding Items}" >

Update and Delete
So far, you’ve seen how to create the database, create new rows, write to the database, and read from

it; or put another way, you’ve learned about the CR in CRUD. To add update and delete (UD) support

is trivial once the core behavior is in place. Figure 18-4 shows the ShoppingList_CRUD solution in the

sample code, which includes the ability for the user to edit or delete existing items.

676 PART Iv Version 7.5 enhancements

FIguRE 18-4 The shopping list application with update and delete capabilities.

To add this support, irst update the view by replacing the single TextBlock with a combined Button

and TextBox. The user can tap the button to delete the current item. Now that he has a TextBox, he

can edit the contents of the item. You need to change the binding to specify Mode=TwoWay, which

will automatically propagate the user’s edits back to the viewmodel. You can update the viewmodel

to call SubmitChanges to propagate the changes back through the DataContext to the database.

Implement the Click handler for the delete Button to call into the viewmodel’s DeleteItem method.

This method doesn’t exist yet, so when you type this in, Visual Studio will ask you if you want to create

a stub method for this in the viewmodel. You should accept this suggestion. Keep in mind that you

need to get the DataContext from the Button object. This is slightly confusing, because what you want

here is the data-binding DataContext object, which in this case maps to a Table item. This is not the

custom DataContext type.

private void deleteItem_Click(object sender, RoutedEventArgs e)

{

 Button b = sender as Button;

 if (b != null)

 {

 ShoppingItem item = b.DataContext as ShoppingItem;

 App.ViewModel.DeleteItem(item);

 }

}

You can then implement the new DeleteItem method in the viewmodel to remove the speciied
item from the collection and also remove it from the underlying database.

 ChAPTER 18 Data Support 677

internal void DeleteItem(ShoppingItem item)

{

 Items.Remove(item);

 shoppingDb.ShoppingItems.DeleteOnSubmit(item);

 SaveChanges();

}

As you can see, supporting update and delete operations on the database data is simple, once the

basic connection is in place. However, as you’ll learn in the following section, supporting updates to

the database schema is a little more involved.

Schema Updates
As you improve your application over time and release updated versions, sooner or later you’ll prob-

ably need to update the database schema. This presents an issue in circumstances for which your

application is creating new data dynamically, as in the previous examples. When you deploy your

new version, you don’t want to wipe out the user’s existing data. Consequently, you must accommo-

date the fact that her old data might not match the new schema. If your schema changes are purely

additive, and where any new columns are all nullable, then you can simply ignore the gaps in the old

data. Otherwise, you can proactively update the user’s existing data to match the new schema, and

this is typically done fairly early in the process, upon the irst time the user runs the new version of the
application.

Figure 18-5 shows an updated version of the shopping list application (this is the ShoppingList_v1

solution in the sample code), with which the user can specify a quantity for each item.

FIguRE 18-5 The shopping application, using an updated schema.

678 PART Iv Version 7.5 enhancements

If you work through the previous version of the application and then continue, working on the

updated functionality in this section, you run the risk of missing one of the real-world dimensions to

application development. To be speciic, this is the historical dimension, wherein the user has been
using your application in the wild and has saved some number of items to the local database on her

phone. Recall that when you do a clean/rebuild cycle in Visual Studio, this translates to an uninstall/

install cycle on the emulator or device. So, you might miss the opportunity to test the update sce-

nario. One way to mitigate this is to take the following steps:

1. Rebuild your new version and deploy it to the emulator or device to ensure that all the new

functionality works in isolation; that is, it takes the update dimension out of the picture. Doing

this irst also means that you have a built application that you can later deploy without unin-

stalling any existing version’s data.

2. Clean/rebuild and run your older version. Use it to generate a representative set of data. This

will uninstall the new version and remove any isolated storage.

3. Run (but don’t rebuild) your new version. This will deploy the new version without removing

the old isolated storage. This faithfully replicates the real-world update scenario.

Alternatively, for this step, you could use the ISETool to copy the old isolated storage contents

to your computer. Next, build/deploy your new version, and then use ISETool to copy the old

isolated storage contents back from your computer to the emulator/device. The ISETool is

discussed later in this chapter.

For the new version, the changes to the application itself are straightforward. First, add a nullable

property to the ShoppingItem table type. This needs to be nullable to allow for the fact that any exist-

ing rows in the database will not have a value for this column. Note that because this is a value type,

it is declared as explicitly nullable. If it were instead a reference type, such as a string, then you would

not need to make it explicitly nullable (because, of course, all reference types are implicitly nullable).

private int? quantity;

[Column(CanBeNull = true)]

public int? Quantity

{

 get { return quantity; }

 set

 {

 if (quantity != value)

 {

 quantity = value;

 NotifyPropertyChanged("Quantity");

 }

 }

}

 ChAPTER 18 Data Support 679

The viewmodel’s AddItem method is updated accordingly.

internal void AddItem(string name, int qty)

{

 //ShoppingItem item = new ShoppingItem() { Name = name };

 ShoppingItem item = new ShoppingItem() { Name = name, Quantity = qty };

 Items.Add(item);

 shoppingDb.ShoppingItems.InsertOnSubmit(item);

}

And, so is the view’s button Click handler. The XAML declares a second two-way, data-bound

TextBox for the quantity ield to go with this.

private void addItem_Click(object sender, RoutedEventArgs e)

{

 //App.ViewModel.AddItem(newItem.Text);

 App.ViewModel.AddItem(newItem.Text, Int32.Parse(quantity.Text));

}

These updates are suficient for the application to provide the required new functionality. How-

ever, there is additional work required to support the upgrade deployment scenario. So, you should

irst test the new version in isolation. Then, you should follow the aforementioned upgrade steps to
test the upgrade path. Before you do that, you should add code to handle the upgrade situation, as

described in the following sections.

It’s quite possible that your old version did not include any notion of version, apart from the

standard .NET AssemblyVersion attribute in the AssemblyInfo.cs. You could use this assembly version

value to determine the schema version, but they’re not really directly related; there might be all kinds

of reasons why the assembly version changes, even though the schema version does not. It’s better

to deine a speciic schema version numbering scheme, and this can be as simple as an integer value.
The logical place to declare this is in your DataContext class.

public class ShoppingDataContext : DataContext

{

 private const int version = 1;

 public int Version

 {

 get { return version; }

 private set { }

 }

 public ShoppingDataContext()

 : base("Data Source=isostore:/ShoppingList.sdf")

 {

 }

 public Table<ShoppingItem> ShoppingItems;

}

680 PART Iv Version 7.5 enhancements

You can then test for the version number in your viewmodel class when you set up the database

connection. To do this, use the DatabaseSchemaUpdater class, which is speciic to the phone and
deined in the Microsoft.Phone.Data.Linq namespace. When you attempt to connect to the database,

if it doesn’t already exist, you can simply go ahead and create it and set its version number to the cur-

rent version number in your DataContext class. On the other hand, if the database does already exist,

then this could be an upgrade scenario. In this case, you must test the version number of the existing

database. If this is the irst version of the database, then the DatabaseSchemaVersion property will be

set to 0 by default. For any other version, the property is set to whatever value you set it to when you

update it.

So, in the shopping list application, if you’re updating from the old version, you need to add the

new Quantity column (as deined in the new ShoppingItem table type), update the version number,

and then call the Execute method to persist the changes.

public MainViewModel()

{

 shoppingDb = new ShoppingDataContext();

 if (!shoppingDb.DatabaseExists())

 {

 shoppingDb.CreateDatabase();

 DatabaseSchemaUpdater schemaUpdater = shoppingDb.CreateDatabaseSchemaUpdater();

 schemaUpdater.DatabaseSchemaVersion = shoppingDb.Version;

 schemaUpdater.Execute();

 }

 else

 {

 DatabaseSchemaUpdater schemaUpdater = shoppingDb.CreateDatabaseSchemaUpdater();

 if (schemaUpdater.DatabaseSchemaVersion < shoppingDb.Version)

 {

 schemaUpdater.AddColumn<ShoppingItem>("Quantity");

 schemaUpdater.DatabaseSchemaVersion = shoppingDb.Version;

 schemaUpdater.Execute();

 }

 }

}

If the new column is not nullable, then when you update the schema, you must also set a value

for this column for each existing row in the database. It’s up to you to decide what value to set. In

the shopping list application, it would be reasonable to set the value to 1, but the speciics will vary
according to your business logic requirements. Note also that only additive schema changes are sup-

ported right now; it is not possible to remove columns or rows from an existing database. In a new

version of your application, you might choose not to use some of the old columns/tables, but they

will remain physically in the database. Also, if they were not nullable, then whenever you add new

rows, you’ll have to add some default value for the unused columns.

Finally, If you deine a new Table class with a new non-nullable column, you cannot read existing

data into this Table class, because the null values for the non-nullable column will throw an exception.

 ChAPTER 18 Data Support 681

In this scenario, the simplest approach is to use two versions of your schema: on startup, you would

read the existing data by using the old schema. Then, you would create a new database, with the

new schema, and populate it with the old data, illing in any non-nullable columns with some default
value. After that, you can delete the old database ile.

Associations
It is very common for tables to have schema relationships between them. Consider Figure 18-6, which

shows the irst two pivots in the CoffeeStore application in the sample code. The application provides

three pivot items (machines, beans, and cups), where each pivot corresponds to the Category table in

the database, and lists a collection of items from the Product table.

FIguRE 18-6 The CoffeeStore application with table associations for machines and beans.

All the products reside in the one Product table in the database, but the UI displays each cat-

egory of product in a separate pivot. The pivot lists are data-bound to collections in the viewmodel,

and the viewmodel ilters the single Product table into each of the three lists on the basis of the

Product-Category table relationship. There are three categories, and all products map to one of

these three categories. Thus, there is a one-to-many relationship between the Category table and

the Product table. The relationship is established in code by using three artifacts: EntitySet, EntityRef,

and Association, as shown in Figure 18-7.

682 PART Iv Version 7.5 enhancements

Page (View)

Pivot1

ListBox:
Cups

Pivot2

ListBox:
Beans

Pivot3

ListBox:
Machines

ViewModel

List<Product> Machines Table<Product>
 ID
 Name
 EntityRef<Category>

Table<Category>
 ID
 Name
 EntitySet<Product>

List<Product> Beans

List<Product> Cups

List<Category> Categories

ViewModel

Association

FIguRE 18-7 EntitySet, EntityRef, and Association.

The most interesting code is in the Product and Category table class deinitions. The Product class

includes a Category property that is deined to be an Association. The association speciies the corre-

sponding storage object, which maps to an EntityRef<T>. The EntityRef is a wrapper for the Category

object, decorating it with additional behavior. The key in this table is categoryId. This is a foreign key

with a matching primary key in the Category table named Id. The property getter simply returns the

entity from the EntityRef. The property setter updates the entity value, and then also updates the Id

property on that entity; that is, the foreign key in the Category table.

[Column]

internal int categoryId;

private EntityRef<Category> category;

[Association(Storage = "category", ThisKey = "categoryId", OtherKey = "Id", IsForeignKey =

true)]

public Category Category

{

 get { return category.Entity; }

 set

 {

 category.Entity = value;

 if (value != null)

 {

 categoryId = value.Id;

 }

 NotifyPropertyChanged("Category");

 }

}

 ChAPTER 18 Data Support 683

The Category table deines the other side of this association. On this side, the association is to
the EntitySet<T>, where T is the Product type. The EntitySet is effectively the set of rows from the

associated table (Product, in this example) to which this Category maps. Note also that the Category

constructor initializes this EntitySet object.

private EntitySet<Product> products;

[Association(Storage = "products", OtherKey = "categoryId", ThisKey = "Id")]

public EntitySet<Product> Products

{

 get { return products; }

 set { products.Assign(value); }

}

public Category()

{

 products = new EntitySet<Product>();

}

The DataContext deines two collections: one for the total list of Product rows, and the other for

the list of Category rows.

public class CoffeeDataContext : DataContext

{

 public CoffeeDataContext()

 : base("Data Source=isostore:/CoffeeStore.sdf")

 {

 }

 public Table<Product> Products;

 public Table<Category> Categories;

}

The viewmodel deines four collections. To load the data from the database into the viewmodel
collections, you irst load the Category collection, and then iterate this to populate each of the three

Product collections, iltered on the corresponding category Name. In this way, you divide up the

underlying Product items into three separate collections for use in the UI.

public ObservableCollection<Category> Categories { get; private set; }

public ObservableCollection<Product> Machines { get; private set; }

public ObservableCollection<Product> Beans { get; private set; }

public ObservableCollection<Product> Cups { get; private set; }

public void LoadData()

{

 if (Categories == null)

 {

 IQueryable<Category> query =

 from Category cat in coffeeDb.Categories select cat;

 Categories = new ObservableCollection<Category>(query);

 }

 foreach (Category cat in Categories)

 {

684 PART Iv Version 7.5 enhancements

 switch (cat.Name)

 {

 case "machines":

 Machines = new ObservableCollection<Product>(cat.Products);

 break;

 case "beans":

 Beans = new ObservableCollection<Product>(cat.Products);

 break;

 case "cups":

 Cups = new ObservableCollection<Product>(cat.Products);

 break;

 }

 }

}

Note See the Performance Considerations section, later in the chapter, for further en-

hancements that you should make when using entity associations.

Isolated Storage explorer tool
Sometimes, it makes sense to create your SDF ile in code as part of your application. On the other
hand, sometimes you want to start your application with a set of preloaded data, in which case, it is

not appropriate to create that data from scratch in your application. In this scenario, you should cre-

ate your SDF and prepopulate it in advance.

You have two choices for creating an initial database for use in your application: either create it

in code in a helper application, or create it with external tools such as SSMS or T-SQL scripts. Note,

however, that the only supported approach is to create the database in code. The reason for this is

that the underlying database technology should be transparent to the developer. Right now, it hap-

pens to use SQL-CE under the covers, but developers should not rely on this implementation. So long

as you use only the database APIs provided in the platform—both for creating your database, and for

all subsequent access in your application—then there can never be any inconsistency. As soon as you

start using SSMS or T-SQL, working on a SQL-CE SDF ile directly, you run the risk of introducing some
behavior that is not consistent with the phone APIs.

 ChAPTER 18 Data Support 685

Consider the example applications shown in the screenshots in Figure 18-8. These show the

DbCreator application in the sample code that creates the database, and the DbConsumer application

that consumes the database. Only the DbConsumer would be published. The UI is very similar in both

applications, which is a deliberate testing technique.

FIguRE 18-8 The DbCreator helper application (on the left), and the DbConsumer application (right).

DbCreator is a helper application whose sole purpose is to create the database that the inal appli-
cation will use. Using this approach, it is also useful (although obviously not essential) for the helper

application to display the data so that you can readily conirm that the data is created correctly. As
you’ve seen in previous examples, you would create an application with a custom DataContext, one

or more Table classes, and a viewmodel. In this helper application, the database is created in one

method, which can be invoked from the UI.

686 PART Iv Version 7.5 enhancements

internal void CreateData()

{

 Products = new ObservableCollection<Product>();

 Products.Add(new Product()

 { Id = 680, Name = "HL Road Frame - Black, 58", Price = 1431.5 });

 Products.Add(new Product()

 { Id = 706, Name = "HL Road Frame - Red, 58", Price = 1431.5 });

 Products.Add(new Product()

 { Id = 707, Name = "Sport-100 Helmet, Red", Price = 34.99 });

...etc, for all rows to be inserted into the database.

 adventureWorksDb.Products.InsertAllOnSubmit(Products);

 adventureWorksDb.SubmitChanges();

}

Note A common approach to creating initial data is to create it in Excel and then use

Excel’s export feature to write the data out as an XML ile. You can then use LINQ-to-XML
in your application to read the data in.

Whichever route you take to create the database, you then need to transfer the generated

database onto the device or emulator for testing. Later, you will also need to add it to your main

application project for packaging as part of the solution. During development, you can simply copy

the database ile manually, using the Isolated Storage Explorer tool (ISETool), which ships with the

Windows Phone 7.1 SDK, as described here:

1. Run your helper application (either on the emulator, or on a device), and then create the

database.

2. Use the ISETool to take a snapshot of your database from the emulator or device on to your

local desktop.

3. At any time thereafter, you can deploy the database to the isolated storage for the application

(so long as the application itself is installed). This becomes very useful while testing, during

which you can deploy updated or known-good versions of the database at any time.

The ISETool is a simple command-line tool that you can use to import or export SDF iles to and
from isolated storage, either for the emulator or for a physical phone. The command-line syntax for

the tool is as follows:

ISETool <ts|rs> <xd|de> <appId> <path>

 ChAPTER 18 Data Support 687

The command-line arguments are described in Table 18-1.

TABlE 18-1 Isolated Storage Explorer Tool Arguments

Parameter Description

ts Takes a snapshot of contents of the speciied application’s isolated storage and copies it to a desktop
location.

rs Restores a snapshot from a desktop location to isolated storage.

xd Copies to or from the XDE Emulator.

de Copies to or from an attached physical device.

appId The Product ID of the project, as speciied in the application’s WMAppManifest.xml ile.

path The absolute desktop path from which iles are downloaded or to which they are uploaded.

When taking or restoring a snapshot, any existing iles in the target folder will be deleted before
the snapshot is transferred. To download the database ile for the DbCreator application on the

emulator, use the following command line (for 64-bit computers, replace %ProgramFiles% with

%ProgramFiles(x86)%):

"%ProgramFiles%\Microsoft SDKs\Windows Phone\v7.1\Tools\IsolatedStorageExplorerTool\ISETool.exe"

ts xd {7c6c23c5-6d25-4387-9cce-3ac4815ff40d} C:\Temp\DbCreator

This will create (or overwrite) a folder named IsolatedStore in the speciied path and dump the
entire contents of the application’s isolated storage into that folder. This storage can include persisted

application settings and other iles as well as the database (SDF) ile. Having taken a copy onto the
desktop, you can then deploy the consuming application (which does not create its own data), and

then use the ISETool again to restore the snapshot to the emulator or device. Note that you must

specify the IsolatedStore folder in the path parameter for a restore operation, but not for taking a

snapshot.

"%ProgramFiles%\Microsoft SDKs\Windows Phone\v7.1\Tools\IsolatedStorageExplorerTool\ISETool.exe"

rs xd {EF2BBD34-6CBE-43A2-B6F5-A521E28C39EB} C:\Temp\DbCreator\IsolatedStore

As you can see from the preceding ISETool commands, the helper application that creates the

database and the inal application that consumes the database are different applications, with differ-
ent ProductId values. The ISETool is very simple: it copies isolated storage for the application speci-

ied; it doesn’t require that the snapshot is restored to the same application as that from which it was
taken.

688 PART Iv Version 7.5 enhancements

While you have the SDF ile on the desktop, you can also use tools such as SSMS and Visual
Studio’s Server Explorer to query the SDF ile, including both the data and the schema. To do this,
in SSMS, go to the Object Explorer and click Connect. Specify SQL Server Compact as the server

type, specify the path to the SDF, and then click Connect. You can then use T-SQL to work with the

database, as shown in Figure 18-9. It’s worth repeating at this point that creating an SDF ile outside
a Windows Phone application and then consuming it within a Windows Phone application is not sup-

ported. However, it might be useful to use desktop tools to examine the database after you’ve created

it in a Windows Phone helper application.

FIguRE 18-9 Working with a local database in SSMS.

 ChAPTER 18 Data Support 689

To work with the SDF in Visual Studio, open the Server Explorer, and then click Add A Connection.

In the Add Connection dialog box, change the data source to SQL Server Compact 3.5. Next, browse

to specify the path to the SDF, and then click OK, as shown in Figure 18-10. SSMS and Visual Studio

offer similar data manipulation language (DML) and querying capabilities for querying and modifying

SDF databases, although SSMS has more data deinition language (DDL) capabilities,

FIguRE 18-10 Working with a local database in Visual Studio Server Explorer.

690 PART Iv Version 7.5 enhancements

There’s also an open-source SQL Server Compact Toolbox tool available on codeplex at http://

sqlcetoolbox.codeplex.com/. This is a Visual Studio add-in that provides additional features for work-

ing with SQL-CE databases, including scripting database objects, data editing, SQL Server database

graphs, database diffs, and so on, as shown in Figure 18-11.

FIguRE 18-11 The Visual Studio SQL Server Compact Toolbox add-in.

The ISETool can also be useful when you’re testing the upgrade scenario. You can run any version

of the application, and then take a snapshot of the database with the ISETool, before making any

schema changes. You can then redeploy any version of the database at will, ensuring that you can

thoroughly test the upgrade scenario. Finally, the tool can be used to erase isolated storage; all you

have to do is to restore a snapshot, specifying an empty IsolatedStore folder. As always, restoring a

snapshot will overwrite the target isolated storage, and in this case, will result in empty storage.

When you eventually come to publish your application, you cannot, of course, use the ISETool to

deploy the database. So, you must add the SDF ile to your application solution so that it is packaged
in your XAP before submitting to marketplace.

As a general principle, you should not package such data as a resource embedded in your assem-

bly, because the user will pay the price of a bloated assembly (slower load time, more memory

consumption, and possibly more battery consumption) every time he runs your application. Instead,

you should set its build action to Content so that it is loosely packed in the XAP, not in the assembly. If

the data is always read-only, that’s all you need to do. You can access the ile from the install location
at runtime.

 ChAPTER 18 Data Support 691

More likely, the data is read-write (or at least, the database will be read-write, even if you’re only

appending new data). In this case, you can fetch the ile from the application install folder on startup,
and copy it to the application’s isolated storage. You only need to do this upon irst startup of the
application (or if you subsequently upgrade the application). The DbConsumer_PackagedDB solution

in the sample code takes this approach. The SDF ile is added to the project with the build action set
to Content.

You want to copy this ile from the install folder to isolated storage upon irst startup, but choosing
a good place in the code to do this is not so simple. You typically need the data to be fully available

for use before the irst page that uses the data is loaded. In the simple examples that you’ve seen
thus far, this is generally the irst page in the application. In a realistic application, it might well be
that only a small subset of the data—if any—is likely to be needed so early, and in this case you can

defer moving the data until after the critical startup phase. Recall that there are marketplace certiica-

tion constraints on how fast your application loads its irst page and how soon it is responsive to user
interaction.

For the purposes of this simple application, you can copy the data in the Application_Launching

event handler in the App class. First, you get the root isolated storage for the application and deter-

mine if the store already contains the database; you only proceed if it doesn’t (this will be upon irst
startup). Next, use GetResourceStream to access the original SDF ile and read it into a byte array in
memory, create a new ile in isolated storage (in this example, using the same name as the original,
although this is not required), and then write out the contents of the byte array.

public static string SdfName = "AdventureWorksLite.sdf";

private void Application_Launching(object sender, LaunchingEventArgs e)

{

 using (IsolatedStorageFile isoFile =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (!isoFile.FileExists(SdfName))

 {

 StreamResourceInfo streamInfo = App.GetResourceStream(

 new Uri(SdfName, UriKind.Relative));

 if (streamInfo != null)

 {

 byte[] bytes = new byte[streamInfo.Stream.Length];

 streamInfo.Stream.Read(bytes, 0, bytes.Length);

 using (IsolatedStorageFileStream isoStream =

 isoFile.OpenFile(SdfName, FileMode.OpenOrCreate))

 {

 isoStream.Write(bytes, 0, bytes.Length);

 }

 }

 }

 }

}

692 PART Iv Version 7.5 enhancements

Note Even when you defer copying the database to a less-critical time, if your database is

large, you should consider deining a chunk size (maybe as large as 1 MB, or so) and then
perform the operation in chunks. If necessary, you can even examine your use of the data

in the intial pages loaded in the application, and then devise a suitable chunking algorithm

that matches your expectations of how the user will navigate through the application. If

that doesn’t give you enough of a performance beneit, you can also consider compress-
ing the database into a zip ile before you add it to the XAP as Content. The XAP itself is

compressed, but then exploded onto the device, and you want to minimize the size of the

database in the application install folder, because after you copy it to isolated storage, it is

unlikely to be used again in the application (barring some “application reset” scenario).

Finally, be aware that if your application needs only read access to the database, you don’t have to

copy it to isolated storage. Instead, add it to the project as a Content ile, and when the application is
installed, the SDF will be deployed to the application’s install folder. Applications cannot write to this

location, but they can read from it. The only change you need to make to the code is in the connec-

tion string in the DataContext class: replace the isostore virtual root with appdata.

public AdventureWorksDataContext()

 //: base("Data Source=isostore:/AdventureWorksLite.sdf")

 : base("Data Source=appdata:/AdventureWorksLite.sdf;File Mode=read only;")

{

 ObjectTrackingEnabled = false;

}

If you do specify an appdata path, you must also specify read-only mode, or the application will

throw an exception upon startup. By the same token, if you deploy to an appdata path, any attempt

to write to the database (including deletes) will throw an exception. If your database is read-only, you

can also set ObjectTrackingEnabled to false. Doing this will suppress the object tracking that the Data

Context normally performs as part of change management. This will improve the performance of your

application and also reduce the working set. As you would expect, if you turn off object tracking and

then attempt to submit any changes to the database, this will throw an exception.

Performance Considerations
You’ve seen already that you can improve performance by suppressing change tracking for read-only

databases. You’ll also save time in this scenario by avoiding copying the SDF from the application

folder to isolated storage.

Another optimization that you should always adopt is to implement both INotifyPropertyChanged

and INotifyPropertyChanging interfaces. So far, the table classes that have been deined have imple-

mented INotifyPropertyChanged only. This is suficient to complete the data-binding chain between
the UI and the database. However, you can save both time and memory by implementing INotify

PropertyChanging also. The reason for this lies in the way LINQ-to-SQL performs change tracking. To

determine whether or not an entity has changed, the system will create two copies of each object.

One is a faithful copy of the original object representing the data in the database. The other copy is

 ChAPTER 18 Data Support 693

the one that is changed by the application. When you eventually submit changes to the database, the

system compares the two copies, and submits only items that have actually changed.

The purpose of INotifyPropertyChanged is to notify the system that a change has taken place. By

contrast, INotifyPropertyChanging notiies the system that a change is about to take place. The key

here is that if you implement INotifyPropertyChanging, the system can use this as the trigger to create

the second copy of the data, and avoid doing so, otherwise. The following code shows how you would

update the ShoppingItem table class from earlier examples:

[Table]

public class ShoppingItem : INotifyPropertyChanged, INotifyPropertyChanging

{

 private int id;

 [Column(

 IsPrimaryKey = true, IsDbGenerated = true,

 DbType = "INT NOT NULL Identity", CanBeNull = false,

 AutoSync = AutoSync.OnInsert)]

 public int Id

 {

 get { return id; }

 set

 {

 if (id != value)

 {

 NotifyPropertyChanging("Id");

 id = value;

 NotifyPropertyChanged("Id");

 }

 }

 }

 private String name;

 [Column]

 public String Name

 {

 get { return name; }

 set

 {

 if (name != value)

 {

 NotifyPropertyChanging("Name");

 name = value;

 NotifyPropertyChanged("Name");

 }

 }

 }

 public event PropertyChangedEventHandler PropertyChanged;

 private void NotifyPropertyChanged(string propertyName)

 {

 PropertyChangedEventHandler handler = PropertyChanged;

 if (handler!= null)

694 PART Iv Version 7.5 enhancements

 {

 handler(

 this, new PropertyChangedEventArgs(propertyName));

 }

 }

 public event PropertyChangingEventHandler PropertyChanging;

 private void NotifyPropertyChanging(string propertyName)

 {

 PropertyChangingEventHandler handler = PropertyChanging;

 if (handler != null)

 {

 handler(

 this, new PropertyChangingEventArgs(propertyName));

 }

 }

}

Keep in mind that if you’re implementing INotifyPropertyChanging in your entity classes, then

you have a further opportunity to notify the system of impending data changes (and therefore also

improve performance) when you’re using entity associations. Referring back to the earlier CoffeeStore

sample, when you construct the EntitySet<T>, you can use the overload that takes two Action<T>

parameters; these are delegates that will be invoked when a Product entity is added to or removed

from the set of mapped rows for this Category.

public Category()

{

 //products = new EntitySet<Product>();

 products = new EntitySet<Product>(

 new Action<Product>(AttachProduct),

 new Action<Product>(DetachProduct));

}

private void AttachProduct(Product product)

{

 NotifyPropertyChanging("Product");

 product.Category = this;

}

private void DetachProduct(Product product)

{

 NotifyPropertyChanging("Product");

 product.Category = null;

}

Another optimization is to add a version column to your table classes. This is speciic to Windows
Phone, and it dramatically improves bulk updates and deletes.

[Column(IsVersion = true)]

private Binary version;

The DbCreator_WithVersion and DbCreator_NoVersion solutions in the sample code illustrate this

optimization by using an UpdatePrices method in the viewmodel that executes an arbitrary price

update for all rows in the table. Simple tests (over 100 iterations) show that executing this operation

 ChAPTER 18 Data Support 695

without the version column takes an average of 530 milliseconds; with the version column, it takes an

average of 50 milliseconds.

internal void UpdatePrices()

{

 Stopwatch stopwatch = Stopwatch.StartNew();

 foreach (Product p in Products)

 {

 p.Price *= 1.1;

 }

 adventureWorksDb.SubmitChanges();

 stopwatch.Stop();

 Debug.WriteLine("elapsed time = {0}", stopwatch.ElapsedMilliseconds);

}

Database encryption
If you want to increase security in your application, you can choose to encrypt your database. This

can be done only at the time the database is created, so it is useful only in scenarios for which the

user provides the password and the application creates the database dynamically at runtime. It is not

useful if you need to create the database in advance. Figure 18-12 shows the ShoppingList_CRUD_

Encrypted solution in the sample code, which takes this approach.

FIguRE 18-12 Encrypting a database with a password.

The UI initially presents only a PasswordBox and a Button control inside a Grid. The user can enter

a password and tap the button to conirm. At this point, the application attempts to connect to the

696 PART Iv Version 7.5 enhancements

database with this password. If that succeeds, it sets up the data-binding between the viewmodel and

the UI, as normal, shows the rest of the UI, and hides the password grid.

private void confirmPassword_Click(object sender, RoutedEventArgs e)

{

 if (App.ViewModel.ConnectDatabase(password.Password))

 {

 DataContext = App.ViewModel;

 contentPanel.Visibility = Visibility.Visible;

 passwordGrid.Visibility = Visibility.Collapsed;

 }

}

Note In general, it is a best practice to prompt for a new password twice. That is, any time

you ask users to create a password you should ask her to input it two times, and then com-

pare the two copies, thus helping to ensure that the user didn’t accidentally mistype the

password by mistake on the irst attempt.

The viewmodel exposes a ConnectDatabase method, callable from the UI, which takes the user’s

password, initializes the custom DataContext object with this, and then attempts to connect to the

database and load the data, if there is any. The same mechanism is used to create the database the

irst time, and for each subsequent attempt to open it.

public bool IsConnected;

private String password;

internal bool ConnectDatabase(String userPassword)

{

 password = userPassword;

 try

 {

 shoppingDb = new ShoppingDataContext(password);

 if (!shoppingDb.DatabaseExists())

 {

 shoppingDb.CreateDatabase();

 }

 LoadData();

 IsConnected = true;

 }

 catch (Exception ex)

 {

 Debug.WriteLine(ex.ToString());

 IsConnected = false;

 }

 return IsConnected;

}

At the bottom layer of the application code, the DataContext uses the password to compose the

database connection string, passed to the base class.

 ChAPTER 18 Data Support 697

public ShoppingDataContext(String password)

 : base(String.Format(

 "Data Source=isostore:/ShoppingList.sdf;Password='{0}'", password))

{

}

If you create an encrypted database in this manner, you can still take and restore snapshots by

using the ISETool, but you cannot open it with any desktop tools such as Visual Studio or SSMS.

Encrypting Data and Credentials

In Chapter 13, “Security,” you saw how to use the AesManaged and related classes to encrypt data

locally on the phone. The one major piece of missing functionality in version 7 was the ability to store

passwords and other security credentials on the phone itself. This meant that whenever you needed a

password, such as whenever you encrypt or decrypt data, you would have to ask the user to supply it.

Windows Phone 7.1 introduces a reduced-scope form of the Data Protection API (DPAPI), with which

you can encrypt and decrypt conidential data such as passwords. Every application receives its own
decryption key, which is created when the user runs the application for the irst time, and which per-
sists on the phone across application updates and phone reboots. When your code uses the DPAPI,

this implicitly uses the auto-generated decryption key, such that the data is always encrypted on a

per-application basis.

Figure 18-13 shows a variation of the sample discussed in Chapter 13. This version is named

SimpleEncryption_DPAPI in the sample code.

FIguRE 18-13 Encrypting and decrypting passwords and data by using DPAPI.

698 PART Iv Version 7.5 enhancements

This version of the application modiies the UI slightly from the version in Chapter 13. Here, the
user is asked to enter a password, and this single password is now used for all encryption. Once

she’s entered a password, the corresponding PasswordBox is disabled. When she goes to the second

page to see a list of stored encrypted data, the application shows a read-only TextBox rather than a

PasswordBox and populates this TextBox directly from the stored encrypted password (this is for illus-

tration only; in a real application, you would not normally display a stored password).

In the code, you irst declare a string for the name of the ile in which you’ll store the encrypted
password. This is declared in the App class so that it is accessible across both pages.

public const String PasswordFile = "passwordFile.dat";

Next, the code-behind for the main page: when the user taps the Encrypt button, you fetch her

password and input data, as before, and then encrypt and store the data in isolated storage, as

before. The additional behavior is that you now also encrypt and store the password itself. In the

EncryptAndStorePassword helper method, you convert the password to a byte array, and then encrypt

it by using the DPAPI Protect method. Next, create a ile in the application’s isolated storage, and then
write the encrypted password data out to the ile.

private void encrypt_Click(object sender, RoutedEventArgs e)

{

 String filePath = String.Format("{0:yyyy-MM-dd_hh-mm-ss}.dat", DateTime.Now);

 using (IsolatedStorageFile store = IsolatedStorageFile.GetUserStoreForApplication())

 {

 EncryptAndStorePassword(store, passwordBox.Password);

 passwordBox.IsEnabled = false;

 EncryptData(store, filePath, passwordBox.Password);

 ShowEncryptedData(store, filePath);

 }

}

private void EncryptAndStorePassword(IsolatedStorageFile store, String password)

{

 byte[] passwordBytes = Encoding.UTF8.GetBytes(password);

 byte[] protectedBytes = ProtectedData.Protect(passwordBytes, null);

 using (IsolatedStorageFileStream fileStream =

 store.CreateFile(App.PasswordFile))

 {

 using (Stream writer = new StreamWriter(fileStream).BaseStream)

 {

 writer.Write(protectedBytes, 0, protectedBytes.Length);

 }

 }

}

Note You still encrypt data with the password, not the protected password, so you can

recover the data even in the event that the protection keys change (for example, if your ap-

plication supports roaming across different devices or platforms via the cloud, each device

will have a different protection mechanism or key but the password stays the same).

 ChAPTER 18 Data Support 699

On the second page, the previous functionality remains broadly as before: you provide a list of

encrypted iles in isolated storage (excluding the password ile) and allow the user to select a ile from
the list. Then, you decrypt this ile by using the stored password. The additional behavior here is that
you no longer prompt the user to enter the password. Instead, you fetch the encrypted password

from isolated storage, decrypt it by using the DPAPI Unprotect method, and then convert it from a

byte array to a string for subsequent display in the UI.

private String GetPassword()

{

 using (IsolatedStorageFile store = IsolatedStorageFile.GetUserStoreForApplication())

 {

 using (IsolatedStorageFileStream fileStream =

 store.OpenFile(App.PasswordFile, FileMode.Open, FileAccess.Read))

 {

 using (Stream reader = new StreamReader(fileStream).BaseStream)

 {

 byte[] protectedBytes = new byte[reader.Length];

 reader.Read(protectedBytes, 0, protectedBytes.Length);

 byte[] decryptedBytes = ProtectedData.Unprotect(protectedBytes, null);

 String passwordText =

 Encoding.UTF8.GetString(decryptedBytes, 0, decryptedBytes.Length);

 return passwordText;

 }

 }

 }

}

Notice how there’s an overload of both the Protect and Unprotect methods that takes an additional

parameter, which is a byte array known as the entropy information. This is used to increase the com-

plexity of the encryption. If you provide entropy information in the Protect call, you must provide that

same entropy information in the corresponding Unprotect call.

Keep in mind also that this technique can be used in combination with a local database. That is, if

only a relatively small proportion of the data needs to be encrypted, it might make sense to use the

DPAPI to encrypt just those items before submitting them to the database, instead of encrypting the

entire database. There’s an obvious trade-off here: encrypting the entire database will generally be

slower. On the other hand, encrypting only selected items of data will increase complexity and risk.

Also, this would generally only be useful if the data is speciic to the phone where it is stored and will
never need to be read on any other device.

Contacts and Calendar

With Windows Phone 7.1, you now have access to the user’s contacts and calendar data, albeit in a

read-only manner. This is another example of the ecosystem model of Windows Phone development,

whereby you can build custom applications that integrate closely with standard features of the phone.

700 PART Iv Version 7.5 enhancements

Note With great power comes great responsibility. It is very important that developers

consider this feature—and its ramiications—very carefully. By their nature, contacts and
calendar information consists of sensitive data, and you should always be very cautious with

regard to how you work with this data, if at all. The Windows Phone platform offers a good

set of built-in Launchers and Choosers, which you can take advantage of in your application to

work with contacts and calendar data. If you decide that your application really needs more

than that, then you should have a privacy policy in place and adhere to it. For example,

you should not send any sensitive data anywhere off the device, or if you do, then you

should send only hashes and use Secure Sockets Layer (SSL) for communication. You should

not store the data independent of the original contacts/calendar stores, or if you do, you

should store it encrypted, and you should give the user a way to erase this data. You should

give the user a way to turn off the feature(s) in your application that uses contacts, calen-

dars, and so on.

The phone platform provides an aggregated view of the user’s contacts and calendar (not

including the social media data, such as Facebook) and exposes these views via the Contacts and

Appointments classes in the API. Figure 18-14 shows the SimpleContacts and SimpleCalendar applica-

tions in the sample code, with which the user can tap the button to fetch a list of contacts or appoint-

ments and display them in the UI.

FIguRE 18-14 You can use the Contacts and Appointments APIs in your application.

 ChAPTER 18 Data Support 701

You can test the Contacts API on either the emulator or the phone, although the emulator has only

a very small list of Contacts. For the Appointments API, you must test on a physical device, because

the emulator does not contain calendar data.

In both of these sample applications, the views are data-bound to simpliied contact and appoint-
ment types, for which only the data of interest is deined.

public class ContactLite

{

 public String Name { get; set; }

 public String Phone { get; set; }

}

public class AppointmentLite

{

 public String Start { get; set; }

 public String Subject { get; set; }

}

The pattern for retrieving contacts and appointment data is very similar. In the contacts applica-

tion, the page deines a collection of these ContactLite objects, which will later be populated based

on the full Contacts data. When the user taps the button, you hook up the SearchCompleted event

handler for the Contacts type, and then invoke the SearchAsync method. This takes three parameters:

a search string, a ilter to narrow the scope of the search, and an arbitrary object state that will be
passed to the SearchCompleted handler. In this example, you pass an empty search string, and specify

no ilter; this will retrieve all Contact objects. It is more common to work with a iltered set of contacts,
especially as some users might have hundreds or even thousands of them.

In the event handler, the Contact objects are returned in the Results collection, and you can iter-

ate this to process each one. In this example, you use the DisplayName directly, but extract the irst
ContactPhoneNumber from the collection of PhoneNumbers. This collection can be empty, so you test

for this.

public ObservableCollection<ContactLite> Contacts =

 new ObservableCollection<ContactLite>();

private void getContacts_Click(object sender, RoutedEventArgs e)

{

 Contacts contacts = new Contacts();

 contacts.SearchCompleted += contacts_SearchCompleted;

 contacts.SearchAsync(String.Empty, FilterKind.None, null);

}

702 PART Iv Version 7.5 enhancements

private void contacts_SearchCompleted(object sender, ContactsSearchEventArgs e)

{

 if (e.Results != null)

 {

 foreach (Contact c in e.Results)

 {

 if (c.PhoneNumbers != null)

 {

 String phone = String.Empty;

 var p = c.PhoneNumbers.FirstOrDefault<ContactPhoneNumber>();

 if (p != null)

 {

 phone = p.PhoneNumber;

 }

 Contacts.Add(new ContactLite { Name = c.DisplayName, Phone = phone });

 }

 }

 contactsList.ItemsSource = Contacts;

 }

}

The code patterns are closely paralleled in the calendar sample: again, you hook up the Search

Completed event, and then invoke the SearchAsync method. The Appointments version of SearchAsync

takes the start and end times for the search as well as the maximum number of items to return.

public ObservableCollection<AppointmentLite> Calendar =

 new ObservableCollection<AppointmentLite>();

private void getAppointments_Click(object sender, RoutedEventArgs e)

{

 Appointments appts = new Appointments();

 appts.SearchCompleted += appts_SearchCompleted;

 appts.SearchAsync(DateTime.Now, DateTime.Now.AddDays(7), 100);

}

private void appts_SearchCompleted(object sender, AppointmentsSearchEventArgs e)

{

 if (e.Results != null)

 {

 foreach (Appointment a in e.Results)

 {

 Calendar.Add(new AppointmentLite {

 Start = a.StartTime.ToString("MM/dd HH:mm"), Subject = a.Subject});

 }

 appointmentsList.ItemsSource = Calendar;

 }

}

Note that you can also data-bind directly to the Contact and Appointment data, if required, includ-

ing to nested properties. For example, to bind to the irst ContactPhoneNumber in the collection of

PhoneNumbers, you would use the Path syntax in the Binding declaration. As always, the Path attri-

bute can be omitted in many cases, so the following two declarations are equivalent:

<TextBlock Text="{Binding PhoneNumbers[0].PhoneNumber}"/>

<TextBlock Text="{Binding Path=PhoneNumbers[0].PhoneNumber}"/>

 ChAPTER 18 Data Support 703

You can also use LINQ expressions on the search results. The following example extracts a subset

of Contact items from the full set returned by the initial search.

private void contacts_SearchCompleted(object sender, ContactsSearchEventArgs e)

{

 if (e.Results != null)

 {

 contactsList.DataContext =

 from Contact c in e.Results

 where c.DisplayName.StartsWith("A")

 select c;

 }

}

If you know that you want to work with only a subset of the data, then a better approach is to

provide a search string and/or a ilter condition in the initial search. This improves performance and
memory consumption by returning only those items that match the search criteria. So, to achieve the

same results set as the preceding code, you would execute a search as follows, passing additional

non-null parameters in the SearchAsync call:

private void getContacts_Click(object sender, RoutedEventArgs e)

{

 Contacts contacts = new Contacts();

 contacts.SearchCompleted += contacts_SearchCompleted;

 //contacts.SearchAsync(String.Empty, FilterKind.None, null);

 contacts.SearchAsync("A", FilterKind.DisplayName, null);

}

private void contacts_SearchCompleted(object sender, ContactsSearchEventArgs e)

{

 //if (e.Results != null)

 //{

 //contactsList.DataContext =

 // from Contact c in e.Results

 // where c.DisplayName.StartsWith("A")

 // select c;

 contactsList.DataContext = e.Results;

 //}

}

sync Framework

In Chapter 11, “Web and Cloud,” you saw how you could build a phone application that uses data

stored in the cloud or behind some arbitrary web server. In Chapter 12, “Push Notiications,” you saw
how you could push data changes (or at least, notiication of data changes) to the phone to keep the
data on the phone up to date. Another technology that you can use is the Microsoft Sync Framework.

This framework is designed for solutions that potentially involve complex open-ended synchroniza-

tion ecosystems, for which multiple devices and servers need to be kept in sync. This is particularly

useful for scenarios in which multiple parties in the ecosystem can be updating the data indepen-

dently, yet all need periodically to resynchronize. The framework implements change tracking so that

704 PART Iv Version 7.5 enhancements

you don’t transfer data back and forth that has not changed. This is sophisticated enough to allow for

periodic changes, such that if multiple changes occur during the conigured refresh period, then only
the inal net changes are sent rather than all the intermediate changes. Client applications that use
the framework also get the beneits of a local cache, which means that they can continue to function
even when ofline.

You can download an early release of the Sync Framework from http://msdn.microsoft.com/en-us/

sync. This includes an SDK for both client and server applications, plus samples and documentation.

Be aware that this is an early release, so you should be careful of using this in production systems—in

particular, you should be careful to make backups of all data before applying the tools.

Figure 18-15 shows an application (the SyncClient solution in the sample code) that pulls data from

a SQL Server database sitting behind a web service (the CoffeeWeb application in the sample code).

With this application, users in the ield can enter review scores for cafés. The user can enter new
values for the café score, and then tap the refresh button to upload these scores to the server. Many

such users could be doing the same thing at the same time, and the sync framework is responsible for

resolving update conlicts. In addition, the server computes the average score dynamically, and then
this data is returned to the phone clients.

FIguRE 18-15 The sync framework client.

Building this solution involves the following major tasks:

 ■ Set up a suitable data source. This example uses a SQL Server database.

 ■ Generate a sync coniguration (stored in an XML ile) to determine which columns and tables
from the database should be synchronized.

http://msdn.microsoft.com/en-us/sync
http://msdn.microsoft.com/en-us/sync

 ChAPTER 18 Data Support 705

 ■ Provision the database. This adds insert/update/delete triggers and additional tables used for

change tracking.

 ■ Generate server-side and client-side proxy code to establish the sync connection.

 ■ Incorporate the server-side proxy code into a suitable web service.

 ■ Incorporate the client-side proxy code into your client application.

Service Coniguration
Generating the sync coniguration, provisioning the database, and generating the proxy code can all
be done by using two helper tools provided with the Sync Framework: SyncSvcUtil (a command-line

tool) and SyncSvcUtilHelper (a GUI front-end to the command-line tool). The example application

uses a Coffee database, which has two tables to track cafés and café scores. The sample code includes

a SQL script to generate this database and provide some initial data. Having set up the database, the

next step is to run the SyncSvcUtilHelper tool, as shown in Figure 18-16.

FIguRE 18-16 The SyncSvcUtilHelper tool.

Click the link to generate a sync coniguration. The coniguration deines the connection to the
database, which columns in which tables to be synchronized, and any ilters that you want to apply in
order to scope down the data transfers. In the tool, you must irst specify the name and location of
the output coniguration ile (which will have a .conig extension), the server and database names, and
connection credentials, as shown in Figure 18-17.

706 PART Iv Version 7.5 enhancements

FIguRE 18-17 Coniguring the server and database names.

Next, you deine at least one sync scope. This is effectively the collection of data to be synchro-

nized. In this example, there is only one scope, named DefaultScope, which uses the dbo schema

name. Then, you choose the columns and tables to be included in this sync scope. This example uses

all columns in the Cafe table, but none of the columns of the CafeScore table, because that table is

used for computing averages on the server and is not of any interest to the client (see Figure 18-18).

Note that if you want to include a table in a sync scope, it must have a primary key, and the primary

key must be included in the list of columns in the sync scope.

FIguRE 18-18 Coniguring the tables and columns in the sync scope.

 ChAPTER 18 Data Support 707

When you complete the sync scope, this generates the sync coniguration ile. At any time, you can
rerun the tool to edit or overwrite the ile, or you can edit the ile manually.

Database Provisioning
The next major task is to provision the database, again using the SyncSvcUtilHelper tool. This step

takes the sync coniguration as input and modiies the database directly, adding tables and triggers.
You should make a backup of the database before you perform this step. Figure 18-19 shows the

Coffee database schema before and after provisioning. After provisioning, there are additional trig-

gers in the Cafe table, and there is an additional Cafe_tracking table.

FIguRE 18-19 The Coffee database, before and after provisioning.

Code Generation
The third step is to generate the proxy code for both the server and the client, which is also done

with the SyncSvcUtilHelper tool. First, you run the tool to generate code for the server, specifying the

Server codegen target, the output directory for the generated iles, the language (C# or Visual Basic),
the namespace to use in the generated code, and the ile name preix to use, as shown in Figure
18-20. Generating code for the client follows exactly the same steps, except that you choose Isolated

Storage as the codegen target (the generated proxies can be used for both Windows Phone and

desktop Silverlight client applications).

708 PART Iv Version 7.5 enhancements

FIguRE 18-20 Generating server-side sync proxy code.

The server application in this example (the CoffeeWebApp solution in the sample code) is based

on the Visual Studio ASP.NET Empty Web Application project type. First, add references to Microsoft.

Synchronization.Services.dll and System.Data.DataSetExtensions.dll. Add the generated server proxy

code iles to this project. Using the aforementioned coniguration, these will be named CoffeeEntities.
cs and CoffeeSyncService.svc (which will also pull in the generated CoffeeSyncService.svc.cs ile). You
then need to update the service code, but irst you need a database connection string. You could put
this in the code, but it’s conventional to put it in the web.conig.

<connectionStrings>

 <add

 name="CoffeeConnectionString"

 connectionString="Data Source=.\SQLEXPRESS;Initial Catalog=Coffee;Integrated

Security=true;"/>

</connectionStrings>

Then, in the code, uncomment or replace the placeholder code that the tool generated. You must

set the server connection string, the sync scope name, and the sync object schema name. You can

optionally also set the serialization format, the conlict resolution policy, the download batch size, the
debugging error level, and enable the service diagnostic page.

public class CoffeeSyncService : SyncService<CoffeeOfflineEntities>

{

 public static void InitializeService(ISyncServiceConfiguration config) {

 config.ServerConnectionString =

 ConfigurationManager.ConnectionStrings["CoffeeConnectionString"].ToString();

 config.SetEnableScope("DefaultScope");

 config.SetSyncObjectSchema("dbo");

 ChAPTER 18 Data Support 709

 config.SetDefaultSyncSerializationFormat(SyncSerializationFormat.ODataJson);

 config.SetConflictResolutionPolicy(ConflictResolutionPolicy.ServerWins);

 //config.SetDownloadBatchSize(100);

 config.UseVerboseErrors = true;

 config.EnableDiagnosticPage = true;

 }

}

With the sync proxy code in place, you can build the server. In Solution Explorer, right-click the

SVC ile, and then select View In Browser. This uses a URL with the $syncscopes parameter, and should

return you a standard OData XML response. If you execute the URL again, but replace $syncscopes

with $diag, this will run the sync diagnostics on the service and return a summary report, as shown in

Figure 18-21.

FIguRE 18-21 The sync service diagnostics report.

Assuming the diagnostics all pass (you can ignore the cross-domain warning for Windows Phone

projects: these are only relevant for desktop Silverlight), you can now go on to build the client appli-

cation. This is a standard Windows Phone application, with the UI set up appropriately for the café

data. First, add references to Microsoft.Synchronization.ClientServices.dll, mscorlib.extensions.dll and

System.Runtime.Serialization.Json.dll. Then, add the generated CoffeeEntities.cs and CoffeeOfline

Context.cs iles. In this example, the page code simply instantiates a CoffeeOflineContext object,

710 PART Iv Version 7.5 enhancements

pointing it to the service URL, and hooks up the LoadCompleted event on this object. In this example,

you’re using localhost for the service URL; in a real application, of course, you’d use a real server path.

In the event handler, you refresh the local cache, and update the UI with the collection of entities

returned from the service. There’s also an App Bar button with which the user can trigger a refresh

whenever he wants.

private DefaultScope.CoffeeOfflineContext context;

public MainPage()

{

 InitializeComponent();

 context = new DefaultScope.CoffeeOfflineContext(

 "Coffee", new Uri("http://localhost:21944/CoffeeSyncService.svc"));

 context.LoadCompleted += context_LoadCompleted;

 context.LoadAsync();

}

private void context_LoadCompleted(object sender, LoadCompletedEventArgs e)

{

 Dispatcher.BeginInvoke(() =>

 {

 context.CacheController.RefreshAsync();

 cafeList.ItemsSource = context.CafeCollection;

 });

}

private void appBarSync_Click(object sender, EventArgs e)

{

 context.SaveChanges();

 context.CacheController.RefreshAsync();

}

In some applications, refreshing based off a UI trigger is appropriate. In others, you might want to

set up a timer to invoke RefreshAsync more frequently or outside user control. In most scenarios, you

would also want to apply one or more ilters in order to restrict what data is synchronized. You can
ind more details on the Sync Framework at http://msdn.microsoft.com/en-us/sync/bb821992.

summary

In this chapter, you saw how Windows Phone 7.1 brings extensive support for structured data in the

form of local databases and LINQ-to-SQL. This includes full CRUD support, schema version manage-

ment, table relationship, and phone-speciic performance optimizations. By using the Isolated Storage
Explorer tool, you can work with your database on the desktop during development, and you can

even enlist the support of desktop tools such as SSMS and Visual Studio. Data encryption is enhanced

in version 7.1, with full-database encryption, and with scoped DPAPI support for securely storing cre-

dentials on the phone. You can continue to take part in the holistic UX by integrating closely with the

user’s contacts and calendar information, and you can build sophisticated intermittently connected

data synchronization systems by using the Sync Framework.

 711

C h A P T E R 1 9

Framework enhancements

In addition to a range of major new features, Windows Phone 7.1 also signiicantly strengthens and
extends the platform. Many of these improvements have been brought in as part of the move from

Microsoft Silverlight 3.0 to Silverlight 4.0, and are therefore heavily user interface (UI)–oriented. These

include better navigation and backstack support, enhanced controls, more chrome (system tray and

application bar) programmability, and a set of new data-binding–related features.

navigation Enhancements

Version 7.1 includes two categories of navigation enhancement. First, the frame and page naviga-

tion APIs have been updated to provide greater lexibility and more information during navigation.
Second, you now have additional APIs with which you can manipulate the backstack directly, thereby

affecting the results of navigation.

Frame and Page Navigation
Windows Phone 7.1 includes enhancements to the Frame, Page, and navigation APIs, including the

ability to determine whether a navigation is truly cancelable. Navigations that are initiated by the user

by interacting with your application UI are generally cancelable, whereas navigations initiated by the

user interacting with hardware buttons or initiated by the system are generally not cancelable. It is

common to provide navigation UI within your application, including Hyperlink and Button controls.

However, there are scenarios for which, even though the user has gestured that he wants to navigate,

you might want to intercept the request and prompt for conirmation. For example, if the user has
edited a page or entered data, but he hasn’t yet conirmed the new input or changes, you would
prompt him to save irst when he tries to navigate away.

Since version 7, you have been able to override the OnNavigatingFrom method. This provides a

NavigatingCancelEventArgs, which exposes a Cancel property. However, there was no way in version

7 to determine whether the event was truly cancelable or whether it was actually a non-cancelable

system navigation. In your code, therefore, you might set the Cancel event and perform other logic

based on this, when in fact the event was not cancelled at all. In version 7.1, the event is enhanced

with an IsCancelable property to deinitively establish whether an attempt to cancel will actually
succeed, and if you can’t cancel the navigation, you would take other steps to handle the scenario

(perhaps saving the user’s input to a temporary ile or other mitigating actions, depending on the
context). You can see this at work in the NewNavigation solution in the sample code.

712 PART Iv Version 7.5 enhancements

protected override void OnNavigatingFrom(NavigatingCancelEventArgs e)

{

 Debug.WriteLine("OnNavigatingFrom");

 if (e.IsCancelable)

 {

 MessageBoxResult result = MessageBox.Show(

 "Navigate away?", "Confirm", MessageBoxButton.OKCancel);

 if (result == MessageBoxResult.Cancel)

 {

 e.Cancel = true;

 }

 }

 else

 {

 Debug.WriteLine("Navigation NOT cancelable");

 }

}

Windows Phone 7.1 also exposes a NavigationMode property on the NavigationEventArgs object

that is passed into the OnNavigatedTo and OnNavigatedFrom method overrides. The value of

NavigationMode will be either New or Back, which identiies the direction of navigation. The Back

value is self-explanatory; if the value is New, this indicates that this is a forward navigation. The

NavigationMode type includes the values Forward and Refresh also, but these are not used in Win-

dows Phone. Typically, you would perform some conditional operation based on this value. The

following code snippet merely prints a string to the debug window. The application has two pages:

MainPage and Page2, and the user can navigate back and forth between them.

public partial class MainPage : PhoneApplicationPage

{

... irrelevant code omitted for brevity.

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 Debug.WriteLine("MainPage.OnNavigatedTo: {0}", e.NavigationMode);

 }

 protected override void OnNavigatedFrom(NavigationEventArgs e)

 {

 Debug.WriteLine("MainPage.OnNavigatedFrom: {0}", e.NavigationMode);

 }

}

public partial class Page2 : PhoneApplicationPage

{

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 Debug.WriteLine("Page2.OnNavigatedTo: {0}", e.NavigationMode);

 }

 protected override void OnNavigatedFrom(NavigationEventArgs e)

 {

 Debug.WriteLine("Page2.OnNavigatedFrom: {0}", e.NavigationMode);

 }

}

 ChAPTER 19 Framework Enhancements 713

When the application starts and the MainPage is loaded, the following output is produced:

MainPage.OnNavigatedTo: New

As the user navigates forward from MainPage to Page2, you would expect to see the following

debug output—the navigation is forward as far as both pages are concerned:

MainPage.OnNavigatedFrom: New

Page2.OnNavigatedTo: New

Then, as the user navigates back from Page2 to MainPage, you would expect to see the following

debug output—again, for both pages, the navigation is backward:

Page2.OnNavigatedFrom: Back

MainPage.OnNavigatedTo: Back

If the user is on Page2 and then navigates forward out of the application by tapping the Start

button, and then navigates back into the application again, you would see the following output

(the New [forward] navigation out of the application, followed by the Back navigation, back into the

application):

Page2.OnNavigatedFrom: New

Page2.OnNavigatedTo: Back

Finally, consider another new property of both the NavigationEventArgs and the Navigating

CancelEventArgs: the IsNavigationInitiator property. This is a Boolean value that notiies you whether
the navigation is from an external source; that is, the user navigated from outside the application into

the application. In the following, you’re going to modify the debug output statements to include this

property value:

Debug.WriteLine("Page2.OnNavigatedTo: {0}, {1}", e.NavigationMode, e.IsNavigationInitiator);

Now, if the user starts the application (which loads MainPage), navigates internally to Page2, taps

Start to navigate forward out of the application, taps the Back button to return into the application,

and then inally, back from Page2 to MainPage, you will see the output that follows. When the navi-

gation is to or from an external source (including the initial launch of the application from the Start

page), the value of IsNavigationInitiator is false. For internal navigation, the value is true.

MainPage.OnNavigatedTo: New, False

MainPage.OnNavigatedFrom: New, True

Page2.OnNavigatedTo: New, True

Page2.OnNavigatedFrom: New, False

Page2.OnNavigatedTo: Back, False

Page2.OnNavigatedFrom: Back, True

MainPage.OnNavigatedTo: Back, True

714 PART Iv Version 7.5 enhancements

Backstack Management
In Chapter 7, “Navigation State and Storage,” you saw how the user’s navigation history is maintained

within an application in a history list called the backstack. The backstack is managed as a last-in, irst-
out (LIFO) stack. That is, as the user navigates forward through the pages of an application, each page

from which she departs is added to the stack. As she navigates back, the frame releases its reference

to the current page (which is likely then to become available for garbage collection), and the previous

page in the navigation history is popped off the stack to become the new current page.

Windows Phone 7.1 includes the following additional API support for working with the backstack:

 ■ The NavigationService class now exposes a BackStack property, which is an IEnumerable col-

lection of JournalEntry objects. Each page in the backstack is represented by a JournalEntry

object. The JournalEntry class exposes just one signiicant property: the Source property, which

is the navigation URI for that page.

 ■ The NavigationService class now exposes a RemoveBackEntry method, which is used to remove

the most recent entry from the backstack. You can call this multiple times if you want to

remove multiple entries.

 ■ The NavigationService class now exposes an OnRemovedFromJournal virtual method, which

you can override. This is invoked when the page is removed from the backstack, either

because the user is navigating backward, away from the page, or because the application is

programmatically clearing the backstack. When the user navigates forward, the previous page

remains in the backstack by default (of course).

Here’s the sequencing of the new APIs in relation to the OnNavigatedFrom override. When the

user navigates backward away from the page, the methods/event handlers will be invoked in the fol-

lowing order: irst the OnNavigatedFrom override, then the JournalEntryRemoved event handler, and

then the OnRemovedFromJournal override.

Previously, your application was in control of forward navigation, in the sense that you determined

where the user could navigate to within the application. You could perform forward navigation to any

URL. On the other hand, you had very limited control over backward navigation. You could provide

your own navigation UI (buttons or links), and implement these to invoke the NavigationService.

GoBack method, but that always goes back to the immediately preceding page in the backstack.

Similarly, when the user taps the hardware Back button, it always navigates back to the previous page

on the backstack.

With the new APIs, you can modify the user’s navigation experience, such that going back

doesn’t necessarily always take her back to the previous page. To be clear: you can still use only the

NavigationService to navigate forward to a speciic URL, or back one page in the backstack. The dif-
ference is that you can now remove entries from the backstack—up to and including all entries—such

that navigating back no longer necessarily takes the user back to the immediately preceding page.

These two new APIs effectively make the Non-Linear Navigation Service (discussed in Chapter 7)

redundant.

 ChAPTER 19 Framework Enhancements 715

Note As with some other features introduced with version 7.1, the ability to manipulate the

backstack is a powerful one that affords you more lexibility than you previously enjoyed,
but it also gives you a way to break conformance with the Metro paradigm. You should use

this only after very careful consideration, and only if you’re sure that you can’t avoid it.

Figure 19-1 shows the ClearBack_Thumbs solution in the sample code, which illustrates how you

can manipulate the backstack.

FIguRE 19-1 Maintaining linear navigation while manipulating the backstack.

716 PART Iv Version 7.5 enhancements

The application contains four pages, and each page shows a number of page thumbnails. When

the user is on the irst page (MainPage), he can only navigate either forward to Page2 or backward

out of the application. So, on MainPage, you show only a thumbnail for MainPage (grayed-out,

because it’s the current page) and Page2 (with a hyperlink, which he can tap to go to that page).

When he’s on Page2, he can navigate forward to Page3 or backward to MainPage; therefore, you

show the corresponding thumbnails and hyperlinks for the two navigation targets, and you gray-out

the current thumbnail. Keep in mind that you’re using hyperlinks here for the sake of convenience,

but you should generally leave backward navigation to the hardware Back button. There is normally

no good reason to add your own in-application user experience (UX) for backward navigation, except

in the rare case when you’re manipulating the backstack and navigating back to somewhere other

than the default previous page.

So, the model you’re adopting here is that the user can navigate forward only through the pre-

deined sequence (that is, visiting each page, in order). When navigating forward, you can only ever
navigate to the very next page: you cannot skip pages going forward. So, when the user is on the

MainPage, you show Page2 as the only page to which he can navigate from here.

However, when he’s on Page3 or Page4, you allow him to skip pages when navigating backward.

Take a look at how this works in code by considering Page4. On all pages, when the user wants to go

to MainPage, you treat this as a logical “home” navigation and invoke the NavigationService to navi-

gate explicitly to MainPage.xaml.

public partial class Page4 : PhoneApplicationPage

{

 private void GoHome_Click(object sender, RoutedEventArgs e)

 {

 NavigationService.Navigate(new Uri("/MainPage.xaml", UriKind.Relative));

 }

}

For this to work correctly, you must override the OnNavigatedTo method on the MainPage, and

implement it to remove all entries from the backstack. In this way, you ensure that this is always the

beginning of the page stack for this application, and that regardless of how he arrived here, if the

user taps the Back button from here, this will always navigate back out of the application. Doing this

minimizes the confusion to the user: even though you are manipulating the backstack, you maintain a

high degree of consistency with the hardware Back button behavior.

public partial class MainPage : PhoneApplicationPage

{

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 while (NavigationService.CanGoBack)

 {

 NavigationService.RemoveBackEntry();

 }

 }

}

Looking again at Page4, if the user is on Page4 and wants to go back to Page3, you simply invoke

the NavigationService.GoBack method, which again implicitly maintains consistency with the Back

 ChAPTER 19 Framework Enhancements 717

button. However, if the user is on Page4 but wants to navigate back to Page2 (skipping Page3) you

enable this by removing Page3 from the Backstack before navigating back. This also maintains consis-

tency with the hardware Back button. This means that if the user’s forward navigation sequence was

M | 2 | 3 | 4, and he then skipped back 4 | 2, if he subsequently taps the Back button from Page2, this

will take him back to MainPage, not Page3.

public partial class Page4 : PhoneApplicationPage

{

 private void GoBack_Click(object sender, RoutedEventArgs e)

 {

 NavigationService.GoBack();

 }

 private void GotoPage2_Click(object sender, RoutedEventArgs e)

 {

 NavigationService.RemoveBackEntry();

 NavigationService.GoBack();

 }

}

By the same token, when on Page3, the user could have arrived at Page3 either from Page2 (navi-

gating forward), or from Page4 (navigating backward). Because you’re maintaining consistency with

the hardware Back button, you never navigate forward to a previous page. So, regardless of whether

he arrived at Page2 by navigating forward or backward, going back from Page3 always goes back in

the logical sequence; that is, to Page2. This simple approach ensures consistency regardless of how

many pages there are in the application. Note also that the PhoneApplicationFrame class also exposes

the exact same BackStack and RemoveBackEntry APIs, although typically you would use these from

the NavigationService.

Note If you do ind yourself manipulating the backstack in this fashion, you could also
consider encapsulating this behavior in an extension method to the frame; perhaps by us-

ing something like ReturnToPage(page). This method would enumerate the backstack and

remove the appropriate number of pages before navigating back (or navigate forward and

clear the stack if the page doesn’t exist).

uI Enhancements

Windows Phone 7.1 boasts a long list of UI enhancements, mostly small incremental improvements

and additions to the version 7 platform, rounding out existing features and illing some recognized
gaps. For example, you can now use application icons with transparency, which allows theme colors to

show through the transparent areas in the application list. Some anomalies in the behavior of TextBox

controls when the onscreen keyboard is displayed have been ixed. An input, or “touch,” thread has
been added to improve performance for things such as ListBox scrolling. Some of these, such as

the touch thread, are quite signiicant improvements in the platform itself, although there is no API
exposed, and the list of minor ixes is quite long. In addition, some more desktop Silverlight controls

718 PART Iv Version 7.5 enhancements

have been ported over to Windows Phone, including the RichTextBox, Viewbox, and VideoBrush, and

the WebBrowser control has had a major rewrite, as is discussed in the following sections.

enhanced Controls
Figure 19-2 shows the Test71Controls solution in the sample code. This application offers a Pivot page

with four pivot items, each one demonstrating one of the new or enhanced controls.

FIguRE 19-2 RichTextBox, Viewbox, VideoBrush, and WebBrowser controls

 ChAPTER 19 Framework Enhancements 719

The irst pivot item shows the RichTextBox, which provides more lexible character and paragraph
formatting than either the TextBox or TextBlock controls. The second shows the Viewbox, which gives

you another option for placing one or more items in a bounding container that constrains the sizing

and scaling behavior. The third shows the VideoBrush, with which you can use a video ile or the feed
from the Silverlight webcam or phone PhotoCamera objects as the brush for any UI element. The last

shows the enhanced WebBrowser control, which is now based on Internet Explorer 9 and supports

HTML5.

The RichTextBox can contain zero or more Paragraph items, each of which can contain zero or

more child items, typically Text items. You can control the formatting of each Text item in much the

same way as a regular TextBlock, including font, size, foreground and background colors, font weight,

and style. In this example, the irst paragraph is set to the blue accent color, and then individual items
of text within the paragraph are set to italic or bold. The second paragraph uses alternative syntax to

set contained items to underline, green, bold, and mango color.

<RichTextBox x:Name="demoText" VerticalScrollBarVisibility="Auto" >

 <Paragraph Foreground="#FF1BA1E2">

 Lorem ipsum dolor <Italic>sit amet</Italic>, consectetur

 elit, <Bold>sed eiusmod</Bold> tempor incididunt.

 </Paragraph>

 <Paragraph/>

 <Paragraph>

 <Underline Foreground="#FF00ABA9">Ut enim</Underline> ad minim veniam,

 <Bold Foreground="#FFF09609">laboris</Bold>

 <Run

 Text="nisi ut aliquip."

 FontStyle="Italic" Foreground="#FFD80073" FontWeight="Bold"/>

 </Paragraph>

</RichTextBox>

As well as text, a Paragraph element can contain a Hyperlink directly, so long as you specify an

external URL (that is, not a relative page URL) and the _blank target name. A Paragraph can also con-

tain an InlineUIContainer, and this, in turn, can contain any UIElement. The following example includes

two InlineUIContainer objects: one with an Image control, and the other with a Button:

<Paragraph>

 Duis aute irure

 <Hyperlink NavigateUri="http://create.msdn.com" TargetName="_blank">AppHub</Hyperlink> .

</Paragraph>

<Paragraph/>

<Paragraph

 FontSize="{StaticResource PhoneFontSizeLarge}" Foreground="#FF339933">

 In reprehenderit

 <InlineUIContainer>

 <Image Source="bananas.png" Height="48" Width="48" />

 </InlineUIContainer>

 in voluptate

 <InlineUIContainer>

 <Button x:Name="SayHello" Content="click me" Click="SayHello_Click" />

 </InlineUIContainer>

 nulla pariatur.

</Paragraph>

720 PART Iv Version 7.5 enhancements

Also, of course, you can construct the contents of a RichTextBox dynamically in code as well as (or

instead of) statically in XAML. In the following OnNavigatedTo override, you construct two inde-

pendent Run objects and an InlineUIContainer with an Image. These are then added to a Paragraph

object; in this case, the irst paragraph in the existing Blocks collection, although you could equally

well add a new paragraph to the collection.

protected override void OnNavigatedTo(NavigationEventArgs e)

{

 Run run1 = new Run();

 run1.Text = " Excepteur ";

 Image image = new Image();

 image.Source = new BitmapImage(new Uri("apples.png", UriKind.Relative));

 image.Height = image.Width = 48;

 image.Margin = new Thickness(0, 0, 0, -16);

 InlineUIContainer container = new InlineUIContainer();

 container.Child = image;

 Run run2 = new Run();

 run2.Text = " sin occaecat.";

 //Paragraph para = new Paragraph();

 Paragraph para1 = (Paragraph)demoText.Blocks[0];

 para1.Inlines.Add(run1);

 para1.Inlines.Add(container);

 para1.Inlines.Add(run2);

 //demoText.Blocks.Add(para);

}

Note Unlike desktop Silverlight, the RichTextBox in Windows Phone 7.1 is read-only. Also

note that the RichTextBox is not available in the Microsoft Visual Studio toolbox by default.

However, you can add it, if you want. To do this, right-click the toolbox, select Choose Items,

and then in the list that appears, select the check box adjacent to RichTextBox.

To use the ViewBox control, you must add a reference to the Silverlight 4.0 version of System.

Windows.Controls.dll. A Viewbox contains one child element and stretches it or scales it to it the
size of the Viewbox. You can control the stretch or scale levels by using the Stretch, StretchDirection,

HorizontalAlignment, and VerticalAlignment properties. The Viewbox pivot in the example that follows

shows two versions of the same Grid. Both contain an Image, a TextBlock and an Ellipse, with all the

same attributes. However, the irst Grid is simply placed in a 200x250–pixel Border, while the second is

placed in a 200x250–pixel Viewbox. In the Viewbox, everything is scaled in proportion, with each item

maintaining its aspect ratio. Contrast this with the Border version, in which the Grid expands to ill the
Border, and the TextBlock is not scaled to it.

 ChAPTER 19 Framework Enhancements 721

<StackPanel>

 <Border Width="200" Height="250" BorderBrush="Green" BorderThickness="12">

 <Grid>

 <Image Source="monkey.png"/>

 <TextBlock Text="Monkey not in a Viewbox" Foreground="Black"/>

 <Ellipse Fill="Red" Width="50" Height="50" Margin="120,0,0,0"/>

 </Grid>

 </Border>

 <Grid Height="30"/>

 <Viewbox x:Name="monkeyBox" Width="200" Height="250">

 <Border BorderBrush="Green" BorderThickness="12">

 <Grid>

 <Image Source="monkey.png"/>

 <TextBlock Text="Monkey in a Viewbox" Foreground="Black"/>

 <Ellipse Fill="Red" Width="50" Height="50" Margin="120,0,0,0"/>

 </Grid>

 </Border>

 </Viewbox>

</StackPanel>

The VideoBrush pivot in this example deines a simple TextBlock whose Foreground is set to a

VideoBrush. The VideoBrush, in turn, takes its source from a MediaElement object. The MediaElement

is set to have zero opacity and to be non–hit-testable, which effectively makes it invisible. You also

mute the sound because you’re only interested in the visual aspects of the video here.

<Grid>

 <MediaElement

 x:Name="videoElement" Source="SeattleSummer.wmv"

 IsMuted="True" Opacity="0.0" IsHitTestVisible="False"/>

 <TextBlock

 Text="Summer in the City"

 LineStackingStrategy="BlockLineHeight" LineHeight="78"

 FontFamily="Segoe WP Black" FontSize="103" TextWrapping="Wrap"

 Margin="{StaticResource PhoneHorizontalMargin}">

 <TextBlock.Foreground>

 <VideoBrush SourceName="videoElement" Stretch="UniformToFill" />

 </TextBlock.Foreground>

 </TextBlock>

</Grid>

Note If you want the video to loop continuously, you could hook up the MediaEnded event

to reset the position to the start, and then begin playing again, as shown here.

private void videoElement_MediaEnded(object sender, RoutedEventArgs e)

{

 videoElement.Position = new TimeSpan(0);

 videoElement.Play();

}

Chapter 16, “Enhanced Phone Services,” demonstrates further examples of the VideoBrush, includ-

ing using it as a camera viewinder and for an augmented reality application.

722 PART Iv Version 7.5 enhancements

The inal example in this application shows the enhanced WebBrowser control. This supports

HTML5, and one of the interesting new tags in HTML5 is the <video> tag. To demonstrate the HTML5

support, you will navigate to a local page with a remote video link, and provide a mechanism for the

user to play the video via on-screen controls. HTML5 video is the only standard way to embed video

on web pages that is supported by multiple mobile devices. It is therefore critical in building cross-

browser applications. Also note that Internet Explorer 9 (and therefore the WebBrowser control) on

version 7.1 will play HTML5 video in H.264, which is the most commonly used video format for mobile

web applications. In addition, HTML5 video on the phone is hardware accelerated, just as it is with the

desktop browser. In the example, the XAML declaration for the WebBrowser is simple, as illustrated

here:

<phone:WebBrowser x:Name="browser"/>

The work of setting up the browser is done in code by hooking up the Loaded event on the

WebBrowser control. In this handler, you fetch an arbitrary HTML page from the application folder,

and then navigate the browser to that page.

private void browser_Loaded(object sender, RoutedEventArgs e)

{

 StreamResourceInfo sri =

 App.GetResourceStream(new Uri("VideoPage.html", UriKind.Relative));

 using (StreamReader reader = new StreamReader(sri.Stream))

 {

 String html = reader.ReadToEnd();

 browser.NavigateToString(html);

 }

}

The HTML page itself is where the video is deined. This is a simple HTML document, added to the
project with its build action set to Content.

<!doctype html>

<html>

 <head>

 <meta name="viewport" content="width=device-width, initial-scale=1.0" />

 </head>

 <body>

 <div id="main">

 Inside Windows Phone #08:

 <p />

 Taking a look inside Windows Phone Programming Model Architecture

 <p />

 <video

 src="http://ecn.channel9.msdn.com/o9/ch9/f076/8a77bfbc-5e80-4bcb-aa44-9e1a0116f076/

 IWPS08TakingALookInToArch_ch9.wmv"

 controls/>

 <p />

 Yochay Kiriaty and Abolade Gbadegesin

 </div>

 </body>

</html>

 ChAPTER 19 Framework Enhancements 723

The browser on the phone has access to an application’s isolated storage. So, if you prefer, you can

copy your local HTML pages (and any assets they require) from the application folder into isolated

storage, as shown in the example that follows. This is a more convenient approach if you have mul-

tiple HTML pages, especially if they also refer to their own local assets (JavaScript iles, images, and
so on). Furthermore, you could perform this operation the irst time the application runs (or the irst
time the user navigates to this page or pivot item), which means that subsequent uses of the browser

would simply use the iles in isolated storage directly, simplifying the code.

private void browser_Loaded(object sender, RoutedEventArgs e)

{

 using (IsolatedStorageFile store =

 IsolatedStorageFile.GetUserStoreForApplication())

 {

 if (!store.FileExists("VideoPage.html"))

 {

 using (IsolatedStorageFileStream stream =

 new IsolatedStorageFileStream("VideoPage.html", FileMode.Create, store))

 {

 Stream htmlPage = Application.GetResourceStream

 (new Uri("VideoPage.html", UriKind.Relative)).Stream;

 using (StreamReader reader = new StreamReader(htmlPage))

 {

 string data = reader.ReadToEnd();

 using (StreamWriter writer = new StreamWriter(stream))

 {

 writer.Write(data);

 }

 }

 }

 }

 }

 browser.Source = new Uri("VideoPage.html", UriKind.Relative);

}

Chapter 11, “Web and Cloud,” discusses the core functionality of the WebBrowser control in more

detail. The principles of interacting with the browser in your application remain the same across

versions 7 and 7.1, although the support for HTML5 in version 7.1 makes the script interoperability

feature more interesting. This is particularly true when you want to build a web application that works

across multiple browsers, on both desktop and mobile devices—including multiple mobile device

platforms.

the ApplicationBar and SystemTray Classes, and the
ProgressIndicator Property
The version 7.1 ApplicationBar exposes one additional property: Mode. This can be set to either

Default or Minimized. The minimized mode is intended for use in scenarios for which you want to

optimize your use of screen real estate—and most particularly on panorama pages. As discussed

in Chapter 3, “Controls,” it’s generally better to remove as much clutter as possible from panorama

pages, including chrome. If you must use an App Bar on a panorama page, you should consider the

724 PART Iv Version 7.5 enhancements

minimized mode, and also perhaps set Opacity to zero. Using this approach, the App Bar ellipsis will

always be visible, but the rest of the App Bar only takes up space if the user taps the ellipsis to open it.

In version 7, the SystemTray class exposed only one property: IsVisible. This has been enhanced in

version 7.1 to expose four new properties: BackgroundColor, ForegroundColor, Opacity, and Progress

Indicator. Figure 19-3 shows the NewSystemTray solution in the sample code, which utilizes these

properties via four App Bar buttons.

FIguRE 19-3 An application that uses the new SystemTray properties.

The App Bar buttons in this example perform the following operations:

 ■ Toggle the BackgroundColor of the system tray between the current accent color and the

default background color.

 ■ Toggle the ForegroundColor of the system tray between the current accent color and the

default foreground color.

 ■ Cycle the Opacity between 1.0, 0.5, and 0.0.

 ■ Attach a ProgressIndicator, and then toggle it between determinate and indeterminate mode.

 ■ There’s a slight quirk in the way the SystemTray color properties work. The Background

Color defaults to transparent—that is 00000000—and the ForegroundColor defaults to white

(FFFFFFFF), regardless of the current theme (dark or light). In other words, the exposed Back-

groundColor and ForegroundColor properties of the SystemTray object are not used unless

they are explicitly set. Also note that the transparent value is not the same as Colors.

Transparent (00FFFFFF or “transparent white”). To allow for this, you irst determine which
theme is in use, and then cache suitable black or white colors for later use.

 ChAPTER 19 Framework Enhancements 725

private Color ForegroundColor;

private Color BackgroundColor;

private Color AccentColor;

private Color TransparentBlack = new Color() { A = 0, R = 0, G = 0, B = 0 };

public MainPage()

{

 InitializeComponent();

 Visibility v = (Visibility)Resources["PhoneDarkThemeVisibility"];

 if (v == Visibility.Visible)

 {

 BackgroundColor = TransparentBlack;

 ForegroundColor = Colors.White;

 }

 else

 {

 BackgroundColor = Colors.White;

 ForegroundColor = TransparentBlack;

 }

 AccentColor = (Color)Resources["PhoneAccentColor"];

}

To toggle the system tray background and foreground colors between two colors, you have to

allow for the initial default property (that is, a third color—either true black or white).

private void setBackColor_Click(object sender, EventArgs e)

{

 if (SystemTray.BackgroundColor == TransparentBlack ||

 SystemTray.BackgroundColor == BackgroundColor)

 {

 SystemTray.BackgroundColor = AccentColor;

 }

 else

 {

 SystemTray.BackgroundColor = BackgroundColor;

 }

}

Although Opacity is typed as a double, as it relates to the system tray, it affects page layout more

like a Boolean in the sense that you get a 32-pixel high space at the top of the page if the system tray

Opacity is 1.0. If the system tray Opacity is <1.0, you don’t get the 32-pixel space (and the acceptable

range is 0.0 to 1.0).

private void setOpacity_Click(object sender, EventArgs e)

{

 if (SystemTray.Opacity == 1.0)

 {

 SystemTray.Opacity = 0.0;

 }

 else if (SystemTray.Opacity == 0.0)

 {

 SystemTray.Opacity = 0.5;

 }

726 PART Iv Version 7.5 enhancements

 else

 {

 SystemTray.Opacity = 1.0;

 }

}

If you enable the ProgressIndicator on the SystemTray object, this occupies space right at the

extreme outer edge of the system tray (at the top of the screen, when the device is in portrait orienta-

tion). An indeterminate progress bar displays a repeating pattern of dots to indicate that progress is

ongoing, but that the current percentage completion is undeined. A determinate progress bar, on
the other hand, shows a colored indicator bar within the overall control, whose length is proportional

to the total length of the control, and represents the percentage of progress completed so far. You set

the length of this colored indicator by setting the Value property. If you set IsIndeterminate to true,

any Value property you assign will be ignored. In this example, you toggle between indeterminate

and determinate mode, and set the Value to an arbitrary number between 0.0 and 1.0. In the code

snippet that follows, the commented-out line that invokes the SetProgressIndicator method would

have exactly the same effect as the subsequent line that sets the ProgressIndicator property.

private ProgressIndicator progress;

private void setProgress_Click(object sender, EventArgs e)

{

 if (progress == null)

 {

 progress = new ProgressIndicator();

 progress.IsVisible = true;

 progress.IsIndeterminate = true;

 progress.Text = "working...";

 //SystemTray.SetProgressIndicator(this, progress);

 SystemTray.ProgressIndicator = progress;

 }

 else

 {

 progress.IsIndeterminate = !progress.IsIndeterminate;

 progress.Value = 0.5;

 }

}

Note You can optionally set some text to display just below the progress bar. If you do,

and the user then taps the system tray to drop down the regular system icons, your text will

be hidden (regardless of the opacity setting). Also note that the progress bar on the system

tray uses the current accent color; thus, if you set the system tray BackgroundColor to the

accent color, then any progress bar would be invisible.

 ChAPTER 19 Framework Enhancements 727

the Clipboard API
Windows Phone 7.1 introduces programmatic support for the clipboard, albeit in a constrained man-

ner. You can set text into the system-wide clipboard, but you cannot extract text from it program-

matically. This constraint is for security and privacy reasons, and it ensures that the user is always in

control of where the clipboard contents might be sent. Figure 19-4 shows the TestClipboard applica-

tion in the sample code.

FIguRE 19-4 A simple clipboard application.

This example offers a RichTextBox at the top with a Button below it, and a regular TextBox at the

bottom. The RichTextBox is populated with some dummy text. The reason for this choice of controls is

that you want to get your text from a control that supports selection of its contents, which the Rich

TextBox does. You also need to make an editable text control available into which the user can paste;

hence, the TextBox. When the user taps the button, you arbitrarily select some or all of the text in the

RichTextBox, and then set this text into the clipboard by using the static Clipboard.SetText method.

private void copyText_Click(object sender, RoutedEventArgs e)

{

 textSource.SelectAll();

 Clipboard.SetText(textSource.Selection.Text);

}

After this, if and when the user chooses to tap the regular TextBox, the standard phone UI will

present a paste icon, indicating that there is some text in the clipboard. If the user taps this icon, the

clipboard contents are pasted into the TextBox. This last operation is outside of your control, and is

handled entirely by the phone platform. Note that the clipboard is cleared currently whenever the

phone lock engages.

728 PART Iv Version 7.5 enhancements

32 Bits per Pixel
Windows Phone 7 devices supported image rendering of 16 bits per pixel (bpp). In version 7.1, this

was increased to 32 bpp (although the actual hardware screen might still be 16 bpp or some other

value less than 32). Even in version 7.1 projects, the default is still 16 bpp, but you can specify that

you want to use 32 bpp for your application by adding an attribute to your WMAPPManifest ile. The
16bpp and 32bpp solutions in the sample code and Figure 19-5 highlight the difference.

FIguRE 19-5 A linear gradient rendered at 16 bpp (on the left) and 32 bpp.

Rendering at 16 bpp results in obvious banding in image gradients. This is signiicantly reduced
or eliminated at 32 bpp. Similar behavior is evident with photos, too. This application uses a simple

LinearGradientBrush, running from magenta at one end to teal at the other. To select 32 bpp, you

add the BitsPerPixel attribute to the App element in your manifest, and then set it to 32. This is an

application-wide setting; you cannot set different values on a per-page basis.

<App xmlns="" ProductID="{1000b48b-c81f-4dff-bfa2-fc822521dcea}" Title="Foo"

 RuntimeType="Silverlight" Version="1.0.0.0" Genre="apps.normal" Author="Foo author"

 Description="Sample description" Publisher="Foo"

 BitsPerPixel="32">

Be aware that while this can dramatically improve the presentation of your images, there is a small

price to pay in terms of performance. You should test your application to see if the slightly slower

rendering is actually noticeable to the user, because the improvement in presentation almost always

will be.

 ChAPTER 19 Framework Enhancements 729

Background Image Decoding
In Windows Phone 7, image decoding happens on the UI thread. As discussed in Chapter 14, “Go

to Market,” you should minimize the work that you do on the UI thread wherever possible to avoid

impacting the UX. Image decoding in version 7 could sometimes result in UI stuttering or a noticeable

lag in responsiveness. Windows Phone 7.1 supports background image decoding. To use this feature,

you set the CreateOptions attribute on each image for which you want it to apply. You can do this in

XAML, as shown in the following:

<Image>

 <Image.Source>

 <BitmapImage

 UriSource="SunsetDowntown.jpg" CreateOptions="BackgroundCreation"/>

 </Image.Source>

</Image>

Alternatively, you can also do this in code:

BitmapImage bmp = new BitmapImage();

bmp.CreateOptions = BitmapCreateOptions.BackgroundCreation;

bmp.UriSource = new Uri("SunsetDowntown.jpg", UriKind.Relative);

theImage.Source = bmp;

touch thread
The scrolling behavior of the ListBox and ScrollViewer in Windows Phone has been improved in ver-

sion 7.1. To achieve this, the platform functionality that listens to the touch gestures has been moved

to a separate thread. Because this is a platform change (rather than an API change), it means that

even version 7 applications automatically beneit from this improvement on phones that are running
version 7.1 OS.

One side-effect of this change is that ScrollViewer properties are not updated immediately; instead,

they are deferred until the user completes the touch gesture. Also, the ManipulationDelta events are

no longer raised on the UI thread when the user is dragging inside a ScrollViewer. These changes

improve performance, but if you have an application that relies on the speciics of the previous
behavior, you can choose to opt out of the improvements by setting the ScrollViewer.Manipulation

Mode property on the ListBox in question to Control, as indicated in the following snippet (the default

value is “System”):

<ListBox

 x:Name="MainListBox" Margin="0,0,-12,0" ItemsSource="{Binding Items}"

 SelectionChanged="MainListBox_SelectionChanged"

 ScrollViewer.ManipulationMode="Control">

730 PART Iv Version 7.5 enhancements

silverlight 4.0

Windows Phone 7 was based on a slightly modiied form of desktop Silverlight 3.0. Windows Phone
7.1 is based on a modiied form of desktop Silverlight 4.0. In moving from Silverlight 3.0 to 4.0, more
of the desktop Silverlight features have been brought forward and ported to the Windows Phone

version of the runtime. In addition to a raft of minor enhancements, the major features introduced are

implicit styles, command binding, and a set of data-binding improvements.

Implicit Styles
Chapter 2, “UI Core,” shows how you can deine styles in your application for use in multiple UI ele-

ments in XAML. A traditional Silverlight 3.0 style has a key value, and you specify that key value in the

element to which you want to apply the style. The code that follows deines a named style that can
be applied to TextBlock elements. This would typically be deined within a resources section in your
XAML, and most often in the App.xaml so that it can be used across multiple pages.

<Style x:Key="GradientTextStyle" TargetType="TextBlock">

 <Setter Property="FontSize" Value="{StaticResource PhoneFontSizeLarge}"/>

 <Setter Property="Margin" Value="{StaticResource PhoneHorizontalMargin}"/>

 <Setter Property="TextWrapping" Value="Wrap"/>

 <Setter Property="Foreground">

 <Setter.Value>

 <LinearGradientBrush StartPoint="0,1" EndPoint="1,0">

 <GradientStop Offset="0" Color="#FFD80073"/>

 <GradientStop Offset="1" Color="#FF00ABA9"/>

 </LinearGradientBrush>

 </Setter.Value>

 </Setter>

</Style>

Having deined the style, you could then go ahead and apply it to any element of the speciied
target type, by specifying the key name in the Style attribute for that element.

<TextBlock Text="Lorem ipsum dolor sit amet consectetur elit." Style="{StaticResource

GradientTextStyle}"/>

Such styles are known as “explicit” or “named” styles. Silverlight 4.0 supports these as well as

implicit styles. These are deined in almost the same way as named styles; the difference is that you
do not deine a key value for the style. Without a key value, the style will be applied implicitly to all
elements of the speciied target type, without an explicit Style reference. Simply remove the key from

the style deinition

<Style TargetType="TextBlock">

... unchanged definition omitted for brevity.

</Style>

and then apply the style implicitly, like so:

<TextBlock Text="Lorem ipsum dolor sit amet consecturi elit."/>

 ChAPTER 19 Framework Enhancements 731

At any time, for any element of the target type, you can override the implicit style if you need to.

To do this, you can set the Style to null (using the {x:Null} syntax), or you can simply apply an explicit

style, instead. You can also retain the implicit style, but override one or more of the style’s properties.

<TextBlock

 Text="Sed do eiusmod tempor incididunt ut labore."

 Style="{x:Null}"/>

<TextBlock

 Text="Ut enim ad minim veniam, quis nostrud mant."

 Style="{StaticResource PhoneTextExtraLargeStyle}"/>

<TextBlock

 Text="Ellamco laboris nisi ut aliquip ex eapants."

 FontSize="60" />

Finally, you can deine style hierarchies. To do this, you use the BasedOn attribute. Of course, this

attribute requires a key name, so if you deine a style hierarchy, only the last style in the tree can be
implicit; all the others must have key values.

<Style x:Key="GradientTextStyle" TargetType="TextBlock">

 <Setter Property="Foreground">

 <Setter.Value>

 <LinearGradientBrush StartPoint="0,1" EndPoint="1,0">

 <GradientStop Offset="0" Color="#FFD80073"/>

 <GradientStop Offset="1" Color="#FF00ABA9"/>

 </LinearGradientBrush>

 </Setter.Value>

 </Setter>

</Style>

<Style TargetType="TextBlock" BasedOn="{StaticResource GradientTextStyle}">

 <Setter Property="FontSize" Value="{StaticResource PhoneFontSizeLarge}"/>

 <Setter Property="Margin" Value="{StaticResource PhoneHorizontalMargin}"/>

 <Setter Property="TextWrapping" Value="Wrap"/>

</Style>

Figure 19-6 shows the results of applying this style (this is the TestImplicitStyles solution in the

sample code). The irst TextBlock uses the style implicity, as deined. The second sets a null style, the
third replaces it with a different style, and the fourth uses the implicit style but overrides the FontSize

property.

<TextBlock Text="Lorem ipsum dolor sit amet consecturi elit."/>

<TextBlock Text="Sed do eiusmod tempor incididunt ut labore." Style="{x:Null}"/>

<TextBlock Text="Ut enim ad minim veniam, quis nostrud mant." Style="{StaticResource

PhoneTextExtraLargeStyle}"/>

<TextBlock Text="Ellamco laboris nisi ut aliquip ex eapants." FontSize="60" />

732 PART Iv Version 7.5 enhancements

FIguRE 19-6 Using and overriding implicit styles.

Command Binding
Silverlight 4.0 adds support for ICommand on the ButtonBase and Hyperlink classes (and therefore,

also their derived classes). The point of the ICommand interface is to allow your viewmodel to expose

commands that can be data-bound as properties to view controls. Using this approach means that

you don’t need to supply additional code behind your view in order for it to interoperate with your

viewmodel because the binding can be done entirely in XAML. This increases the decoupling between

view and viewmodel.

Consider Figure 19-7, which shows the MvvmDataBinding_ICommand solution in the sample code.

This is a variation of the MvvmDataBinding solution described in Chapter 4, “Data Binding.”

The application offers three buttons: one to load data into the viewmodel by using the traditional

approach with a custom button Click handler; a second button to load data by using the ICommand

approach; and a third button to clear the data (also using ICommand). Below that is a ListBox that is

data-bound in the normal way to a collection of employee data held in the viewmodel. The appli-

cation model uses a view (the page) and a viewmodel (EmployeesViewModel), backed by a model

(EmployeeModel). In the traditional approach, the irst button is deined with a Click handler, as shown

in the following:

<Button x:Name="loadData" Content="load data (old school)" Click="loadData_Click"/>

 ChAPTER 19 Framework Enhancements 733

FIguRE 19-7 Data binding and command binding.

This requires a corresponding handler method in the view code-behind, as demonstrated here:

private void loadData_Click(object sender, RoutedEventArgs e)

{

 App.ViewModel.LoadDataOldSchool();

}

This in turn calls into a method on the viewmodel to load the data (in this case, simulating a more

realistic data source). The viewmodel is set up with an ObservableCollection<T>, initialized in the con-

structor. The traditional method to load data simply creates some dummy employees.

private ObservableCollection<EmployeeModel> data;

public ObservableCollection<EmployeeModel> Data

{

 get { return data; }

 private set { }

}

public EmployeesViewModel()

{

 data = new ObservableCollection<EmployeeModel>();

}

public void LoadDataOldSchool()

{

 data.Add(new EmployeeModel { Name = "humberto acevedo" });

 data.Add(new EmployeeModel { Name = "alfons parovszky" });

 data.Add(new EmployeeModel { Name = "yael peled" });

}

734 PART Iv Version 7.5 enhancements

All this works just ine, but it does mean that the view has to have a method to handle the Click

event on the button, and this in turn must invoke some functionality on the viewmodel. The alterna-

tive approach, using ICommand, is slightly more decoupled, which is generally a good thing for main-

tainability and testability. To set this up, you need a class that implements the ICommand interface.

ICommand deines two methods—Execute and CanExecute—and one event—CanExecuteChanged.

This class is a façade between the consumer (the page) and the implementation (the viewmodel).

The Execute delegate can be set to a method on the viewmodel that will perform the desired

operation when the user taps the button. The CanExecute delegate can be set to another method on

the viewmodel that determines whether or not the button can be executed, and if not, the system

disables the button automatically. The CanExecuteChanged event is raised when the value of the

executability of the command changes.

public class Command : ICommand

{

 private Func<object, bool> canExecuteDelegate;

 private Action<object> executeDelegate;

 public event EventHandler CanExecuteChanged;

 public Command(Action<object> executeDelegate)

 {

 this.canExecuteDelegate = (e) => true;

 this.executeDelegate = executeDelegate;

 }

 public Command(

 Func<object, bool> canExecuteDelegate, Action<object> executeDelegate)

 {

 this.canExecuteDelegate = canExecuteDelegate;

 this.executeDelegate = executeDelegate;

 }

 public bool CanExecute(object parameter)

 {

 return canExecuteDelegate(parameter);

 }

 public void Execute(object parameter)

 {

 if (executeDelegate != null)

 {

 executeDelegate(parameter);

 }

 }

}

This is how you use the Command class in the viewmodel. First, the constructor is enhanced to ini-

tialize two ICommand objects: one for loading the data, and the other for clearing the data. The irst
initialization passes both a CanExecute delegate and an Execute delegate. If the CanExecute delegate

returns true, the Execute delegate will be invoked; otherwise, it will not. The Execute delegate, named

 ChAPTER 19 Framework Enhancements 735

LoadDataDelegate here, simply parallels the old-school behavior of creating some dummy employees.

The CanExecute delegate in this example always returns true. Realistically, it would be doing some-

thing meaningful like checking the availability of network connectivity so that the Execute delegate

can download data from the web, and so on.

The second ICommand object is used to clear the collection of data. You initialize this one by using

the constructor overload that takes only an Execute delegate. This ICommand object will therefore

have a null CanExecute delegate. The Command class is implemented always to return true in this

case.

public EmployeesViewModel()

{

 data = new ObservableCollection<EmployeeModel>();

 loadDataCommand = new Command(CanLoadData, LoadDataDelegate);

 clearDataCommand = new Command(ClearDataDelegate);

}

private void LoadDataDelegate(object parameter)

{

 data.Add(new EmployeeModel { Name = "humberto acevedo" });

 data.Add(new EmployeeModel { Name = "alfons parovszky" });

 data.Add(new EmployeeModel { Name = "yael peled" });

}

private ICommand loadDataCommand;

public ICommand LoadDataCommand

{

 get

 {

 return loadDataCommand;

 }

}

private bool CanLoadData(object parameter)

{

 return true;

}

private void ClearDataDelegate(object parameter)

{

 Data.Clear();

}

private ICommand clearDataCommand;

public ICommand ClearDataCommand

{

 get

 {

 return clearDataCommand;

 }

}

736 PART Iv Version 7.5 enhancements

The inal piece of this puzzle is to command-bind the UI. The second and third buttons are bound
by using the Command={Binding} syntax, binding the irst to the LoadDataCommand object in the

viewmodel, and the second to the ClearDataCommand object, both of which are ICommand objects.

<Button x:Name="loadData" Content="load data (old school)" Click="loadData_Click"/>

<Button Content="load data (ICommand)" Command="{Binding LoadDataCommand}"/>

<Button Content="clear data" Command="{Binding ClearDataCommand}"/>

<ListBox ItemsSource="{Binding Data}" >

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock

 Text="{Binding Name}"

 FontSize="{StaticResource PhoneFontSizeLarge}"

 Margin="{StaticResource PhoneHorizontalMargin}"

 Foreground="#FFD80073"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

Data-Binding enhancements
The data-binding enhancements introduced with Silverlight 4.0 include the following:

 ■ Improved formatting capabilities, with the StringFormat, TargetNullValue, and FallBackValue

attributes.

 ■ The ability to sort or group a data-bound collection by using the CollectionViewSource class

and the SortDescriptions and GroupDescriptions properties.

 ■ The introduction of the DataServiceCollection<T> class, which simpliies binding for data
returned by Windows Communications Foundations (WCF) Data Services.

 ■ The use of INotifyDataErrorInfo, which brings greater lexibility for data validation.

The StringFormat attribute in a data-binding deinition has been brought forward from desktop
Silverlight to the phone. This means that you have all the rich formatting capabilities available to you

when you display data-bound values. Figure 19-8 is a screenshot of the TestStringFormat solution in

the sample code, which exercises a very small number of the possible formatting options. The full list

is documented on MSDN at http://msdn.microsoft.com/en-us/library/26etazsy(VS.95).aspx.

http://msdn.microsoft.com/en-us/library/26etazsy(VS.95).aspx

 ChAPTER 19 Framework Enhancements 737

FIguRE 19-8 A demonstration of the StringFormat data-binding attribute.

Compare the screenshot with the XAML where these StringFormat values are declared. Observe

the use of the backslash to escape the meaning of special characters in the formatting string, such as

the open “{“ and close “}” brackets and the comma (,). Also note that you cannot use the backslash to

escape double quotation marks; instead, you must use the XML " delimiter.

<TextBlock Text="{Binding StringValue}" />

<TextBlock Text="{Binding DoubleValue}" />

<TextBlock Text="{Binding DateTimeValue}" />

<Grid Height="30"/>

<TextBlock Text="{Binding StringValue, StringFormat=\{0\,20\}}" Foreground="Green"/>

<TextBlock Text="{Binding DoubleValue, StringFormat=c}" Foreground="Green"/>

<TextBlock Text="{Binding DateTimeValue, StringFormat=f}" Foreground="Green"/>

<Grid Height="30"/>

<TextBlock Text="{Binding StringValue, StringFormat='message is: "\{0\}"'}"

 Foreground="Purple"/>

<TextBlock Text="{Binding DoubleValue, StringFormat=e}" Foreground="Purple"/>

<TextBlock Text="{Binding DateTimeValue, StringFormat=g}" Foreground="Purple"/>

<Grid Height="30"/>

<TextBlock Text="{Binding DoubleValue, StringFormat=\{0:n6\}}" Foreground="Red"/>

<TextBlock Text="{Binding DateTimeValue, StringFormat=G}" Foreground="Red"/>

<Grid Height="30"/>

<TextBlock Text="{Binding DateTimeValue, StringFormat='dd-MMMM-yy g, hh:mm:ss.fff tt'}"

 Foreground="Teal"/>

738 PART Iv Version 7.5 enhancements

You can also use the TargetNullValue and/or FallBackValue attributes. At the bottom of the page,

you declare three more TextBlock controls, each bound to the same string property in another model

instance; in this case, the string property is set to null in code. The irst variation does not specify
what to do in the case of a null value, so nothing is displayed. The second speciies that the string
“(empty)” should be used, via the TargetNullValue attribute. The third variation uses the FallbackValue

attribute to specify that the string “unknown” should be displayed if something goes wrong with the

data-binding. In the screenshot in Figure 19-8, only the second one results in displayed text, in this

instance.

<TextBlock Text="{Binding StringValue}" Foreground="Magenta"/>

<TextBlock Text="{Binding StringValue, TargetNullValue=(empty)}" Foreground="Magenta"/>

<TextBlock Text="{Binding StringValue, FallbackValue=unknown}" Foreground="Magenta"/>

Another feature brought over from desktop Silverlight is the ability to sort or group a collection as

part of data-binding. This uses the CollectionViewSource class and the SortDescriptions and Group

Descriptions collection properties. Figure 19-9 shows two different versions of the TestGrouping solu-

tion in the sample code. When the user selects a store item from the list of stores in the irst column,
the view updates the second column with those products that are associated with the selected store.

The key here is that this is all done via data-binding—there is no SelectionChanged event handler in

the code, for instance.

FIguRE 19-9 Data-binding with CollectionViewSource objects, and sorting and grouping collections.

In both cases, the model consists of a StoreModel class to represent a store as well as a string prop-

erty for the store name and a collection property for the store products. The store Product model, in

turn, consists of a string for the name and a double for the price.

 ChAPTER 19 Framework Enhancements 739

public class StoreModel

{

 public String Name { get; set; }

 public ObservableCollection<Product> Products { get; set; }

 public StoreModel(String name)

 {

 Name = name;

 Products = new ObservableCollection<Product>();

 }

}

public class Product

{

 public String Name { get; set; }

 public double Price { get; set; }

 public Product(String name, double price)

 {

 Name = name;

 Price = price;

 }

 public override string ToString()

 {

 return String.Format("{0} - {1:C2}", Name, Price);

 }

}

The viewmodel is a collection of StoreModel objects, and the constructor creates some demonstra-

tion data (this is an arbitrary collection of stores and products, in no particular order).

public class StoreViewModel : ObservableCollection<StoreModel>

{

 public StoreViewModel()

 {

 StoreModel grocery = new StoreModel("grocery");

 grocery.Products.Add(new Product("peas", 2.50));

 grocery.Products.Add(new Product("sausages", 3.00));

 grocery.Products.Add(new Product("coffee", 10.00));

 grocery.Products.Add(new Product("cereal", 3.00));

 grocery.Products.Add(new Product("milk", 2.50));

 this.Add(grocery);

 StoreModel pharmacy = new StoreModel("pharmacy");

 pharmacy.Products.Add(new Product("toothpaste", 3.99));

 pharmacy.Products.Add(new Product("aspirin", 5.25));

 this.Add(pharmacy);

 StoreModel bakery = new StoreModel("bakery");

 bakery.Products.Add(new Product("croissants", 5.00));

 bakery.Products.Add(new Product("bread", 4.00));

 bakery.Products.Add(new Product("vanille kipferl", 6.50));

 bakery.Products.Add(new Product("amandines", 5.00));

 this.Add(bakery);

 }

}

740 PART Iv Version 7.5 enhancements

In the XAML, you deine two CollectionViewSource objects as resources. The irst is bound to
the StoreViewModel; that is to say, all stores. The second CollectionViewSource is bound to the irst
CollectionViewSource, specifying the Products within that collection as the path. This effectively pro-

vides a pivot mechanism on the stores.

<phone:PhoneApplicationPage.Resources>

 <local:StoreViewModel x:Key="shoppingItems" />

 <CollectionViewSource x:Key="cvs1" Source="{Binding Source={StaticResource

 shoppingItems}}"/>

 <CollectionViewSource x:Key="cvs2" Source="{Binding Source={StaticResource cvs1},

 Path=Products}"/>

</phone:PhoneApplicationPage.Resources>

You then deine two ListBox controls. For the irst one, set its ItemsSource to the irst Collection

ViewSource, and then data-bind the TextBlock in the item template to the store name property. For

the second ListBox, set its ItemsSource to the second CollectionViewSource; data-bind the TextBlock in

the item template implicitly to the whole Product item. Recall that the Product item overrides ToString

to render both the product name and price.

<ListBox ItemsSource="{Binding Source={StaticResource cvs1}}" Grid.Row="1">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock Text="{Binding Name}" Margin="{StaticResource PhoneHorizontalMargin}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

<ListBox ItemsSource="{Binding Source={StaticResource cvs2}}" Grid.Column="1" Grid.Row="1">

 <ListBox.ItemTemplate>

 <DataTemplate>

 <TextBlock Text="{Binding}" Margin="{StaticResource PhoneHorizontalMargin}"/>

 </DataTemplate>

 </ListBox.ItemTemplate>

</ListBox>

This results in the experience shown in the irst screenshot; the irst column lists all stores, and
the second column lists only those products for the currently selected store. The second screenshot

has two further enhancements: sorting and grouping. The stores are sorted alphabetically, and the

products within each store are grouped according to price. This is achieved very simply in XAML by

specifying a SortDescription for the irst CollectionViewSource, and a GroupDescription for the second.

<CollectionViewSource x:Key="cvs1" Source="{Binding Source={StaticResource shoppingItems}}">

 <CollectionViewSource.SortDescriptions>

 <scm:SortDescription PropertyName="Name"/>

 </CollectionViewSource.SortDescriptions>

</CollectionViewSource>

<CollectionViewSource x:Key="cvs2" Source="{Binding Source={StaticResource cvs1},

 Path=Products}">

 <CollectionViewSource.GroupDescriptions>

 <PropertyGroupDescription PropertyName="Price" />

 </CollectionViewSource.GroupDescriptions>

</CollectionViewSource>

 ChAPTER 19 Framework Enhancements 741

Both SortDescriptions and GroupDescriptions are collection properties, which means that you can

specify multiple sorting and grouping deinitions for each CollectionViewSource, if required. Also note

that the use of SortDescriptions requires an XML namespace reference to the System.ComponentModel

namespace in System.Windows.dll.

Another signiicant data-binding enhancement is the introduction of the DataServiceCollection<T>

class. This provides simpliied binding for data returned by WCF Data Services. The key to this class
is that it derives from ObservableCollection<T>, which implements INotifyCollectionChanged and

INotifyPropertyChanged, allowing it to update bound data automatically. DataServiceCollection<T> is

discussed in Chapter 17, “Enhanced Connectivity.”

The inal data-binding enhancement to consider is INotifyDataErrorInfo. You would implement

this interface on your viewmodel or model class to signify whether there are currently any validation

errors on the object. Silverlight 4.0 also brings with it the IDataErrorInfo interface, which is almost

identical. You are encouraged to use INotifyDataErrorInfo in preference to IDataErrorInfo. The differ-

ence is that INotifyDataErrorInfo exposes an event that can be raised when there is a validation error.

This removes the need for validation to be immediate; instead, you could perform validation asyn-

chronously (perhaps querying a web service), and then raise the event when you eventually determine

the result.

By the same token, you can use this to perform validation across multiple properties, for which

you cannot fully determine whether an individual property is valid until you have examined other

properties. This applies especially in circumstances when you need to perform not just cross-property

validation, but whole-entity validation. It might be that no single property is invalid but that the com-

bination of several (or all) of the property values is invalid.

Figure 19-10 presents the MoreValidation solution in the sample code is a minor variation on the

BindingValidation sample from Chapter 4.

742 PART Iv Version 7.5 enhancements

FIguRE 19-10 Data-binding validation via INotifyDataErrorInfo.

The XAML is unchanged and speciies that the idText TextBlock has data-binding validation associ-

ated with it, and that the validator error handler is at the scope of the containing grid.

<Grid

 x:Name="ContentPanel" BindingValidationError="ContentPanel_BindingValidationError">

... irrelevant code omitted for brevity.

 <TextBox x:Name="idText">

 <TextBox.Text>

 <Binding

 Mode="TwoWay" Path="ID"

 NotifyOnValidationError="true"

 ValidatesOnExceptions="true"/>

 </TextBox.Text>

 </TextBox>

</Grid>

As before, the binding validation event handler repaints the background of the TextBox either red

or the default background color, depending on whether an error has been added to or removed from

the collection. This code is also unchanged from the version in Chapter 4.

private void ContentPanel_BindingValidationError(

 object sender, ValidationErrorEventArgs e)

{

 Debug.WriteLine("ContentPanel_BindingValidationError");

 TextBox t = (TextBox)e.OriginalSource;

 ChAPTER 19 Framework Enhancements 743

 if (e.Action == ValidationErrorEventAction.Added)

 {

 t.Background = new SolidColorBrush(Colors.Red);

 }

 else if (e.Action == ValidationErrorEventAction.Removed)

 {

 t.ClearValue(TextBox.BackgroundProperty);

 }

 e.Handled = true;

}

The new code is in the model class itself. This now implements INotifyDataErrorInfo, which deines
the ErrorsChanged event (the GetErrors method) and the HasErrors property. To support these, you

deine a Dictionary<T> to hold the collection of errors. When you validate one of the model proper-

ties (ID, in this example), if there is a validation error, you add an entry to the dictionary, and then

raise the ErrorsChanged event.

public class Employee : INotifyDataErrorInfo

{

 public String Name { get; set; }

 private String id;

 public String ID

 {

 get { return id; }

 set

 {

 errors.Remove("ID");

 int tmp;

 if (Int32.TryParse(value, out tmp))

 {

 id = value;

 }

 else

 {

 //throw new ArgumentOutOfRangeException("value must be an integer");

 errors.Add("ID", "value must be an integer");

 }

 EventHandler<DataErrorsChangedEventArgs> handler = ErrorsChanged;

 if (handler != null)

 {

 handler(this, new DataErrorsChangedEventArgs("ID"));

 }

 }

 }

 private Dictionary<String, String> errors = new Dictionary<String, String>();

 public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

 public IEnumerable GetErrors(string propertyName)

 {

744 PART Iv Version 7.5 enhancements

 if (!errors.ContainsKey(propertyName))

 {

 return String.Empty;

 }

 else

 {

 var tmp = errors[propertyName];

 return new String[] { tmp };

 }

 }

 public bool HasErrors

 {

 get { return errors.Any(); }

 }

}

Note that if you anticipate having to support more than one error per property, then the simple

Dictionary shown in the preceding code would not be suficient. In that case, you’d need something
like a Dictionary<String, List<String>>, instead.

summary

In this chapter, you saw how the move from Silverlight 3.0 to Silverlight 4.0 has brought with it a raft

of improvements, both major and minor. Many of the perceived gaps in the version 7 support for

page navigation, backstack management, and data-binding have been illed. Other improvements are
more related to the quality of the UX, such as the move to 32 bpp for rendering images, background

image decoding for optimizing the UI responsiveness on the phone, and the introduction of a touch

thread on the platform.

 745

C h A P T E R 2 0

tooling enhancements

In Chapter 19, “Framework Enhancements,” you saw how the Windows Phone 7.1 SDK introduced

a range of improvements in the application platform, the programming model, and the Microsoft

Silverlight runtime. In this chapter, you’ll see how the developer tooling support has also improved.

The emulator has been signiicantly enhanced, as has the debugger. There’s a new marketplace test
kit designed to help you inalize your application prior to submitting it for publication. Probably the
most signiicant new tooling feature is the Windows Phone Performance Analysis tool, also known
as the Proiler, which you can use to build a proile of your application’s CPU and memory consump-

tion. As you can imagine, this can be of tremendous assistance when you’re trying to identify problem

areas in your application, or for optimizing its performance.

Emulator Improvements

The emulator in Windows Phone 7.1 has a number of improvements, mostly speciic to either the
accelerometer or location. Improvements to support sensor development (including accelerometer)

are discussed in Chapter 16, “Enhanced Phone Services.” The location support follows a similar vein, in

that it allows you to test location-related code to simulate changes in location over time, without the

use of a physical device. The Location tab in the emulator offers a Bing map and a number of controls

for manipulating location, as shown in Figure 20-1. By default, the Live feature is enabled, which uses

real geolocation capabilities to track your current position. If your code is using a GeoCoordinate

Watcher, and this is turned on, then your application running in the emulator will receive the position

data.

746 PART Iv Version 7.5 enhancements

FIguRE 20-1 You can use the emulator to simulate location changes.

You can also click a spot on the map in the emulator to simulate changes in location; each change

will raise a GeoPositionChangedEvent in your application. This actually makes it more useful than test-

ing on a device, because you can easily simulate many location changes—and large ones, at that—in

a way that would be dificult (or simply impossible) using a physical device. As an alternative to Live
location behavior, you can tap the map to add push-pins at any position. Each push-pin is tracked in

the Latitude/Longitude list at the bottom of the emulator. Having set up a series of location changes,

you can then play back the series, and again, each change will raise an event in your application. You

can also specify the time interval in seconds between each position change. Finally, you can save a

series of locations to an XML ile, and then reload it in a subsequent emulator session, or create the
ile manually for use in the emulator. The ile format is very simple: each position is represented by a
GpsData element, with latitude and longitude attributes, as shown here:

<?xml version="1.0" encoding="utf-8"?>

<WindowsPhoneEmulator xmlns="http://schemas.microsoft.com/WindowsPhoneEmulator/2009/08/

SensorData">

 <SensorData>

 <Header version="1" />

 <GpsData latitude="47.6047023940839" longitude="-122.336365090179" />

 <GpsData latitude="47.6451686929145" longitude="-122.142042257115" />

 <GpsData latitude="47.4513249698352" longitude="-122.312802411839" />

 </SensorData>

</WindowsPhoneEmulator>

 ChAPTER 20 Tooling Enhancements 747

The third tab in the version 7.1 emulator is the Screenshot tab. You can use this to take a screen-

shot of your running application and save it as a PNG ile to disk. You can take a screenshot whenever
you like, as often as you like, and the full emulator screen is captured, including any chrome that

might be displayed (system tray or application bar). If you’re using this feature to create the images

required for marketplace submission, you should set the emulator size to 100 percent so that you get

a full 480x800–pixel image.

Debugger Experience

In Chapter 15, “Multi-Tasking and Fast App Switching,” you saw how the version 7.1 application

lifecycle behavior has been enhanced to improve responsiveness when the user is switching between

applications. The Microsoft Visual Studio debugger has also been updated to accommodate the

modiied runtime behavior. There’s a new option in the Debug tab of the project settings with which
you can set the behavior of your application at the point of deactivation.

In Windows Phone 7, in the normal case, an application was tombstoned upon deactivation. In ver-

sion 7.1, the normal case is that the application is made dormant but is not tombstoned. The applica-

tion might eventually be tombstoned; for example, if it falls off the backstack or if memory resources

fall below a critical threshold. So, you need to test the behavior in both the tombstoning and the

non-tombstoning cases. You can toggle the debug option to change the behavior for each test run,

as shown in Figure 20-2.

FIguRE 20-2 You can set your application to tombstone upon deactivation while debugging.

The behavior of the debugger under different conditions is summarized in Table 20-1.

748 PART Iv Version 7.5 enhancements

TABlE 20-1 Debugger Behavior with Different Application Conditions

Application Type user Action version 7.1 Debugger Behavior

Standard application running in the
foreground

Taps the Back button The debug session ends.

Taps the Start button Tombstone or fast application switching (FAS),
depending on the debugger setting. In either case,
the debug session remains active.

Activates after tombstone
or FAS

Attaches to the activated application. In the FAS
case, attach to the same process. In the tombstone
case, attaches to the new process.

Launches a new instance
after tombstone or FAS

The debug session ends, and the new instance is
launched in non-debug mode.

Taps the Stop Debugging
button in Visual Studio

The debug session ends, the application is termi-
nated, and the backstack entry for the application
is removed.

Application with a Background
agent (Audio, periodic, or resource
intensive)

Taps the Back button The debug session is kept alive.

Taps the Start button Tombstone or FAS, depending on the debugger
setting. In either case, the debug session remains
active.

Activates after tombstone
or FAS

Attaches to the activated application. In the FAS
case, attach to the same process. In the tombstone
case, attaches to the new process.

Launches a new instance
after tombstone or FAS

The debug session remains alive, the application is
launched in debug mode, and the debugger at-
taches to the foreground application.

Background agent kicks
in

The debug session remains alive, and the debug-
ger attaches to the background agent.

Taps the Stop Debugging
button in Visual Studio

The debug session ends, the application and back-
ground agent are terminated, and the backstack
entry for this application is removed.

Application with a background
service (alarm, push notiication, or
background transfer service)

Taps the Back button The debug session ends.

Taps the Start button Tombstone or FAS, depending on the debugger
setting. In either case, the debug session remains
active.

Activates after tombstone
or FAS

Attaches to the activated application. In the FAS
case, attach to the same process. In the tombstone
case, attaches to the new process.

Launches a new instance
after tombstone or FAS

The debug session ends, and the new instance is
launched in non-debug mode.

Taps the Stop Debugging
button in Visual Studio

The debug session ends, the application is termi-
nated, and the backstack entry for the application
is removed.

 ChAPTER 20 Tooling Enhancements 749

Marketplace Test kit

The marketplace ingestion process checks your application’s capabilities and overwrites the entries in

the WMAppManifest.xml. When the application is later installed on a user’s phone, these capabilities

are used to determine the security sandbox in which the application will run, constraining the applica-

tion to only those features that it is known to use. Chapter 1, “Vision and Architecture,” described the

core tools available for use in Windows Phone development, including the Capability Detection tool,

which you can use to conirm the speciic capabilities used in your application, prior to submitting
it for publication. This tool is not shipped with the version 7.1 SDK. Instead, it introduces the mar-

ketplace test kit, which covers the same functionality, plus additional functionality for testing other

marketplace requirements. The test kit is available in Visual Studio under the Project menu, and it is

only for use on a version 7.1 project; you cannot use the test kit for a version 7 project.

The menu is dynamically constructed, and you need to select the project itself (or any part of the

project) in Solution Explorer before the test kit option becomes available. Also note that the test kit

uses rules and test cases that are continually synchronized with the rules and test cases used in the

full markeplace ingestion process. Upon startup, the test kit will make a web service call to the mar-

ketplace to check for updated rules or test cases. If needed, it will prompt you to install any updates.

The test kit offers four tabs:

 ■ Application Details This is where you specify marketplace images.

 ■ Automated Tests Use this for validating the static marketplace requirements.

 ■ Monitored Tests This is where the test kit monitors your application’s behavior during

execution.

 ■ Manual Tests You can use this tab to track your manual testing results against a set of test

cases.

On the Application Details tab, you specify the application tile and screenshot images used in mar-

ketplace. These must all be in PNG format, with no transparency deined, and using the sizes as noted
in Table 20-2. All of these are required, including the screenshot, although you can also specify up to

seven additional (optional) screenshots. These requirements can be updated from time to time, and

the details will be indicated on each placeholder image in the test kit itself, as shown in Figure 20-3.

TABlE 20-2 Marketplace Image Requirements

Image Required size in Pixels

Large application tile 173x173

Small application tile 99x99

Marketplace application tile 200x200

Application screenshot 480x800

750 PART Iv Version 7.5 enhancements

FIguRE 20-3 Specify your marketplace images in the Application Details tab of the marketplace test kit.

The Automated Tests tab validates the static marketplace requirements; that is, it validates the

size of your XAP, the capabilities required by your application, the application icon and tile images,

and your marketplace screenshots, as shown in Figure 20-4. Before you can run these tests, you must

build a release version of your XAP.

Note The test kit sometimes incorrectly reports that the ID_CAP_NETWORKING capabil-

ity is required by your application. To double-check the test kit’s report, you can also

run the Capability Detection tool from the version 7 SDK. Then, you should update your

WMAppManifest.xml to specify only those capabilities that this tool reports.

The Capability Detection tool scans your intermediate language (IL) code to identify which classes

are used, and then determines the required capabilities from that scan. This works even if you use

obfuscation on your code. However, it cannot detect APIs that you use via relection. This means that
it is possible to build an application that uses unsupported APIs; thus, this application can pass the

marketplace test kit check as well as the production marketplace ingestion process. The problem here

is that this effectively bypasses a set of reliability tests, and your application could then simply fail at

runtime. The bottom line is that if you use relection in your application, you must be very careful to
avoid any unsupported APIs.

 ChAPTER 20 Tooling Enhancements 751

FIguRE 20-4 Perform static validation by using the Automated Tests tab.

Apart from relection, the tool also cannot detect APIs that you only use in XAML and not in code.
There are two places where this is especially important: the WebBrowser control and the Media

Element control. For both of these, you must give them an x:Name property value (even if you don’t

need to access them in the code-behind) so that the IL scanner will see them.

Note If the tools report that you’re not using any speciic capabilities, and you therefore
remove all the capability entries from your manifest, the next time you open the project,

you’ll get a spurious error message related to this. Speciically, the message will alert you
that, “you are using a project created by previous version of Windows Phone Developer

Tools CTP.” You can safely ignore this message.

The Monitored Tests tab (Figure 20-5) examines your application as you run it and exercise its

functionality. The tests look for certain speciic behaviors, which include your application starting up
within the published maximum required time (5 seconds to irst screen, 20 seconds to user interface
(UI) responsiveness), the peak memory is within published limits (90 MB), all exceptions are handled

so that they do not propagate out of your application, and you do not interfere with the Back button

behavior in an unexpected way.

752 PART Iv Version 7.5 enhancements

You must run these tests on a connected device—performance on the emulator is not a good rep-

resentation of physical device performance, and the test kit will only allow you to run these tests on a

device. This is an opportunity to test your application thoroughly. You should exercise all code paths,

navigate to all pages, and perform all operations that the user might perform. This especially includes

scenarios at the edges of your application’s control, such as the use of Launchers and Choosers, the

behavior when there’s an incoming phone call or SMS, fast application switching and tombstoning.

Testing at this stage should be destructive; your aim is to try to cause failures in the application, so

that you can catch them before submitting to the marketplace. Note that monitored test results are

not persisted anywhere, so you should note the results for each test run on-screen before closing the

test kit.

FIguRE 20-5 The Monitored Tests tab oversees behavior as you exercise your application.

The Manual Tests tab provides about 50 speciic test cases, which you are asked to work through
manually. Each test case has a link to the speciic certiication requirement on MSDN. The test kit does
not monitor these tests; rather, they are for your beneit to help guide you through a comprehensive
set of scenarios for which you should be testing. These tests are designed to match the tests per-

formed during marketplace ingestion. Note that some of the tests might not apply to your application

 ChAPTER 20 Tooling Enhancements 753

(for example, your application might not make use of game-speciic or media-speciic features,
background audio, background transfers, and so on). For tests that don’t apply, simply leave them

as pending. The aim here is to ensure that you test all cases that do apply, and that your application

passes these tests. It is obviously in your own interests to lag tests as failed until you ix the cause of
the failure. Thus you should use the test kit here as a bug tracking tool, as shown in Figure 20-6.

FIguRE 20-6 You can use the Manual Tests tab as a bug tracking tool.

When you run the test kit, it creates a folder named SubmissionInfo in your project, and then cop-

ies any marketplace image iles you speciied into this folder. It also creates two XML iles: Settings.xml
(a simple list of the marketplace image iles), and ManualTestResults.xml (logs the results of all manual
tests run for the application). Note that once you have added an image to the list in the Application

Details tab, you can’t remove it via the UI, although you can replace it with another image (so long

as the new image has a different name). Alternatively, you can close the test kit and edit the Settings.

xml directly, or you can simply delete it altogether so that the test kit can recreate it from scratch next

time you run it. When you’ve completed all tests, you can also use the Submission Info folder as your

source for images when you inally submit your application to marketplace.

754 PART Iv Version 7.5 enhancements

The Proiler

The version 7.1 SDK ships with the Windows Phone Performance Analysis tool, or Proiler, as an inte-

grated component in Visual Studio. You can think of this as a much more sophisticated and powerful

version of the debug performance counters discussed in Chapter 8, “Diagnostics and Debugging.”

The idea is that you start the proiling tool, which launches your application, and you then exercise
the application’s functionality. The Proiler will track metrics on your application’s use of resources,
and then write these out to a log ile. After you stop the application, you can examine the log in the
Proiler. This presents a graphical display as well as text descriptions of what was going on during any
selected time period. There are multiple options for coniguring what kind of proiling information
you want to track, and suggestions for how to improve your application’s performance in cases where

it is approaching or exceeding acceptable limits.

The following sections use the ProductCatalog application in the sample code as a reference. The

initial version of this application has no performance optimizations, many of which can be easily iden-

tiied through use of the Proiler. The application is shown in Figure 20-7.

FIguRE 20-7 The ProductCatalog sample is used to demonstrate proiling.

 ChAPTER 20 Tooling Enhancements 755

The application has three pages:

 ■ MainPage This page has a background image and a short list of menu items, corresponding

to the product categories. The user can tap on a category item in the list to navigate to the

CategoryPage for that item.

 ■ CategoryPage This has a ListBox of product items, each with a small Image control and a

TextBlock. From here, the user can tap an individual item to select it. This navigates to the

DetailsPage for that item.

 ■ DetailsPage This page has a larger Image control and a TextBlock, both of which are inside a

ScrollViewer. Both the CategoryPage ListBox items and the DetailsPage use the same image ile,
which is scaled according to the requirements of each page.

To start the Proiler, you should irst build a release version of your application, and then deploy
it to an attached device (proiling on the emulator or with a debug build is normally only useful as a
reference point). Then, select the Start Windows Phone Performance Analysis option on the Debug

menu. If you’re using Visual Studio Ultimate, don’t be distracted by the similarly named Start Perfor-

mance Analysis option: that option will not work with Windows Phone projects. Also note that even

if you did want to proile a debug build, you cannot run the Proiler during a debug session, and you
cannot debug during a Proiler session. The Proiler irst asks you if you want to focus on execution
or memory. An execution pass pays more attention to visual rendering, frame rates, and function call

sequences. A memory pass pays more attention to object allocation, deallocation, and garbage col-

lection. You should do multiple proile passes, sometimes focusing on execution, sometimes memory.
Within the two major options, you also have more detailed choices. These are discussed later on in

this section.

After you have conigured the proiling pass, click the link to launch the application. This injects
instrumentation into the application and deploys it to the device, and proile recording starts just as
the application is launched. You then run through the behavior on the application that you want to

examine, and inally exit out of the application by pressing the Back key. Then, stop the Proiler. At this
point, the proile recorder writes out the log. The key log ile is an SAP ile in your project folder, and
this is also added to your project. The ile is named by using a combination of the project name and a
timestamp. The ile itself is an XML that contains references to the raw binary logs.

The Proiler creates these logs in a subfolder of a folder named PerformanceLogs, which it creates
in your project folder. Each proile pass creates a fresh subfolder. This way, you have a useful history of
performance that you can track as you make optimizations to your code. After the log is written out,

the proile analyzer kicks in. This reads the log back in, parses it, and generates a graphical display of
the behavior over time. Figure 20-8 shows a sample run of about 45 seconds. You can reload an SAP

ile from an earlier run at any time by just double-clicking it in Solution Explorer. You can also open
multiple SAP iles at the same time so that you can do side-by-side comparisons.

756 PART Iv Version 7.5 enhancements

FIguRE 20-8 It’s useful to perform a quick high-level pass irst.

You should perform a quick pass irst, running through all the major features of the application,
but not drilling down into too much detail or spending more than a couple of minutes on the pass.

This will give you a big-picture view of your application’s performance. After that, you should perform

more targeted passes, focusing on individual areas such as (but not limited to):

 ■ All the functionality of a single page at a time

 ■ All the page navigation transitions

 ■ All the areas where you make web connectivity calls

 ■ All the areas where you perform local database operations

 ■ All the areas that are heavy in user input

 ■ Application behavior across FAS at different points

It is also worth performing a long-running pass, in which you might concentrate on performance

degradation over time that are perhaps caused by memory leaks, and so on. Note, however, that the

log iles can become extremely large very quickly. Even a 60-second pass typically results in a 10 MB
log ile. Also note that you should keep an independent track of time, so that you can match up the
interesting events in the proile analysis with the time you performed given operations in the applica-

tion. If you open the system clock from the desktop toolbar, it shows an enhanced clock that tracks

seconds, which is often all you need.

 ChAPTER 20 Tooling Enhancements 757

You can delete an SAP ile from your project when you no longer need it, but this doesn’t delete
any of the raw binary log iles; you should then delete those manually. Also note that the Proiler gen-

erates an AssemblyCache folder, and the contents of this can be deleted after you stop the Proiler.
This is because they are not used in the subsequent parse/analyze phase, and you do not need to

keep them on disk, as they will be regenerated with each fresh pass.

After you have carried out the quick high-level pass, you can zoom the display to get a more

detailed view. Figure 20-9 zooms in on the irst 10 seconds of the high-level pass.

FIguRE 20-9 Zoom in to see a detailed view of the proile analysis.

The graph is divided into six bands, as follows:

 ■ Frame Rate This is the rate (in frames per second [FPS]) at which the system was redrawing

the screen. Recall from Chapter 8 that the best frame rate you can achieve is ~60 FPS, and that

you should not be happy with a rate below 30 FPS. The scale of the Y-axis on the graph is from

0 to 60. The graph is uni-colored for the entire range and has a demarcation line at 30 FPS to

indicate if any frames are dropping below the acceptable range.

 ■ CPu usage % Like the desktop Task Manager, this indicates how busy the CPU was at any

given time. If you hover over the CPU usage band, the Proiler displays a legend that shows the
color scheme used for CPU usage, which is as follows:

• Green for the UI thread. You should expect the UI thread to be doing a lot of work, but you

don’t want it at its maximum utilization all the time.

• Purple for non–UI threads in your application (including the render/compositor thread and

any background threads your application creates, directly or indirectly).

758 PART Iv Version 7.5 enhancements

• Grey for system threads. These are not directly within your control, but it’s useful to know

if there happens to be heavy system activity at a given time, because this might skew the

results for your application. Also, of course, the system might actually be doing work on

behalf of your application, in addition to unrelated work, so you can sometimes tune sys-

tem CPU usage indirectly.

• White for idle percentage. A high idle percentage means that the CPU is not busy, so this

should translate into a higher degree of responsiveness in your application.

 ■ Memory usage MB This is the amount of memory being used by your application. It is the

application’s working set, and does not account for memory used by the system on behalf of

your application, nor does it account for GPU memory.

 ■ storyboards This band displays an “S” lag on the timeline whenever a storyboard event
occurs. This typically corresponds to the start of an animation, including page transition ani-

mations. There are two different storyboard lags:

• A red lag indicates that the storyboard is CPU-bound; in other words, it is running on the
CPU, which you should generally try to avoid, if possible.

• A purple lag indicates a storyboard that is not CPU-bound; in other words, it is running on
the GPU, using the render thread. As much as possible, you want your storyboards to not

be CPU-bound.

 ■ Image loads This displays an “I” lag on the timeline whenever your application loads image
assets into memory.

 ■ gC Events A “G” lag appears on the timeline whenever the system’s memory garbage
collector (GC) performs a garbage collection. A lag is raised whenever you explicitly call
GC.Collect in your application and whenever the system performs a collection in response to

memory pressure.

From the display in Figure 20-9, you can see that during this sample pass, CPU was at 100 percent

for the irst 3 seconds. This is when the application was irst launched, so this is expected. This period
also included an image load (for the background image on the main page) and a garbage collection.

The GC is often invoked just after launch, because launching an application takes a lot of work and

uses a lot of types that will no longer be required thereafter.

Between 3 seconds and 5.5 seconds on the timeline, nothing much happened. It typically takes

the user a second or two to realize that the application has fully loaded, before she starts interacting

with it. At 5.6 seconds, there’s a CPU-bound storyboard, another GC collection, a spike in CPU usage,

memory consumption and frame rate, and then a whole series of image loads. This corresponds

with the user choosing an item from the menu on the main page, which triggers a navigation to the

CategoryPage for that category. This in turn initializes the ListBox on the page and loads the list items,

including their image iles. The sequence continues in Figure 20-10.

 ChAPTER 20 Tooling Enhancements 759

FIguRE 20-10 This proile shows high frame rate choppiness and increasing memory consumption.

Several interesting things are happening from the 8.5-second mark onward. The frame rate

shows a lot of choppiness, oscillating between very low rates around 5 FPS and the target 60 FPS.

This period corresponds with high CPU usage, and steadily increasing memory consumption. There

are also many image load events during this time. All of this can be explained by the user scrolling

through the ListBox on the CategoryPage. There are many items in the list, each with an image that

needs to be loaded, and the more items are loaded, the more memory is consumed. The frame rate

is unacceptably low in several places, so if your application exhibits behavior like this, you would dei-

nitely want to ix it before publication. Figure 20-11 shows that this choppiness becomes worse.

FIguRE 20-11 The choppy frame rate worsens over time.

760 PART Iv Version 7.5 enhancements

It’s interesting that the memory consumption drops suddenly at about the 19-second mark, along

with the CPU usage. Also at this time, the frame rate band shows that nothing is being drawn. This

probably corresponds to a point at which the user stopped scrolling for a second or two. Then, she

started scrolling again, and the previous pattern of increasing frame rate choppiness and increas-

ing memory consumption is repeated. The repeated non–CPU-bound storyboards indicate points

at which the user changed scrolling direction. The CPU-bound storyboard at the 34-second mark

indicates the start of another page transition, which is when the user selected an item from the list,

and navigated to the DetailsPage.

Figure 20-12 shows another proile pass, after making some optimization changes to the code.

FIguRE 20-12 Proile analysis showing improved performance.

In this pass, the CategoryPage is loaded at the 7-second mark, and then the user starts scrolling.

Scrolling in this version is signiicantly less choppy, and the frame rate is much more consistently high,
even when the user changes scrolling direction. Also note that memory consumption remains much

lower than before.

The changes in the code are as follows:

 ■ Set the build action for each image ile to Content rather than Resource. This speeds up startup

time.

 ■ Set CacheMode on each Image control to BitmapCache, which allows the system to cache the

texture and use the render thread/GPU rather than the UI thread/CPU.

 ■ The irst version loads all of the data for all products for all categories when the viewmodel is
constructed at startup, even though the user might never actually visit some (or any) of the

categories. The optimized version defers loading of any category data until the user selects a

category to which to navigate, and then only loads the data for that category. This improves

 ChAPTER 20 Tooling Enhancements 761

startup time, reducing it from 3 seconds to 2 seconds. This could make all the difference

between passing and failing certiication: recall that you’re only allowed 5 seconds to startup.
The downside is that if and when the user does navigate to a category, she pays a perfor-

mance penalty at that point; however, this is a less critical point than startup, so this technique

is normally a good trade-off.

 ■ Provide two sizes of the image: a thumbnail size, used in the CategoryPage list, and a full size,

used in the DetailsPage. Also size these exactly to the size of the Image control in each page.

This solves two issues. First, there is no longer any scaling required, because the image assets

are the same size as the Image controls. Second, in the CategoryPage, where many images are

loaded, only the small thumbnails are used. This saves considerable memory, and the larger

images are only loaded if and when the user actually navigates to a DetailsPage—and then

only that one large image is loaded, not all of them.

In addition to zooming in to the graph, you can also select any arbitrary portion of the timeline to

see a detailed analysis section. This section aims to identify any recognized patterns of resource usage

(frame rate, CPU, and memory consumption) and provides indications as to how to investigate further.

An example is shown in Figure 20-13, in which the time 5.5 seconds to 8 seconds is selected.

FIguRE 20-13 You can select a portion of the graph to investigate more closely.

762 PART Iv Version 7.5 enhancements

In this example, the Proiler has identiied that the UI thread is doing an above-normal amount
of work. The tool indicates that you can use the Performance Warnings menu at the bottom of the

graph to inspect the threads more closely to try to determine the reason for this behavior, as shown

in Figure 20-14.

FIguRE 20-14 You can drill down into the Performance Warnings details to isolate problems.

Drilling down into the Functions list under the CPU Usage option, this example shows a series of

calls to various UI element objects, notably VisibleRegionChange events, and MeasureOverride calls.

This ties up nicely with what you’d expect to see at this point, because this is actually the point at

which the user tapped one of the MainPage menu options to navigate to the CategoryPage, trigger-

ing page transitions and size calculations for the incoming page’s visual tree. In other words, in this

particular case, there is no issue, and performance is within expected parameters. The function report

has columns for the total number and percentage of both inclusive and exclusive samples. Inclusive

samples are the samples collected during the execution of the indicated method, including any child

methods called from this method. Exclusive samples are scoped strictly to the current method; they

exclude child methods.

To drill down on the frame-rate choppiness that you observed earlier, you would go to the Perfor-

mance Warnings menu, and then select the Frames view. Next, sort the frames by clicking the CPU

Time column header, and then select the frame(s) with the highest CPU time. From the Frames view,

select the Visual Tree option to identify the speciic UI elements that are consuming the most CPU
time. This should indicate whether you have a particularly expensive element, in terms of template

expansion or visual tree changes.

The Performance Warnings menu offers many ways of looking at the proile data: you can focus
on CPU usage, memory usage, or frame rate. You can drill down into threads or functions. You can

examine the function call tree at any point, and wherever the Proiler encounters one of the methods
in your code, it provides a link in the report so that you can quickly jump to the code if you need to,

as shown in Figure 20-15.

 ChAPTER 20 Tooling Enhancements 763

FIguRE 20-15 You can jump from the function call tree to your own code by clicking the provided link.

It’s also instructive to perform a memory analysis pass; the Proiler will often suggest that you do
this when it inds a suspicious memory usage pattern. This is obviously useful if you see a pattern of
memory consumption that steadily increases and never seems to drop, which is often an indication

of a memory leak. A memory pass is very intrusive, so you should expect very poor performance

and responsiveness while this is active. The option to perform a memory pass is in the initial Proiler
dialog. The simplest memory analysis drill-down report gives you a table of allocations and GC collec-

tions for the selected period, as shown in Figure 20-16.

FIguRE 20-16 Perform a memory analysis pass to look for usage patterns and leaks.

The memory analysis offers fewer options for examining the data, but one aspect you should gen-

erally look at is a table showing the types allocated, as shown in Figure 20-17. To get this report, go

to the Performance Warnings menu, select Heap Summary, and then click Types. The most important

column here is for total allocated size; this is the product of the type size and the number of instances

of that type that were allocated. It is common, as in this example, to ind that strings take up the high-

est volume of allocations per type.

764 PART Iv Version 7.5 enhancements

FIguRE 20-17 Examine the memory analysis for a breakdown by type.

You can execute a proiler pass across FAS, but not across tombstoning. If your application falls
off the backstack during a Proiler pass, the pass is terminated. In the FAS case, during the time when
your application is in a dormant state, you should expect to see zero CPU usage assigned to any of

your application’s threads, including the UI and render/compositor thread. There should also be zero

frames rendered, zero images loaded, and zero storyboard events. However, you would expect to

see system CPU usage, because the system is of course doing other things while your application is

dormant. You would also expect to see that your application’s memory consumption remains lat
throughout the dormant period; the system doesn’t take away your memory while you’re dormant,

but it doesn’t allow you to allocate any more until reactivation.

uservoice Forums

UserVoice is a company based in San Francisco that provides hosted feedback forums. Microsoft

offers two main UserVoice feedback forums for Windows Phone: one for users, and one for develop-

ers. The developer forum is at http://wpdev.uservoice.com/forums/110705-app-platform. This allows

application developers to provide feedback that goes straight to the teams that design and build the

various pieces of the phone platform. Using this forum, anyone can make suggestions for improve-

ments to the platform, ile bugs, and read and comment on other people’s feedback.

There’s also a Windows Phone application that provides a phone client to the UserVoice

forum, which is available at http://www.windowsphone.com/en-US/apps/b5466109-2b8d-46f4-

9461-c959e433ae4a. This has a pivot-based UI, as shown in Figure 20-18, in which you can choose

the speciic forum that you want to use, and then the category of feedback. You can add your own
feedback comments or vote on other people’s comments, either anonymously or by logging in with

a valid email address.

http://wpdev.uservoice.com/forums/110705-app-platform
http://www.windowsphone.com/en-US/apps/b5466109-2b8d-46f4-9461-c959e433ae4a
http://www.windowsphone.com/en-US/apps/b5466109-2b8d-46f4-9461-c959e433ae4a

 ChAPTER 20 Tooling Enhancements 765

FIguRE 20-18 You can use the WPDev application to send feedback to Microsoft.

You are strongly encouraged to use the feedback mechanisms to make your voice heard. The Win-

dows Phone development teams at Microsoft are very keen to accept feedback on where to improve

the product, what additional features developers need, issues with the APIs, the tools or the docu-

mentation, and so on. Please read the terms of service available on the site.

Portable library Tools

The version of Silverlight used in the Windows Phone platform is slightly different from the desktop

version of Silverlight, and both of these runtimes are signiicantly different from the full Microsoft
.NET common language runtime (CLR) and that of the runtime on Xbox consoles. There is an increas-

ing trend for developers to build applications that run across multiple platforms. This is challenging

because of the differences in the runtimes. This is where the Portable Class Library project comes in.

This is an add-in to Visual Studio that offers a new class library project type. This project type allows

you to specify multiple platforms to target. It also uses a special set of runtime assemblies that con-

tain a subset of features known to be common across the selected platforms.

You can download the Portable Class Library project from the Visual Studio gallery, either through

the Extension Manager in Visual Studio, or directly from this MSDN link at http://visualstudiogallery.

msdn.microsoft.com/b0e0b5e9-e138-410b-ad10-00cb3caf4981/. Note that this works only with Visual

Studio Professional and above. When installed, this adds the new project type to the root nodes for

Visual C# and Visual Basic in the New Project dialog, as shown in Figure 20-19.

http://visualstudiogallery.msdn.microsoft.com/b0e0b5e9-e138-410b-ad10-00cb3caf4981/
http://visualstudiogallery.msdn.microsoft.com/b0e0b5e9-e138-410b-ad10-00cb3caf4981/

766 PART Iv Version 7.5 enhancements

FIguRE 20-19 The Portable Class Library project type is available for both C# and Visual Basic.

The subset assemblies are installed by default to a standard location for reference assemblies

such as %ProgramFiles%\Reference Assemblies\Microsoft\Framework\.NETPortable\v4.0\. Within this

folder, there are subfolders for each of the supported permutations of target runtimes. The default

permutation is .NET Framework 4, Silverlight 4, and Windows Phone 7, You can change this on the

Library tab of the project properties dialog, as shown in Figure 20-20. You can use a portable library

in Windows Phone 7.0, 7.1, or 7.1.1.

If you change the target runtimes, the corresponding runtime assembly references are updated,

and the project is closed and re-opened. If you had added other assembly references, some of these

might no longer be valid in the new permutation; these will be indicated with an exclamation point

icon in the references list in Solution Explorer.

 ChAPTER 20 Tooling Enhancements 767

FIguRE 20-20 You can change the target runtimes in the project properties dialog.

Figure 20-21 shows the SilverlightProductCatalog application in the sample code. This is a regular

desktop/browser Silverlight application, which is designed to mirror the behavior of the Product

Catalog Windows Phone application.

768 PART Iv Version 7.5 enhancements

FIguRE 20-21 The desktop Silverlight version of the ProductCatalog application.

Both the Silverlight version and the Windows Phone application share a common library. There’s

obviously a lot of commonality between desktop Silverlight and Silverlight for Windows Phone, so

if you only need to share libraries across these two platforms, you can often do this by just using a

simple Windows Phone Class Library project. In this example, this approach gives you the freedom to

share not only code, but also data. The irst screenshot in Figure 20-22 shows this approach, where
the LibraryViewModel shared library contains all the image data iles as well as the model and view-

model classes.

Contrast this with the second screenshot, in which the PortableViewModel shared library contains

only shared code, and each application project has its own independent copy of the Images data.

The second version of the solution uses the Portable Class Library project, and it is a limitation of this

project type that you cannot use resources with the build action set to Resource, only resources set to

Embedded Resource. This makes it more challenging to load the data resources into the viewmodel for

data binding. However, this is a minor limitation, and it is less important if you also need to target the

full .NET CLR and/or Xbox platforms. The Portable Class Library project gives you a good platform-

agnostic starting point for a shareable library. If you build a lot of applications, it makes sense to

invest the time in building a core set of platform-agnostic libraries, on top of which you can layer a

set of platform-speciic but application-agnostic libraries.

 ChAPTER 20 Tooling Enhancements 769

FIguRE 20-22 You can share libraries across Silverlight and Windows Phone projects.

Async Framework

Chapter 14, “Go to Market,” discussed your choices for executing multiple threads and the reasons

why you should ofload as much work as possible from the UI thread, in particular. Any operation that
might take a noticeable amount of time should be ofloaded so that you do not make the UI unre-

sponsive. In Chapter 11, “Web and Cloud,” you saw how all web APIs—such as WebClient and Http

WebRequest—are asynchronous. The Windows Phone platform enforces asynchronous web opera-

tions precisely because such operations do take a noticeable amount of time, and must not be

allowed to run synchronously.

In fact, these APIs use what is known as the Event-based Asynchronous Pattern (EAP). In this pat-

tern, you invoke a method, named <OperationName>Async which returns void, and which initiates an

asynchronous operation. Prior to invoking this method, you hook up a handler for the event that will

be raised when the operation completes. In some cases, you have the option to hook up other events

such as for ongoing progress reports or error conditions.

770 PART Iv Version 7.5 enhancements

To make it easier to work with asynchronous operations, Microsoft has released an early version

of the Visual Studio Async Framework. This introduces the Task-based Asynchronous Pattern (TAP),

which is a lot cleaner than EAP. It provides additional language (C# and Visual Basic) compiler support
with which you can write asynchronous operations in a more elegant way, with less code. This is avail-

able for download from http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=9983.

Consider the AvatarWebClient_EAP solution in the sample code. This is a variation of the sample in

Chapter 11: it uses the traditional EAP approach to fetch avatar images from Xbox Live. The sequence

of operations is as follows: instantiate a WebClient object, hook up the OpenReadCompleted event,

invoke the OpenReadAsync method, eventually retrieve the data in the OpenReadCompletedEventArgs

passed into the event handler method, and inally, process the returned data.

private void getAvatarButton_Click(object sender, RoutedEventArgs e)

{

 GetAvatarImage(

 new Uri(String.Format(

 "http://avatar.xboxlive.com/avatar/{0}/avatar-body.png",

 gamerTagText.Text)));

}

private void GetAvatarImage(Uri avatarUri)

{

 WebClient webClient = new WebClient();

 webClient.OpenReadCompleted +=

 new OpenReadCompletedEventHandler(webClient_OpenReadCompleted);

 webClient.OpenReadAsync(avatarUri);

}

private void webClient_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)

{

 if (!e.Cancelled && e.Error == null)

 {

 BitmapImage bmp = new BitmapImage();

 bmp.SetSource(e.Result);

 avatarImages.Add(bmp);

 }

}

This all works just ine, and once you’re used to EAP coding, it’s not especially complicated, nor
especially troublesome to write. However, the TAP model is certainly a lot cleaner; you don’t have

to hook up any events, and you don’t have to write any event handlers. This version of the solution

(AvatarWebClient_TAP in the sample code) requires a reference to the AsyncCtpLibrary_Phone.dll,

which is part of the Async Framework. The application is shown in Figure 20-23.

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=9983

 ChAPTER 20 Tooling Enhancements 771

FIguRE 20-23 Fetching avatar images by using the Async Framework.

With the TAP model, you use the await keyword when you invoke an asynchronous method, and

this method returns a Task or Task<T> object. You can only use the await keyword inside a method or

lambda which is declared with the async keyword. It is recommended practice (although not required)

to name such a method with “Async” appended. So, in the async version, the sequence of opera-

tions is as follows: instantiate a WebClient object, invoke and await the OpenReadTaskAsync method,

and then process the returned data. In this example, this reduces two methods and ive lines of code
down to just one line of code.

private void getAvatarButton_Click(object sender, RoutedEventArgs e)

{

 GetAvatarImageAsync(

 new Uri(String.Format(

 "http://avatar.xboxlive.com/avatar/{0}/avatar-body.png",

 gamerTagText.Text)));

}

private async void GetAvatarImageAsync(Uri avatarUri)

{

 WebClient webClient = new WebClient();

 var data = await webClient.OpenReadTaskAsync(avatarUri);

 BitmapImage bmp = new BitmapImage();

 bmp.SetSource(data);

 avatarImages.Add(bmp);

}

772 PART Iv Version 7.5 enhancements

Under the covers, the OpenReadTaskAsync method is an extension method on the WebClient class.

Internally, this method is implemented by using a more or less traditional EAP model, hooking up an

event handler for the OpenReadCompleted event on the WebClient object. This is really the key to

the Async Framework: it doesn’t do anything you couldn’t do yourself manually, it’s just that it does

a lot of the work for you, enlisting the compiler’s support to make your coding simpler. If you think

about it, this is the same model as the language extensions in C# 3.0—especially lambda expressions

and LINQ. These didn’t provide anything extra that you couldn’t do before, they just provided new

keywords and language constructs that made things a lot easier, cleaner, less error-prone, and more

maintainable. Note that the Async Framework is in unsupported early release form; it’s very instruc-

tive to experiment with it, but all the usual caveats apply with regard to using unsupported tools for

production code.

summary

This chapter explored the improvements in developer tooling in Windows Phone 7.1. The emulator

provides a set of new features, including support for sensor and location-based applications that

would otherwise be dificult to test. The debugger improvements are less obvious but now cover
all the new version 7.1 features such as fast application switching and background agents. The new

marketplace test kit helps you inalize your application prior to submitting it for publication, in terms
of gathering the required image iles, and also in terms of formalizing the inal testing phases and
aligning your tests with marketplace certiication requirements. The most powerful new feature
is undoubtedly the Proiler, with which you can track your application’s use of CPU and memory
resources, including breakdowns of thread activity, resource and animation events, memory alloca-

tions, and so on. This gives you considerable scope for identifying anomalous behavior, especially

performance issues, and comparing the results after applying ixes. Finally, the Portable Class Library
project simpliies the process of building cross-platform applications, and the Async Framework gives
you a taste of the direction things are going in the next version of Visual Studio and the language

compilers.

 773

AccelerometerReading event, 305

accent color

PhoneAccentBrush resource, 27

PhoneAccentColor resource, 27

Silverlight/NET/HTML colors vs., 27

ThemeAccent sample, 27

Activated event and tombstoned applications, 187

ActivatedEventArgs, 556

ActiveX controls, 358

AdControl

advertisements, adding to application with, 540

background behavior of, 541

behavior of, UX, 542

Capabilities Detection tool, capability testing

with, 544

capability requirements for, 544

DataBoundAppWithAds solution, 543

data service requirements with, 542

Marketplace TestKit, capability testing with, 544

memory requirements for, 542

Microsoft pubCenter, registering with, 540

AdControls

Visibility property, setting dependent on Trial mode

status, 545

Add Service Reference Wizard, 650

AdventureWorksLT2008R2Model, 650

advertisements

Microsoft pubCenter, registering with, 540

UI layout considerations for, 542

advertising

AdControl, 540

DataBoundAppWithAds solution, 543

DataBoundAppWithAds_TrialMode solution, 544

iltering, 541
incorporating in application, procedure for, 542

reporting for, 542

advertising in applications, 540–544

Index

symbols
<wp:Param/> element, 640

A
absolute layout type, 46

AccelerationHelper class (Level Starter Kit), 311

Averaging, 311

Low-Pass Filtering, 311

Optimal Filtering, 311

usage, 311–313

Accelerometer class, 305

accelerometer, 592–594

AccelerometerReading event, 305

CurrentValueChanged event vs. ReadingChanged

event, 593

MangoAccelerometer solution, 592

Microsoft.Devices.Sensors namespace, 305

ReadingChanged event, 306

TimeBetweenUpdates property, 593

accelerometer (physical), 305–317

AccelerationHelper class (Level Starter Kit), 311

Accelerometer class, 305, 592–594

accuracy, issues affecting, 305

and screen lock, 321

enhanced in Phone 7.1, 592–594

FilteredAccelerometer application, 308

Level Starter Kit, 311–315

MangoAccelerometer solution, 592

OrientationHelper class (Level Starter Kit), 311

power usage by, 321

Reactive Extensions for .NET (Rx .NET) and, 308–310

shake, 315–317

TestAccelerometer application, 306

TestShake solution, 316

update interval for, 593

AesManaged object (data encryption)

774 Index

AesManaged object (data encryption), 460–461

Alarm object

IntervalTraining application, 560

ScheduledActionService in, 560

alarms

accurracy of, 562

Alarms application, 560

anatomy of, 560

constraints on, 560

IntervalTraining application, 560

re-boot survival of, 566

Alarms application, 560

alerts

alarms, 560–562

reminders, 563–566

AllowReadStreamBuffering property

(HttpWebRequest class), 329

analytics engines

Comscore, 546

Google, 546

Webtrends, 546

Android phones, CPNS push notiications for, 445
animation(s)

Background Image, 79

as code resources, 57

Content, 79

PanoramaItem Header, 79

Panorama Title, 79

Pivot control, 72

transition animations, 12

Anonymous User ID (ANID), 276

AppBarAnimator solution, 176

App class, 131

Application_Launching event handler, 691

App Connect, 656, 657

App.Exit

and user experience, 192

and XNA applications, 192

lack of, 192

AppHub

and publishing applications, 20

registering as developer on, 20

Shake Gesture Library, 315

source for, 18

AppHub portal

adding information for testers to submission

in, 528

canceling a submission with, 529

constraints on artwork for, 527

location of, 523

pricing/availability, setting, 528

Reports tab, location of, 533

testing/validation after submission with, 529

uploading artwork to, 527

using, 525–534

App Instant Answer, 656, 657

Apple Push Notiication Service (APNS), 443
Application Bar

AppBarAnimator solution, 176

ApplicationBar class, 175

ApplicationBarIconButton class, 175

ApplicationBarMenuItem class, 175

buttons, limit on number of, 176

icons provided by Microsoft, 176

icons provided by third parties, 176

menu item support in, 178

opacity settings, 176

visual tree and, 180

ApplicationBar class, 38, 74, 175

constraints on modiication, 38
enhancements to in Phone 7.1, 725–728

modifying in application, 38

Panorama, 79

properties of, 38

ApplicationBarIconButton, 637

ApplicationBarIconButton class, 175

ApplicationBarMenuItem class, 175

ApplicationBarMode enumeration

Mode property of, 536–537

ApplicationBar property (PhoneApplicationPage

class), 176

Application Bar (Touch UI), 175–180

Application class, 40

ResourceDictionary, 59

RootVisual property, 40

ApplicationCurrentMemoryUsage property

(DeviceExtendedProperties class), 280

application icons

ApplicationIcon.png application image, 30

current theme and, 32

ApplicationIdCredentialsProvider, data binding

with, 377

ApplicationIdleDetectionMode setting

battery consumption and, 195

screen locking and, 194

application image(s)

ApplicationIcon.png, 30

Background.png, 30

Metro guidelines and, 31

setting, 30

 audio

 Index 775

SplashScreenImage.jpg, 30

standard, 30–32

WMAppManifest.xml, deined in, 30
Application_Launching event handler (App

class), 691

Application Model, 181–204

App.Exit, lack of, 192

closing applications, 186–187

closing vs. deactivating applications, 182

deactivation (non-tombstone case), 189–190

deactivation (tombstone case), 187–189

exceptions, unhandled, 191

launchers/choosers, 195

lifetime events, 181–196

obscuring/unobscuring applications, 192–195

resource constraints and, 181

user expectations, 195–196

ApplicationPeakMemoryUsage property

(DeviceExtendedProperties class), 280

application(s)

adding audio iles during development, 585
constraints on modifying Application Bar, 38

entry point, Panorama, 77

Exit method, lack of, 192

foreground vs. non-foreground state, 181

generic background agents (GBAs), relationship

with, 572

object tree, 58

standard application UI model, 38

SupportedOrientations, 170–180

third-party access to data from, 495

username/password availability to third

party, 496

using the Application Bar, 38

applications

checking for updates on the marketplace, 530–

532

MarketplaceDetailTask Launcher, updates

downloaded with, 532

trial mode, 544–546

Zune marketplace atom feed, 531

Appointments class

emulator, inability to test on, 701

retrieving data from, 701

SimpleCalendar application, 700

Apps

anatomy of, 21–32

constraints on, in Metro, 14

inter-process communication between, 15

marketplace manifest, extracting information

from, 276

native code and, 15

required behaviors of, 17

WMAppManifest.xml ile, 22
architecture and design, 11–36

application anatomy, 21–32

design goals, 11–12

developer guidelines, 15

developer tools, 18–20

Metro, 12–15

Microsoft User Experience Design Guidelines, 11

project types, 23–25

Silverlight vs. XNA, 17–18

standard images, 30–32

themes/accent colors, 25–29

vision for, 11–15

of Windows Phone 7, 16

Windows Phone XAP, 22–23

ARDisplay control, 616

ArrangeOverride method, 51

ASP.NET, 481

assemblies, navigating between, 216–217

AssemblyCatalog (MEF), 547

AssemblyInfo.cs, 679

AssemblyVersion attribute (AssemblyInfo.cs)

schema version numbers realted to, 679

associations

Association (artifact), 681

EntityRef (artifact), 681, 682

EntitySet (artifact), 681, 683

schema, between, 681

AsyncCallback, 644

Asynch framework, 771–774

AvatarWebClient_EAP solution, 772

AvatarWebClient_TAP solution, 772

Event-based Asynchronous Pattern (EAP)

and, 771–772

lambda expressions and, 774

LINQ and, 774

Task-based Asynchronous Pattern (TAP)

and, 772–774

Visual Studio Async Framework, 772

asynchronous data, 141

attachable properties model, 67

attached properties, 64–67

audio

DynamicSoundEffectInstance class, 339–343

FM tuner, 349–351

input/manipulation of, 328–343

audio

776 Index

audio, continued

SoundEffectInstance class, 329–331

XNA Microphone class, 335

XNA SoundEffect class, 329–331

AudioPlayerAgent vs. BackgroundAudioPlayer, 582

audio/video APIs, 324

audio/video hardware, 323–324

augmented reality (AR) application, 612–617

DirectionalViewinder solution, 612
Geo Augmented Reality Toolkit (GART), 616–617

TestGart solution, 616

authentication types (web), 472

basic, 472

forms, 472

Windows, 472

Authenticode certiicate
(marketplace requirement for), 451

AutoResetEvent, 645

AvatarWebClient_EAP solution, 772

AvatarWebClient solution, 355

AvatarWebClient_TAP solution, 772

Azure. See Windows Azure

Azure Tables and Queues proxies, 394

AzureTablesHandler proxy, 397

B
Back button (hardware), 37, 89

backstack navigation with, 182

OnBackKeyPress, 91

BackgroundAgentDemo solution, 572

background agents

background audio, for, 587–589.

See also background audio agents

constraints on, 560

debugger behavior for applications with, 750

generic. See generic background agents (GBAs)

background audio agents, 580–589

background agent implementation, 587–589

BackgroundAudioPlayer class, 580

BapApp solution, 584

constraints on memory/CPU time, 581

deining playlist for, 587
GBAs vs., 580

GetNextTrack and GetPreviousTrack methods,

modiications for, 588
main application implementation, 585–587

OnPlayStateChanged method,

changes required for, 589

OnUserAction method, modiications for, 588

Universal Volume Control (UVC) and, 581

BackgroundAudioPlayer class, 580

AudioPlayerAgent vs, 582

BapApp solution, 584

OnPlayStateChanged override, 582

OnUserAction override, 582

Zune media queue (ZMQ), as proxy to, 580

Background Image, 79

CreateOptions attribute of, 731

decoding, 731

Background.png application image, 30

BackgroundProperty, 119

backgrounds

composite images, 80

embedded logos, 80

embedded text, 80

low-contrast images, 80

Panorama, image size in, 81

photographic, 80

background service, debugger behavior with, 750

BackgroundTransferDemo application, 566

BackgroundTransferRequest

Background Transfer Service API, 566

usage of, 567–568

Background Transfer Service API, 566–570

BackgroundTransferDemo application, 566

BackgroundTransferRequest, 566

BackgroundTransferService queue, 566

constraints on, 566

downloading iles using, 566
OnNavigatedTo event, overriding, 569

TransferProgressChanged event, 568

Xbox Live marketplace, similarity to, 566

Zune marketplace, similarity to, 566

BackgroundWorker class, 501

ProgressChanged event, 502

ReportProgress method, 502

ThreadPool, usage of, 504

BackgroundWorker (threading API), 500–501

event handlers for, 502

BackKeyPress, 96

backstack

active applications and, 182

dead-end pages and, 199

management in multi-page applications, 201

number of applications in, 189

backstack management

ClearBack_Thumbs solution, 717–719

enhancements in Phone 7.1, 716–719

sequence of APIs on backward navigation, 716

 CanExecute method (ICommand class)

 Index 777

BackStack property (NavigationService class), 716

BallManipulation solution, 148

BapApp solution, 584

BaseIntrospectionRule base class, 469

Basic authentication

binding conigurations for, 484
implementing with SSL, how to, 489–494

vulnerabiltiy of, 487

battery consumption and PowerLevelChanged

event, 432

BeginAccept method, 644, 645

behaviors, custom, 163–167

Behavior<T> base class

AssociatedObject property, 164

use in building custom behaviors, 164

beta testing

marketplace support for, 534

BindingConverters_Color solution, 114

BindingConverters_FontWeight solution, 114

BindingOperations.SetBinding, 105

BindingValidationError event, 118

BindingValidation solution, 118

BindToShellToast method, 433

Bing. See also search extensibility, enhanced in

Phone 7.1

Bing maps

static vs. dynamic, for performance

optimization, 516

Bing Maps, 376–382

GeocodeService, 379

Geo-location and, 378

ImageryService, 379

key creation for, 376–377

map control, using, 376–378

OverheadMap control and, 617

RouteService, 379

SearchService, 379

SimpleBingMaps solution, 377

SOAP services, use of, 379–382

TestBingMaps solution, 378

TestGeocodeService application, 380

web services, 379

BingMapsDirectionsTask launcher, 621

BingMapsTask launcher, 621

bitly, 398–400

API, 398

API return string, 399

hardcoding username/account key information

and, 399

TestBitly sample code, 398

BitmapCache mode (UI)

rendering phase of element, skipping with, 510

Blend UI, 167

BouncingBall solution, 161, 507

BouncingStoryboard solution, 510

branding, 80

brushes, 57

BufferDuration property (XNA Microphone

class), 335

BufferingChanged event (MediaElement class), 329

BufferNeeded event (DynamicSoundEffectInstance

class), 339–343

TestDynamicSounds_Controls solution, 345

TestDynamicSounds solution, 340

BufferReady event (XNA Microphone class), 336, 332

bug tracking with Manual Tests tab, 755

build action

set to Content, 56

set to Resource, 56

Button

TrackAction behavior, adding to, 548

ButtonBase class, 734

Button control, 41, 42

Border, 42

click behavior, 54

ContentControl, 42

Control class, 42

elements of, 42

Grid, 42

Button family, 70

button(s)

Back, 37

hardware, 37

internal Mouse event control, 158

Search, 37

Start, 37

C
Cache visualization (performance), 277

Calibrate event (Compass class), 598

CameraCaptureTask, 300

camera pipeline, 608–612

CameraCaptureTask chooser, 608

PhotoCamera class, 608

SimpleCamera solution, 608

cancelable navigations, 713

CanExecuteChanged event (ICommand class),

736–738

CanExecute method (ICommand class), 736–738

Canvas

778 Index

Canvas, 46, 49

Canvas.Left property, 49

Canvas.Top property, 49

Capabilities Detection tool

AdControl capabilities testing and, 544

Capability Detection tool

detection limits on, 753

marketplace test kit vs., 751

obfuscated code and, 752

relected APIs and, 752
CaptureImageAvailable event (PhotoCamera

class), 609, 610

certiicate authorities and SSL, 488
Certiicate Export Wizard

exporting security certiicates with, 490
output format of, 490

Personal Information Exchange PKCS #12 (PFX)
ile, output saves as, 490

certiicates, security
Certiicate Export Wizard, 490
Common Name (CN) of, 489

exporting to phone from developer

computer, 490–491

MMC Certiicate Snap-in, 490
WP7CertInstaller project, used to export to

phone, 493–494

certiication requirements, memory, 280
chambers, heirarchy of, 455

changeButton_Click handler, 112

ChannelUriUpdated event, 424

ChannelUriUpdate event, 425

chassis requirements/speciications, 37
buttons, 37

and developers, 38

graphics processing unit (GPU), 37

keyboard, hardware (optional), 167

light sensor, 37

multi-touch input system, 144

multi-touch, support for, 37

proximity sensors, 37

screen coniguration, 37
screen, physical size of, 37

chat application, remote peer-to-peer, 642

CheckBox (internal Mouse event control), 158

ChildWindow, 89, 94, 95

Choosers, 195

ClearBack_Thumbs solution, 717–719

Click events vs. Mouse/Manipulation events, 158

Click handler (Pin button), 635

Clipboard API, 729

Clipboard.SetText method, 729

TestClipboard application, 729

CloseSocket method, 647

Closing events, 186–187

Cloud 2 Device Messaging Framework (C2DM)

Common Push Notiication Service (CPNS)
and, 443–447

Microsoft Push Network Services vs., 443

CloudChuck solution, 389

cloud services

Project Hawaii, 398

Windows Azure, 387–398

CLR Security model, 454

Critical code attribute, 454

SafeCritical code attribute, 454

transparency layers in, 454

Transparent code attribute, 454

CodeAnalysisPath (MSBuild property), 467

code, generated

diagnostics, running on, 709

modifying, 707–710

code resources, 57

animation(s), 57

brushes, 57

colors, 57

styles, 57

templates, 57

CoffeeStore application, 681

CoffeeWeb application, 704

CoffeeWebApp solution, 708

CollectionDataBinding_DTData solution, 124

CollectionDataBinding solution, 106

CollectionDataBinding_xaml solution, 121

collections

collection types, 87

CollectionViewSource class, 740–743

data template, 109

dynamic data-bound, 111

ilter queries, 138
GroupDescriptions property, 740–743

grouping queries, 138

performance, effect on, 107

SortDiscriptions property, 740–743

sort queries, 138

TestGrouping solution, 740

CollectionViewSource class, 138, 738

GroupDescriptions property, 738, 740–743

SortDescriptions property, 738

SortDiscriptions property, 740–743

 databases, local

 Index 779

TestGrouping solution, 740

colors as code resources, 57

Common Language Runtime (CLR), 62

Common Name (CN) of certiicates, 489
Common Push Notiication Service (CPNS), 443–447

and Apple Push Notiication Servie (APNS), 443–
447

and Cloud 2 Device Messaging Framework

(C2DM), 443–447

usage, 446–447

Compass class, 595–599

Calibrate event, 598

CurrentValueChanged event, 598

declination, computing, 595

IsDataValid property, 597

required references for, 596

SimpleCompass solution, 595

compass (sensor API), 595–599

calibrating, 598

calibration requirements for, 592

testing for device support of, 596

Compose method (MEF), 547

composite images, 80

CompositeTransform, 152

CompositionHost (MEF), 547

Comscore, 546

conigurable diagnostics, 261–265
ConnectAsync, 648

ConnectionSettingsTask launcher, 621

Connection type sockets, 643

connectivity features, enhanced in Phone 7.1, 627–

666

OData Client, 650–656

push, tile, and toast notiications, 627–642
search extensibility, 657–665

sockets, 642–649

TCP sockets, 643–649

ConsoleDiagnostics solution, 268

contact info chooser, enhancements to, 621

Contacts class

retrieving data from, 701

SimpleContacts application, 700

testing on emulator, 701

Content

build action set to, 56

resources vs., 55, 56

Resource vs., for performance optimization, 514

Continuation object, 655

Control.ClearValue method, 119

controls, 69–98

Button, 158

CheckBox, 158

RadioButton, 158

standard, 69–89

CPU usage, as shown by Proiler, 759
CreateDatabase method (DataContext class), 671

cross-site restrictions, 358

Cross-Site Scripting (XSS) protection, 500

CryptoStream object (data encryption), 460–461

CurrentValueChanged event (Compass class), 598

CurrentValueChanged event (Gyroscope class), 602

CurrentValueChanged event (Motion class), 606

and augmented reality applications, 615

Attitude property, 606

center-point calculations using, 607

RenderTransform property, 606

CurrentValueChanged vs. ReadingChanged event

(Accelerometer class), 592–593

Custom Control(s), 49–52

ArrangeOverride, 51

MeasureOverride, 51

UserControl vs, 49

CustomerDataService.svc.cs, 653

CustomerWebApp, 650

customization of Silverlight controls, 70

CustomPanel solution, 50

D
database performance

DbCreator_NoVersion solution, 694

DbCreator_WithVersion solution, 694

INotifyPropertyChanged interface and, 692–694

INotifyPropertyChanging interface, 692–694

DatabaseSchemaUpdater class

DatabaseSchemaVersion property, 680

Microsoft.Phone.Data.Linq namespace, 680

DatabaseSchemaVersion property

(DatabaseSchemaUpdater class), 680

DbCreator_NoVersion solution, 694

databases, local

acces to, from application, 691–692

associations, 681–684

building classes for, 669–670

CoffeeStore application, 681

Content, packaging as, for performance

optimization, 690

create/read operations on, 669–675

databases, local

780 Index

databases, local, continued

DataContext class, 668

DbCreator application, 685

DbCreator_WithVersion solution, 694

development model of, 668

downloading large databases, 692

encryption, 695–697

error-throwing events, 692

Isolated Storage Explorer tool, 684–692

LINQ-to-SQL and, 667–697

Model-View ViewModel (MVVM) use with, 669–

710

performance considerations with, 692–695

performance optimizations for, 673–674

querying iles in SMSS/Visual Studio, 688–690
read-only access, 692

restricted access to, in code, 668

schema updates, 677–681

ShoppingList_CR solution, 669

ShoppingList_CRUD_Encrypted solution, 695

ShoppingList_CRUD solution, 675

SQL-CE, use of, 684

SQL Server Management Studio (SSMS), 667

System.Data.Linq.Mapping namespace, 669

update/delete operations, 675–677

data binding

ApplicationIdCredentialsProvider and, 377

BindingOperations.SetBinding, 105

{Binding} speciiers, 105
{Binding} syntax, 103

collections, 106–113, 740–743

CollectionViewSource class, 738, 740–743

DataServiceCollection<T> class, 738

data template, 109

dependency properties, 62

dynamic collections, 111

element binding, 116–117

FallBackValue attributes, 738, 740

FrameworkElement, 103

GroupDescriptions property

(CollectionViewSource class), 738

INotifyDataErrorInfo interface, 738, 743

INotifyPropertyChanged, 127, 377

MoreValidation solution, 743–744

MvvmDataBinding_ICommand solution, 734

Nodatabinding solution, 99–102

one-way binding, 103

performance, effect on, 107

simple, 102–106

SortDescriptions property

(CollectionViewSource class), 738

StringFormat attribute, 738

TargetNullValue attribute, 738, 740

TestGrouping solution, 740

TestStringFormat solution, 738

two-way binding, 103

validation and, 118–121

Databound Application project type, 632

DataBoundApp_modiied solution, 140
DataBoundApp solution, 132

DataBoundAppWithAds solution, 543

DataBoundAppWithAds_TrialMode solution, 544

DataContext, 107, 134

DataContext class, 668, 669, 671, 672, 679

CreateDatabase method, 671

DataContract attribute, 235

DataContractSerializer and, 236

XmlSerializer and, 236

DataContractJsonSerializer, 235

referencing requirements for, 237

XmlSerializer vs., 237

DataContractSerializer, 235, 651

DataContract attribute and, 236

referencing requirements of, 237

requirements/constraints on, 236–237

Windows Communication Foundation and, 236

XmlSerializer vs., 236

data encryption

AesManaged object, 460–461

CryptoStream object, 460–461

Rfc2898DeriveBytes class, 460–464

RNGCryptoServiceProvider class vs. Random

class, 462

SimpleEncryption solution, 460

StrongerEncryption solution, 462

supported cryptograghic functions, 459–464

DataMemberAttribute, 651

DataMember attribute type, 235

Data Protection API (DPAPI), 697–699

Protect method, 698

SimpleEncryption_DPAPI, 697

Unprotect method (DPAPI), 699

data serialization options, 235–242

DataContract attribute type, 235

DataContractJsonSerializer, 235

DataContractSerializer, 235

DataMember attribute type, 235

ile size, comparisons between, 239
SerializeOptions_Perf solution, 241

 Dependency Injection (DI)

 Index 781

SerializeOptions solution, 237

XmlSerializer, 235

data service

yncSvcUtilHelper tool, 707

DataServiceClient phone application, 650

DataServiceClient_State, 654

DataServiceCollections, 655

DataServiceCollection<T> class, 738, 743

DataServiceCollection<T> prooperty, 652

DataServiceContext, 651

DataServiceQuery<T> property, 651

data services

CoffeeWeb application, 704

CoffeeWebApp solution, 708

SimpleCalendar application, 700

SimpleContacts application, 700

SyncClient solution, 704

SyncSvcUtilHelper tool, 707

DataServiceState class, 654

DataServiceState object, 655

DataServiceState.Serialize method, 655

data support, 667–710

calendar, 699–703

contacts, 699–703

encryption, 697–699

local databases and LINQ-to-SQL, 667–697

Synch Framework, 703–710

DataSvcUtil tool, 650

DataTemplate, 132

data templates, 108–110, 113–141

data tracking

privacy concerns with, 549

data validation

INotifyDataErrorInfo interface, 743

MoreValidation solution, 743–744

DbCreator application, 685

DbCreator_NoVersion solution, 694

DbCreator_WithVersion solution, 694

Deactivated events, 187–189

and backstack, 189

fast application switching and, 557

fast reactivation (non-tombstone case), 183,

189–190

time limit to complete, 213

tombstone case, 183

deactivation/reactivation

emulating in debugger, 749

fast application switching and, 555–558

debugger behavior with different application

conditions, 750

debugging, 249–294

device and user information, 273

DeviceInfo solution, 273

Diagnostics_Email solution, 257–258

Diagnostics_Persist solution, 259

Diagnostics_SettingsExpando solution, 264–265

Diagnostics_Settings solution, 261

Fiddler, 291–292

FloatingDiagnostics_AppScope solution, 255

FloatingDiagnostics_Behavior solution, 253

and idle detection disabling, 270

improved tools for in SDK 7.1, 749–750

in Visual Studio, 249–250

lock-screen, 269–270

Manual Tests tab as bug tracking tool, 755

MediaPlayer, 270

MethodBase class, 252

Microsoft Network Monitor, 289–291

Panorama, use in, 255–257

pinning tiles, 638

Pivot, use in, 255–257

post-release, 257–259

Relector, 301
release builds, 267

ScreenCapture application, 265

Silverlight Spy, 293

SimpleDiagnostics solution, 255

SimpleDiagnostics_UEH solution, 253

size constraint when e-mailing log iles, 259
StackTrace class, 252

System.Diagnostics.Debug.WriteLine API, 250

TestMemory solution, 280–281

tombstoning, 269–270

UnhandledException event, 253

DecibelMeter application, 336

Deep Zoom applications, 382–387

converting code from desktop to phone

applications, 384–387, 386

creating, 383–384

creating image ile for, 384
Deep Zoom Composer tool, 383–387

MultiScaleImage control, 384

TestDZ solution, 382

zoom settings, default, 386

Deep Zoom Composer tool, 383–387

Delete button (LiveTiles application), 628

deleting

tiles, 631

Dependency Injection (DI), 125

Dependencyobject

782 Index

DependencyObject, 62

DependencyObject.GetValue/SetValue

method, 62

ResourceDictionary, 58

DependencyObject.GetValue/SetValue method, 62

dependency properties, 62–64

animation, 62

data binding, 62

visual inheritance, 62

DependencyProperty, 62, 66

Deserialize method (DataServiceState class), 654

design-time data, 123–124

DetailsPage, 641

developer tools, 18–20, 747–774

debugger, improvements on, 749–750

deveolpment cycle, 19–20

emulator, 747–749

GeoCoordinateWatcher, improved testing

for, 747

marketplace test kit, 751–755

portable library tools, 767–771

Proiler, 756–766
Screenshot tab, 749

Silverlight for Phone Toolkit, 19

Silverlight Media Framework, 19

UserVoice, 766–774

Windows Azure Toolkit for WP7, 19

Windows Phone 7.5 Training Kit, 19

Windows Phone 7 Training Kit for Developers, 19

Windows Phone Developer Guide, 19

Windows Phone Developer Tool, 18

Windows Phone Developer Tools January 2011

Update, 18

development process, data storage during, 230

Device Emulator (XDE), 267–269, 284–289

Automation, 286

features of, vs. device, 285

forced logging on release builds, 267

GeoCoordinateWatcher, testing on, 747–748

GeoPositionChangedEvent, raising in, 748

hardware requirements for, 285

improvements to, in the 7.1 SDK, 747–749

Phone 7.1.1, low memory support in, 628

picture library, lack of, 303

Screenshot tab, 749

testing accelerometer in, 594

DeviceExtendedProperties class, 273, 280

ApplicationCurrentMemoryUsage property, 280,

625

ApplicationPeakMemoryUsage property, 280

DeviceStatus API as replacement to, 273

DeviceStatus class vs., 623

DeviceTotalMemory property, 280, 625

DeviceUniqueId property, 273

ID_CAP_IDENTITY_DEVICE property, 277–278

TryGetValue function, 273

device information

Anonymous User ID (ANID), 276

DeviceExtendedProperties class, use of, 273

DeviceInfo solution, 273

Microsoft.Devices.Environment class, 274

Microsoft.Devices.Environment class, use of, 273

Microsoft .NET System.Environment class, 274

NetworkInterface class, 274

NetworkInterface class, use of, 273

PhoneApplicationService class, 275

PhoneApplicationService class, use of, 273

System.Environment class, use of, 273

use of, 273–277

DeviceInfo solution, 273

Device.InstallApplication, 286

DeviceNetworkInformation class, 623

enhanced in Phone 7.1, 623–625

NetworkAvailabilityChanged event, 623

NewDeviceInfo solution, 623

device orientation (Touch UI), 170–175

device(s)

low physical memory, performance

enhancements for, 556

XDE vs., 285

device security

PC tethering and (version 7.1), 449

SD cards and, 449

Windows Phone Live and lost devices, 449

DeviceStatus API, 273

DeviceStatus class

ApplicationCurrentMemoryUsage property, 626

ApplicationMemoryUsageLimit property, 625

DeviceExtendedProperties class, as replacement

for, 623

enhanced in Phone 7.1, 623–625

KeyboardDeployedChanged event, 623

NewDeviceInfo solution, 623

PowerSourceChanged event, 623

DeviceTotalMemory property

(DeviceExtendedProperties class), 280

DeviceUniqueId property (DeviceExtendedProperties

class), 273

diagnostics, 249–294

conigurable, 261–265

 encryption

 Index 783

ConsoleDiagnostics solution, 268

device and user information, 273

DeviceInfo solution, 273

Diagnostics_Email solution, 257–258

Diagnostics_Persist solution, 259

Diagnostics_SettingsExpando solution, 264–265

Diagnostics_Settings solution, 261

emulator console output, 267–269

ixed controls for, 255–257
FloatingDiagnostics_AppScope solution, 255

FloatingDiagnostics_Behavior solution, 253

FloatingDiagnostics sample code, 250–251

memory, 279–284

MethodBase class, 252

Microsoft Network Monitor, 289–291

Panorama, use in, 255–257

performance counters, 277–284

persisting logs and, 259–261

Pivot, use in, 255–257

post-release, 257–259

ScreenCapture application, 265

screen captures, 265–267

sending screen captures via e-mail, 267

setting up pop-up windows for, 250–255

simple, 250–272

SimpleDiagnostics solution, 255

SimpleDiagnostics_UEH solution, 253

size constraint when e-mailing log iles, 259
StackTrace class, 252

System.Diagnostics.Debug.WriteLine API, 250

TestMemory solution, 280–281

UnhandledException event, 253

Diagnostics_Email solution, 257–258

Diagnostics_Persist solution, 259

Diagnostics_SettingsExpando solution, 264–265

Diagnostics_Settings solution, 261

dialog boxes

ChildWindow, 89

Popup, 89, 91

System.Windows.Visibility, 89

Direct3D 10 Level 9 support, 37

DirectDraw, 37

DirectionalViewinder solution, 612
Dispatcher object, 653

Dispatcher property (UI elements)

SynchronizedContext object vs., 503

threads, using with, 501

Dns.GetHostName, 644

Dotfuscator Windows Phone Edition, 537–540

cleaning up unused code and, 539

Control Flow, 537

Linking, 537

output of, 539

PreMark, 538

Removal, 538

runtime errors with, possibility of, 538

String Encryption, 538

DoubleTap (logical touch gesture), 143

Double-Tap (Pivot control behavior), 73

DownloadChanged event (MediaElement class), 329

downloading iles with Background Transfer Service
API, 566

DownloadStringAsync method, 353–355

Drag (logical touch gesture). See Pan/Drag (logical

touch gesture)

DynamicCollectionBinding solution, 111

dynamic layout, 46

dynamic layout and StackPanel, 46, 48

DynamicSoundEffectInstance class, 339–343

BufferNeeded event, 339–343

SoundEffectInstance class vs., 343

TestDynamicSounds_Controls solution, 345

TestDynamicSounds solution, 340

usage, 340–343

E
EAP. See Event-based Asynchronous Pattern (EAP)

elements, limits on movement of, 145

Elevated-Rights Chamber (ERC), 455

e-mail

constraint on size of log ile in, 259
use in post-release debugging/diagnostics, 258–

259

EmailComposeTask, 621

emulator

Appointments class not available on, 701

Contacts class and, 701

LicenseInformation.IsTrial method, 545

testing trial mode in, 545

EnableCacheVisualization lag (performance), 277
EnableCacheVisualization lag (UI), 509

GPU and, 509

EnableRedrawRegions lag (performance), 277
EnableRedrawRegions lag (UI), 508
encryption

databases, 695–710

Data Protection API (DPAPI), 697–699

Protect method (DPAPI), 698–699

encryption

784 Index

encryption, continued

ShoppingList_CRUD_Encrypted solution, 695

SimpleEncryption_DPAPI, 697

Unprotect method (DPAPI), 699

EndAccept method, 645

EnqueueCallback method (SLUTF), 522

EnqueueTestComplete method (SLUTF), 522

enterprise users and security, 458–459

environment design with Expression Blend, 124

ErrorCode property, 432

ErrorOccurred event

ErrorCode property, 432

ErrorType property, 432

PowerLevelChanged event, 432

Push_Better\PnClient solution, 432

SubscribeToNotiications method and, 432
ErrorType property, 432

ChannelOpenFailed, 432

PayloadFormatError, 432

EventArgs object, 54

Event-based Asynchronous Pattern (EAP). See

also Asynch framework

AvatarWebClient_EAP solution, 772

Task-based Asynchronous Pattern (TAP) vs., 772

event handler(s), 54, 118

asynchronous data and, 141

connecting methods, 55

EventHandler<T>, building custom with, 166

ininite loop, 130
Microsoft .NET standard, 54

multiple, 120

order of, 54

PositionChanged, 378

SessionChanged, 410

exceptions, unhandled, 191

debugging and, 191

FatalError solution, 191

inappropriate usage of to exit applications, 191

lifecycle events and, 191

marketplace certiication and, 191
UnhandledException handlers and, 191

Exchange ActiveSync (EAS), 458

Execute method (ICommand class), 736–738

Expression Blend

behaviors, 163–167

Silverlight vs., 124

Visual Studio vs., 56

Extended Backus-Naur Form (EBNF) grammar

features of, 521

extensions

with App Connect, 657

ExtraFile attribute, 659

Extras.xml, 657, 659

F
Facebook, 497

data not available to applications, 700

Facebook applications, 400–404

FacebookClient GetAsync method, 403

FacebookOAuthClient GetLoginUrl method, 402

FacebookOAuthResult object, 403

IsScriptEnabled property and, 401

permissions requests, 402

Facebook C# SDK
supported services of, 400

TestFacebook solution, 401

FallBackValue attributes, 738, 740

fast application switching, 555–558

Deactivated events and, 557

internal behavior of, 557

IsApplicationInstancePreserved property

and, 556

OnNavigatedFrom events and, 557

reattaching resources after dormancy, 558

fast reactivation, 189–190

deined, 183
purpose of, 190

FatalError solution, 191

feedback forums, 766–767

Fiddler

debugging/diagnostics using, 291–292

use in XDE, 291–292

use on physical device, limits on, 292

FilteredAccelerometer application, 308

iltering large datasets, 71
ilter queries, 138
lick

horizontal, 78

vertical, 78

Flick and Tap (GestureService), 161–162

FlickGestureEventArgs, 161

HorizontalVelocity property, 161

VerticalVelocity property, 161

Flick (logical touch gesture), 143, 145

lick (manipulation events), 148–150
Flickr, 495

Flick Right/Left, 73

 geoCoordinateWatcher class

 Index 785

Flick Up/Down, 73

FloatingDiagnostics_AppScope solution, 255

FloatingDiagnostics_Behavior solution, 253

FloatingDiagnostics sample code, 250–251

FMRadio class, 349–351

supported regions, 346

testing in emulator, 351

TestRadio solution, 349

FM tuner, 349–351

form authentication

Windows Communications Foundation (WCF)

Service, requirement for, 474–479

FormsAuthClient application, 472

forms authentication, 472–483

ASP.NET, coniguring for, 476–477
client side, 479–483

client side, implementation of, 480

coniguring IIS Manager to test, 473
GetDataAync method, 480

GetDataCompleted event, 480

LoginAsync method, 480

LoginCompleted event, 480

roles, use in restricting access, 481

server side, 473–479

service binding settings for, 479

Visual Studio and, 475

vulnerabiltiy of, 487

FormsAuthServer application, 472

FPS counter thread, 278

Fragment

navigation and, 217–220

NavigationQueryString solution, 217

usage, 218

Frame, 38

frame rate counter (performance), 277–278

Intermediate Surface Counter, 278

Proiler, 759
Render Thread FPS, 278

Screen Fill Rate, 278

Surface Counter, 278

TestPerfCounters solution, 279

Texture Memory Usage, 278

User Interface Thread FPS, 278

FrameReported events (Touch class), 155–156

FrameworkElement, 103

DataContext, 103

ResourceDictionary, 59

framework(s), 713–746

backstack management, 716–719

Clipboard API, 729

frame/page navigation, 713–715

navigation, 713–719

Silverlight 4.0, 732–746

touch events, dedicated thread for, 731

UI enhancements, 719–731

FxCop, 466–471

$(CodeAnalysisPath) MSBuild property,

modifying for, 467

BaseIntrospectionRule base class and, 469

creating rule sets, custom, 470

metadata requirements for, 468

MyCodeAnalysisRule solution, 467

Visual Studio, use in, 467

g
GameInviteTask chooser, 621

GC (garbage collector) events as shown in

Proiler, 760
GDI, 37

generic background agents (GBAs), 570–580

and XAP ile inclusions, 571
BackgroundAgentDemo solution, 572

default expiry of, 571

ExpirationTime, setting, 576

GeoCoordinateWatcher behavior when used

in, 578

main application and, 572

memory limitations on, 571

NotifyComplete method, 578

PeriodicTask class, 570

permitted/prohibited operations in, 571

Phone 7.1.1, lack of support in, 628

polling to update UI from, 573

ResourceIntensiveTask class (GBA), 570–571

starter code for, 579

WMAppManifest, adding to, 579

Geo Augmented Reality Toolkit (GART)

ARDisplay control, 616

augmented reality (AR) applications and, 616–

617

IARView interface, creating custom views

with, 617

required references for, 616

SLARToolkit vs., 617

source for, 616

TestGart solution, 616

GeoCoordinateWatcher class, 318–322

background agents, behavior when used in, 578

geoCoordinateWatcher class

786 Index

GeoCoordinateWatcher class, continued

Bing Maps and, 378–379

DesiredAccuracy property of, 319

Dispatcher.BeginInvoke and, 320

GeoCoordinate type, 320

GeoPosition objects, 319

MovementThreshold property, 321

PositionChanged event, 319

Position property, 320

raw data exposed by, 573

Reactive Extensions and, 322

saving test locations to ile, 748
SimpleGeoWatcher application, 318

sources of data for, 318

TestBingMaps solution, 378

TestGeoCoordinates application, 320

testing on the emulator, 747–748

Geolocation

accessing on phone, 378

and Bing maps, 378

PositionChanged event handler, 378

TestBingMaps solution, 378

GeoPositionChangedEvent, raising in the XDE, 748

GestureEventArgs type, 162

GestureListener event, 158, 162

gestures

Flick Right/Left, 73

licks, 72
Flick Up/Down, 73

horizontal lick, 78
horizontal pan, 78

modeling with mouse events, 154

Pan Right/Left, 73

Pan Up/Down, 73

Pinch-and-Stretch, 73

Tap, Double-Tap, or Press-and-Hold, 73

use and usability guidelines, 144

vertical pan or lick, 78
GestureService (Silverlight Toolkit), 158–163

GestureListener, 158

memory usage of, 163

problems with, 162–163

XNA TouchPanel, performance issues caused

by, 162

GetChild method (VisualTreeHelper class), 42

GetChildrenCount method (VisualTreeHelper

class), 42

GetDataAync method, 480

GetDataCompleted event, 480

GetParent method (VisualTreeHelper class), 43

GetResourceStream method (Application class), 333

GlobalElementChange solution, 43

GoBack method (NavigationService class), 215, 716

Google, 497, 546

Google Analytics, 548

location of, 548

Google.WebAnaltyics, 547

graphics processing unit (GPU), 37

Direct3D 10 Level 9 support, 37

DirectDraw, 37

GDI, 37

Graphics Processing Unit (GPU), 506–507

Grid, 40, 41, 75, 118

RowDeinitions, 48
ShowGridLines property, 46

GroupDescriptions collection property

(CollectionViewSource class), 738

grouping queries, 138

Gyroscope class, 600–603

gyroscope (sensor API), 600–603

CurrentValueChanged event, 602

Micro-Electromechanical Systems (MEMS)

device, 600

pitch, roll, and yaw, 600

SimpleGyro solution, 600

h
Habitant item, 641

handler(s)

catch-all, 120

changeButton_Click handler, 112

Hardin, David, 493

hardware

accelerometer, 305–317

applications processor requirements, 296

audio/video requirements, 323–324

digital camera requirements, 296

FM tuner, 349–351

graphics processor requirements, 296

memory requirements, 296

microphone, 335–343

minimum requirements for Windows Phone

7, 295–296

power requirements, 296

screen requirements, 296

sensor requirements, 296

universal volume control (UVC), 343

wireless requirements, 296

hardware sensors, 603

 IsDatavalid property (Compass class)

 Index 787

Hold (logical touch gestures), 143

Home button

and linking tiles, 637

“home” feature, 636

horizontal lick, 78
horizontal pan, 78

HttpNotiication event, 424
HttpWebRequest

vs. WebClient, using with threads, 505–506

WebClient vs., performance and, 515

HttpWebRequest class, 357

SimpleHttpReq solution, 357

vs WebClient class, 357

HttpWebResponse class

extension methods for, 441

m_HttpResponseHeaders member, 430

push notiications and, 430
HttpWebResponseExtensions class, 441

HyperlinkButton class, 215

HyperlinkButton (LiveTiles application), 628

Hyperlink class, 734

I
IApplicationService (Silverlight extension), 335

IARView interface and custom GART views, 617

ICommand class

CanExecuteChanged event, 736–738

CanExecute method, 736–738

Execute method, 736–738

IDataErrorInfo vs. INotifyDataErrorInfo interface, 743

ID_CAP_IDENTITY_DEVICE property, 277–278

ID_CAP_NETWORKING capability, 752

IDictionary, 58

ID_REQ_MEMORY_90 (markeplace manifest

element), 626

IEnumerable, 112

IEnumerable<T>.OfType<T> method, 44

ILoopingSelectorDataSource, 87

image rendering

enhancement of in Phone 7.1, 730

performance hit with higher bpp, 730

images

background, decoding of, 731

dynamically creating, 629

Page2 link Click handlers, 629

as resources, 55

image scaling

PictureDecoder API, using, 514

implicit styles

deining in Silverlight 4.0, 732–734
hierarchies of, 733

TestImplicitStyles solution, 733

in-application page backstack, 196

ingestion. See marketplace ingestion

Initial ly in, 72
Initialized event (PhotoCamera class), 609

InitializeService method, 653

INotifyCollectionChanged, 111, 126, 138

INotifyDataErrorInfo interface

ErrorsChanged event, 745

GetErrors method, 745

HasErrors property, 745

IDataErrorInfo interface vs., 743

MoreValidation solution, 743–744

INotifyPropertyChanged, 104, 111, 126, 133, 138,

377, 651

INotifyPropertyChanged interface, 692

INotifyPropertyChanging interface, 692

Input Method Editor (IME). See also Software Input

Panel (SIP)

auto-completion, 169

predictive word-completion, 169

Input Method Editor (IME], 70

InputScope, 167

Chat input scope, 168

TelephoneNumber input scope, 168

intellectual property

protecting, 537–540

inter-application backstack. See backstack

Intermediate Surface Counter (performance), 278

Internet Explorer vs. WebBrowser control

security, 500–501

Internet Information Services (IIS) Manager

coniguring for Basic authentication, 483
coniguring to test forms authentication, 473
creating SSL certiicates with, 489
Trusted Root Certiication Authorities (CA)
store, 489

inter-process communication, 15

IntervalTraining application, 560

Inversion of Control (IoC), 125

iPhone, CPNS push notiications for, 445
IPHostEntry object, 644

IPv4 sockets, 644

IsCancelable property (OnNavigatingFrom

method), 713

IsDataValid property (Compass class), 597

IsInertial property (ManipulationCompletedEventArgs)

788 Index

IsInertial property

(ManipulationCompletedEventArgs), 150

IsNavigationInitiator property

(NavigatingCancelEventsArgs/NavigationEventArgs

objects), 715

IsoDataBound solution, 231

isolated storage, 226–246

accessing, performance optimization for, 517–

518

access to, in WebBrowser control, 358

cleaning up unused internal data, 231

data serialization options, 235–242

deleting data in, by user, 231

during development, 230

helpers, 243–246

IsoDataBound solution, 231

IsolatedStorageFile API, 226

IsolatedStorageSettings dictionary class, 226

IsolatedStorageSettings, saving, 231

memory limits on, 229

path to, 226

persistance during application upgrade, 230

simple persistence and, 227–231

SimplePersistence_directory solution, 229

SimplePersistence solution, 227

subdirectories in, 229

submitting updates to AppHub/marketplace, 530

TestIsoStorage application, 243

ViewModel, persisting, 231–235

Isolated Storage Explorer Tool, 233

Isolated Storage Explorer tool (ISETool), 684–692

arguments for, 687

command line syntax for, 686

DbCreator application, 685

IsolatedStorageSettings object, 227

IsScriptEnabled property, 500

IsToastOk property, 440

ItemsControl, 87

ItemsSource, 106

ListBox, 87

ListBox control, 106

ListPicker, 87

ItemsSource, 87, 106, 107

ItemTemplate, 110

IValueConverter, 86, 114

J
Javascript

ScriptNotify event, 361

Silverlight, interaction with, 359–365

JavaScript Object Notation (JSON) format data

iltering, 374
vs. XML formatted data, 373

WCF Data Services\DataServiceClient(JSON-

ilterable) solution, 374
WCF Data Services\DataServiceClient(JSON)

solution, 373

JPG images (Page2 link Click handlers), 629

k
KeyboardDeployedChanged event (DeviceStatus

class), 623

keyboard (hardware)

and orientation, 173

emulating during design process, 169

keyboard input (Touch UI), 167–170

Key name, 57

l
Landscape modes

LandscapeLeft, 173

LandscapeRight, 173

Panorama, 79

Language-Integrated Query (LINQ), 667

Language-Integrated Query (LINQ) operations, 138,

308

large datasets, iltering, 71
launchers/choosers, 195, 297–301

backstack and, 297

MediaPlayerLauncher class, 321

navigation with, 297

SimpleTasks application, 298

using in applications, 298

Launchers/Choosers, enhancements to in Phone

7.1, 621–622

AddressChooserTask chooser, 621

BingMapsDirectionsTask launcher, 621

BingMapsTask launcher, 621

ConnectionSettingsTask launcher, 621

contact information chooser, 621

EmailComposeTask, 621

GameInviteTask chooser, 621

 Managed Extensibility Framework (MEF)

 Index 789

MediaPlayerLauncher, 621

NewBingMaps solution, 622

PhotoResult object return value, 621

SaveContactTask chooser, 621

SaveRingtoneTask chooser, 621

ShareLinkTask launcher, 621

ShareStatusTask launcher, 621

WebBrowserTask, 621

Launching events, 186

layer decoupling, 121–131

layout engine, runtime behavior of, 41

LayoutRoot control, 44

Least-Privileged Chamber (LPC), 455

Level Starter Kit, 311–315

AccelerationHelper class, 311

OrientationHelper class, 311

LicenseInformation.IsTrial method, 545

lifecycle events, 181–196

Activated event, 187

and user expectations, 195–196

asymmetry of, 189

Closing case, 183

Deactivated case, 183

Deactivated events, 187–189, 213

fast reactivation, 183

fast reactivation (non-tombstone case), 189

Launching event, 186

TestActivation sample code, 184

tombstoning, 183

unhandled exception case, 183

light-up features, 535–537

TestLightUp solution, 536

line of business (LOB) users and security, 458–459

LINQ-to-SQL

CoffeeStore application, 681

DataContext class, 668

local databases and, 667–697

ShoppingList_CR solution, 669

ShoppingList_CRUD solution, 675

SQL Server Management Studio (SSMS), 667

System.Data.Linq.Mapping namespace, 669

ListBox, 41, 75

DataTemplate, 132

iltering, 71
IEnumerable, 112

ItemTemplate, 110

scrolling, limits on, 145

ListBox control, 106

ListBox elements

best practices for using, 512–513

ListBoxItem template, 43

ListBox.SelectionChanged handler, 634

ListPicker, 87

List<T> (collection type), 87

Live/SkyDrive REST API, 409

LiveTiles application, 628

LoadAsync/LoadCompleted model, 652

LoadCompleted event, 653

LoadCompleted handler, 654, 655

LoadContext method, 435–436

LoadData method, 75

LocalOffsetZ property (TextBlock), 613

local tiles, 628–632

lock-screen

accelerometer and, 321

ApplicationIdleDetectionMode setting and, 194

debugging, 269–270

disabling using UserIdleDetectionMode

setting, 194

Obscured event and, 194

logical touch gestures, 143–146

DoubleTap, 143

Flick, 143, 145

Hold, 143

Pan/Drag, 143, 145

Pinch, 143

Stretch, 143

Tap, 143

LoginAsync method, 480

LoginCompleted event, 480

LongListSelector, 86

LoopingSelector control, 86, 87

M
Maecenas item, 641, 642

magnetometer. See compass (sensor API)

MainPage class, 119

DataContext, 134

PushViewModel class, changes when using, 436

MainPage.xaml.cs, 654

MainViewModel, 634

managed code and marketplace applications, 453

Managed Extensibility Framework (MEF)

AnalyticsApplicationService, 547

ApplicationLifetimeObjects, 548

AssemblyCatalog, 547

Compose method, 547

CompositionHost, 547

Managed Extensibility Framework (MEF)

790 Index

Managed Extensibility Framework (MEF), continued

MSAF, as basis for, 546–549

WebPropertyId, 548

ManagedMediaHelpers class, 327–329

MediaParsers.Phone library project and, 324

Mp3MediaStreamSource.Phone library project

and, 324

required library projects for, 324

source for, 327

usage, 327–328

MangoAccelerometer solution, 592

ManipulationCompletedEventArgs, 150

Manipulation events

Click events vs., 158

combining Mouse events and, 156–157

ManipulationDelta, 151

ManipulationStarted event, 147

ManipulationXXX events, 146

multi-touch, 150–152

OnManipulationStarted method, 147

single touch (lick), 148–150
single touch (tap), 146–148, 147

Manual Tests tab (marketplace test kit), 754, 755

Map control, 376–378

key creation, 376–377

Panorama, 79

SimpleBingMaps solution, 377

marketplace, 523–534

AppHub portal, setting prices/avialability

with, 528

beta testing, 534

beta testing, support for, 534

certiication/publication, 523–530
checking for updates to application, 530

information required for submission, 523

MarketplaceData solution, 530

MarketplaceDetailTask Launcher, 532

Marketplace Test Kit and, 524

obfuscation of intellectual property, 537–540

portal for submissions, location of, 523

reports, 533

updates, 530–532

updates, restrictions on, 534–535

Zune marketplace atom feed, 531

marketplace applications

information access disclosures to user, 456

instances, limit on number of, 183

marketplace certiication requirements
Authenticode certiicate, 451

Automated Tests tab (marketplace test kit) ,

testing with, 752

BindToShellToast method, 433

deveoper registration, 451

exception handling, 191

load time, 57

managed code and, 453

marketplace test kit, testing for compliance,

751–755

memory consumption, 191

navigation patterns, 201

Push_Better\PnClient solution, 433

responsiveness, 187

security, 451–453

unhandled exceptions and, 191

MarketplaceData solution, 530

MarketplaceDetailTask Launcher, 532

marketplace ingestion

Manual Tests tab's mimicry of, 754

security constraints on, 451

WebBrowser control requirements for, 500

marketplace injestion

requirements, evolving, 532

Marketplace Test Kit, 524

accessing, 751

Application Details tab, 751

Automated Tests tab, 752

Capability Detection tool, 752

developer tools, 751–755

Manual Tests tab, 754

Monitored Tests tab, 753–755

Windows Phone Capability Detection Tool

vs., 272

Marketplace TestKit

and AdControl capability testing, 544

MasterVolume property (SoundEffect class), 340

MeasureOverride method, 51, 65

MediaElement class, 325–327

AutoPlay property of, 326

BufferingChanged event, 329

DownloadChanged event, 329

IsMuted property of, 326

NaturalDuration property of, 329

Pause method, 332

Play method, 332

Position property of, 329

protocols not supported by, 327

Stretch property of, 326

TestMediaElement solution, 325

TestVideo solution, 326

 Microsoft silverlight Analytics Framework (MsAF)

 Index 791

Volume property of, 326

vs. XNA SoundEffect class, 329

MediaElement control, 329–332

media iles, 55, 57
MediaLibrary type, reference requirements for, 302

MediaParsers.Phone library project, 324

media playback, 324–332

ManagedMediaHelpers class, 327–329

MediaElement class, 325–327

MediaElement control, 329–332

MediaPlayerLauncher class, 321

MediaStreamSource class, 327–329

TestMediaPlayer application, 325

MediaPlayer

debugging, 270

Windows Phone Connect Tool, 270

MediaPlayerLauncher class, 321

Orientation property, new, 621

TestMediaPlayer application, 325

media services, 323–352

audio input/manipulation, 328–343

audio/video APIs, 324

audio/video hardware, 323–324

DecibelMeter application, 336

DynamicSoundEffectInstance class, 339–343

FM tuner, 349–351

ManagedMediaHelpers class, 327

MediaElement class, 325–327

MediaElement control, 329–332

MediaPlayerLauncher class, 321

MediaStreamSource class, 327

Microphone class (XNA), 335

Music and Videos Hub, 343–345

playback, 324–332

sample media, sources for testing, 327

slider control, implementing, 330–332

SoundEffect class (XNA), 329–331

SoundEffectInstance class, 329–331

SoundFx solution, 336

TestMediaHub solution, 343

TestRadio solution, 349

TestSoundEffect solution, 333

TestVideo solution, 326

video, encode/decode requirements for, 319–320

MediaStreamSource class, 327

memory

backstack, management of, 196

cleaning up unused internal data, 231

diagnostics, 279–284

paging, in Phone 7.1.1, 626–627

TestMemory solution, 280–281

usage, as shown by Proiler, 760
MergedDictionaries property

ResourceDictionary, 60

search order of, 60

MessageBox, 89, 90

MessageSendPriority class, 441

MessageSendResult class, 441

MethodBase class, 252

Metro, 633, 636

Metro design guidelines, 69, 84

Metro guidelines, 12–15, 39

and attempts to move content past

boundary, 145

application design and, 13

application images and, 31

constraints imposed by, 14

transition animations, 12

typography and, 13–14

user interface (UI) and, 12–15

Metro user experience (UX), 70

m_HttpResponseHeaders member, 430

Micro-Electromechanical Systems (MEMS)

device, 600

Microsoft Advertising SDK, 541–544

Microsoft ASP.NET, 362

Microsoft Cross-Platform Audio Creation Tool

(XACT), 324

Microsoft.Devices.Environment class, 273, 274

Microsoft.Devices.Sensors namespace, 305

Microsoft Interoperability Strategy Group, 444

Microsoft .NET standard and event handlers, 54

Microsoft .NET System.Environment class, 274

Microsoft Network Monitor (NetMon)

TCP Analyzer expert, 290

using, 289–291

Microsoft.Phone.Data.Linq namespace

DatabaseSchemaUpdater class, 680

Microsoft pubCenter, 540–544

application, registering with, 541–542

categories of ads in, 541

location of, 540

regional limits on, 541

Microsoft Push Notiication Service (MPNS), 413–
416

Apple Push Notiication Service (APNS) vs., 443
Cloud 2 Device Messaging Framework (C2DM)

vs., 443

Microsoft Silverlight Analytics Framework (MSAF)

event tracking with, 546–549

Microsoft silverlight security model

792 Index

Google.WebAnaltyics, 547

MEF, based on, 546

required references for, 547

TestAnalytics solution, 547

Webtrends.WebAnalytics.WP7, 547

Microsoft Silverlight security model, 454

Microsoft User Experience Design Guidelines, 11

Microsoft.WebAnalytics assembly

as bridge to third-party analytics services, 547

Microsoft.Xna.Framework.Games class, 18

Microsoft.Xna.Framework.Graphics class, 18

MMC Certiicate Snap-in, 490
MobileTestPage

NavigateBack method, 519

Silverlight Unit Testing Framework (SLUTF)

and, 519

Model-View ViewModel (MVVM)

and database operations, 669–710

beneits/drawbacks, 141
Model, 125

pattern, 125–131

Push Notiication Server-Side Helper Library
and, 441

View, 125

ViewModel, 125

Monitored Tests tab, 753–754

MoreValidation solution, 743

Motion4 solution, 607

motion APIs, 603–608

hardware, suceptibility to errors, 603

Motion4 solution, 607

Motion class, 604–608

CurrentValueChanged event, 606

increased sensor accuracy using, 604

Motion4 solution, 607

SimpleMotion solution, 604

testing for device support of, 605

MouseAndManipulation solution, 156

MouseButtonEventArgs class, 54

Mouse events, 152–155

Click events vs., 158

combining Manipulation events and, 156–157

modeling gestures with, 154

MouseEnter, 152

MouseEventArgs, 153

MouseLeave, 152

MouseLeftButtonDown, 152

MouseLeftButtonUp, 152

MouseMove, 152

MouseWheel, 152

MouseWheel event, unused, 155

MovementThreshold property, 321

MPNS. See Microsoft Push Notiication Service
(MPNS)

multi-Pivot pages, 74

multiple platforms, targeting, 766–767

MultiScaleImage. See Deep Zoom applications

MultiScaleImage control, 384

multi-tasking, 559–590

Alarms and Reminders, 559

background agents, generic, 570–580

background audio, 580–589

Background Transfer Service API, 559

Generic Background Agents, 559–560

multi-touch (manipulation event), 150–152

Music and Videos Hub, 343–345

testing on emulator/physical device, 348

TestMediaHub solution, 343

MvvmDataBinding_ICommand solution, 734

MvvmDataBinding_Model solution, 129

MvvmDataBinding solution, 126

MyCodeAnalysisRule solution, 467

MyPhotoExtra solution, 302

MyPictureExtension solution, 618

MySpace, 497

MyTargetPage, 658

n
Name, 57

NAudio library

source for, 343

WAV ile headers and, 343
Navigate method, 215

NavigateUri property (HyperlinkButton class), 215–

216

NavigatingCancelEventArgs (OnNavigatingFrom

method)

Cancel property of, 713

IsNavigationInitiator property, 715

navigation

application/page state and, 206–213

between applications, 197

between multiple assemblies, 216–217

canceling, 221–223

Deactivated events and, 213

disk I/O, performance issues with, 229

Fragment/QueryString, 217–220

implementation using HyperlinkButton, 216

 oData Client

 Index 793

isolated storage and, 226–246

marketplace certiication and, 201
NavigateUri, 215–216

NavigationMode property, 220–221

NavigationQueryString solution, 217

NavigationService, use of, 206–207

Non-Linear Navigation Service (NLNS), 223–226

OnNavigatedFrom, 205

OnNavigatedTo property, 205

options within Windows Phone platform, 215–

226

re-routing navigation/URI mappers, 221–223

ReRouting solution, 216

separate assembly of pages, 216–217

TestNavigation solution, 208

TestNlns application, 225

TestUriMapping solution, 222

user experience and, 213

NavigationContext, 637, 639

NavigationContext property (Page class), 219

navigation controls

Back button (hardware), 196

Button control, 196

HyperlinkButton control, 196

NavigationService, 196

navigation enhancements in Phone 7.1

backstack management, 716–719

ClearBack_Thumbs solution, 717–719

frame/page, 713

NavigationEventArgs object, 714

NavigationMode property (NavigationEventArgs

object), 714

NavigationEventArgs object

Content property of, 220

IsNavigationInitiator property, 715

NavigationMode property of, 714

overrides of OnNavigatedTo/OnNavigatedFrom

and, 220

Uri property of, 220

navigation mappers

re-routing, 221–223

ReRouting solution, 216

navigation model, 205–248

options for navigation, 215

resurrection, detecting, 213–215

state, 205–215

NavigationMode property (NavigationEventArgs

object), 220–221, 714

emulation of in Windows Phone 7, 220

in Windows Phone 7.1 vs Windows Phone 7, 220

NavigationQueryString solution, 217

NavigationService class

BackStack property, 716

GoBack method, 215, 216, 716

Navigate method, 215

OnRemovedFromJournal virtual method, 716

RemoveBackEntry method, 716

NavigationUri, 630

NetMon. See Microsoft Network Monitor (NetMon)

NetworkAvailabilityChanged event

(DeviceNetworkInformation class), 623

network calls

performance optimization and, 516

networking calls

requirements for, 499

NetworkInterface class, 273, 274

network monitoring, 289–291

NeutralResourcesLanguage attribute (assembly)

requirement for, by marketplace, 532

NewBingMaps solution, 622

NewDeviceInfo solution, 623

NewSystemTray solution, 726

NoDatabinding solution, 99, 100

Nonlinear Navigation Service (NLNS), 223–226

implementation of, 218–220

made redundant in Phone 7.1, 716

source of, 223

TestNlns application, 225

notiication batching interval values, 427
NotifyCollectionChangedEvent, 111

NotifyOnValidationError, 118

NotifyPropertyChangedEvent, 111

o
OAuth 1.0, 495–497

OAuth 2.0, 497

obfuscation of intellectual property, 537–540

Dotfuscator Windows Phone Edition, 537–540

object tree, 58

Obscured event(s), 193–195

NavigatedFrom event vs., 193

TestObscured application, 193

Unobscured event and, 194

ObservableCollection<T> (collection type), 111, 133,

743

OData Client

enhanced features in Phone 7.1, 650–656

oData protocol

794 Index

OData protocol

vs.SOAP protocol, for performance

optimization, 516

OnBackKeyPress, 96

OnNavigatedFrom events

behavior, 205

fast application switching and, 557

overriding handlers, 211

overriding to persist client push notiication
settings, 431

OnNavigatedFrom override, 655

OnNavigatedTo events

behavior, 205

overriding handlers, 211

overriding, in WCF Data Service clients, 371

OnNavigatedTo method, 634

overriding, 631

OnNavigatedTo override, 635, 641, 654, 655

OnNavigatedTo, overriding, 637

OnNavigatingFrom method

IsCancelable property, 713

NavigatingCancelEventArgs, 713

OnRemovedFromJournal virtual method

(NavigationService class), 716

On-Screen Keyboard (OSK). See Software Input Panel

(SIP)

Opacity property

Visibility property vs., for performance

optimization, 514

Open Data (OData) client, 366

Open Data (OData) vs SOAP format, 365

OpenReadAsync method, 355–356

OpenReadTaskAsync method, 774

orientation, 173

OrientationChanged event, 172, 175

OrientationHelper class (Level Starter Kit), 311,

313–322

orientation (Touch UI), 170–175

OverheadMap control, 617

P
Page2 link Click handlers, 629

PageCreationOrder sample code, 201

Page elements, 38

Page Sizes, 38

PhoneApplicationPage type, 38

page model, 196–203

forward navigation controls, 196

page creation order, 201–203

PageCreationOrder sample code, 201

Page object, 219

page size, 38

Paley, Mark, 615

pan

horizontal, 78

vertical, 78

Pan/Drag (logical touch gesture), 143, 145

Panel class, 46

Canvas, 46

Grid, 46

StackPanel, 46

Panorama, 136

Background Image animation, 79

background images, choosing, 80

Content animation, 79

debugging/diagnostics, use in, 255–257

DefaultItem property, 84

entry point with, 77

Orientation property, 82

Pivot compared with, 80

Pivot vs., performance and, 515–516

Title animation, 79

PanoramaItem, 77

PanoramaItem Header, 79

Panorama Title, 79

Pan Right/Left, 73

Pan Up/Down, 73

ParameterizedThreadStart delegate (Thread

class), 501

PC tethering, 449

peer-to-peer chat application, remote, 642

People Hub, 636

performance

ProductCatalog application, 756

testing for using Proiler, 756–766
performance counters

Cache visualization (performance), 277

diagnostics and, 277–284

EnableCacheVisualization lag, 277
EnableRedrawRegions lag, 277
Frame rate counter, 277

Intermediate Surface Counter, 278

Redraw regions, 277

Render Thread FPS, 278

Screen Fill Rate, 278

Surface Counter, 278

TestPerfCounters solution, 279

Texture Memory Usage, 278

 photo extensibility

 Index 795

User Interface Thread FPS, 278

performance optimization, 505–517

assemeblies, factoring pages out to seperate, to

improve, 516

Bing maps, static vs. dynamic, 516

BitmapCache, using, 510

BouncingBall solution, 507

BouncingStoryboard solution, 510

constructors, minimizing for, 516

EnableCacheVisualization lag and, 509
inline XAML UI element declarations and, 514

isolated storage, accessing, 517–518

JPG vs. PNG images and, 513

ListBoxes and, 512–513

network calls and, 516

non-UI tips for, 515

OData protocol vs.SOAP protocol, for, 516

Panorama vs. Pivot controls, 515–516

redrawing regions, checking for, and, 508

Resource vs. Content, image embedding as, 514

re-using desktop code for Phone and, 514

scaling images and, 513

static vs. dynamic images and, 513

UI tips for, 513–515

UI vs. render thread and BitmapCache, 505–512

Visibility property vs. Opacity property and, 514

WebClient vs. HttpWebRequest, 515

PerformanceProgressBar (Toolkit)

TestProgressBars solution, 515

use for performance optimization, 515

Performance Warnings menu (Proiler), 764
PeriodicTask class (GBA), 570

persisting logs, 259–261

Diagnostics_Persist solution, 259

providing option to clear, 261

PersonViewModel, 75

Phone 7

running code for 7.1 on, 535–537

Phone 7.1 applications

Phone 7 applications, updating when published

with, 535

PhoneAccentBrush resource, 27

PhoneAccentColor resource, 27

PhoneApplicationFrame, 38, 40

PhoneApplicationPage class, 40, 176

PhoneApplicationPage declaration, 115

PhoneApplicationPage.Resources, 58

PhoneApplicationPage.State property, 206, 212

PhoneApplicationPage type, 38

PhoneApplicationService class, 273, 275

PhoneApplicationService.State property, 206, 212

PhoneCallTask, 298

PhoneDarkThemeVisibility resource, 27

PhoneHorizontalMargin resource, 74

PhoneLightThemeVisibility resource, 27

phone services, 295–322

accelerometer, 305–317

geo-location, 318–322

hardware, 295–296

launchers/choosers, 297–301

photo extras, 301–304

Reactive Extensions for .NET (Rx .NET) and, 308–

310

tasks, 297–301

phone services, enhanced in Phone 7.1, 591–628

accelerometer, 592–594

augmented reality (AR) application, 612–617

camera pipeline, 608–612

compass, 595–599

DeviceStatus/DeviceNetworkInformation

classes, 623–625

DirectionalViewinder solution, 612
Geo Augmented Reality Toolkit (GART), 616–617

gyroscope, 600–603

Launchers/Choosers, 621

MangoAccelerometer solution, 592

motion APIs, 603–608

PhotoCamera class, 608

photo extensibility, 618–621

sensor APIs, 591–608

PhoneTextNormalStyle, 39

Phone version 7.1 SDK

Isolated Storage Explorer Tool, 667

PhotoCamera class, 608

CaptureImageAvailable event, 609, 610

default orientation of, 608

Initialized event, 609

rear-facing vs. forward-facing camera

support, 608

required references for, 608

usage, 609

PhotoChooserTask chooser, 621

photo extensibility

Apps menu vs. Extras mechanism, 618

enhancements in Phone 7.1, 618–621

Extensions section requirement for, in

WMAppManifest.xml, 618

jumping off points to, 618

MyPictureExtension solution, 618

Photos_Extra_Hub, 618

photo extras applications

796 Index

Photos_Extra_Share, 618

Photos_Extra_Viewer, 618

testing, constraints on, 619

WPConnect tool, testing with, 619

photo extras applications, 301–304

accessing from Start menu vs. photo gallery, 303

creating, 302

debugging, 304

marketplace certiication requirements and, 303
MyPhotoExtra solution, 302

testing requirements for, 303

PictureDecoder API

performance optimization and, 514

Pinch and Drag (GestureService), 160–161

Pinch-and-Stretch, 73

PinchAndStretch solution, 150

Pinch (logical touch gesture), 143, 150, 151

pinning

tiles, 632–638

PinTiles application, 632

p/invokes, 469

Pivot

Panorama vs., performance and, 515–516

Pivot control, 136

content pane, 71

fundemental elements, 72

header, 71

PivotItems, 71

title, 71

use in debugging/diagnostics, 255–257

PivotFilter_CollectionViewSource solution, 138

PivotFilter solution, 136

pivoting on data, 137

PivotItem, 73

playback services

Music and Videos Hub, 343–345

slider control, implementing, 330–332

PnClient_Mango, 639

PNG images (Page2 link Click handlers), 629

PnServer_Mango, 639

polling

updating UI with backround agent information

using, 573

Popup, 89, 91

IsOpen, 91

OnBackKeyPress, 91

use in debugging/diagnostics, 250–255

Portable Library Class projects, 767–771

constraints on resource sharing with, 770

identifying target platform, 768

SilverlightProductCatalog application, 769

source for, 767

Portrait modes

PortraitDown, 173

PortraitUp, 173

PositionChanged event handler, 378

post-release debugging/diagnostics, 257–259

Diagnostics_Persist solution, 259

Diagnostics_SettingsExpando solution, 264–265

e-mail, use in, 258–259

ScreenCapture application, 265

sending screen captures via e-mail, 267

size constraint when e-mailing log iles, 259
PowerLevelChanged event, 432

PowerSourceChanged event (DeviceStatus

class), 623

Press-and-Hold, 73

PrintVisualTree method, 42

ProductCatalog application, 756

Proiler, 756–766
Frames view, using to troubleshoot

choppiness, 764

function report, 764

Functions list, location of, 764

funtion report, inclusive/exclusive samples

in, 764

graph, explanation of, 759–760

log iles, removing from project, 759
logs created by, location of, 757

memory analysis pass with, 765

Performance Warnings menu, 764

ProductCatalog application, 756

selecting arbitrary portions of timeline in, 763

tombstoning/FAS analysis in, 766

types allocatied, checking, 765

usage, 757

using to identify performance problems, 761

ProgressBar

TestProgressBars solution, 515

ProgressChanged event (BackgroundWorker

class), 502

ProgressIndicator property (SystemTray)

determinate/indeterminate progress bar, 728

enhancements to, 725

enhancements to in Phone 7.1, 725–728

visibility concerns with, 728

Project Hawaii, 398

properties

updating tile, 631

PropertyChangedEventHandler, 104, 105

 Push_viewModel\PnClient solution

 Index 797

Protect method (DPAPI), 698

overloading, 699

proximity sensors, 37

Push_Additional\PnClient solution, 431

Push_Additional\PnServer solution, 427

Push_Better\PnClient solution, 432, 433

Push_Better\PnServer solution, 429

Push Client service

behavior of, 414

HttpNotiicationChannel.Open and, 414
Push_Simple\PnClient solution, 422

Push enhancements, 627, 638–643

push notiication client
ChannelUriUpdated event, 424

ChannelUriUpdate event, 425

HttpNotiication event, 424
mainpage.xaml.cs, required ields in, 423
Push_Additional\PnClient solution, 431

ShellToastNotiication event, 424
PushNotiicationMessage class, 441
push notiications, 413–448

architecture for, 413–416

batching intervals, 427–428

BindToShellToast method, 433

client, 422–426

client features, 431–441

Common Push Notiication Service, 443–447
compatibility with APNS/C2DM, 443

ErrorOccurred events, 432–433

Microsoft Push Notiication Service, 413–416
payload size limit of, 415

persistant client settings, 431–432

PowerLevelChanged event, 432

Push_Additional\PnClient solution, 431

Push_Additional\PnServer solution, 427

Push_Better\PnClient solution, 432, 433

Push_Better\PnServer solution, 429

Push_Simple\PnClient solution, 422

Push_Simple\PnServer solution, 416

PushViewModel class, 435–441

push ViewModel, implementing, 435–441

Push_ViewModel\PnClient solution, 435

Raw type of, 415

required functionality for, 417

response information for, 430

security in, 494–495

server, 416–422

server features, 427–430

Server-Side Helper Library, 441–443

settings page to set preferences for, 435

SSL and, 494–495

Tile type of, 415

Toast type of, 415

user opt-in/opt-out, 433–435

WebResponse class and, 416

XML payloads, 428–430

Push Notiication Server-Side Helper Library, 441–
443

Ask to Pin Application Tile notiication
pattern, 443

Create Custom Server-Side Image notiication
pattern, 443

HttpWebResponse class, extension methods

for, 441

HttpWebResponseExtensions class, 441

MessageSendPriority class, 441

MessageSendResult class, 441

notiication examples in, 443
Push Counter Resets upon Logon notiication
pattern, 443

PushNotiicationMessage class, 441
RawPushNotiicationMessage class, 441
Scheduled Tile Updates notiication pattern, 443
TilePushNotiicationMessage class, 441
ToastPushNotiicationMessage class, 441

push notiications, types of
Create Custom Server-Side Image notiication
pattern, 443

One-time Push pattern, 443

Push Counter Resets upon Logon pattern, 443

Scheduled Tile Updates notiication pattern, 443
ToastPushNotiicationMessage class, 443

Push_Simple\PnClient solution, 422

Push_Simple\PnServer solution, 416

push, tile, and toast, enhancements in Phone 7.1

local tiles, 628–632

pinning tiles, 632–638

push notiications, 638–642
PushViewModel class, 435–441

changes to MainPage class when in use, 436

Dispatcher ield in, 438
IsToastOk property, 440

LoadContext method, 435–436

SaveContext method, 435–436

Push_ViewModel\PnClient solution, 435

Querystring

798 Index

Q
QueryString

navigation and, 217–220

NavigationQueryString solution, 217

TryGetValue method and, 219

usage, 218, 219

Quick Card, 657

R
RadioButton (internal Mouse event control), 158

rameworkElement.DataContext property

System.Data.Linq.DataContext vs., local database

acces with, 668

Raw (push notiication), 415
RawPush

NotiicationMessage class, 441
Reactive Extensions for .NET (Rx .NET), 308–310

FilteredAccelerometer application, 308

GeoCoordinateWatcher class and, 322

usage, 309

ReadingChanged event (Accelerometer class), 306

CurrentValueChanged event vs., 592–593

return values, 307

ReceiveAsync, 648

Redraw regions (performance), 277

Relector (debugging tool), 301
RegisterAttached method, 66

registry, editing, 267

relative layout type, 46

reliability

of sockets, 643

reminders

anatomy of, 560

calendar reminders, 563

constraints on, 560

DatePicker, use with (Silverlight toolkit), 565

re-boot survival of, 566

TrailReminders application, 563

remote peer-to-peer chat application, 642

RemoveBackEntry method (NavigationService

class), 716

Render thread

BouncingStoryboard solution, 510

Graphics Processing Unit (GPU) and, 506–507

performance optimizations using, 506

usage of, 506–507

ReportProgress method (BackgroundWorker

class), 502

reports

AppHub, available through, 533

ReRouting solution, 216

Resource

Content vs., for performance optimization, 514

ResourceDictionary

Application class, 59

DependencyObject, 58

FrameworkElement, 59

IDictionary, 58

Key, 59

MergedDictionaries property, 60

merging, 60

object types supported, 58

PhoneApplicationPage.Resources type, 58

ResourceIntensiveTask class (GBA), 570

resource(s), 55–61

build action set to, 56

content vs., 56–57

dictionaries, resource, 57–61

external, 61

images, 55, 57

Key name, 57

media iles, 55, 57
Name, 57

referencing other resources, 61

{StaticResource} syntax, 58

text iles, 55, 57
response times and user expectations, 195

resurrection, detecting, 213–215

reusable XAML. See code resources

Rfc2898DeriveBytes class, 460–464

RichTextBox control, 721–722

RNGCryptoServiceProvider class, 462

RootFrame object, 220

RootVisual property, 40

PhoneApplicationPage, 40

RootFrame and, 220

RoutedEventArgs class, 54

routed event(s), 52–55

BindingValidationError, 118

visual tree, 55

RoutedEvents class, 52

RowDeinitions
*, 48

arbitrary, 48

Auto, 48

Grid, 48

rule sets, custom, 470

 serialize method (Dataservicestate class)

 Index 799

s
sandboxing processes, 455

SaveContactTask chooser, 621

SaveContext method, 435–436

SaveRingtoneTask chooser, 621

ScaleFactor property, 65

ScaleTransform, 151

ScheduledActionService

Alarm object and, 560

ScheduledActionService.GetActions method, 561

schema, databases

associations between, 681

supported changes to, 680

version numbering, 679

version updates to, 677–681

ScreenCapture application, 265

screen captures, 265–267

WriteableBitmap.Render method, 266

Zune and, 267

screen coniguration, 37
light sensor, 37

multi-touch, support for, 37

orientations, support for, 37

physical size, 37

Screen Fill Rate (performance), 278

screen layout, 46–49

Application Bar, 38

Page elements, 38

real estate available for app, 38

System Tray, 38

Visual Studio template, 39

Screenshot tab, 749

scripts

in WebBrowser control, 358

ScriptNotify event, 361

ScrollViewer.ManipulationMode property (ListBox

object), 731

SD cards and device security, 449

Search button (hardware), 37

search extensibility, enhanced in Phone 7.1, 657–665

App Connect, 657–663

App Instant Answer, 664–665

secondary local tiles, 638

security, 449–502

application deployment and, 451–453

application safegaurds, 450–459

chambers/capabilities, 455–457

data encryption, 459–464

device security, 449–450

Execution Manager, use for, 456–457

FormsAuthClient application, 472

FormsAuthServer application, 472

FxCop, 466–471

hard-coding security credentials, 499

installing certiicates, 488
managed code constraints and, 453–455

missing features of, 458

MyCodeAnalysisRule solution, 467

OAuth 1.0, 495–497

OAuth 2.0, 497–498

push notiications and, 494–495
sandboxing processes for, 455

SDL tools, 464–471

SimpleEncryption solution, 460

sockets, 649

SSL, 488–494

StrongerEncryption solution, 462

threat modeling, 465–466

WebBrowser Control, implementing for, 500

web service IDs, securing, 498–499

web service security, 471–494

Security Development Lifecycle (SDL) tools

FxCop, 464, 466–471

SDL Guidelines, 464

threat modeling, 465–466

Threat Modeling Tool, 464

SendAsync, 648

SendNotiication method, 640
sensor APIs

optional sensors available in Phone 7.1, 591

SensorBase<T> base class and, 591

SimpleGyro solution, 600

sensor APIs, enhanced in Phone 7.1, 591–608

accelerometer, 592–594

compass, 595–599

gyroscope, 600–603

motion APIs, 603–608

SimpleMotion solution, 604

SensorBase<T> base class

as basis for all sensor APIs, 591, 597, 601

IsDataValid property, inherited from, 597

sensor(s)

accelerometer, 305–317

light, 37

power usage by, 321

proximity, 37

TestAccelerometer application, 306

Separation of Concerns (SoC), 102, 104, 121–131

Serialize method (DataServiceState class), 654

serializeoptions_Perf solution

800 Index

SerializeOptions_Perf solution, 241

SerializeOptions solution, 237

service bindings

enableHttpCookieContainer attribute, 480

SessionChanged event handler, 410

ShakeGesture event

ShakeGestureEventArgs property, 317

ShakeMagnitudeWithoutGravitationThreshold

property, 317

ShakeType value, 317

Shake Gesture Library

AccelerometerHelper and, 315

required references for, 316

ShakeGesturerHelper class in, 315

source for, 315

TestShake solution, 316

SharedAccessSignature service, 394, 397

ShareLinkTask launcher, 621

ShareStatusTask launcher, 621

ShellTile.Create method, 629, 630

ShellTile object, 631

ShellToastNotiication event, 424
ShoppingList_CR solution, 669

ShoppingList_CRUD_Encrypted solution, 695

ShoppingList_CRUD solution, 675

ShowGridLines property, 46

ShowStatus method, 647

side-loading applications, 452

Silverlight

rendering engine optimizations, 505

Silverlight 4.0, 69, 125, 732–746

CLR Security model, 454

CollectionViewSource class, 738

command binding support, 734–738

Cross-Site Scripting (XSS) protection, 500

data binding enhancements in, 738–746

databound application template, 23–25

DataServiceCollection<T> class, 738

Dialog class, lack of, 89

FallBackValue attributes, 738, 740

GroupDescriptions property

(CollectionViewSource class), 738

IApplicationService extensibility mechanism, 335

implicit styles, deining in, 732–734
INotifyDataErrorInfo, 738

INotifyDataErrorInfo interface, 743

Javascript, interaction with, 359–361

Microsoft.Xna.Framework.Games class and, 18

Microsoft.Xna.Framework.Graphics class and, 18

Model-View ViewModel, 125

MvvmDataBinding_ICommand solution, 734

panorama application template, 23–25

phone application template, 23–25

phone class library template, 23–25

pivot application template, 23–25

project template types, 23–25

rotation angle direction, vs. Motion, 615

RoutedEvents class, 52

runtime behavior, 48, 59

scrolling, 70

security model of, 454

Silverlight for Phone Toolkit, 19

Silverlight Media Framework, 19

Silverlight Spy, 293

SortDescriptions property (CollectionViewSource

class), 738

StringFormat attribute, 738

TargetNullValue attribute, 738, 740

TestImplicitStyles solution, 733

TestStringFormat solution, 738

Touch/gesture enabling, 70

using XNA classes with, 18

Silverlight EasingFunctions

usage, 510

Silverlight layout types, 46

absolute, 46

custom layouts, 46

dynamic, 46

relative, 46

Silverlight Media Framework, 19

SilverlightProductCatalog application, 769

Silverlight Spy, 293

Silverlight Toolkit, 69

ChildWindow, 94

DatePicker, 565

GestureService, 158–163

Silverlight Unit Testing Framework (SLUTF)

and, 517

using to build settings page, 439

VisualTreeExtensions, 46

WrapPanel, 174

Silverlight Toolkit GestureService

Flick and Tap, 161–162

gesture event sequences, 158

Pinch and Drag, 160–161

Silverlight Unit Testing Framework (SLUTF), 517–523

EnqueueCallback method, 522

ExpectedException attribute, 520

MobileTestPage, 519

required references for, 519

 start Windows Phone Performance Analysis vs. start Performance Analysis

 Index 801

Silverlight Toolkit and, 517

Tag attribute, 521

TestClass attribute, 519

TestCleanup, 522

test-driven development (TDD) and, 517

TestInitialize attribute, 522

TestMethod attribute, 519

Silverlight XAML schema, 57

Silverlight XAP, 293

SimpleAppInstantAnswer, 664

simple arrays (collection type), 87

SimpleBingMaps solution, 377

SimpleCalendar application, 700

SimpleCamera solution, 608

SimpleCompass solution, 595

SimpleContacts application, 700

SimpleDataBinding solution, 103

SimpleDiagnostics solution, 255

SimpleDiagnostics_UEH solution, 253

SimpleEncryption_DPAPI, 697

SimpleEncryption solution, 460

SimpleEvents solution, 53

SimpleGeoWatcher application, 318

SimpleGyro solution, 600

SimpleHttpReq solution, 357

SimpleLayout solution, 46

SimpleMotion solution, 604

Simple Object Access Protocol (SOAP) services, 379

simple persistence

isolated storage and, 227–231

SimplePersistence_directory solution, 229

SimplePersistence solution, 227

SimplePersistence_directory solution, 229

SimplePersistence solution, 227

SimpleResources solution, 61

SimplestAppConnect, 658

SimpleTasks application, 298

SimpleVisualTree solution, 40

single touch (lick), 148
single touch (tap), 146–148

SkyDrive, 409–411

Live/SkyDrive REST API, 409

TestLive_Photos solution, 409

SLARToolkit, 617

Sleep method (Thread class), 501

Slider control (Panorama), 79

Smart Device Connectivity component

(CoreCon), 286

SmugMug, 495

SOAP protocol

OData protocol vs., for performance

optimization, 516

SocketAsyncEventArgs, 648

SocketAsyncEventArgs class, 648

SocketClient, 643

sockets, 642–649

TCP sockets, 643–649

SocketServer, 643

Software Input Panel (SIP), 70, 167

features of, 167

InputScope of elements, 167

SortDescriptions collection property

(CollectionViewSource class), 738, 743

sort queries, 138

SoundEffectInstance class, 329–331, 343

SoundFx_Persist solution, 342

SoundFx solution, 336

SoundLab download, 333

SplashScreenImage.jpg application image, 30

SQL-CE

SQL Server Compact Toolbox tool, for working

with, 690

SQL Server Compact Toolbox tool

SQL-CE databases, working with, 690

SQL Server Management Studio (SSMS), 667

SSL, 488–494

certiicate authorities, 488
creating certiicates for, 489
credential web services and, 499

push notiications and, 494–495
testing without, 487

Windows Phone Certiicate Installer helper
library, 488

StackPanel, 41, 75, 93

StackTrace class, 252

standard controls

Panorama control, 77–85

Pivot control, 71–77

SDK, 69–70

toolkit controls, 86–89

Standard-Rights Chamber (SRC), 455

StandardTileData class, 631

StandardTileData parameter (ShellTile.Create

method), 629

Start button (hardware), 37

StartListening worker method, 644

Start page, 630

Start Windows Phone Performance Analysis vs. Start

Performance Analysis, 757

state

802 Index

state

application, 206–213

memory limits on storing, 212

page, 206–213

persistant, 206

PhoneApplicationPage.State property, 206

PhoneApplicationService.State property, 206

State.ContainsKey, testing, 212

transient application, 206

state dictionaries

and object serialization, 213

memory limits on, 212

PhoneApplicationPage.State, 206–213

PhoneApplicationService.State, 206–213

StateObject parameter, 645

State.TryGetValue, 655

{StaticResource} syntax, 58

Status Bar. See SystemTray class

storyboard events in Proiler, 760
Stretch (logical touch gesture), 143, 150

StringFormat attribute, 738

StrongerEncryption solution, 462

styles

as code resources, 57

hierarchies of, 733

implicit, using, 732–734

TestImplicitStyles solution, 733

SubmissionInfo folder (marketplace test kit), 755

SubscribeToNotiications method, 432
SupportedOrientations

handling orientation changes using, 170–175

OrientationChanged event, 172

PortraitOrLandscape, 170

Surface Counter (performance), 278

SyncClient solution, 704

Synch Framework, 703–710

code generation, 707–710

CoffeeWeb application, 704

CoffeeWebApp solution, 708

coniguration of service, 705–707
database provisioning, 707

required references for, 709

scope deinition, 706
source for, 704

SyncClient solution, 704

Sync Framework: SyncSvcUtil, 705

SyncSvcUtilHelper tool, 705, 707

yncSvcUtilHelper tool, 707

SynchronizationContext object

TestThreading_SyncContext solution, 503

threads, accessing UI with, 503–504

SynchronizedContext object

Dispatcher property vs., 503

System.Data.Linq.DataContext

rameworkElement.DataContext property vs., for

database access, 668

System.Data.Linq.Mapping namespace, 669

System.Data.Services.Client.dll, 650

System.Diagnostics.Debug.WriteLine API, 250

System.Environment class, 273

system memory available to app, 280

system notiications vs. Toast notiications, 433
SystemTray class, 38, 74, 79

enhancements to in Phone 7.1, 725–728

FPS counter thread requirements for, 278

new properties exposed in, 726

NewSystemTray solution, 726

Opacity property, 79

properties of, 38

quirky color properties of, 726

in Windows Phone 7.1, 38

System.Windows.Media.Imaging namespace, 629

System.Windows.Visibility, 89

System.Windows.xaml, 41

T
Tag attribute (SLUTF), 521

Tag attributes (SLUTF)

Extended Backus-Naur Form (EBNF) grammar,

usage of, 521

TangoTest solution, 627

Tap, 73

TAP. See Task-based Asynchronous Pattern (TAP)

Tap (logical touch gesture), 143

tap (manipulation event), 146–148

TargetNullValue attribute, 738, 740

Task-based Asynchronous Pattern (TAP), 773

AvatarWebClient_TAP solution, 772

Event-based Asynchronous Pattern (EAP) vs., 772

Visual Studio Async Framework and, 772

tasks, 297–301

CameraCaptureTask, 300

PhoneCallTask object, 298

SearchTask, 298

WebBrowserTask, 300

TCP Analyzer expert, 290

TCP sockets, 643–657

templates

as code resources, 57

 threading

 Index 803

screen layout, 39

TitlePanel, 38, 39

Visual Studio, 38

Test71Controls solution, 720

TestAccelerometer application, 306

TestActivation sample code, 184

TestAnalytics solution, 547

TestBehaviors solution, 163

TestBehaviors_Standard solution, 166

TestBingMaps solution, 378

TestBitly sample code, 398

TestCleanup (SLUTF), 522

TestClipboard application, 729

TestDependencyProps solution, 64

test-driven development (TDD)

Silverlight Unit Testing Framework (SLUTF)

and, 517

TestDynamicSounds_Controls solution, 345

TestDynamicSounds solution, 340

TestDZ solution, 382

testers

using AppHub to pass information to, 528

TestFacebook solution, 401

TestFrameReported solution, 155

TestGart solution, 616

TestGeocodeService application, 380

TestGeoCoordinates application, 320

TestGestureService solution, 160

TestGrouping solution, 740

TestImplicitStyles solution, 733

testing

beta testing, support for in marketplace, 534

dummy data for, 674–676

Silverlight Unit Testing Framework (SLUTF),

using, 517–523

test-only viewmodels, 674

upgrade scenario with ISETool, 690

testing (application)

marketplace test kit, 751–755

Proiler. See Proiler
TestInitialize attribute (SLUTF), 522

TestIsoStorage application, 243

TestLightUp solution, 536

TestLive_Photos solution, 409

TestLive solution, 404

TestLoopingSelector solution, 86

Test Manipulation solution, 146

TestMediaElement solution, 325

TestMediaHub solution, 343

TestMediaPlayer application, 325

TestMemory solution, 280–281

TestMouse solution, 153

TestNavigation solution, 208

TestNlns application, 225

TestObscured application, 193

TestOrientation solution, 170

TestPanorama_Template solution, 85

TestPerfCounters solution, 279

TestPivot solution, 73

TestPopup solution, 89

TestProgressBars solution, 515

TestRadio solution, 349

TestShake solution, 316

TestSip solution, 168

TestSoundEffect solution, 333

TestStringFormat solution, 738

TestThreading solution, 500

TestThreading_SyncContext solution, 503

TestUriMapping solution, 222

TestVideo solution, 326

TestWbc solution, 358

TextBlock (LiveTiles application), 628

TextBox, 118

data binding, 103

NotifyOnValidationError, 118

ValidatesOnExceptions, 118

text iles, 55, 57
Text Text Revolution!, 170

Texture Memory Usage (performance), 278

theme, 25–29

application icons and, 32

documentation source for, 27

PhoneAccentBrush resource, 27

PhoneAccentColor resource, 27

PhoneDarkThemeVisibility resource, 27

PhoneLightThemeVisibility resource, 27

ThemeAccent sample, 27

ThemeAccent sample, 27

Thread class

location of, 501

Name property, 501

ParameterizedThreadStart delegate, 501

Sleep method, 501

ThreadStart delegate, 501

threading, 499–505

BackgroundWorker class, 501–502

Render thread, 505

TestThreading solution, 500

TestThreading_SyncContext solution, 503

UI controls and, 501

threading

804 Index

threading, continued

UI thread, 505

web service client proxies with, 504

ThreadPool

BackgroundWorker class usage of, 504

ThreadPool (threading API), 500

when to use, 503

ThreadStart delegate (Thread class), 501

Thread (threading API), 500–501

when to use, 501

Threat Modeling tool (SDL), 465–466

Tile (push notiication), 415, 420
TilePushNotiicationMessage class, 441
tiles

local, 628–632

pinning, 632–638

Tiles

sides of, 627

updating, 627

tiles pinned to, 629

TitlePanel, 38

Toast enhancements, 627

toast notiication, 639, 640
toast notiications, 638
Toast (push notiication), 415

payload requirements for, 420

requesting permission for use of, 433

ToastPushNotiicationMessage class, 441
ToggleSwitch control (Panorama), 79

Tokens element, 665

tombstone case, 187–189

deined, 183
Launchers/Choosers and, 195

tombstoning

Activated events vs. Launching events, 187

debugging, 269–270

emulating in debugger, 749

fast application switching and, 555–558

Touch class, 155

touches

inger, 144
palm, 144

touch events

dedicated thread for, 731

ScrollViewer.ManipulationMode property, 731

TouchPoint, 156

Position property, 156

Size property, 156

TouchPointCollection, 156

touch target

design and size, 144

dynamic sizing of, 169

size of, vs. touch element, 144

Touch UI, 143–180

Application Bar, 175–180

BallManipulation solution, 148

behaviors, 163–167

BouncingBall solution, 161

Click events, 158

combining Manipulation/Mouse events, 156–157

DoubleTap, 143

drag, 145

inger touch size, 144
Flick, 143, 145

Flick and Tap, 161–162

FrameReported events, 155–156

Hold, 143

keyboard input, 167–170

logical touch gestures, 143–146

MouseAndManipulation solution, 156

Mouse events, 152–155

multi-touch, 150–152

orientation, 170–175

Pan/Drag, 143, 145

Pinch, 143

Pinch and Drag, 160–161

PinchAndStretch solution, 150

Silverlight Toolkit GestureService, 158–163

single touch (lick), 148–150
single touch (tap), 146–148

Stretch, 143

Tap, 143

target design and size, 144

TestBehaviors solution, 163

TestBehaviors_Standard solution, 166

TestFrameReported solution, 155

TestGestureService solution, 160

Test Manipulation solution, 146

TestMouse solution, 153

TestOrientation solution, 170

TestSip solution, 168

touch events and overrides, 146

TouchPointCollection, 156

TouchPoints, 156

touch target vs. touch element, 144

use and usability guidelines, 144

WrapOrientation solution, 174

tracking data, 546–549

consent requirements for, 546

 userIdleDetectionMode setting

 Index 805

TrailReminders application, 563

TransferProgressChanged event, 568

Transient Panel(s), 89

ChildWindow, 94

Popup, 89

System.Windows.Visibility, 89

Visibility, 92

transitions

animations, 12

Pivot control, 72

TranslateTransform, 151

Transmission Control Protocol (TCP)

sockets, 642

Transmission type sockets, 643

Transport Layer Security (TLS) certiicates. See SSL
trial mode, application, 544–546

DataBoundAppWithAds_TrialMode solution, 544

LicenseInformation.IsTrial method, 545

switching to paid version, how to, 545

Trusted Computing Base (TCB) chamber, 455

TryGetValue method, 219, 273

Twitter, 495

TwoPivots solution, 74

type/value converters, 114–116

u
UI, 37–68

and Metro, 12–15

ApplicationBar class, enhancements to in Phone

7.1, 725–728

attached properties and, 64–68

background image, decoding, 731

Clipboard API, 729

content vs. resource in, 56–57

control enhancements, 720–725

dependency properties and, 62–64

EnableCacheVisualization lag, 509
EnableRedrawRegions lag, 508
enhancements in Windows Phone 7.1, 719–731

Frame, 38

NewSystemTray solution, 726

ProgressIndicator property, enhancements to in

Phone 7.1, 725–728

rendering behavior, 507–508

resources, 55–61

screen layout, 46–49

standard elements, 37–40

SystemTray class, enhancements to in Phone

7.1, 725–728

TestClipboard application, 729

themes/accent colors and, 25–29

threading and the, 501

touch events, dedicated thread for, 731

user vs. custom controls, 49–52

visual tree, 40–46

WebBrowser control as, 358

UIElement class, 70

UI enhancements in Phone 7.1

RichTextBox control, 721–722

Test71Controls solution, 720

VideoBrush control, 723

ViewBox control, 722

WebBrowser control, 724–725

UI model, 69

UI thread

BouncingBall solution, 507

usage of, 505–506

UnhandledException event, 253

unhandled exceptions. See exceptions, unhandled

Universal Volume Control (UVC), 343, 581

“unpin” feature, 633

Unprotect method (DPAPI), 699

overloading, 699

update

marketplace injestion, restrictions on, 535

Update button (LiveTiles application), 628

Update method, 631

updates

name change and, 535

restrictions on, in marketplace, 534–535

submitting while app is in hidden state, 535

Updating

tiles, 627

upgrading applications and isolated storage, 230

UriMapper, 657

URI mapper, custom, 660

URI mappers

re-routing, 221–223

TestUriMapping solution, 222

UriMapper type

MappedUri property, 223

re-routing navigation, 223

UriMapping type, 223

UserControls, 49–52

User Datagram Protocol (UDP)

sockets, 642

user expectations and lifecycle events, 195–196

UserExtendedProperties class, 273, 276

UserIdleDetectionMode setting, 194

user information

806 Index

user information

Anonymous User ID (ANID), 276

application safegaurds on, 450–459

ID_CAP_IDENTITY_DEVICE property, 277

use of, 273–277

UserExtendedProperties class, use of, 273

User Interface Thread FPS (performance), 278

user interface (UI), 629

UserVoice, 766–774

location of Windows Phone forums at, 766–767

phone application providing access to, 766

UTF8 and XML payloads, 429

v
ValidatesOnExceptions, 118

validation, 118–123

BindingValidationError, 118

error handler, 120

NotifyOnValidationError, 118

ValidatesOnExceptions, 118

Validation.Errors collection, 118

versions

light-up features, 535–550

marketplace support for, 534–537

Phone 7/7.1, updating applications for, 535

TestLightUp solution, 536

updating database schemas, 677–681

user data, saving after updates, 678

versions, application, 534–537

vertical lick, 78
vertical pan, 78

VideoBrush control, 723

video, encode/decode requirements for, 319–320

ViewBox control, 722

ViewModel

IsoDataBound solution, 231

persisting in isolated storage, 231–235

Vimeo, 495

Visibility, 92, 93

Visibility property, 637

Opacity property vs., for performance

optimization, 514

visual hierarchy. See visual tree

Visual Studio

and overriding virtual methods, 215

Databound Application template, 132

debugging in, 249–250

debugging on device with, 249

debugging tombstoning/lock-screen in, 270

Expression Blend vs., 56

form authentication projects and, 475

FxCop, use in, 467

Panorama template-generated project, 136

Pivot template-generated project, 136

Portable Library Class add in, 767

Smart Device Connectivity component, 286–289

Solution Explorer, 56

starter code, 38

stub methods, creating in, 676

System.Diagnostics.Debug.WriteLine API, 250

Windows Phone 7 Cloud Application solution

template, 394

Windows Phone Scheduled Task Agent

project, 577

Visual Studio Async Framework

Asynch framework and, 772

Task-based Asynchronous Pattern (TAP)

introduced by, 772

Visual Studio Databound Application template, 132,

139

Visual Studio Panorama Application, 81

visual tree, 40–46, 41

and Application Bar, 180

App Bar and, 180

Button, 41

Grid, 41

StackPanel, 41

VisualTreeHelper class, 42

VisualTreeExtensions, 46

VisualTreeHelper class, 42, 43, 44

GetParent method, 43

PrintVisualTree method, 42

VisualTreeHelper.GetChild method, 42

VisualTreeHelper.GetChildrenCount method, 42

wrapping methods of, 45

W
WaitOne, 645

WbcScript sample code, 359

WCF Data Services, 362, 365–375

JSON-formatted data, 373–375

Open Data (OData) client, 365–373

Visual Studio Windows Phone application

templates and, 370

WCF, 362

WCF Data Services\CustomerWebApp

solution, 367

 Windows Azure

 Index 807

WCF Data Services\DataServiceClient(JSON-

ilterable) solution, 374
WCF Data Services\DataServiceClient(JSON)

solution, 373

WCF Data Services\DataServiceClient(Simple)

solution, 370

WCF Simple\ChuckClient solution, 362

WCF Simple\ChuckService solution, 362

WCF Data Services\CustomerWebApp solution, 367

WCF Data Services\DataServiceClient(JSON-

ilterable) solution, 374
WCF Data Services\DataServiceClient(JSON)

solution, 373

WCF Data Services\DataServiceClient(Simple)

solution, 370

WCF Simple\ChuckClient solution, 362

WCF Simple\ChuckService solution, 362

WebBrowser control, 357–361

ActiveX controls, disallowance of, 358

cross-site restrictions on, 358

Cross-Site Scripting (XSS) protection, 500

enhancement to in Phone 7.1, 724–725

Internet Explorer security vs., 500–501

isolated storage and, 358

IsScriptEnabled property, 500

marketplace ingestion requirements for, 500

mobileoptimized tag, 361

NotifyEventArgs parameter, 359

Panorama, 79

required capabilities, 359

script invocation and, 358, 359

ScriptNotify event, 361

Silverlight/Javascript interaction and, 359–361

specifying name for, 359

TestWbc solution, 358

user interface, as, 358

vs. desktop version of same, 358

WbcScript sample code, 359

WebBrowser.InvokeScript method, 359

WebBrowser.IsScriptEnabled property, 359

WebBrowser.NavigateToString method, 361

WebBrowser.ScriptNotify event, 359

WebBrowserTask

new properties for, 621

using, 300

WebClient

HttpWebRequest vs., performace issues with, 515

UI thread and, 505

WebClient class, 353–356

AvatarWebClient solution, 355

DownloadStringAsync method, 353–355

HttpWebRequest class vs., 357

OpenReadAsync method, 355–356

OpenReadTaskAsync method, 773

performance issues and, 355

using, 353

WebRequest class, 329

WebResponse class, 416

X-DeviceConnectionStatus header, 416

X-NotiicationStatus header, 416
X-SubscriptionStatus header, 416

web role(s), 387

web service

threading for background services in, 504

web services, 353–412

Bing maps, 376–382

bitly, 398–400

consumption of, 362–365

credentials and SSL, 499

Deep Zoom, 382–387

Facebook, 400–404

HttpWebRequest class, 357

Microsoft ASP.NET, consuming, 362

Open Data (OData) client, 365–373

third-party access to, using OAuth 2.0, 497

WCF, 362

WCF Data Services, 365–375

WCF Simple\ChuckService solution, 362

WebBrowser control, 357–361

WebClient class, 353–356

Windows Azure, 387–398

Windows Live, 404–411

web service security, 471–494

authentication, 472

basic authentication, 483–487

form authentication, 472

FormsAuthClient application, 472

FormsAuthServer application, 472

SSL, 488–494

Webtrends, 546

Webtrends.WebAnalytics.WP7, 547

Wilcox, Jeff, 517

Windows API, 453

Windows Azure

API, 388

AppFabric SDK, 388

as cloud service, 387–398

client/server applications, building, 387–389

client/server applications, lows between, 396
CloudChuck solution, 389

Windows Azure

808 Index

Windows Azure, continued

implementation of application on, 388

SDK, 388

server-side coniguration for application, 389–
393

SQL Azure, 388

StorageClient.dll and, 397

Toolkit for Windows Phone, 394–398

web role(s), 387

web services, consuming by Phone apps, 389–

393

Windows Azure Storage, 388

worker role(s), 387

Windows Azure Toolkit, 394–398, 394–412

Azure SDK, 388

Azure Tables and Queues proxies, 394

included tools/templates/libraries, 394

Shared Access Signature service, 394

Windows Phone 7 Cloud Application solution

template, 394

Windows Azure Toolkit for WP7, 19

Windows CE, 16

Windows Communications Foundations (WCF) Data

Service

DataContractSerializer and, 236

DataServiceCollection<T> class, 738

Windows Communications Foundation (WCF)

Service

AuthenticationService endpoint, 475

form authentication and, 474–479

serviceHostingEnvironment element, 475

system.ServiceModel element, 475

Windows Live

connecting to, from Phone app, 404–411

Live SDK source, 406

Live/SkyDrive REST API, 409

provisioning application on, 405

REST API, 408

SessionChanged event handler, 410

sign-in implementation, 408

SkyDrive, 409–411

TestLive_Photos solution, 409

TestLive solution, 404

wl.basic scope, 407

wl.ofline_access scope, 407
wl.signin scope, 407

Windows Phone 7

API source, 18

documentation source, 19

documentation source for media support, 334

Exchange ActiveSync (EAS), support for, 458

security challenges, vs. other Windows

clients, 486

side-loading applications, lack of support

for, 452

version 7.1 vs., 32–35

vs iOS and Android, 15

Windows CE and, 16

Windows Phone 7.1

additional features of, vs. 7, 33–36

compatibility with Windows Phone 7, 32

Windows Phone 7.1 SDK

Isolated Storage Explorer tool (ISETool), 686

Microsoft Advertising SDK, 541–544

support for GBAs in, 572

System.Windows.xaml, 41

version 7 application testing and, 19

Windows Phone Capability Detection Tool, 271–

272

Windows Phone Connect Tool, 270

Windows Phone 7.5 Training Kit, 19

Windows Phone 7 Cloud Application solution

template

Cloud project, 394

Cloud Services project, 394

Phone client application, 394

Windows Phone 7 Training Kit for Developers, 19

Windows Phone Capability Detection Tool, 271–272

Windows Phone Certiicate Installer helper
library, 488

Windows Phone Connect Tool, 270

Windows Phone Developer Guide, 19

Windows Phone Developer Tools, 18

Windows Phone Developer Tools January 2011

Update, 18

Windows Phone devices, hardware requirements

for, 295–296

Windows Phone “Mango”, 555

Windows Phone Performance Analysis tool.

See Proiler
Windows Phone SDK, 69

Windows Phone SDK 7.1.1 Update, 19

Windows Phone shell

Application Bar, 38

System Tray, 38

Windows Phone Version 7.1.1

ApplicationWorkingSetLimit property

(DeviceExtendedProperties class), 626

generic background agents, lack of support

for, 628

 Zune media queue (ZMQ) vs. BackgroundAudioPlayer class

 Index 809

ID_REQ_MEMORY_90 (markeplace manifest

element), 626

low-memory device support in, 625–628

TangoTest solution, 627

Windows Presentation Foundation (WPF), 102, 643

WMAppManifest, 638

WMAppManifest.xml, 657, 659, 664, 665

application image entry in, 30

generic background agents (GBAs), adding

to, 579

in XAP ile, 22
worker role(s), 387

WP7CertInstaller project, 493–494

WPConnect tool, 619

WrapOrientation solution, 174

WrapPanel, 174, 175

WriteableBitmap class, 629

WriteableBitmapEx third-party library, 629

WriteableBitmap.Render method, 266

WriteEndElement method, 428

WriteStartElement method, 428

x
XAML

and pinning tiles, 634

XAP iles
contents of, 22–23

GBAs and, 571

Xbox Live, 772

XDE. See Device Emulator (XDE)

X-DeviceConnectionStatus header, 416

XDocument

push payloads, use in building, 428

XmlWrrite vs., 429

XML formatted data, 373

XML payload push notiications, 428–430, 429
XmlSerializer, 235

DataContract attribute and, 236

DataContractJsonSerializer vs., 237

DataContractSerializer vs., 236

requirements/constraints on, 236

XmlWriter

push payloads, use in building, 428

WriteEndElement method, 428

WriteStartElement method, 428

XDocument vs, 429

XNA Microphone class, 335

behavior during phone calls, 336

BufferDuration property, 335

BufferReady event, 332

DecibelMeter application, 336

GetSampleSizeInBytes, 335

SoundFx_Persist solution, 342

SoundFx solution, 336

WAV format and, 342

XNA SoundEffect class, 329–331

MasterVolume property, 340

MediaElement class vs., 329

SoundLab. source for, 333

TestSoundEffect solution, 333

XNA FrameworkDispatcher, emulating, 330–343

XNA TouchPanel, 162

X-NotiicationClass, 427
X-NotiicationStatus header, 416
X-SubscriptionStatus header, 416

X-WindowsPhone-Target header;, 420

XXXAsync method, 648

Y
Yahoo!, 495

Z
Zune

and screen captures, 267

MediaPlayer debugging and, 270

Zune marketplace atom feed, 531

Zune media queue (ZMQ) vs.

BackgroundAudioPlayer class, 580

About the Author

AnDREW WhITEChAPEl has worked in the software industry for 30 years,

including more than 20 years as a developer, working mainly in C/C++ and C#.
During his 10 years at Microsoft, he has covered stints in Consulting Services,

Visual Studio, and Xbox. Andrew is currently a Program Manager in the Win-

dows Phone team, where he is responsible for core features of the application

platform.

Survey Page goes here.

	Foreword
	Introduction
	Part I: Building Blocks
	Chapter 1: Vision and Architecture
	Windows Phone Vision
	Metro
	Developer Guidelines

	Windows Phone Architecture
	Comparison of Silverlight and XNA

	Developer Tools
	Development Cycle

	The Anatomy of a Basic Windows Phone Application
	XAP Contents
	Standard Project Types
	Themes and Accent Colors
	Standard Application Images

	Version 7 vs. Version 7.1
	Summary

	Chapter 2: UI Core
	Phone UI Elements
	Standard UI Elements
	Visual Tree
	Screen Layout

	UserControl vs. Custom Control
	Routed Events

	Resources
	Content vs. Resource
	Resource Dictionaries

	Dependency and Attached Properties
	Dependency Properties
	Attached Properties

	Summary

	Chapter 3: Controls
	Standard Controls
	Platform, SDK, Toolkit
	SDK Controls: Pivot
	SDK Controls: Panorama
	Toolkit Controls

	Transient Panels
	Summary

	Chapter 4: Data Binding and Layer Decoupling
	Life without Data Binding
	Simple Data Binding and INotifyPropertyChanged
	Data Binding Collections
	Data Templates
	Dynamic Data-Bound Collections
	Template Resources

	Type/Value Converters
	Element Binding
	Data Validation
	Separating Concerns
	Design-Time Data
	The Model-View ViewModel Pattern

	The Visual Studio Databound Application Project
	Summary

	Chapter 5: Touch UI
	Logical Touch Gestures
	Manipulation Events: Single Touch (Tap)
	Manipulation Events: Single Touch (Flick)
	Manipulation Events: Multi-Touch
	Mouse Events
	FrameReported Events
	Combining Manipulation and Mouse Events
	Click vs. Mouse/Manipulation Events
	The Silverlight Toolkit GestureService
	Pinch and Drag
	Flick and Tap
	Problems with the GestureService

	Behaviors
	Keyboard Input
	Orientation
	The Application Bar
	Summary

	Part II: Application Model
	Chapter 6: Application Model
	Lifetime Events and Tombstoning
	Application Closing
	Application Deactivated
	Application Deactivated (the Non-Tombstone Case)
	Unhandled Exceptions
	Why Is There No App.Exit?
	Obscured and Unobscured
	Launchers/Choosers and Tombstoning
	User Expectations

	Page Model
	Page Creation Order

	Summary

	Chapter 7: Navigation State and Storage
	Navigation and State
	Application and Page State
	Detecting Resurrection

	Navigation Options
	Using NavigateUri
	Pages in Separate Assemblies
	Fragment and QueryString
	The NavigationMode Property
	Rerouting Navigation and URI Mappers
	Nonlinear Navigation Service

	Isolated Storage
	Simple Persistence
	Persisting the ViewModel
	Serialization Options
	Isolated Storage Helpers

	Summary

	Chapter 8: Diagnostics and Debugging
	Visual Studio Debugging
	Simple Diagnostics
	Setting Up a Diagnostics Pop-Up Window
	Fixed Diagnostics Control
	Post-Release Diagnostics
	Persisting Logs
	Configurable Diagnostics
	Screen Capture
	Emulator Console Output
	Debugging Tombstoning and Lock-Screen
	Debugging MediaPlayer

	Device and User Information
	Windows Phone Performance Counters
	Memory Diagnostics

	The Device Emulator
	Emulator vs. Device
	XDE Automation

	Using the Microsoft Network Monitor
	Fiddler
	Silverlight Spy
	Summary

	Part III: Extended Services
	Chapter 9: Phone Services
	Phone Hardware
	Launchers and Choosers
	Photo Extras
	Accelerometer
	Reactive Extensions for .NET
	Level Starter Kit
	Shake

	Geo-Location
	Summary

	Chapter 10: Media Services
	Audio and Video Hardware
	Audio and Video APIs
	Media Playback
	The MediaPlayerLauncher Class
	The MediaElement Class
	The MediaStreamSource and ManagedMediaHelpers Classes
	MediaElement Controls

	Audio Input and Manipulation
	The SoundEffect and SoundEffectInstance Classes
	Audio Input and the Microphone
	The DynamicSoundEffectInstance Class

	Music and Videos Hub
	The FM Tuner
	Summary

	Chapter 11: Web and Cloud
	The WebClient Class
	WebClient: The DownloadStringAsync Method
	WebClient: The OpenReadAsync Method

	The HttpWebRequest Class
	Web Browser Control
	Silverlight and Javascript

	Web Services
	WCF Data Services
	The OData Client and XML Data
	JSON-Formatted Data

	Bing Maps and Geolocation
	Using the Map Control
	Geolocation
	Bing Maps Web Services

	Deep Zoom (MultiScaleImage)
	Windows Azure
	Windows Azure Web Services
	Windows Azure Toolkit for Windows Phone

	bitly
	Facebook
	Windows Live
	SkyDrive

	Summary

	Chapter 12: Push Notifications
	Architecture
	Push Notification Server
	Push Notification Client
	Additional Server Features
	Batching Intervals
	XML Payload
	Response Information

	Additional Client Features
	Persistent Client Settings
	The ErrorOccurred Event
	User Opt-In/Out
	Implementing a Push ViewModel

	The Push Notification Server-Side Helper Library
	Common Push Notification Service
	Summary

	Chapter 13: Security
	Device Security
	Application Safeguards
	Application Deployment
	Managed Code Constraints
	Chambers and Capabilities
	Missing Security Features

	Data Encryption
	SDL Tools
	Threat Modeling
	Static Code Analysis/FxCop

	Web Service Security
	Authentication
	Forms Authentication
	Basic Authentication
	SSL

	Push Notification Security
	OAuth 1.0
	OAuth 2.0
	Securing Web Service IDs
	Implementing Security for the WebBrowser Control
	Summary

	Chapter 14: Go to Market
	Threading
	Performance
	UI vs. Render Thread, and BitmapCache Mode
	UI Layout and ListBoxes
	More UI Performance Tips
	Non-UI Performance Tips

	Silverlight Unit Testing Framework
	Certification and Publication
	Updates
	Marketplace Reports
	Beta Testing

	Versions
	Light-Up Features

	Obfuscation
	Ads
	Trial Mode
	Silverlight Analytics Framework
	Summary

	Part IV: Version 7.5 Enhancements
	Chapter 15: Multi-Tasking and Fast App Switching
	Fast Application Switching
	Multi-Tasking
	Alarms and Reminders
	Alarms
	Reminders

	Background Transfer Service
	Generic Background Agents
	Background Audio
	Background Audio: The Main Application
	Background Audio: The Background Agent

	Summary

	Chapter 16: Enhanced Phone Services
	Sensor APIs
	Accelerometer
	Compass
	Gyroscope
	Motion APIs

	Camera Pipeline
	Augmented Reality
	The Geo Augmented Reality Toolkit

	New Photo Extensibility
	Launcher and Chooser Enhancements
	The DeviceStatus and DeviceNetworkInformation classes
	Version 7.1.1
	Summary

	Chapter 17: Enhanced Connectivity Features
	Push, Tile, and Toast Enhancements
	Local Tiles
	Pinning Tiles
	Push Enhancements

	Sockets
	TCP Sockets

	OData Client
	Search Extensibility
	App Connect
	App Instant Answer

	Summary

	Chapter 18: Data Support
	Local Database and LINQ-to-SQL
	Create and Read
	Update and Delete
	Schema Updates
	Associations
	Isolated Storage Explorer Tool
	Performance Considerations
	Database Encryption

	Encrypting Data and Credentials
	Contacts and Calendar
	Sync Framework
	Service Configuration
	Database Provisioning
	Code Generation

	Summary

	Chapter 19: Framework Enhancements
	Navigation Enhancements
	Frame and Page Navigation
	Backstack Management

	UI Enhancements
	Enhanced Controls
	The ApplicationBar and SystemTray Classes, and the ProgressIndicator Property
	The Clipboard API
	32 Bits per Pixel
	Background Image Decoding
	Touch Thread

	Silverlight 4.0
	Implicit Styles
	Command Binding
	Data-Binding Enhancements

	Summary

	Chapter 20: Tooling Enhancements
	Emulator Improvements
	Debugger Experience
	Marketplace Test Kit
	The Profiler
	UserVoice Forums
	Portable Library Tools
	Async Framework
	Summary

	Index

