
www.allitebooks.com

http://www.allitebooks.org

WordPress 3.7 Complete
Third Edition

Make your first end-to-end website from scratch
with WordPress

Karol Król

Aaron Hodge Silver

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

WordPress 3.7 Complete
Third Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2006

Second edition: January 2011

Third edition: November 2013

Production Reference: 1191113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-240-7

www.packtpub.com

Cover Image by Łukasz Siódmok (ls@la-ds.com)

www.allitebooks.com

http://www.allitebooks.org

Credits
Authors

Karol Król

Aaron Hodge Silver

Reviewers
Rodolfo Buaiz

Matthew Cohen

Patrick Cohen

Olivier Pons

Aaron Hodge Silver

Acquisition Editor
Kunal Parikh

Lead Technical Editor
Ritika Dewani

Technical Editors
Kapil Hemnani

Novina Kewalramani

Aparna Kumari

Shiny Poojary

Amit Ramadas

Gaurav Thingalaya

Project Coordinator
Rahul Dixit

Proofreaders
Bridget Braund

Lawrence A. Herman

Lesley Harrison

Indexers
Mehreen Deshmukh

Rekha Nair

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Karol Król is a WordPress developer, PHP programming specialist, professional
blogger, and writer. He has been building expertise in WordPress ever since his early
years at the Silesian University of Technology, Poland, where he graduated with a
Master's degree in Computer Science. Early in his career, he worked as a freelance
website developer, and then launched a web design business together with a close
friend. Later on, he decided to shift his interest towards popularizing WordPress
as the perfect solution for all web-based projects and devoted his time to growing
his writing career. To this day, his articles have been featured on websites, such as
About.com, Lifehack.org, ProBlogger.net, Freelance Switch, Quick Sprout, and Six
Revisions. Currently, his main two projects are providing Online Business Advice for
Normal People through his main website (http://newinternetorder.com/) and
taking active part in the Writers in Charge project (http://www.writersincharge.
com/), and teaching other writers how to take charge of their writing career.

Karol spends most of his spare time making music, training Capoeira, cooking,
and drinking wine.

I'd like to thank everyone at Packt Publishing for working with
me and making this book a reality. Also, many thanks to everyone
who supported me along the way. Last but not least, I'd like to
thank ThemeFuse (http://themefuse.com/), one of the leading
WordPress theme stores online, for providing guidance and
delivering a custom theme design that I was able to use in this book.

www.allitebooks.com

http://www.allitebooks.org

Aaron Hodge Silver has been designing and developing new websites from scratch
since 1999, just before his graduation from Columbia University. Early in his career, he
worked for several web companies and startups, including DoubleClick and About.
com. Since 2004, he has been self-employed through his company Springthistle Design
and has worked with a staggering variety of companies, non-profits, and individuals
to realize their website dreams. In his professional work, Aaron's focus is always
on usability, efficiency, flexibility, clean design, and client happiness. WordPress
is the best solution for many of Springthistle's clients, though Aaron also develops
custom web applications using PHP and MySQL. Aaron was the author of the two
previous editions of this book! You can find more about Aaron's professional work at
http://springthistle.com.

In his free time, Aaron enjoys developing recipes in the kitchen, being active
outdoors, and spending quality time with his family (both human and non
human members).

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Matthew Cohen is a Chief Product Officer at WooThemes. He is also a WordPress
and web developer, musician, and blogger. He is a lover of punk rock, innovation,
business and 80s/90s cartoons.

Olivier Pons is a developer who's been building websites since 1997. He's a teacher
at Ingésup (École supérieure d'ingénierie informatique) at the University of Sciences
(IUT) of Aix-en-Provence/France and École d'Ingénieurs des Mines de Gardanne,
where he teaches MVC fundamentals, Symfony, PHP, HTML, CSS, jQuery/jQuery
Mobile, Linux basics, and advanced VIM techniques. He has already done some
technical reviews for Packt Publishing books, namely Ext JS 4 First Look by Loaine
Groner and jQuery Mobile Web Development Essentials Second Edition by Raymond Camden
and Andy Matthews among others. In 2011, he left a full-time job as a Delphi and PHP
developer to concentrate on his own company, HQF Development (http://hqf.fr).
He currently runs a number of websites, including http://www.livrepizzas.fr,
http://www.papdevis.fr, and http://olivierpons.fr his own web development
blog. He works as a consultant, teacher, project manager, and sometimes a developer.

www.allitebooks.com

http://www.allitebooks.org

www.packtpub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content

• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introducing WordPress 7

Getting into WordPress 8
Using it for a blog or website 8

Understanding the common terms 9
Post 10
Categories and tags 10
Comments 10
Theme 11
Plugin 11
Widget 11
Menus 12
RSS 12
Page 12
Users 12

Choosing WordPress – the reason why 13
A long time in refining 13
Active in development 13
Large community of contributors 13
Amazingly extendable 13

Getting to know the WordPress family 14
Digging into WordPress – the features 15
Getting familiar with the new feature list since 3.0 16

Learning more 17
Learning more with the online WordPress resources 17
Staying updated through WordPress news 18

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Understanding the Codex 19
Getting support from other users 19
Using theme and plugin directories 20
Summary 21

Chapter 2: Getting Started 23
Building your WordPress website – start here 23
Using WordPress.com 26

Publishing your first content on a WordPress.com blog 27
Installing WordPress manually 28

Preparing the environment 29
Downloading WordPress 30
Upgrading from an earlier version of WordPress 30
Uploading the files 30
Installing WordPress 31
Installing WordPress through a hand-built configuration file 34
Learning more 37

Installing WordPress through an auto installer script 37
The WP Admin panel 41

Changing general blog information 45
Creating your first post 47
Writing your first comment 48
Retrieving a lost password 50

Getting a Gravatar 50
Summary 51

Chapter 3: Creating Blog Content 53
WP Admin conventions 53

Lists of items 54
Posting on your blog 55

Adding a simple post 55
Common post options 57

Categories and tags 57
Images in your posts 59
Using the visual editor versus text editor 65
Lead and body 66
Drafts, pending articles, timestamps, and managing posts 67

Advanced post options 69
Excerpt 69
Sending pingbacks and trackbacks 70
Discussion 71
Custom Fields 72
Working with post revisions 73
Changing the author of the post 75
Protecting content 75
The pretty post slug 76

Table of Contents

[iii]

Custom post format settings 77
Additional writing options 78

Press This 78
Posting via e-mail 79
External blogging tools 80
Mobile apps for iOS and Android 81

Discussion on your blog – comments 82
Adding a comment 82
Discussion settings 82

Submission, notification, and moderation settings 82
When to moderate or blacklist a comment 85
Avatar display settings 86

Moderating comments 87
How to eliminate comment spam 88

Getting an Akismet API key 89
Activating Akismet 91

Adding and managing categories 92
Summary 93

Chapter 4: Pages, Menus, Media Library, and More 95
Pages 95

Adding a page 96
Parent 97
Template 97
Order 98

Managing pages 98
Menus 99

Adding a menu 99
Displaying a menu 102

Header 103
Advanced site customization 105
Links 107

Adding a new link 108
Displaying links 111
Managing links and categories 111

Media library 112
Media Manager 114
Adding an image gallery 117

Choosing a post or page 117
Selecting/uploading images 118

Importing/exporting your content 123
Importing content 123
Exporting content 125

Summary 126

Table of Contents

[iv]

Chapter 5: Plugins and Widgets 127
Breaking down plugins – what are they? 127
Why to use plugins 128
Where to get plugins 128
Finding new plugins 130
Installing a plugin – the how-to 131

Manual plugin installation 131
Autoinstallation 134

The must-have pack of plugins 137
Backing up 137
Enabling Google Analytics 140
Caching 141
Search Engine Optimization (SEO) 143
Securing your site 144
Jetpack 147
Switching to maintenance mode 148

Widgets 150
Summary 154

Chapter 6: Choosing and Installing Themes 155
Finding themes 156

WordPress Themes Directory 156
Main types of themes 159
Finding more themes 160

Some not-design-related theme basics 161
The structure of a theme 162
Factors to consider when choosing a theme 162

The purpose of the theme 163
Theme licensing 165
Up-to-date themes only 165
Themes that are customizable 166
Themes with responsive structure 166
Support, reviews, and documentation 166

Installing and changing themes 167
Adding a theme within the WP admin 167
Downloading, extracting, and uploading 170

Summary 172
Chapter 7: Developing Your Own Theme 173

Setting up your design 174
Designing your theme to be WordPress friendly 174
Two paths of theme development 176

Building a theme from the ground up 176
Building a theme with a framework 176

Table of Contents

[v]

Converting your design to code 178
Examining the HTML structure 178
Examining the CSS 181

Converting your build into a theme 188
Creating the theme folder 189
Adding WordPress content 191

The functions.php file 192
The <head> tag 195
The header and footer 197
The sidebar 200

The main column – the loop 202
Creating templates within your theme 206

Understanding the WordPress theme 206
Breaking it up 207

header.php 207
footer.php 207
The sidebar.php file 208
Your four template files 209

Archive template 210
Single template 211
Page template 212
Generated classes for body and post 214
Other WordPress templates 215
Creating and using a custom page template 216

Making your theme widget friendly 223
Going back to our "static" sidebar 224
Working with functions.php 224
Adding conditional code to sidebar 225
Adding some widgets 227
Further widgetizing options 228

Enabling a menu in your theme 229
Creating a child theme 229

Creating the new theme directory 230
Creating the stylesheet 230
Using your child theme 231

Sharing your theme 232
Summary 234

Chapter 8: Feeds, Podcasting, and Offline Blogging 235
Feed basics 236

Feed readers 237
Learning more 238

Table of Contents

[vi]

Your built-in WordPress feeds 238
Adding feed links 239

Feeds for the whole website 240
Feeds for comments 241
Tracking subscribers with FeedBurner 242
Burning your feed on FeedBurner 243
FeedBurner plugin 243

Podcasting 244
Creating a podcast 245

Recording yourself 245
Making a post 246
Dedicated podcasting 247

Podcasting plugins 248
Using a service to host audio files for free 249

Offline blogging tools 250
The benefits 250
The tools 251
Using Windows Live Writer 251

Summary 254
Chapter 9: Developing Plugins and Widgets 255

Plugins 256
Building plugins from scratch 256
Plugin code requirements 257
Basic plugin – adding link icons 257

Naming and organizing the plugin files 258
Writing the plugin's core functions 260
Adding hooks to the plugin 261
Trying out the plugin 264

Adding an admin page 264
Adding management page functions 265
Modifying the ahs_doctypes_regex() function 268
Adding hooks 268
Trying out the plugin 269

Testing your plugins 270
Plugin with DB access – capturing searched words 271

Getting the plugin to talk to the database 272
Adding management page functions 273
Trying out the plugin 274

Learning more 275
Widgets 276

Custom tag cloud widget 276
Naming our widget 277
Widget structure 277

Table of Contents

[vii]

Widget initiation function 278
Widget form function 279
Widget save function 281
Widget print function 281
Custom widget styles 282
Initiating and hooking up the widget 284
Trying out the widget 284
Learning more 285

Bundling a widget with an existing plugin 286
Shortcodes 286

Shortcodes and the way they work 286
Types of shortcodes 286
Creating a simple shortcode 287
Enabling shortcodes in widgets 289

Summary 290
Chapter 10: Community Blogging 291

Concerns for a multiauthor blog 291
User roles and abilities 292

Super Admin 292
Administrator 292
Editor 293
Author 295
Contributor 296
Subscriber 297

Managing users 297
Enabling users to self register 300
Learning more 301

User management plugins 302
Creating a multisite website 303
Summary 305

Chapter 11: Creating a Non-blog Website Part One – The Basics 307
The must-do tasks 309
Static websites 309

The process 310
Building your home page 310
Creating easy-to-grasp menus 312

Corporate or business websites 312
Picking a clean theme 313
Branding elements 314
Good navigation 314
Custom home page 316

Table of Contents

[viii]

Optional slider 317
Meteor Slides 318
SlideDeck 2 Lite Responsive Content Slider 319

E-commerce stores 321
Standard setup 323
Getting the plugin 324
Custom menu for the store 326
Main settings of the plugin 327
Custom container page for the store 328
Adding products 331
Stats – orders, coupons, and reports 335

Summary 336
Chapter 12: Creating a Non-blog Website Part Two – Community
Websites and Custom Content Elements 337

Membership websites 337
Taking the simple approach 338
Using membership plugins 339
Taking the free approach 340

Installing the plugin 340
Using the plugin 343

Video and photo blogs 346
Exploring themes for video and photo sites 347
Getting plugins for video and photo sites 348

Social networks 351
Installing a social network 352
Designing your social network 354
Extending the functionality 356
User accounts and activity 356

Introducing custom post types 358
Registering a new post type 359

Adding labels 361
Adding messages 361
Creating book template files 364

Registering and using a custom taxonomy 367
Customizing the admin display 369

Summary 371
Index 373

Preface
WordPress 3.7 Complete Third Edition will take you through the complete process of
building a fully functional WordPress site from scratch. The journey goes all the way
from teaching you how to install WordPress, to the most advanced topics such as
creating your own themes, writing plugins, and even building non-blog websites.
The best part is that you can do all this without losing your shirt along the way.
Moreover, once you get some practice, you will be able to launch new WordPress
sites within minutes (not a metaphor, by the way; this is as true as it gets).

This book guides you along the way in a step-by-step manner to explain everything
there is to know about WordPress. We'll start with downloading and installing the
core of WordPress, where you will learn how to choose the correct settings in order to
guarantee a smooth experience for yourself and for your visitors. After that, the book
will teach you all about content management functionality for your site from posts
and pages to categories and tags, all the way to links, media, menus, images, galleries,
administration, user profiles, and more. Next, you will find out what plugins and
themes are and how to use them effectively. Finally, you'll learn how to create your
own themes and plugins to enhance the overall functionality of your website. Once
you're done with reading WordPress 3.7 Complete Third Edition, you will have all the
knowledge required to build a professional WordPress site from scratch.

What this book covers
Chapter 1, Introducing WordPress, explains how WordPress is an excellent software
that can run your website (blog or not). It's packed with excellent features and is
so flexible that it can really do anything you want, and it has a wealth of online
resources. Additionally, it's super easy to use, and you need no special skills
or prior experience to use it. Last but not least, it is free!

Preface

[2]

Chapter 2, Getting Started, explains how to install WordPress on a remote server,
change the basic default settings of your blog, write posts, and comment on those
posts. It will also show you how to work with sites hosted on WordPress.com,
which is one of the branches of the WordPress world.

Chapter 3, Creating Blog Content, teaches everything you need to know to add content
to your blog and manage that content, be it about posts, categories, and comments,
or tags, spam, and excerpts.

Chapter 4, Pages, Menus, Media Library, and More, explores all of the content
WordPress can manage that's not directly about blogging. You can also learn about
static pages, menus, bookmark links, the media library, image galleries, and more.

Chapter 5, Plugins and Widgets, discusses everything there is to know about finding
the best plugins for WordPress and then using them effectively. Plugins are an
integral part of every WordPress site's lifespan, so it's more than hard to imagine a
successful site that isn't using any of them.

Chapter 6, Choosing and Installing Themes, describes how to manage the basic look of
your WordPress website. You also learn where to find themes, why they are useful,
and how to implement new themes on your WordPress website.

Chapter 7, Developing Your Own Theme, explains how to make your own theme. With
just the most basic HTML and CSS abilities, you can create a design and turn it into a
fully functional WordPress theme.

Chapter 8, Feeds, Podcasting, and Offline Blogging, explains what an RSS feed is
and how to make feeds available for our WordPress blog. It also explores how to
syndicate a whole blog or just posts within a certain category, and how to create your
own podcast with or without the help of plugins. Finally, it goes on to discuss offline
blogging and how it can speed up your web publishing experience.

Chapter 9, Developing Plugins and Widgets, teaches everything you need to know about
creating basic plugins and widgets, how to structure the PHP files, where to put your
functions, and how to use hooks. It also teaches about adding management pages
and adding a widget that is related to a plugin.

Chapter 10, Community Blogging, explains how to manage a group of users working
with a single blog, which is a community of users. Community blogging can play an
important role in a user group or a news website. It also explains how to manage the
different levels of privileges for users in a community.

Preface

[3]

Chapter 11, Creating a Non-blog Website Part One – The Basics, explores the endless
possibilities of WordPress when it comes to using it to launch various types of
websites. The chapter presents the first batch of our non-blog websites and explains
in detail how to build them on top of a standard WordPress installation.

Chapter 12, Creating a Non-blog Website Part Two – Community Websites and Custom
Content Elements, goes through some additional types of non-blog websites and also
presents some technical aspects of building them (caution! code talk inside).

Chapter 13, Administrator's Reference, covers many of the common administrative tasks
you may face when you're managing a WordPress-driven website. This includes
backing up your database and files, moving your WordPress installation from one
server or folder to another, and doing general problem-solving and troubleshooting.
This chapter is the free one available online through a direct download link. Please
hop over to our site to get it (http://www.packtpub.com/sites/default/files/
downloads/2407OS_Chapter13_Administrators_Reference.pdf).

What you need for this book
The prerequisites for this book include the following:

• A computer
• A web browser
• A text editor
• FTP software

Users may like a text editor that highlights code (such as Coda, TextMate, HTMLKit,
and so on), but a simple text editor is all that's required.

Users may like to run local copies of WordPress on their computers, in which case
they need a server such as Apache and MySQL installed (though WAMP and MAMP
would take care of all that for them), but it's also not necessary as they could do the
entire thing remotely.

Who this book is for
This book is a guide to WordPress for both beginners and those who have a slightly
more advanced knowledge of WordPress. If you are new to blogging and want
to create your own blog or website in a simple and straightforward manner, this
book is for you. It is also for people who want to learn to customize and expand the
capabilities of a WordPress website. You do not require any detailed knowledge of
programming or web development, and any IT-confident user will be able to use the
book to produce an impressive website.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For instance, using the <p> tags is
not necessary in the text editor, as they will be stripped by default."

A block of code is set as follows:

// ** MySQL settings ** //
define('DB_NAME', 'wptestblog');
define('DB_USER', 'localdbuser');
define('DB_PASSWORD', '62dcx%^_0hnm');
define('DB_HOST', 'localhost');

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<div class="post post-item">
 <div class="post-title">
 <h2><a href="<?php the_permalink(); ?>"><?php the_title();
 ?></h2>
 </div>

 <?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft">
 <?php echo '<a href="'.esc_url(get_permalink()).'"
 >'.get_the_post_thumbnail($post->ID, 'thumbnail').''; ?>
 </div>
 <?php endif; ?>

 <div class="entry clearfix">
 <p>by <?php echo get_post_meta($post->ID, 'book_author',
 true); ?></p>
 <?php the_excerpt(); ?>
 </div>
</div><!-- /.post-item -->

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"To add a new page, go to your WP Admin and navigate to Pages | Add New".

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for the book
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introducing WordPress
Have you ever wanted to have a website at low cost, without the need to hire a
team of developers and designers, without learning advanced PHP, and with
almost unlimited extension possibilities? Or maybe you're more about getting into
the world of website creation and becoming the next expert? If that's a yes to any of
the above questions, WordPress is likely the platform you should look into.

These days, everyone has a good reason to have a website. It's not just large
companies anymore. Individuals, families, and small or independent businesses
all need to have one. Some individuals and small businesses don't have the financial
resources to hire a website development company or a freelance web developer
to create a website for them. In short, WordPress is an open source web software
application that you can use to create and maintain an online website, even if you
have the minimum of technical expertise.

Since it is a web application, WordPress does not need to be installed on your home
computer, or any other machine under your control. It can live on the server (a kind
of computer) that belongs to your website hosting company. It is also free, easy to
use, and packed with excellent features. Originally, WordPress was an application
meant to run a blog website, but it has now evolved into a fully-featured Content
Management System (CMS).

Actually, at the time of writing, WordPress powers over 60 million websites in total,
or in other words, one of every six websites on the internet. And if that's not enough,
the newest version of the platform has been downloaded over 14 million times. It
seems that joining the team is, indeed, a wise thing to do.

In this chapter, we'll explore:

• The reasons that will make you choose WordPress to run your website
• The greatest advantages of WordPress
• Online resources for WordPress
• The complete list of features in the newest versions of WordPress

Introducing WordPress

[8]

Getting into WordPress
WordPress is an open source blog engine. Open source means that nobody owns
it, everybody works on it, and anyone can contribute to it. Blog engine means a
software application that can run a blog. It's a piece of software that lives on the
web server and makes it easy for you to add and edit posts, themes, comments, and
all of your other content. More expansively, WordPress can be called a publishing
platform because it is by no means restricted to blogging.

In fact, a number of big (by today's standards) online agencies use WordPress to run
their sites. Outlets such as The New York Times, The Wall Street Journal, Forbes, and
Reuters all use WordPress as the base of their web publishing platforms.

Originally, WordPress was a fork of an older piece of software named b2/cafelog.
WordPress was developed by Matt Mullenweg and Mike Little, but is now
maintained and developed by a team of developers that includes Mullenweg.

Over the years, the platform has evolved a lot and, even though a massive amount
of new functionality got introduced, WordPress still remains one of the easiest to
use web publishing platforms out there.

Using it for a blog or website
There are generally two popular types of websites for which WordPress is
meant to be used:

• Normal websites with relatively static content—pages, subpages, and so on
• Blog websites—chronologically organized, frequently updated, categorized,

tagged, and archived.

However, as experience shows, these days WordPress is successfully used to run a
wide variety of other sites as well, such as

• Corporate business websites
• E-commerce stores

Chapter 1

[9]

• Membership sites
• Video blogs
• Photo blogs
• Product websites, and more

For those of you unfamiliar with blog websites and blogging terminology,
let's take a look at the basics.

Starting your journey, what is a blog? A blog is a website that usually contains
regular entries such as a kind of log. These entries can be of various types, such as
commentary, descriptions of events, photos, videos, personal remarks, tutorials, case
studies, long opinion pieces, or political ideas. They are usually displayed in reverse
chronological order, with the most recent additions on the top. These entries can be
organized in a variety of ways—by date, by topic, by subject, and so on.

One of the main characteristics of a blog is that it's meant to be updated regularly.
Unlike a site where the content is static, a blog behaves more like an online
diary, wherein the blogger posts regular updates. Hence, blogs are dynamic
with ever-changing content. A blog can be updated with new content and the
old content can be changed or deleted at any time (although deleting content is
not a common practice).

Most blogs focus their content on a particular subject—for example, current
events, hobbies, niche topics, technical expertise—or else they are more like
personal online diaries.

Originally, a blog was short for weblog. According to Wikipedia, the term weblog
was first used in 1997, and people started using blogs globally in 1999. The terms
weblog, weblogging, and weblogger were added to the Oxford Dictionary in 2003,
though these days most people leave off the "we" part.

Understanding the common terms
If you are new to the world of blogging (or the "blogosphere," which is a fairly
popular expression these days), you may want to familiarize yourself with the
following common terms.

Introducing WordPress

[10]

Post
Each entry in the blog is called a post. Every post usually has a number of different
parts. Of course, the two most obvious parts are title and content. The content is text,
images, links, and so on. Posts can even contain multimedia (for example, videos and
audio files). Every post also has a publication timestamp, and most also have one
or more categories, tags, comments, and so on. It is these posts, or entries, that are
displayed in reverse chronological order on the main page of the blog. By default, the
latest post is displayed first, in order to give the viewer the latest news on the subject.

Categories and tags
Categories and tags are ways to organize and find posts within a blog and even
across blogs. Categories are like topics, whereas tags are more like keywords. For
example, for a blog about food and cooking, there might be a category called recipes,
but every post in that category would have different tags (for example, soup, baked,
vegetarian, dairy-free, and so on).

The purpose and correct usage of tags and categories is one of the more discussed
topics among bloggers. Although there are basic guidelines, as the ones presented
previously, every blogger develops his or her own approach after a while, and there
are no "written in stone" rules.

Comments
Most blogs allow visitors to post comments about the posts. This gives readers the
opportunity to interact with the author of the blog, thus making the whole enterprise
interactive. Often, the author of the blog will respond to comments by posting
additional comments with the single click of a reply button, which makes for a
continuous public online conversation or dialog.

Comments are said to be one of the most important assets for a blog. The presence of
a big number of comments shows how popular and authoritative the blog is.

Chapter 1

[11]

Theme
The theme for a blog is the design and layout that you choose. In most blogs, the
content (for example, posts) is separate from the visual layout. This means you can
change the visual layout of your blog at any time without having to worry about
the content being affected. One of the best things about themes is that it takes only
seconds to install and start using a new one. Moreover, there are a number of free or
low-cost themes available online. However, you need to be careful when working
with free themes from uncertain developers. Often, they contain encrypted parts and
code that can hurt your site and its presence in Google. Always look for user reviews
before choosing a theme.

Plugin
WordPress plugins are relatively small pieces of web software that can be installed
on a WordPress site. They extend the native functionality to do almost anything that
the technology of today allows. Just as with WordPress itself, the code within plugins
is open source, which means that anyone can build a new plugin if they only have
the required skillset. Every WordPress website or blog can work with an unlimited
number of plugins (although it is not a recommended approach). The most popular
functionalities introduced through plugins include spam protection, search engine
optimization possibilities, caching, social media integration, interactive contact
forms, backups, and more.

Widget
In short, widgets are a simplified version of plugins. Furthermore, they display a
direct, visible result on your blog by using small content boxes (depending on the
exact widget you're using, this content can be very diverse). The most common usage
of widgets is to have them showcased within the sidebars on your site. Typically,
your current theme will provide you with a number of widget areas where you can
display widgets (as mentioned, many of these are located in the sidebar). Some of the
common usages for widgets are to display content such as categories and tags, recent
posts, popular posts, recent comments, links to archived posts, pages, links, search
fields, or standard non-formatted text.

Introducing WordPress

[12]

Menus
We need to talk some history to explain what the meaning of menus in WordPress is.
Back in the day, WordPress didn't allow much customization in terms of tweaking
navigation menus and hand-picking the links we wanted to display. This all changed
in Version 3.0, when the new Custom Menus feature was introduced. In plain
English, what it does is allow us to create completely custom menus (featuring any
links of our choice) and then display them in specific areas on our sites (supported
by the current theme). To be honest, this feature, even though it sounds basic, is one
of the main ones that has turned WordPress into a fully-fledged web publishing
platform and not just a blogging tool. I promise this will all sound much clearer in
the upcoming chapters.

RSS
RSS is an acronym for Really Simple Syndication, and Chapter 8, Feeds, Podcasting,
and Offline Blogging, addresses the topic of feeds in detail. For now, understand that
RSS and feeds are a way to syndicate the content of your blog, so that people can
subscribe to it. This means people do not actually have to visit your blog regularly to
see what you've added. Instead, they can subscribe and have new content delivered
to them via e-mail or through a feed reader such as Feedly.

Page
It's important to understand the difference between a page and a post. Unlike posts,
pages do not depend on having timestamps and are not displayed in chronological
order. They also do not have categories or tags. A page is a piece of content with only
a title and content (an example would be About Me or Contact Us—the two most
popular pages on almost any blog). It is likely that the number of pages on your blog
remains relatively static, whereas new posts can be added every day or so.

Users
As mentioned in one of the paragraphs above, WordPress is now a complete
web publishing platform. One of its characteristics is that it is capable of working
with multiple user accounts, not just a single account belonging to the owner
(main author) of the site. There are different types of user accounts available, and
they all have different credentials and access rights. WordPress is clearly trying to
resemble a traditional-world publishing house where there are authors, editors, and
other contributors all working together. Even though the possibility to create an
unlimited number of user accounts won't be that impressive for anyone planning to
manage a site on his or her own, it can surely be a more than essential feature for big,
magazine-like websites.

Chapter 1

[13]

Choosing WordPress – the reason why
WordPress is not the only publishing platform out there, but it has an awful lot to
recommend it. In the following sections, I've called attention to WordPress' most
outstanding features.

A long time in refining
In web years, WordPress has been around for quite a while and was in development
the whole time, getting better constantly. WordPress' very first release, Version 0.70,
was released in May 2003. Since then, it has had 18 major releases, with a number of
minor ones in between. Each release came with more features and better security.

Each major release comes with a codename honoring a great Jazz musician, and this
has become a tradition in the WordPress world. For instance, the latest big version
(Version 3.7) is codenamed Basie.

Active in development
WordPress is a constantly evolving application. It's never left alone to stagnate. The
developers are working continually to keep it ahead of spammers and hackers, and
also to evolve the application based on the evolving needs of its users.

Large community of contributors
WordPress is not being developed by a lonely programmer in a dark basement room.
On the contrary, there is a large community of people working on it collaboratively
by developing, troubleshooting, making suggestions, and testing the application.
With such a large group of people involved, the application is likely to continue to
evolve and improve without pause.

Amazingly extendable
In addition to having an extremely strong core, WordPress is also quite extendable.
This means that once you get started with it, the possibilities are nearly limitless.
Any additional functionality that you can dream of can be added by means of a
plugin that you or your programmer friends can write.

www.allitebooks.com

http://www.allitebooks.org

Introducing WordPress

[14]

Getting to know the WordPress family
WordPress as a platform and as a community of users has evolved in two main
areas. The first one is gathered around WordPress.org—the native, main website of
the WordPress project. The other is WordPress.com—a platform providing free blogs
for every user who wants one.

Essentially, WordPress.org is about developing the platform itself, about sharing
new plugins, discussing the technical aspects of WordPress, and being all "techie"
in general. WordPress.com (the image above) is a purely community-driven site
where bloggers can meet with each other, and publish their content on free blogs
based under the wordpress.com subdomain.

In Chapter 2, Getting Started, we will discuss all of the differences between having
your blog on WordPress.com versus downloading the software from WordPress.org
and hosting it yourself, but the basic difference is the level of control. If your blog is
on WordPress.com, you have less control over plugins, themes, and other details of
the blog because everything is managed and made worry-free by the WordPress.com
service, which obviously has its pros and cons.

Chapter 1

[15]

Digging into WordPress – the features
The following is a detailed list of many features of WordPress:

• Compliant with World Wide Web Consortium (W3C) standards
• Unlimited categories and subcategories
• Unlimited tags
• Automatic syndication (RSS and Atom)
• Uses XML RPC interface for trackbacks and remote posting
• Allows posting via e-mail and mobile devices (there are apps available

for all major mobile platforms, including iOS and Android)
• Supports plugins and themes
• Imports data from other blogs (Moveable Type, Textpattern, Greymatter,

b2evolution, and Blogger)
• Easy to administer and blog without any previous experience
• Convenient, fully functional, and built-in search
• Instant and fast publishing of content—no rebuilding of pages required
• Multilanguage capable
• Allows password-protected content
• Comments manager and spam protection
• Built-in workflow (write, draft, review, and publish)
• Intelligent text formatting via a What You See Is What You Get

(WYSIWYG) editor
• Multiuser and multiauthor support for user accounts
• Feature-rich Media Library for managing photos and other non-text content
• Social media integration capabilities
• Dynamic and scalable revision functionality with post (edit) locking
• Built-in embed functionality through shortcodes
• Advanced SEO (Search Engine Optimization) features through

plugins and themes

Introducing WordPress

[16]

Getting familiar with the new feature list
since 3.0
Since the last edition of this book was published, quite a staggering number of new
features have been added to the WordPress software. If you're new to WordPress,
this list may not mean a whole lot to you, but if you're familiar with WordPress
and have been using it for a long time, you'll find this list quite enlightening.

• Internal linking available through the standard "add link" box
• Inclusion of the admin bar when browsing the blog while being logged in
• Full-screen mode for editing posts and pages
• Custom menus that can be included anywhere in the predefined areas

within the current theme
• Faster page load times
• Faster upgrades
• Dropped support for Internet Explorer 6
• Inclusion of the single upload button (with file type detection)
• Drag-and-drop media uploading
• Responsive design of the admin panel (Dashboard)
• The possibility to select custom header images and custom background

images from the Media Library
• Improved internationalization and localization features
• Renaming HTML Editor in the edit post/page screen to Text Editor
• New media manager makes it easier than ever to manage photos, videos,

and other media files through a beautiful user interface
• Galleries can be created faster with drag-and-drop reordering and

simplified controls
• New welcome screen in the Dashboard
• High-Dots-Per-Inch (HiDPI) compatible Dashboard design

(also known as Retina-ready)
• Better accessibility for screen readers, touch devices, and keyboard users
• XML-RPC is always enabled by default and supports fetching users,

managing post revisions, and searching

Chapter 1

[17]

• All buttons updated to a modern shape (more rectangular)
• Autosave and post locking, together with the new revisions functionality

for easy content editing
• In-line login feature to save expired user sessions
• Automatic maintenance and security updates in the background
• Automatic installation of language files (localization)
• New password meter to help users set secure passwords

Learning more
If you'd like to see detailed lists of all new features added since WordPress version
3.0, take a look at these links:

• http://codex.wordpress.org/Version_3.1

• http://codex.wordpress.org/Version_3.2

• http://codex.wordpress.org/Version_3.3

• http://codex.wordpress.org/Version_3.4

• http://codex.wordpress.org/Version_3.5

• http://codex.wordpress.org/Version_3.6

• http://codex.wordpress.org/Version_3.7

Also, you can read a fully explained feature list at http://wordpress.org/about/
features/.

Learning more with the online
WordPress resources
One very useful characteristic of WordPress is that it has a large, active online
community. Everything you will ever need for your WordPress website can likely
be found online, and probably for free. In addition to this, these days we can also
find many paid resources and training programs that offer expert advice and
training, revolving around many different possible usages of a WordPress site.

Introducing WordPress

[18]

Staying updated through
WordPress news
As WordPress is always actively developed, it's important to keep yourself
up-to-date with the software community about their latest activities.

If you visit the Dashboard of your own WordPress site regularly, you'll be able
to stay up-to-date with WordPress news and software releases. There are widgets
on the dashboard that display the latest news and announcements, and an alert
always appears when there is a new version of WordPress available for download
and installation.

If you prefer to visit the website, the most important spot to visit or subscribe
to is WordPress releases. Whenever there is a new release—be it a major release,
an interim bug fix, or an upgrade—it will be present under the following link:
http://wordpress.org/news/category/releases/.

Also, be sure to stay tuned to the main WordPress blog at
http://wordpress.org/news/.

Some additional resources worth mentioning are:

• http://wordpress.org/: This is the absolute main hub for WordPress
• https://wordpress.com/: This is the main platform for free

WordPress blogging
• http://jobs.wordpress.net/: This provides job listings for anyone

searching for employment in various areas related to WordPress
(or anyone searching for WordPress help)

• http://wordpress.tv/: This is a great source for top-notch WordPress
tutorials, how-to advice, case studies, product demonstrations, and
WordPress-related conference presentation recordings

• http://central.wordcamp.org/: WordCamp is a conference that focuses
on WordPress and it takes place a number of times during the year in
different locations around the world; this site is the central for the conference

Chapter 1

[19]

Understanding the Codex
The WordPress Codex is the central repository of all the information the official
WordPress team has published to help people work with WordPress.

The Codex has some basic tutorials for getting started with WordPress, such as
a detailed step-by-step discussion of installation, lists of every template tag and
hook, and a lot more. Throughout this book, I'll be providing links to specific
pages within the Codex, which will provide more or advanced information on
the topics in this book.

The Codex can be found at http://codex.wordpress.org/Main_Page
(the following screenshot).

Getting support from other users
The online WordPress community asks questions and responds with solutions on
the WordPress forum: http://wordpress.org/support/. That's an excellent place
to go if you can't find the answer to a problem in the codex. If you have the question,
probably someone else has had it as well, and WordPress experts spend time in the
forum answering questions and giving solutions. There's also an IRC (Internet Relay
Chat) channel where you can get additional support.

Introducing WordPress

[20]

Using theme and plugin directories
There are official directories for themes and for plugins on WordPress.org. Although
not every theme and plugin is available here, the ones that are here have been vetted
by the community to some extent. Anything you download from these directories is
likely to be relatively bug-free. Plugins and themes that you get from other sources
can have malicious code, so be careful. You can also see what the community thinks
of these downloads by looking at ratings, comments, and popularity.

Additionally, plugins in the Plugin Directory are automatically upgradable from
within your WordPress Administration Panel, whereas other plugins have to be
upgraded manually. We'll cover this in more detail in a later chapter. You can find
the Theme Directory at http://wordpress.org/extend/themes/ (the following
screenshot) and the Plugin Directory at http://wordpress.org/extend/plugins/.

Chapter 1

[21]

Summary
Having a website of your own is essential these days, whether you are an
individual, a small business, or some other group. This is true whether you are
blogging regularly, or just want some accurate static content up on the Internet.
In this chapter, we reviewed basic information about blogging and common blog
terms for those of you who are new to the concept.

WordPress is an excellent software application that can run your website
(blog or not). It's packed with excellent features and is so flexible that it can really
do anything you want, and it has a wealth of online resources. Additionally, it's
super easy-to-use, and you need no special skills or prior experience to use it.
Last, but not least, it is free!

In the next chapter, we will explore the choices and steps involved in installing
WordPress and getting started.

Getting Started
This chapter will guide you through the process of setting up WordPress and
customizing its basic features. You can choose between a couple of options regarding
where your WordPress installation will be located. Keep in mind that WordPress is
relatively small (under 10 MB), easy to install, and easy to administer.

WordPress is available in easily downloadable formats from its website,
http://wordpress.org/download/. WordPress is a free, open source application,
and is released under GNU General Public License (GPL). This means that
anyone who produces a modified version of the software released under the GPL
is required to keep those same freedoms, that people buying or using the software
may also modify and redistribute, attached to his or her modified version. This way,
WordPress and other software released under GPL are kept open source. In this
chapter, you will learn how to:

• Create a free blog on WordPress.com
• Install WordPress manually on your web host
• Perform basic setup tasks in the WordPress Admin panel (WP Admin)
• Publish your first content

Building your WordPress website – start
here
The first decision you have to make is where your blog is going to live. You have two
basic options for the location where you will create your site. You can

• Do it at http://wordpress.com
• Install on a server (hosted or your own)

Getting Started

[24]

Let's look at some of the advantages and disadvantages of each of these two choices.

The advantage of using WordPress.com is that they take care of all of the technical
details for you. The software is already installed; they'll upgrade it for you whenever
there's an upgrade, and you're not responsible for anything else. Just manage
your content. The big disadvantage is that you lose almost all of the theme and
plugin control you'd have otherwise. WordPress.com will not let you upload or
edit your own theme, though it will let you (for a fee) edit the CSS of any theme
you use. WordPress.com will not let you upload or manage plugins at all. Some
plugins are installed by default (most notably Akismet, for spam blocking, and
also plugins supporting Google sitemaps, caching, Carousel slideshows, and
some social media buttons), but you can neither uninstall them nor install others.
Additional features are available for a fee as well. Furthermore, you can sign up
for WordPress.com Enterprise and get access to a range of optional plugins. The
current list features more than 60 plugins (WordPress.com Enterprise is Available
at http://en.wordpress.com/enterprise/). This chapter will cover creating a
blog on WordPress.com, and you can learn about navigating around the WP admin
in the next chapter. However, much of what this book covers will be impossible on
WordPress.com.

The huge advantage of installing WordPress on another server (which means either
a server that belongs to the web host with which you signed up, or a server you set
up on your own computer) is that you have control over everything. You can add
and edit themes, add and remove plugins, and even edit the WordPress application
files yourself if you want (however, don't do that unless you're confident about your
WordPress skills). You'll have to keep your own WordPress software up-to-date, but
that's relatively simple, and we'll cover it in this chapter. The only disadvantage is
that you have to do the installation and maintenance yourself, which, as you'll see,
shouldn't be too intimidating. Moreover, some web hosts provide a one-click or
easy-to-use installer, which lets you skip over some of the nitty-gritty steps involved
in manual installation.

As I said, in this chapter, we'll discuss how to create a new blog on WordPress.
com and how to start working with it on a daily basis. However, if you want to
accomplish any of the more advanced topics from this book, you will have to
install WordPress on your own server as opposed to using WordPress.com.

Chapter 2

[25]

The following table is a brief overview of the essential differences between using
WordPress.com versus installing WordPress on your own server.

WordPress.com Your own server
Installation You don't have to install

anything; just sign up
Install WordPress yourself, either
manually or via your host's control
panel (if offered)

Themes Use any theme made
available by WordPress.com

Use any theme available anywhere,
written by anyone (including yourself)

Plugins No ability to choose or add
plugins

Use any plugin available anywhere,
written by anyone (including yourself)

Upgrades WordPress.com provides
automatic upgrades

You have to upgrade it yourself when
upgrades are available

Widgets Widget availability depends
on available themes

You can widgetize any theme yourself

Maintenance You don't have to do any
maintenance

You're responsible for the maintenance
of your site

Advertising No advertising allowed Advertise anything and in any amount
you like

Ownership Even though the content
belongs to you, WordPress.
com can take down your
blog at any moment if
they consider it to be
"inappropriate"

You have complete control over your
site and no one can force you to take it
down

Domain Your site is available
as a subdomain under
.wordpress.com by
default, but you can also
upgrade to the Pro Bundle
(for a fee) and use your own,
manually registered domain

You can use any manually registered
Internet domain

Getting Started

[26]

Using WordPress.com
WordPress.com (http://wordpress.com) is a free service provided by the
WordPress developers, where you can register a blog or non-blog website easily
and quickly with no hassle. However, because it is a hosted service, your control
over some things will be more limited than it would be if you hosted your own
WordPress website. As mentioned before, WordPress.com will not let you edit
or upload your own themes or plugins. Apart from that, WordPress.com is a
great place to maintain your personal site if you don't need to do anything fancy
with your theme or the source code of your site in general. To get started, go to
http://wordpress.com and click on the loud orange-and-white Get Started button.
You will be taken to the signup page. In the following screenshot, I've entered my
e-mail address (please triple-check when entering yours; it's where the confirmation
e-mail will be sent), my username (this is what I'll sign in with), a password (note
that the password measurement tool will tell you if your password is strong or weak;
there's also a Generate strong password button available next to the field), and
finally my blog address (WordPress.com also allows you to register a custom
domain in place of the standard .wordpress.com subdomain):

After providing all the required information and clicking on the Create Blog button,
WordPress will try to sell you on one of their premium packages (WordPress.com
Premium and WordPress.com Business). Some of the additional functionalities
inside the premium packages include a free .com, .net, .org, or .me domain,
advanced customization capabilities, access to a range of premium themes, the
possibility to store videos directly on your WordPress.com account, additional disk
space (the free account offers 3 GB), and direct e-mail support or live chat support.

Chapter 2

[27]

For now, we're going to stick with the basic, free account. So just click the Choose
Basic button and you'll be redirected to the final confirmation page that instructs
you to visit your inbox and search for the activation e-mail that's just been sent. The
e-mail itself is very clear and only requires you to click the big Activate Blog button.
If you can't see the images, then you might need to check your e-mail software's
settings. After clicking the big button, you're back at WordPress.com for some
final setting up. The platform asks for things such as Blog Title, Tagline (optional),
and Language.

When you're done with that and press the Next Step button, you'll be redirected
to the theme selection panel. There are some free and paid themes available there.
Additionally, after clicking on a specific theme you have some limited possibilities
to customize it. Nothing too fancy, though. For more in-depth fine tuning, one of the
WordPress.com premium packages is required.

Clicking on yet another Next Step button will finally allow you to create your first
post. WordPress.com is 100 percent ready to welcome any standard type of content,
including text, videos, photos, quotes (very popular these days), and links. If you
don't want to do this right now, you can just click on the Finish button.

Publishing your first content on a
WordPress.com blog
All you have to do in order to publish some content on your WordPress.com blog is
click on the New Post link in the top menu:

When you do so, you're going to be presented with a prompt asking you what kind
of content you'd like to publish. The current possibilities include:

• Text post
• Photo
• Video
• Quote
• Link

Getting Started

[28]

WordPress.com has some pre-formatted layouts prepared for each of these types, so
it's always good to select the one that is the most accurate. For instance, for a standard
text post, WordPress.com will ask you for a title (optional; posts on WordPress.com
can be published without a title), the body of your post, and the tags (optional as well),
and you'll also be able to add a photo to accompany your publication.

Once you're done editing your post, you can either save it as a draft (for further
modifications), preview what it's going to look like on the blog, or publish it
straight away with the Publish Post button.

Essentially, a WordPress.com blog can be managed just like any other WordPress
site (content-wise), so you do get access to a Dashboard (explained later within this
chapter), where you can edit and publish your content, too. The interface described
above is a specially designed panel that can't be found on any other type of blog.
In other words, you won't get it with a regular WordPress site (a standalone site on
your own domain and hosting). Therefore, if WordPress.com is your preferred way
of launching a blog, you can probably skip the next section of this chapter, which is
exactly all about installing WordPress manually as a standalone site.

Installing WordPress manually
The WordPress application files can be downloaded for free if you want to do a
manual installation. If you've got a website host, this process is extremely easy
and requires no previous programming skills or advanced blog user experience.

Chapter 2

[29]

Some web hosts offer automatic installation through the host's online control panel.
One of these automatic installation methods is described later within this chapter.

Preparing the environment
A good first step is to make sure you have an environment setup that is ready for
WordPress. This means two things: making sure that you verify that the server meets
the minimum requirements, and making sure that your database is ready.

For WordPress to work, your web host must provide you with a server that does
the following two things:

• Support PHP, which has to be Version 5.2.4 or greater
• Provide you with a MySQL database (full access); MySQL has to be

Version 5.0 or greater

Additionally, these minimum requirements tend to change every once in a while.
The most current requirements can always be found at http://wordpress.org/
about/requirements/.

You can find out if your host meets these two requirements by contacting your web
host. If your web server meets these two basic requirements, you're ready to move
on to the next step.

As far as web servers go, Apache is the best. However, WordPress will also run on
a server running the Microsoft IIS (Internet Information Services) server (though
using permalinks will be difficult, if possible at all).

Enabling mod_rewrite to use pretty permalinks
If you want to use permalinks, your server must be running Unix,
and Apache's mod_rewrite option must be enabled. Apache's
mod_rewrite is enabled by default in most web hosting accounts. If
you are hosting your own account, you can enable mod_rewrite by
modifying the Apache web server configuration file. You can check
the URL, http://www.tutorio.com/tutorial/enable-mod-
rewrite-on-apache, to learn how to enable mod_rewrite on your
web server. If you are running on shared hosting, ask your system
administrator to install it for you. However, it is more likely that you
already have it installed on your hosting account.

Getting Started

[30]

Downloading WordPress
Once you have checked out your environment, you need to download WordPress
from http://wordpress.org/download/. On that page, the .zip file is shown as a
big blue button because that'll be the most useful format for the most people. If you
are using Windows, Mac, or Linux operating systems, your computer will be able
to unzip that downloaded file automatically. (The .tar.gz file is provided because
some Unix users prefer it.)

A further note on location
We're going to cover installing WordPress remotely. However, if
you plan to develop themes or plugins, I suggest that you also install
WordPress locally on your own computer's server. Testing and
deploying themes and plugins directly to the remote server will be
much more time-consuming than working locally. If you look at the
screenshots of my own WordPress installation throughout the book,
you'll notice that I'm working locally.

After you download the WordPress .zip file, extract the files, and you'll get a
folder called wordpress.

Upgrading from an earlier version of WordPress
If you are upgrading an existing installation of WordPress, you should probably leave
this chapter and instead read the section on Upgrading WordPress in Chapter 12, Creating
a Non-blog Website Part Two – Community Websites and Custom Content Elements.

Uploading the files
Now, we need to upload all these files to our web server using any FTP client (or
simply put them in our local server directory on our local computer). FTP stands for
File Transfer Protocol. There are several FTP clients available on the Internet, which
are either freeware (no cost) or shareware (a small fee). If you don't already have an
FTP client, try one of these:

• Filezilla: http://filezilla-project.org/download.php?type=client
(for Mac or Windows)

• Fetch: http://fetchsoftworks.com/ (for Mac only)
• SmartFTP: http://www.smartftp.com/ (for Windows only)

Chapter 2

[31]

You can also use the popular web-based FTP application net2ftp at
http://www.net2ftp.com. These services are useful if you don't want
to install a desktop application on your computer. You can also check if
your host provides browser-based FTP software.

A note about security
Whenever possible, you should use Secure FTP (called sFTP) rather
than regular FTP. If you're using sFTP, all of the data sent and
received are encrypted, whereas with FTP data are sent in plain text
and can be easily nabbed by hackers. Check both your FTP software
and your hosting options, and select sFTP if it's available.

Using your FTP client or service, connect to your FTP server using the server
address, username, and password provided to you by your host. Next, open the
folder where you want WordPress to live. You may want to install WordPress in
your root folder, which will mean that visitors will see your WordPress website's
home page when they go to your main URL – for example, http://yoursite.
com. Alternatively, you may want to install WordPress in a subfolder; for example,
http://yoursite.com/blog/.

On the left side, you will see the files from your local folder, and on the right side
you will see your remote folder. (Note: the FTP client you are using may have a
slightly different layout, but this is the general idea.)

Now select all of the WordPress files on your local machine from the left pane,
and drag all of them to the right pane. You can watch as your FTP client uploads
the files one at a time and they appear in the right panel. This could take a few
minutes, so be patient!

If you're installing WordPress on your local server, just be sure to place the
WordPress files in the correct webroot directory on your computer.

Once all of the files are done uploading, you're ready to do the installation.

Installing WordPress
Now it's time to install WordPress through the famous five-minute installation (the
fact that WordPress can be installed in five minutes or less is widely advertised on
the official WordPress website). If you access your WordPress URL via your browser,
you will see a short introduction message instructing you to create a file named wp-
config.php by clicking on the button labeled Create a Configuration File. After
doing so, you will be presented with another screen, informing you about all the
required details you'll need in order to complete the installation successfully.

Getting Started

[32]

Currently, these required details consist of the following:

• Database name: for example, wptestblog
• Database username: for example, localdbuser
• Database password: for example, 62dcx%^_0hnm—the more complex the

better, as usual with passwords
• Database host: for example, 1.1.1.1 – most of the time, you will be required

to provide an IP address of your database host (if needed, you can take a look
at this handy cheat sheet for an in-depth explanation of all the possibilities:
http://codex.wordpress.org/Editing_wp-config.php#Possible_DB_
HOST_values); in case of servers running locally on your own machine, the
database host is most likely localhost

The big question, therefore, is where to get all this information from. Simple
answer—your web host. Most of the large web hosts offer a way to create your
own databases via an online control panel, with usernames and passwords of your
choice. If you're not sure how to do this, just e-mail or call your hosting provider for
assistance. Professional support teams will be glad to help you with this.

Once you have those four things, you can press the Let's go! button and proceed to
the next step of the installation. This is what the main setup form looks like:

Chapter 2

[33]

As you can see, I filled out mine with the details mentioned as an example a couple
of paragraphs above. Of course, your details will be different. Also, one more thing
worth pointing out: there's an additional field labeled Table Prefix. This is the
default prefix that every table in your database will have before its name. The
default value in that field is wp_. I advise you to change this to whatever two-letter
or three-letter word you wish and end it with an underscore (_), just as a safety
precaution against standard database attacks on known WordPress tables. The one
I used is wtb_. One more additional reason for using a custom prefix is to enable
you to take advantage of the WordPress multisite feature (if you plan to launch
more than one site with a single WordPress installation, which is also possible).
In such a case, you'll need to use different prefixes in your different installations.

After clicking on the Submit button, you will be redirected to the final confirmation
page. All you have to do here is click on the Run the install button.

At this point, things can either go well, or not that well. In case of the latter, proceed
to the next section, Installing WordPress through a hand-built configuration file. Luckily,
such problems are rather rare. The best indication that the online installation is going
well is the presence of the following screen:

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[34]

This is the final setup page. Here, you get to set up the core details of your new
site. (If you've ever installed an earlier version of WordPress, you'll notice some
differences, such as the ability to choose your first username and password.) Now,
fill out the installation form (you will be able to change all of these later, so don't be
too worried about getting locked into your choices):

• Site Title: Fill in the name of your blog (it can be something simple, such as
Daily Cooking, for example).

• Username: Note that the default username is admin, but for security
purposes, you're better off picking something different. If someone ever tries
to hack into your blog, he or she will be halfway there if he or she already
know your username. Also worth pointing out is the fact that this account is
the administrator account, which has the most privileges and access rights in
all areas of the site.

• Password: Choose a secure password, one that has both the upper and
lowercase letters, a number or two, and even a few punctuation marks.

• Your E-mail: Double-check that this is correct. This is the e-mail address
WordPress will use to contact you about the blog, comments, and so on.
If you do not get an e-mail from your WordPress site shortly after installing,
check your spam folder.

• Privacy: This is the final checkbox, yet possibly one of the most important
settings on this list. If you leave it checked (recommended), your site is going
to be accessible through Google and other search engines. Unchecking it
means banning your site from the search engines.

Now, click on Install WordPress. You're done with the installation.

You can click on Log In to get to the login page. Or you can always enter your
WordPress Admin panel (also known as the WP Admin) by pointing your browser
to http://yoursite.com/wp-admin. If you're not already logged in, this URL will
redirect you to the login page.

Installing WordPress through a hand-built
configuration file
Now, in some cases your web hosting account will prevent WordPress from creating
a valid configuration file. It can be an issue caused by access rights limitations,
for example. However, it's not a big obstacle because you can always create a
configuration file by hand. To do this, just open the wordpress folder and find the file
named wp-config-sample.php. Make a copy of this file and name it wp-config.php.

Chapter 2

[35]

We'll modify this file together. Don't worry; you need not be a PHP programmer.
Just open this file with a simple editor such as Notepad. The following is the copied
text from the original wp-config.php file. Note that I've removed most of the
comments, so that we can focus on the items we need to change.

<?php
/** The name of the database for WordPress */
define('DB_NAME', 'database_name_here');

/** MySQL database username */
define('DB_USER', 'username_here');

/** MySQL database password */
define('DB_PASSWORD', 'password_here');

/** MySQL hostname */
define('DB_HOST', 'localhost');

/** Database Charset to use in creating database tables. */
define('DB_CHARSET', 'utf8');

/** The Database Collate type. Don't change this if in doubt. */
define('DB_COLLATE', '');

define('AUTH_KEY', 'put your unique phrase here');
define('SECURE_AUTH_KEY', 'put your unique phrase here');
define('LOGGED_IN_KEY', 'put your unique phrase here');
define('NONCE_KEY', 'put your unique phrase here');
define('AUTH_SALT', 'put your unique phrase here');
define('SECURE_AUTH_SALT', 'put your unique phrase here');
define('LOGGED_IN_SALT', 'put your unique phrase here');
define('NONCE_SALT', 'put your unique phrase here');

$table_prefix = 'wp_';
?>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Getting Started

[36]

One thing to know about PHP is that any text that comes after a double slash (//),
or between a slash-star and star-slash (/* */), is a comment. It's not actual PHP
code. Its purpose is to inform you what that line or that section is about. As you can
see from the previous code, there are a number of settings that you can insert here,
but they do resemble the ones we were filling out in the online installer just a minute
ago. Let's walk through the most important ones.

Just as with the online installer, I took my database information, but this time I put it
in the wp-config.php file:

// ** MySQL settings ** //
define('DB_NAME', 'wptestblog');
define('DB_USER', 'localdbuser');
define('DB_PASSWORD', '62dcx%^_0hnm');
define('DB_HOST', 'localhost');

Next, for security purposes, you really should put some unique phrases into the
unique keys. The secret keys are used by WordPress to add random elements to your
passwords and are also used in some other situations. This will help to keep your
WordPress installation uniquely protected. No one else is likely to choose the same
unique keys that you chose, and therefore, breaking or hacking into your site will be
more difficult. You can get some secret keys generated by going to https://api.
wordpress.org/secret-key/1.1/salt/. Once I did that, I got the following, which
I can paste directly over the default code in wp-config.php:

define('AUTH_KEY', 'uu|6#00Pc/3h?Pg5:Zc#:S=;<3mdw-ai');
define('SECURE_AUTH_KEY', 'vy1.@Nr@Zb^G|0Vfz-|TH5&W');
define('LOGGED_IN_KEY', 'sryMVd'jVpiMWWQqx~!v XE5@fJMTt2[Z');
define('NONCE_KEY', 'i,+UPpMR>Mj3o}(B**^<T:/md,YFF76d]Kf');
define('AUTH_SALT', 'n.8Li=9OjV+_p|}e5yN2k<s{!KJs|[S&Zh');
define('SECURE_AUTH_SALT', 'I#2vPT^u[5vLX|'MzPg/J*y]RTfr');
define('LOGGED_IN_SALT', 'gR%QP^c*jfFUy,iQ}-0g_%;%H)pN0B5');
define('NONCE_SALT', '&L);.IH'v{]zYLO2:h_t#J0D-p)cvyc');

Don't ever get the salt keys from anywhere else than https://api.
wordpress.org/secret-key/1.1/salt/. This is an important
security mechanism that protects your browser's session from being
hijacked and then used for unauthorized access to your WordPress site.

Finally, we have the aforementioned table prefix. The wp-config.php file allows us
to set this too. Again, here's my prefix of choice:

$table_prefix = 'wtb_';

Chapter 2

[37]

The WordPress codex has a long and detailed page that describes everything about
editing your wp-config.php file: http://codex.wordpress.org/Editing_wp-
config.php. Once you save the wp-config.php file and either upload it to your
web host or put it on your local server, you can visit your site through your domain
name (like http://yoursite.com/). You should be presented with the final setup
page, the one visible in the preceding screenshot. All you have to do now is proceed
according to the instruction described earlier in this chapter.

Learning more
If you'd like to see an even more detailed step-by-step guide for manual installation,
take a look at this page in the WordPress Codex: http://codex.wordpress.org/
Installing_WordPress.

Also, you can find more detailed installation instructions—as well as specifics on
changing file permissions, using FTP, using languages, importing from other blogging
engines, and more—in the WordPress Codex at the following link: http://codex.
wordpress.org/Getting_Started_with_WordPress#Installation.

Installing WordPress through an autoinstaller
script
Some web hosts provide their customers with access to a range of autoinstaller
scripts for various web platforms, including WordPress. Most of these autoinstallers
have quite similar functionalities and the actual process of installing a new
WordPress site is similar as well. Here, we're going to focus on one of these
scripts—Softaculous.

This is yet another way of installing a WordPress site, and we're
covering it here to make this book as complete as it can be; however,
if you've already managed to install your site through the methods
described earlier, this section won't be of any use to you at this point.

Softaculous is the preferred method of WordPress installation for many professional
developers and bloggers. In some cases, it's the fastest method when dealing with
a completely new hosting account maintained by a new web host. Softaculous is
provided on hosting accounts running on many management platforms, such as
cPanel, Plesk, DirectAdmin, InterWorx, and H-Sphere. Most likely, your hosting
account (a commercial hosting account you've bought from a respected provider)
is certain to be using one of these platform.

Getting Started

[38]

Here's an example of what cPanel—one of the platforms—looks like:

Although various platforms have different user interfaces, the core functionalities
from a user's point of view remain mostly the same. To access Softaculous, just scroll
down until you see the main icon labeled Softaculous. After clicking on it, you're
going to be redirected to the control panel of Softaculous, where right in the center
you can see the WordPress icon along with an Install button that becomes visible
when you hover your mouse over the icon.

Chapter 2

[39]

The whole idea of using this script is to make things quicker and more
hassle-free; therefore, you don't have to take care of creating databases manually,
setting configuration files, or anything else. Softaculous will handle all of this for
you. The following is the site creation form:

Getting Started

[40]

Here's a breakdown of all the fields and what details to fill them out with:

• Choose Protocol: You can stick with the default value of http://
• Choose Domain: If you have more than one domain assigned with

your hosting account, you get to choose which one you want to use here;
for single domain accounts (most likely the case), this drop-down field has
only one option

• In Directory: If you want to install your WordPress site under a subdirectory,
input its name here (just the name); if you want to install the site in the main
directory (http://yoursite.com/), make sure the field is blank

• Database Name: You can confidently go with the default value
• Table Prefix: As discussed earlier in this chapter, change this to something

unique (in my case, it's wtb_)
• Site Name: The name of your site (in my case, Daily Cooking)
• Site Description: The tagline (in my case, Exploring cooking every day

of the week)
• Enable Multisite (WPMU): Leave it unchecked unless you're an advanced

user planning to launch a multisite installation
• Admin Username, Admin Password, and Admin Email: The details of your

admin account, similar to the ones we had to provide during the manual
WordPress installation

• Select Language: WordPress has many localized versions of the platform,
not only English; you can choose one here

After clicking on the Install button the installation process will begin. The process
itself requires no supervision and you will be able to access your site as soon as it
finishes after roughly one or two minutes. You can check if the installation has been
successful through the standard http://yoursite.com/ and http://yoursite.
com/wp-admin/ URLs. In other words, this is the end of the installation process
through Softaculous. As you can see, it's much simpler and quicker than doing
it manually. Furthermore, Softaculous always installs the most recent version of
WordPress, so you don't have to worry about getting something out of date.

You can also encounter other auto-installer scripts, very similar to
Softaculous. For example, Fantastico, Installatron, and SimpleScripts.

Chapter 2

[41]

The WP Admin panel
WordPress installs a powerful and flexible administration area where you can
manage all of your website content, and do much more. Throughout the book,
I'll be referring to this in shorthand as the WP Admin.

Now that you've successfully installed WordPress, it's time for our first look at the
WP Admin. There are some immediate basic changes that I recommend doing right
away to make sure your installation is set up properly.

You can always get to the WP Admin by going to the following URL:
http://yoursite.com/wp-admin/. If it's your first time here, you'll be redirected to
the login page. In the future, WordPress will check to see if you're already logged in
and, if so, you'll skip the login page.

To log in, just enter the username and password you chose during the installation.
Then click on Log In. Note for the future that on this page there is a link you can
use to retrieve your lost password.

Whenever you log in, you'll be taken directly to the Dashboard page of the WP
Admin. Following is a screenshot of the WP Admin that you will see immediately
after you log into the blog you just installed:

You'll see a lot of information and options here, which we will explore throughout
this book. For now, we will focus on the items that we need to touch upon right after
a successful installation. First, let's take a brief look at the top of the WP Admin and
the Dashboard page.

Getting Started

[42]

The very top bar, which I'll refer to as the top bar, is mostly dark grey and contains

• A rollover drop-down menu featuring a set of links to About WordPress
(some details about the current installation of WordPress), WordPress.org,
Documentation, Support Forums, and Feedback

• A link to the front page of your WordPress website (in this example,
the title of the whole site is Daily Cooking)

• Updates and activity section containing either links to the newest
comments or to pending updates

• A rollover drop-down menu with handy links to New Post, New Media,
New Page, and New User

• Your username linked to your profile, which is yet another drop-down
menu containing a link labeled Edit My Profile and another one—the
Log Out link

You'll also notice the Screen Options tab, which appears on many screens within the
WP Admin. If you click on it, it will slide down a checklist of items on the page to
show or hide. It will be different on each page. I encourage you to play around with
that by checking and unchecking items, as you find whether you need them or not.

Right next to the Screen Options tab, there's the Help tab. Just as with the Screen
Options tab, this one also appears on many screens within the WP Admin.
Whenever you're in doubt regarding a specific screen, you can always check the
Help tab for instruction. Going to the Help tab is always quicker, and in most cases
more effective, than searching for solutions online.

Chapter 2

[43]

On the left side of the screen is the main menu:

You can click on any word in the main menu to be taken to the main page for
that section, or you can hover your cursor over a given link to see all the possible
subsections you can visit. For example, if you hover your cursor over Settings,
you'll see the subpages for the Settings section:

In this book, when describing to you which page within the WP Admin to go to,
I'll write things such as "navigate to Settings | General" or "navigate to Posts | Add
New". This always describes the path you should take to get there via the
main menu.

Getting Started

[44]

The top menu and the main menu exist on every page within the WP Admin. The
main section on the right contains information for the current page you're on. In this
case, we're on Dashboard. It contains boxes that have a variety of information about
your blog, and about WordPress in general.

Before WordPress 3, the first thing you'd have to do would be to change the
password to something easier to remember. However, now that you can choose your
password during installation, this is no longer necessary. Also, in the new versions
of WordPress, when you log in for the first time, you're going to be presented with
a welcome message, similar to this one:

In short, it's a welcome panel that allows you to access some of the crucial sections of
the WP Admin with just one click. Once you click on the Dismiss link, the panel will
no longer be displayed after login. In its current version, the panel allows you to do
things such as

• Customize the current theme—but only if the theme provides some
customization features (not all themes do)

• Change the current theme to a new one
• Write your first blog post
• Add an About page—usually, it's the most visited page on WordPress sites
• View your site
• Manage menus and widgets
• Turn comments on or off—by default they are on
• Learn more about how to get started with WordPress—which is an external

link pointing to http://codex.wordpress.org/First_Steps_With_
WordPress

Chapter 2

[45]

For now, we're not going to focus on this welcome panel because first we need to
understand what all of the above means in order to use it effectively. In this and
the following chapters, we will get to know all the crucial methods of managing a
WordPress site, and once we gain some experience, with time, this welcome panel
can make our everyday work much quicker. Therefore, let's jump right into the
general site settings section.

Changing general blog information
You may need to change and add some general blog information (such as blog
title, one-sentence description, and so on) after a successful installation to get your
website set up with the correct information. To get started with this, navigate to
Settings in the main menu.

There are many options you can set here, most of which are pretty self-explanatory.
We'll look at the most important ones, and you can explore the rest on your own.
Obviously, you can change your blog's title; mine is called Daily Cooking, for
example. You can also change the blog description, which is used in most themes as
a subtitle for the blog, such as the subtitle of a book. The default description is Just
another WordPress site. You'll probably want to change that. I'll change mine to
"Exploring cooking every day of the week".

One of the few things you probably want to take a look at on this page is Timezone.
Whether you have a blog (with timestamps on every post) or not, it's important that
WordPress knows what time zone you're in, in case you want to schedule a page
or post for the future, show users accurate timestamps, or even just make sure that
e-mail notifications are correctly timestamped. Additionally, if you're planning to
publish content internationally, meaning that your target audience is located in a
completely different place than you, it's good to set the time zone to represent your
target audience and not yourself.

The pulldown menu will show you different UTC settings, along with the biggest
cities around the world. Just choose a city in your time zone. After you save the
changes you made, the time that shows further down the page (next to Time Format)
will change to the time you chose, so that you can check and make sure it's correct.

Another thing worth considering on this page is whether or not you want to
allow user registration on your site. For most sites, this is not particularly useful,
but if you're planning to make the site community-driven or utilize some form of
crowdsourcing, this might be something worth considering. In this case, it's not
advisable to give new users a user role higher than Subscriber (the default value).

When you're done making changes to this page, be sure to click on the Save Changes
button at the bottom of the page.

Getting Started

[46]

Finally, there's only one more thing you should adjust in your new site's settings
before publishing any content—the permalinks. As WordPress defines them,
permalinks are the permanent URLs to your individual pages, blog posts, categories,
and tags. By default, WordPress links to your new posts using a highly un-optimized
URL structure. For instance, if you create a post titled "How to Cook the Best Meal
Ever", WordPress will link to it as http://yoursite.com/?p=123 (or something
similar). The main problem with that structure is that it doesn't give any indication
what such a page can possibly be about. Neither your visitors nor Google will be able
to make a guess. In the case of Google, such a structure can also impact your future
search engine rankings significantly. Therefore, to set a more optimized structure,
you can go to Settings | Permalinks. Here are the available settings:

The best setting from a visitor's point of view, as well as from Google's, is the one
labeled Post name. Going back to the example with the "How to Cook the Best Meal
Ever" post, if you set the permalinks to Post name, the URL of this post will be
http://yoursite.com/how-to-cook-the-best-meal/, which is a lot more clear
and predictable.

You can always review the official info on permalinks anytime at http://codex.
wordpress.org/Using_Permalinks. Further down the page, there are also the
Optional settings for Category base and Tag base. By default, the category base
is set to category. For example, if you have a category called "recipes," you can
view all posts under this category by going to http://yoursite.com/category/
recipes. Some site owners prefer to change this to something more user friendly,
for example, the word topics. Even though it conveys the exact same message, it
can be much easier to grasp for visitors who are not that familiar with the standards
of content publishing on the web. In the end, it's your decision what you want your
Category base to be. When it comes to Tag base, it rarely needs any adjustments.

Chapter 2

[47]

Creating your first post
For this chapter, and the next few chapters, we'll be focusing on using WordPress
to run a blog website. In a later chapter, we'll talk more specifically about using
WordPress for a non-blog website.

So, with that in mind, let's add the first piece of content to your new blog—a blog
post. (This won't be the very first post on the blog itself, because WordPress created
a post, a comment, and a page for you when it installed. It will be your first post,
however). To create a post, just click on New Post on the top menu. You'll be taken
to the following page:

Getting Started

[48]

As you can see, there are a lot of options for your post (which we'll explore in
more detail in Chapter 3, Creating Blog Content). For now, just worry about the
basics. Every post should have, at minimum, a title and some content. So go ahead
and write in some text for those two things. When you are happy with it, click on
the Publish button.

You'll get a yellow note telling you that the post is published. Take a look at the
front page of your site by clicking on the name of your site in the top bar. You'll
see the following:

Notice that I'm using the default Twenty Thirteen theme. If you're using a different
one, then the design and the layout of your first post will be different.

Writing your first comment
Now lets see what it's like to post a comment. One of the great things about blogs is
that they give you, the writer, and the opportunity to spark a conversation with your
readers. WordPress comes with a fantastic commenting system that allows visitors to
add comments to your blog. To add your own comment to your first post, just scroll
down until you see the comment form.

Chapter 2

[49]

As you're already logged in, all you have to do is write something in the text area
and click on Post Comment. The comment form you'll see is pretty basic and doesn't
leave much place for error (the following screenshot):

Your visitors, however, those who are not logged into the WP Admin, will see
a slightly different one (the following screenshot):

Later, we'll explore how you can control which comments show up right away and
which comments have to wait for you to verify them as valid, as well as which fields
are required for visitors.

Getting Started

[50]

Retrieving a lost password
If you have lost your password and can't get into your WP Admin panel, you can
easily retrieve it by clicking on the Lost your password? link on the login page. A
newly generated password will be e-mailed to you at the e-mail address you gave
during the WordPress installation. This is why you need to be sure that you enter
a valid e-mail address. Otherwise, you will not be able to retrieve your password.

Getting a Gravatar
One final thing that's worth discussing in this chapter is the matter of WordPress
avatars. Although WordPress provides a number of possibilities in this area, the
most popular one revolves around an external service—Gravatar. Gravatar started
as a tool meant to provide people with the possibility to use the same profile picture
(avatar) across the whole web. The name Gravatar actually stands for Globally
Recognized Avatar.

What this means in plain English is that whenever you sign up with a web service,
and if the service is Gravatar-compatible, so to speak, then it will pick your profile
picture from Gravatar automatically, instead of forcing you to upload it manually
from your computer. Apart from the profile picture, Gravatar also gives you a
personal, online profile that anyone can see whenever he or she click on your
(Gravatar) profile picture. Now, what does this all have to do with WordPress, right?
Well, WordPress is one of those services and tools that widely support Gravatar in
all possible areas of the platform. For example, if you create a new blog and use an
admin e-mail address that's hooked to Gravatar, your profile picture in WordPress
will immediately be replaced with the one provided by Gravatar. Moreover, if you
ever comment on any WordPress blog with a Gravatar e-mail address, your profile
picture will be set as the avatar for the comment itself.

To set your own Gravatar, just go to http://gravatar.com/ and click on the Sign
in button in the right corner of the screen. You'll be presented with a login form
and a small signup link labeled Need an account? If you already have a WordPress.
com account then you can safely log in with it. If not, click on the aforementioned
Need an account? link, which will redirect you to the signup page. The fields are
quite standard and include things like an e-mail address, your preferred username
and password. Once you've completed the signup process, you can finally set your
Gravatar. On the main Manage Gravatars page, there's a link labeled Add one by
clicking here!—this is where you can upload a Gravatar.

Chapter 2

[51]

The good thing about Gravatar is that you can choose where you want to get the
picture from. You can either upload it from your computer, get it from some other
place on the web (for example, from a direct link to your Facebook profile image), or
use an image that you've uploaded to Gravatar previously. In the next step, Gravatar
allows you to crop and adjust your image. When you're finally happy with the result,
you can click the big button and proceed to the rating settings of your image. Every
Gravatar can be classified as either G rated, PG rated, R rated, or X rated. The fact is
that if you select anything other than G rated, your Gravatar won't be displayed on
all sites; that's why it's a good practice to upload only appropriate images.

Once you're done with this step, your Gravatar is set up and ready to use. Gravatar
also enables you to hook up more than one e-mail address to a single account, as well
as use more than one image. This is actually a great feature because you can manage
your every e-mail address and every kind of online presence you have with just one
Gravatar account, a true timesaver. Now you can go back to your WordPress blog
and see if your new Gravatar has appeared in the profile section within WP Admin
(provided that you've used the same e-mail address for the account).

Summary
You have learned a lot of things from this chapter. Now you are able to install
WordPress on a remote server, change the basic default settings of your blog,
write posts, and comment on those posts.

You also have a basic understanding on how WordPress.com works, and how
to handle your online image/brand by using Gravatar.

In the next chapter, we will learn about all the other aspects of a blog post that you
can control and additional ways to add posts, as well as the intricacies of managing
and controlling commenting and discussion on your blog.

Creating Blog Content
Now that your WordPress installation is up and running, you are ready to start
creating content. In this chapter, you will first become familiar with the WP Admin's
display and editing features and conventions. Then, you'll learn how to control all
the information associated with a post, not just the title and content, but also images
and media. You will also learn about comments—what they are for and how to
manage them. Additionally, we will explore how to keep your content organized
and searchable using tags and categories.

WP Admin conventions
In the WP Admin, you have the ability to manage a number of different types of
content and content sorting types (objects), including posts, categories, pages, links,
media uploads, and more. WordPress uses a similar format for various screens. Let's
explore them in this section.

Creating Blog Content

[54]

Lists of items
For every object in WordPress you might want to manage, there will be a page listing
them. For example, let's have a look at what a list of posts might look like:

As you can see, the name of the object is at the top, and the list of items has
columns. Let's take a look at the important elements:

• Each item in the list shows its Title. You can always click on an item
title to edit it.

• If you hover your mouse over a specific row, as I hovered over Hello world!
in the preceding screenshot, you will see four additional links. The first three
links are always the same (Edit, Quick Edit, and Trash), while the fourth
one varies between View and Preview, depending on whether we're dealing
with an already published post or one that's pending. Edit, Trash, and
View/Preview are pretty self-explanatory, but the Quick Edit link deserves
an additional word. When you click on it, you will see a panel allowing you
to perform some simplified editing (just the basic details and parameters,
with no actual content editing).

Chapter 3

[55]

• You can make changes and then click on Update, or click on Cancel if
you've changed your mind.

• The area above the list of posts lets you choose whether to view All (posts),
Published (posts), Drafts, Pending (posts), or Trash.

• Just below those links is the Bulk Actions menu and its Apply button.
Choose one or more posts by clicking on their checkboxes (or check the
top checkbox to check every item). Then choose Edit or Trash from the
Bulk Actions menu, and after clicking on Apply, you'll be able to bulk
delete or bulk edit those posts. Additionally, further down the road, so to
speak, when you install some third-party plugins, you'll notice that this
Bulk Actions menu might contain more options on top of the standard
two (editing and deleting).

• The filter menu lets you choose options from the Dates and Categories
pull-down lists, and then click on the Filter button to only show items
that meet those qualifications.

• The search field along with the Search Posts button provides yet another
way of filtering through your posts to find the specific one you're looking
for. This might not seem like a particularly useful feature at first, but once
you have more than 200 posts published on the site, finding individual
entries becomes quite a challenge.

• At the very top is the Screen Options dropdown. This tab, which appears
on every screen, will allow you (on list pages like this one) to hide or show
particular columns and choose the number of items to show per page.

Posting on your blog
The central activity you'll be doing with your blog is adding posts. A post is like
an article in a magazine; it's got a title, content, and an author (in this case, you,
though WordPress allows multiple authors to contribute to a blog). If a blog is like
an online diary, every post is an entry in that diary. A blog post also has a lot of other
information attached to it, such as a date, excerpt, tags, and categories. In this section,
you will learn how to create a new post and what kind of information to attach to it.

Adding a simple post
Let's review the process of adding a simple post to your blog, which we carried
out in the previous chapter. Whenever you want to add content or carry out a
maintenance process on your WordPress website, you have to start by logging in to
the WP Admin (WordPress Administration panel) of your site. To get to the admin
panel, just point your web browser to http://yoursite.com/wp-admin.

Creating Blog Content

[56]

Remember that if you have installed WordPress in a subfolder
(for example, blog), your URL has to include the subfolder
(that is, http://yoursite.com/blog/wp-admin).

When you first log in to the WP Admin, you'll be at the Dashboard. The Dashboard
has a lot of information on it so don't worry about that right now. We'll discuss the
Dashboard in detail later in the book.

The quickest way to get to the Add New Post page at any time is to click on + New
and then the Post link at the top of the page in the top bar.

This is the Add New Post page:

Chapter 3

[57]

To add a new post to your site quickly, all you have to do is:

1. Type in a title into the text field under Add New Post (for example, Making
Lasagne).

2. Type the text of your post in the content box. Note that the default view is
Visual, but you actually have a choice of the Text view as well.

3. Click on the Publish button, which is at the far right. Note that you can
choose to save a draft or preview your post as well.

Once you click on the Publish button, you have to wait while WordPress performs
its magic. You'll see yourself still on the Edit Post screen, but now the following
message would have appeared telling you that your post was published, and giving
you a link View post:

If you view the front page of your site, you'll see that your new post has been added
at the top (newest posts are always at the top).

Common post options
Now that we've reviewed the basics of adding a post, let's investigate some of the
other options on the Add New Post and Edit Post pages. In this section we'll look
at the most commonly used options, and in the next section we'll look at the more
advanced options.

Categories and tags
Categories and tags are two types of information that you can add to a blog post. We
use them to organize the information in your blog by topic and content (rather than
just by, say, date), and to help visitors find what they are looking for on your blog.

Categories are primarily used for structural organizing. They can be hierarchical,
meaning a category can be a parent of another category. A relatively busy blog will
probably have at least 10 categories, but probably not more than 15 or 20. Each post
in such a blog is likely to have from one up to, maybe four categories assigned to it.

Creating Blog Content

[58]

For example, a blog about food and cooking might have these categories:
Cooking Adventures, In The Media, Ingredients, Opinion, Recipes Found, Recipes
Invented, and Restaurants. Of course, the numbers mentioned are just suggestions;
you can create and assign as many categories as you like. The way you structure
your categories is entirely up to you as well. There are no true rules regarding this in
the WordPress world, just guidelines like these.

Tags are primarily used as shorthand for describing the topics covered in a particular
blog post. A relatively busy blog will have anywhere from 15 to even 100 tags in use.
Each post in this blog is likely to have 3 to 10 tags assigned to it. For example, a post
on the food blog about a recipe for butternut squash soup may have these tags: soup,
vegetarian, autumn, hot, and easy. Again, you can create and assign as many tags
as you like.

Let's add a new post to the blog. After you give it a title and content, let's add tags
and categories. While adding tags, just type your list of tags into the Tags box on
the right, separated by commas:

Then click on the Add button. The tags you just typed in will appear below the text
field with little x buttons next to them. You can click on an x button to delete a tag.
Once you've used some tags in your blog, you'll be able to click on the Choose from
the most used tags link in this box so that you can easily re-use tags.

Categories work a bit differently than tags. Once you get your blog going, you'll
usually just check the boxes next to existing categories in the Categories box. In this
case, as we don't have any existing categories, we'll have to add one or two.

Chapter 3

[59]

In the Categories box on the right, click on the + Add New Category link. Type your
category into the text field, and click on the Add New Category button. Your new
category will show up in the list, already checked. Look at the following screenshot:

If in the future you want to add a category that needs a parent category,
select — Parent Category — from the pull-down menu before clicking on the Add
New Category button. If you want to manage more details about your categories,
move them around, rename them, assign parent categories, and assign descriptive text.
You can do so on the Categories page, which we'll see in detail later in this chapter.

Click on the Publish button, and you're done (you can instead choose to schedule a
post; we'll explore that in detail in a few pages). When you look at the front page of
your site, you'll see your new post on the top, your new category in the sidebar, and
the tags and category (that you chose for your post) listed under the post itself.

Images in your posts
Almost every good blog post needs an image! An image will give the reader an
instant idea of what the post is about, and the image will draw people's attention as
well. WordPress makes it easy to add an image to your post, control default image
sizes, make minor edits to that image, and designate a featured image for your post.

Adding an image to a post
Luckily, WordPress makes adding images to your content very easy. Let's add an
image to the post we just created. You can click on Edit underneath your post on the
front page of your site to get there quickly. Alternatively, go back to the WP Admin,
open Posts in the main menu, and then click on the post's title.

Creating Blog Content

[60]

To add an image to a post, first you'll need to have that image on your computer,
or know the exact URL pointing to the image if it's already online. Before you get
ready to upload an image, make sure that your image is optimized for the Web.
Huge files will be uploaded slowly and slow down the process of viewing your site.
Just to give you a good example here, I'm using a photo of my own so I don't have to
worry about any copyright issues (always make sure to use only the images that you
have the right to use, copyright infringement online is a serious problem, to say the
least). I know it's on the desktop of my computer. Once you have a picture on your
computer and know where it is, carry out the following steps to add the photo to
your blog post:

1. Click on the Add Media button, which is right above the content box
and below the title box:

2. The box that appears allows you to do a number of different things regarding
the media you want to include in your post. The most user-friendly feature
here, however, is the drag-and-drop support. Just drag the image from your
desktop and drop it into the center area of the page labeled as Drop files
anywhere to upload.

Chapter 3

[61]

3. Immediately after dropping the image, the uploader bar will show the
progress of the operation, and when it's done, you'll be able to do some
final tuning up.

4. The fields that are important right now are Title, Alt Text, Alignment, Link
To, and Size. Title is a description for the image, Alt Text is a phrase that's
going to appear instead of the image in case the file goes missing or any other
problems present themselves, Alignment will tell the image whether to have
text wrap around it and whether it should be right, left, or center, Link To
instructs WordPress whether or not to link the image to anything (a common
solution is to select None), and Size is the size of the image.

5. Once you have all of the above filled out click on Insert into post. This box
will disappear, and your image will show up in the post—right where your
cursor was prior to clicking on the Add Media button—on the edit page itself
(in the visual editor, that is. If you're using the text editor, the HTML code of
the image will be displayed instead).

6. Now, click on the Update button, and go and look at the front page of your
site again. There's your image!

Creating Blog Content

[62]

Controlling default image sizes
You may be wondering about those image sizes. What if you want bigger or smaller
thumbnails? Whenever you upload an image, WordPress creates three versions
of that image for you. You can set the pixel dimensions of those three versions by
opening Settings in the main menu, and then clicking on Media. This takes you to
the Media Settings page.

Here you can specify the size of the uploaded images for:

• Thumbnail size
• Medium size
• Large size

If you change the dimensions on this page, and click on the Save Changes
button, only images you upload in the future will be affected. Images you've
already uploaded to the site will have had their thumbnail, medium, and large
versions created already using the old settings. It's a good idea to decide what
you want your three media sizes to be early on in your site, so you can set them
and have them applied to all images, right from the start.

Chapter 3

[63]

Another thing about uploading images is the whole craze with HiDPI displays, also
called Retina displays. Currently, WordPress is in a kind of a transitional phase with
images and being in tune with the modern display technology; the Retina Ready
functionality was introduced quite recently in WordPress 3.5. In short, if you want
to make your images Retina-compatible (meaning that they look good on iPads
and other devices with HiDPI screens), you should upload the images at twice the
dimensions you plan to display them in. For example, if you want your image to
be presented as 800 pixel wide and 600 pixel high, upload it as 1,600 pixel wide
and 1,200 pixel high. WordPress will manage to display it properly anyway, and
whoever visits your site from a modern device will see a high-definition version
of the image. In future versions, WordPress will surely provide a more managed
way of handling Retina-compatible images.

Editing an uploaded image
As of WordPress 2.9, you can now make minor edits on images you've uploaded.

In fact, every image that has been previously uploaded to WordPress can be edited.
In order to do this, go to Media Library by clicking on the Media button in the main
sidebar. What you'll see is a standard WordPress listing (similar to the one we saw
while working with posts) presenting all media files and allowing you to edit each one.

Creating Blog Content

[64]

When you click on the Edit link and then the Edit Image button on the subsequent
screen, you'll enter the Edit Media section. Here, you can perform a number of
operations to make your image just perfect. As it turns out, WordPress does a good
enough job with simple image tuning so you don't really need expensive software
such as Photoshop for this. Among the possibilities you'll find cropping, rotating,
and flipping vertically and horizontally.

For example, you can use your mouse to draw a box as I have done in the preceding
image. On the right, in the box marked Image Crop, you'll see the pixel dimensions
of your selection. Click on the Crop icon (top left), then the Thumbnail radio
button (on the right), and then Save (just below your photo). You now have a new
thumbnail! Of course, you can adjust any other version of your image just by making
a different selection prior to hitting the Save button.

Play around a little and you can become familiar with the details.

Chapter 3

[65]

Designating a featured image
As of WordPress 2.9, you can designate a single image that represents your post.
This is referred to as the featured image. Some themes will make use of this, and
some will not. The default theme, the one we've been using, is named Twenty
Thirteen, and it uses the featured image right above the post on the front page.
Depending on the theme you're using, its behavior with featured images can vary,
but in general, every modern theme supports them in one way or the other.

In order to set a featured image, go to the Edit Post screen. In the sidebar you'll see
a box labeled Featured Image. Just click on the Set featured image link. After doing
so, you'll see a pop-up window, very similar to the one we used while uploading
images. Here, you can either upload a completely new image or select an existing
image by clicking on it. All you have to do now is click on the Set featured image
button in the bottom right corner. After completing the operation, you can finally
see what your new image looks like on the front page. Also, keep in mind that
WordPress uses featured images in multiple places not only the front page.
And as mentioned above, much of this behavior depends on your current theme.

Using the visual editor versus text editor
WordPress comes with a visual editor, otherwise known as a WYSIWYG editor
(pronounced wissy-wig, and stands for What You See Is What You Get). This is the
default editor for typing and editing your posts. If you're comfortable with HTML,
you may prefer to write and edit your posts using the text editor—particularly useful
if you want to add special content or styling.

To switch from the rich text editor to the text editor, click on the Text tab next to
the Visual tab at the top of the content box:

You'll see your post in all its raw HTML glory, and you'll get a new set of buttons
that lets you quickly bold and italicize text, as well as add link code, image code,
and so on.

You can make changes and swap back and forth between the tabs to see the result.

Creating Blog Content

[66]

Even though the text editor allows you to use some HTML elements, it's not a fully
fledged HTML support. For instance, using the <p> tags is not necessary in the
text editor, as they will be stripped by default. In order to create a new paragraph
in the text editor, all you have to do is press the Enter key twice. That being said,
at the same time, the text editor is currently the only way to use HTML tables in
WordPress (within posts and pages). You can easily place your table content inside
the <table><tr><td> tags and WordPress won't alter it in any way, effectively
allowing you to create the exact table you want. Another thing the text editor is most
commonly used for is introducing custom HTML parameters in the and
<a> tags and also custom CSS classes in other popular tags. Some content creators
actually prefer working with the text editor rather than the visual editor because it
gives them much more control and more certainty regarding the way their content
is going to be presented on the frontend.

Lead and body
One of many interesting publishing features WordPress has to offer is the concept of
the lead and the body of the post. This may sound like a strange thing, but it's actually
quite simple. When you're publishing a new post, you don't necessarily want to
display its whole contents right away on the front page. A much more user-friendly
approach is to display only the lead, and then display the complete post under its
individual URL. Achieving this in WordPress is very simple. All you have to do is use
the Insert More Tag button available in the visual editor (or the more button in the text
editor). Simply place your cursor exactly where you want to break your post (the text
before the cursor will become the lead) and then click on the Insert More Tag button:

An alternative way of using this tag is to switch to the text editor and input the tag
manually, which is <!--more-->. Both approaches produce the same result. Clicking
on the main Update button will save the changes.

On the front page, most WordPress themes display such posts by presenting the lead
along with a Continue reading link, and then the whole post (both the lead and the
rest of the post) is displayed under the post's individual URL.

Chapter 3

[67]

Drafts, pending articles, timestamps, and managing
posts
There are four additional, simple but common, items I'd like to cover in this section:
drafts, pending articles, timestamps, and managing posts.

Drafts
WordPress gives you the option to save a draft of your post so that you don't have
to publish it right away but can still save your work. If you've started writing a
post and want to save a draft, just click on the Save Draft button at the right (in the
Publish box), instead of the Publish button. Even if you don't click on the Save Draft
button, WordPress will attempt to save a draft of your post for you, about once a
minute. You'll see this in the area just below the content box. The text will say Saving
Draft... and then show the time of the last draft saved:

At this point, after a manual save or an autosave, you can leave the Edit Post page
and do other things. You'll be able to access all of your draft posts from Dashboard
or from the Edit Posts page.

In essence, drafts are meant to hold your "work in progress" which means all
the articles that haven't been finished yet, or haven't even been started yet, and
obviously everything in between.

Pending articles
Pending articles is a functionality that's going to be a lot more helpful to people
working with multiauthor blogs, rather than single-author blogs. The thing is that
in a bigger publishing structure, there are individuals responsible for different
areas of the publishing process. WordPress, being a quality tool, supports such a
structure by providing a way to save articles as Pending Review. In an editor-author
relationship, if an editor sees a post marked as Pending Review, they know that they
should have a look at it and prepare it for the final publication.

Creating Blog Content

[68]

That's it for the theory, and now how to do it. While creating a new post, click on the
Edit link right next to the Status: Draft label:

Right after doing so, you'll be presented with a new drop-down menu from which
you can select Pending Review and then click on the OK button. Now just click on
the Save as Pending button that will appear in place of the old Save Draft button,
and you have a shiny new article that's pending review.

Timestamps
WordPress will also let you alter the timestamp of your post. This is useful if
you are writing a post today that you wish you'd published yesterday, or if you're
writing a post in advance and don't want it to show up until the right day. By
default, the timestamp will be set to the moment you publish your post. To change
it, just find the Publish box, and click on the Edit link (next to the calendar icon and
Publish immediately), and fields will show up with the current date and time for
you to change:

Change the details, click on the OK button, and then click on Publish to publish
your post (or save a draft).

Chapter 3

[69]

Managing posts
If you want to see a list of your posts so that you can easily skim and manage them,
you just need to go to the Edit Post page in the WP Admin and navigate to Posts in
the main menu. Once you do so, there are many things you can do on this page as
with every management page in the WP Admin, as we discussed at the beginning
of this chapter.

Advanced post options
By now, you have a handle on the most common and simple options for posts,
and you may be wondering about some of the other options on the Edit Post page.
We'll cover them all in this section.

When you first visit the Edit Post page, some of the advanced
options (Excerpt, Send Trackbacks, Custom Fields, Discussion,
Revisions, Author, and Format) are "open" below the post content.
If you never use them and want to clean up the look of this page,
you can single-click each bar and they'll collapse. You can also
rearrange them by dragging them to form a new order.
You can also use Screen Options (top right of the page) to uncheck
certain boxes, and thus not display them at all.

Excerpt
WordPress offers theme designers the option to show a post's excerpt (instead of its
full content) on pages within the theme.

Creating Blog Content

[70]

This is how the excerpt works:

• If you enter some text into the excerpt box on the Edit Post page, that text
will be used as the post's excerpt on theme pages that call for it

• If you do not enter any text into the excerpt box, WordPress will use the first
55 words of the post's content (which is stripped of HTML tags) followed by
[…] (which is not a link)

• If you do not enter any text into the excerpt box, and the theme you are
using does something special, the number of words and the final text
could be different

You are never required to enter excerpt text. However, it is advisable that you
do take advantage of this possibility. Excerpts can introduce big readability
improvements to your site and make your content easier to grasp for the reader,
provided that your current theme uses excerpts in one way or the other.

The more tag (<!-- more -->), which has been described in one of the previous
sections in this chapter, should not be confused with the excerpt. It is different from
the excerpt because you, not the theme designer, control its use. Additionally, the more
tag is supported by every theme and has a slightly different task than the excerpt. It's
meant to present the lead of the post, the part that's going to convince the reader to
visit the complete post, while the excerpt is a summary of the post's contents.

Sending pingbacks and trackbacks
Pingbacks and trackbacks provide you with a way to communicate with other
websites, and let them know that you've published a post mentioning them in one
way or the other (usually through a link). For instance, they are useful if you write a
blog post that is a response to an old post on someone else's blog and you want them
to know about it.

The difference between pingbacks and trackbacks is that pingbacks are automatic
whereas trackbacks are manual. In other words, WordPress always tries to send a
pingback automatically whenever you link to another WordPress blog from any of
your posts. Trackbacks are something you have to send manually, as WordPress will
not do this for you. Apart from that, pingbacks and trackbacks are pretty much the
same and produce a very similar effect.

Chapter 3

[71]

If you want to notify a given blog via trackback, just copy the trackback URL from
that person's blog post and paste it into the trackback box on your post's editing
screen. An excerpt of your blog post and a link pointing back to your site will show
up as a comment on their blog post, provided that the blog has trackbacks enabled.
Sending an automatic pingback will also include a link pointing back to your site in
the comments section. Again, that is if the blog you're targeting has trackbacks and
pingbacks enabled.

Quite frankly, trackbacks are becoming somewhat out of date with the advent of
pinging. Many WordPress themes are written to essentially disable trackbacks. As it
turns out, most WordPress bloggers these days don't even bother to send trackbacks
when the built-in mechanism of pingbacks handles it automatically.

Discussion
The Discussion box on the post editing screen has two checkboxes in it: one for
allowing comments, and the other for trackbacks and pingbacks. When you first
install WordPress, both these checkboxes will be checked by default. You have to
uncheck them if you want to turn off the comments or trackbacks and pingbacks
for the post.

If you uncheck the Allow comments box, visitors will not be able to comment
on this blog post.

If you uncheck the Allow trackbacks and pingbacks on this page box, when other
people mention your blog post and link to it on their own websites, your blog
post won't notice and won't care. So, if you are using WordPress to run a non-blog
website, this is the best option for you.

If the box stays checked, other people's pingbacks about this post will show up under
your post along with comments, if any. If you're using WordPress to run
a blog website, you'll want pingback to stay checked, especially if you want sites
such as Technorati and other rating/authority sites to stay alerted.

If you want either or both of these boxes to be unchecked by default, go to Settings
and then Discussion in the main menu. You can uncheck either or both of the boxes
labeled Allow link notifications from other blogs (pingbacks and trackbacks) and
Allow people to post comments on new articles.

Creating Blog Content

[72]

The decision whether or not to support trackbacks and pingbacks on your site is
entirely up to you. Even though they are both enabled by default, some bloggers
quickly find that disabling them can make their everyday work much easier. The
thing with pingbacks and trackbacks is that a large number of them, especially on
popular blogs, are essentially spam. Basically, pingbacks and trackbacks are (were)
the easiest way of getting a link from another site. Back in the day, no one was
paying attention to what appeared in their pingback and trackback section, so every
notification went through un-moderated in any way. These days, despite the fact that
online publishers are much more aware of the situation, the spamming continues
and it gets difficult to separate genuine pingbacks and trackbacks from the spammy
ones. Hence, shutting them down altogether can make things easier in the long run.

To learn more about trackbacks and pingbacks you can visit the
following sites:

• http://www.wpbeginner.com/beginners-guide/what-
why-and-how-tos-of-trackbacks-and-pingbacks-in-
wordpress/

• http://codex.wordpress.org/Introduction_to_
Blogging#Trackbacks

• http://codex.wordpress.org/Introduction_to_
Blogging#Pingbacks

Custom Fields
Custom Fields are WordPress' way of giving you the possibility to include
some additional information in your blog post (information that you don't
want to display directly on the frontend). In essence, Custom Fields are a kind
of a semi-programming tool—they are not exactly "code" as understood by PHP
programmers, yet they do give you a possibility to tweak your content in a certain,
non-stock way. Many themes use various Custom Fields to style the individual
aspects of posts. For example, some theme creators use Custom Fields to disable
the sidebar on certain posts or include various typographic elements.

Chapter 3

[73]

Another example, let's say you are a gadget reviewer and every blog post is a
review of some new gadget. Every time you write a review, you're writing it about
a product made by some company, and you'd like to have that company's logo
associated with the blog post. You can make a custom field called company_logo
and the value can be the path to the logo image.

To display or make use of this custom field information, you either have to modify
your theme files manually, or use a plugin.

Read more about Custom Fields in the WordPress codex at
http://codex.wordpress.org/Using_Custom_Fields.

Working with post revisions
Apart from many content formatting features, WordPress also allows some basic
version control for your posts. What this means is that WordPress stores every
subversion of your every post. Or in plain English, every time you click on the
Update button, instead of overwriting the previous version of your post, WordPress
creates a completely new one. Although this feature doesn't seem like the most
useful one at first, it's actually very important for sites where the content is managed
by more than one person. In such a scenario, it's easy to get the newest versions
of the posts mixed up, so it's always good to have the possibility to return to the
previous one.

www.allitebooks.com

http://www.allitebooks.org

Creating Blog Content

[74]

In WordPress 3.6, the Revisions functionality has been completely revamped and
a lot of new features have been introduced that make working with your content
much more efficient. To take full advantage of the functionality, what you need to
do is, first, enable Revisions in the upper slide-down Screen Options menu on the
post editing screen. Once you do so, a small boxed titled Revisions will appear at the
bottom of the screen.

If you click on any of the links displayed inside this box, you will be taken to a page
where you can compare individual revisions and then restore the one you want to
work with from now on. The interface provides a main slider that can be used to
select individual revisions of the post as shown in the following screenshot:

The revision functionality has two main versions. The first one, when the Compare any
two revisions box isn't checked, lets you compare the revision that's currently selected
(on the slider) to the revision directly preceding it. The second version is when the
Compare any two revisions box is checked. In this case, you can select the revisions
you want to compare individually, which allows you to essentially compare any two
revisions just like the box suggests. The revision on the left is always the previous
revision, while the one on the right is the next or current one (visible in the preceding
screenshot). Every paragraph where there is a difference found will be highlighted
in red and green, and every individual difference will have additional highlighting.
Clicking on the Restore This Revision button will restore the revision on the right and
you will be brought back to the post editing screen automatically.

Chapter 3

[75]

On the other hand, if you feel that revisions won't be of any particular use to your
site, you can simply not pay attention to the Revisions box. When you work with
your content normally, not worrying about the revisions, WordPress will always
display the most recent versions of your posts by default.

Changing the author of the post
This is a very basic feature in WordPress so let's only take a minute to discuss it.
Basically, every post and page in WordPress has an author, which is quite obvious
in itself. However, if you want to, you can change the assigned author of any given
entry. In order to do it, just go to the post editing screen or the page editing screen
and scroll down until you see the Author box. (If it's not visible, enable it from the
pull-down Screen Options menu).

The box contains just one drop-down menu that lists every user account on your site.
Just select a new author and click on the Update button. That's all. If you only have
one user, the admin account, on your site, the box will contain one name.

Protecting content
WordPress gives you the option to hide posts. You can hide a post from everyone
but yourself by marking it Private (although the user roles of admin and editor will
still see it), or you can hide it from everyone but the people with whom you share
a password by marking it as Password protected. To implement this, look at the
Publish box at the upper right of the Edit Post page. If you click on the Edit link
next to Visibility: Public, a few options will appear:

Creating Blog Content

[76]

If you click on the Password protected radio button, you'll get a box where you can
type a password. Visitors to your blog will see the post title along with a note that
they have to type in a password to read the post.

If you click on the Private radio button, the post will not show up on the blog
at all to any viewers, unless you are the viewer and you are logged in. The post
will also appear if the person browsing the site is a logged-in editor (having the
user role of Editor).

If you leave the post Public and check the Stick this post to the front page checkbox,
this post will be the first post on the front page, regardless of its publication date.

Be sure to click on the OK button if you make any changes.

The pretty post slug
We've already talked about tuning the permalinks settings of your site in Chapter
2, Getting Started. Now is a good time to expand this knowledge and discuss a
little about something called the post slug. One of the most accurate definitions in
existence of what a post slug is comes from the WordPress codex itself. The one
provided at http://codex.wordpress.org/Glossary#Post_Slug teaches us that
the post slug is:

A few lowercase words separated by dashes, describing a post and usually derived
from the post title to create a user-friendly permalink.

In other words, the post slug is what comes after your domain name in
the post's URL. For example, my post about Making Lasagne uses this URL:
http://mydomain.com/making-lasagne/, where the last part, making-lasagne, is
the slug. Just like the official definition says, WordPress chooses the slug by taking
my post title, making it all lowercase, removing all punctuation, and replacing spaces
with dashes. If I'd prefer it to be something else, such as my-lasagne, I can change it
in the area just below the post's title:

Just click on Edit to change the slug. Readable URLs are something that Google
search loves, so using them helps to optimize your site for search engines. It also
helps users figure out what a post is about before clicking on the URL.

Chapter 3

[77]

Custom post format settings
Since you will most likely start your WordPress journey with the default theme,
Twenty Thirteen, I should probably say a few words about one more box that's
visible on the post editing screen, the one titled Format.

Some themes provide basic, ready-made formatting styles for certain types of posts.
Twenty Thirteen is one of those themes. In short, if you don't want to take care of
styling your content manually, you can select one of the predefined styles and get
great results in less than a minute.

Here are some examples. First we have a post saved as Standard:

Creating Blog Content

[78]

Then the same post saved as Quote:

And finally, saved as Status:

Those styles are, of course, entirely dependent upon your current theme, and
usually, the more complex the theme, the more stark the differences between
individual formats.

Additional writing options
In addition to simply logging in to the WP Admin, you have four other choices of
ways to add posts to your blog.

Press This
WordPress offers a neat bookmarklet called Press This. You can put it into your
browser's bookmarks or favorites, which will let you quickly write a blog post about
the website you're visiting. You may have encountered this same feature as offered
by Facebook, Delicious, and other social networking sites.

Chapter 3

[79]

You just have to add Press This to your browser once, and then you can use it
anytime. To add the Press This link to your browser in the WP Admin, go to the
Tools page. On the top of the Tools page is the Press This box. Just use your mouse,
and drag it up to your browser's bookmark bar.

Now you can use it! For example, if you're reading a newspaper website and you
read an article you'd like to mention in a blog post, just click on the Press This
bookmark (or favorite). A window will pop up with the Edit Post page in it and
the URL of the site at which you're looking already written in as a link:

You can then write whatever additional text you want, add tags and categories,
and then either save it as a draft or publish it right away.

Posting via e-mail
If you want to add a post to your blog without having to open the WP Admin and
log in, you can set up your WordPress installation to accept posts sent via e-mail.
First, you have to set up a special secret e-mail address that is accessible via POP.
WordPress will check that e-mail address and turn any e-mails in it into posts. If you
decide to set up this feature, you will have to be sure not to use this e-mail address
for any other purpose!

Creating Blog Content

[80]

Once you have the e-mail address set up at your mail server, go to your WP Admin
and navigate to Settings | Writing. Scroll down a bit to the section labeled Post
by Email. Now just enter the server, login name, and password into the Writing
Settings page and be sure to click on the Save Changes button. Note that on this
page, WordPress provides you with three random strings you could use for the
e-mail address, so you might want to visit this page first to get one, set up your
POP account, and then return to this page to set up Post via e-mail.

Even though posting via e-mail sounds like a good idea at first, it's actually not the
safest way of doing things. As you've probably realized by now, anyone who finds
out what your secret e-mail address is can easily get anything published on your site.
All they have to do is send their content to that e-mail address. To be honest, posting
via e-mail is a thing of the past, at least in its current form, unless WordPress comes
up with some innovative way of doing it in future versions.

Posting via e-mail in its default form is not the safest approach out
there, that is true. But with just a little bit of creativity, you can do
it in a way that still makes sense (safety-wise). Feel free to visit the
following site for an in-depth guide: http://themefuse.com/
blog/posting-to-wordpress-via-email-theres-a-safe-
way-of-doing-this/.

External blogging tools
In short, external blogging tools are specialized pieces of software that allow you to
work with your blog from the desktop of your computer. The main difference between
them and working with WordPress directly is that they make it possible to create
content (posts) offline, and then export it directly to your WordPress site. This has
some great benefits, and the biggest of which is that you can write posts whenever
inspiration hits you, not only when you have an Internet connection at your disposal
(particularly handy for creating content while traveling). Another benefit is that your
posts are stored as normal files, which you can copy wherever you want, send to
someone via e-mail, or back up on Dropbox or other similar solutions.

The first question worth answering here is how are these tools better than writing a
post in MS Word and then copying it into WordPress manually. Well, if you've ever
tried doing this, you already know that most of your formatting, layout, as well as
the graphics are sure to go missing. There's no such problem with external blogging
tools, as they are optimized for working with WordPress right from the get-go.

Chapter 3

[81]

The only bad news in this whole story is that the best tool available, Windows Live
Writer, works on Windows only, so Mac users will have a little harder time here. If
you're on Mac, you can consider alternatives such as MarsEdit (http://www.red-
sweater.com/marsedit/) or Qumana (http://www.qumana.com/).

The best thing about Windows Live Writer is that, even though it's been created
by Microsoft, it's absolutely free. You can download it at http://explore.live.
com/windows-live-writer and then install it on any version of Windows. The tool
itself is very easy to use and very efficient (when it comes to performance). Finally,
Windows Live Writer doesn't require you to set up your site in any specific way
before you can work with it. All you have to do is configure the Writer itself so it can
connect to the site (basically, it only needs the address of the site, your username and
password). I strongly encourage you to give it a shot.

Mobile apps for iOS and Android
This final method of posting content on WordPress is growing stronger every year,
or even every month. The mobile usage of the Web is constantly rising, and this is
only reflected in the way people interact with their WordPress sites or blogs.

It's not surprising that there's a great wealth of blogging tools and apps for the two
most popular mobile platforms: iOS and Android.

Both systems have the native WordPress app available. You can get these apps at
http://ios.wordpress.org/ and http://android.wordpress.org/.

The user interfaces of the apps have some minor differences depending on what
device you're using to access the app with, but the core functionality remains the
same. Here, we're going to use the iPad edition as an example.

The app is very user-friendly and virtually guides you through all the crucial
steps of setting up a connection with your blog. You can add a new site from
the Settings menu.

Once you do so, you get to use a standard set of features that let you in on a variety
of actions you can perform on your site's content. You can create and edit posts,
do the same with pages, moderate comments, and hop over to the site's WP
Admin via a direct link.

Creating Blog Content

[82]

Discussion on your blog – comments
Comments are an important part of most of the blogs. While you are the only person
who can write blog posts, the visitors to your blog can add comments to your posts.
This can fuel a sense of community within a blog, allow people to give you feedback
on your writing, and give your visitors a way to help or talk to other visitors. The
only downside of commenting is that unscrupulous people will try to misuse your
blog's ability to accept comments, and will try to post spam or advertisements in
your blog instead of relevant comments. Luckily, the WordPress community is
always developing more ways of fighting spam.

Adding a comment
If you look at the front page of your blog, you'll see that every post has a link that
says Leave a Reply. Clicking on that link will take you to the bottom of the post
page, which is where comments can be added, as we saw in Chapter 2, Getting Started.

If you're logged in to the WP Admin, you'll see your name and a space to write your
comment. If you're not logged in, you'll see a comment form that any other visitor
will see. This form includes fields to fill in name, e-mail, and website, along with the
commenting text area.

Once you type in the required information and click on the Post Comment button,
the comment will be entered into the WordPress database along with all of your
other blog information. How soon it shows up on the site depends on your
discussion settings.

Discussion settings
The default comment form offered by WordPress makes two fields mandatory,
those fields are Name: and E-mail:. As the administrator of this blog/site, you can
change these requirements. First, log in to the WP Admin and navigate to Settings |
Discussion. We explored the first box (Default article settings) earlier in this chapter.

Submission, notification, and moderation settings
Let's focus on the checkboxes on this page that relate only to submission,
notification, and moderation. The boxes that are checked on this page will
determine how much moderation and checking a comment has to go through
before it gets posted on the blog.

Chapter 3

[83]

The default settings are relatively strict. The only way to make a more strictly
controlled discussion on your blog is to check Comment must be manually
approved. This option means that no matter what, all comments go into the
moderation queue and do not show up on the site until you manually approve them.

Let's look at the settings having to do with submission. These options control what
the user has to do before he or she is even able to type in a comment:

• Comment author must fill out name and e-mail: As you noticed in the
screenshot in the Adding a comment section, Name: and Email: are required.
If you leave this checked, anyone posting a comment will encounter an error
if they try to leave either of the fields blank. This doesn't add a huge amount
of security because robots know how to fill out a name and an e-mail, and
because anyone can put fake information in there. However, it does help
your blog readers to keep a track of who is who if a long discussion develops,
and it can slightly discourage utterly impulsive commenting. Also, visitors
who have a Gravatar account (mentioned in the previous chapter) are quite
willing to provide their e-mail addresses anyway. That's because using an
e-mail address that's connected to Gravatar will result in their profile picture
(avatar) being displayed along with the comment, making it much more
personal and visible among all the other comments.

• Users must be registered and logged in to comment: Most bloggers do not
check this box because it means that only visitors who register for the blog
can comment. Most bloggers don't want random people registering, and
most visitors don't want to be compelled to register for your blog. If you
check this box, there's a good chance you'll get no comments (which may
be what you want). Alternatively, if you're setting up a blog for a closed
community of people, this setting might be useful.

• Automatically close comments on articles older than X days: Here, you
can set any number of days after which the comments on your content will
be closed. Although this feature might not seem like a useful one at first,
it can actually be valuable to various kinds of news sites or other online
publications where allowing comments on old events makes very little sense.

• Enable threaded (nested) comments X levels deep: This option is enabled by
default, and it's yet another way of making your site more readable and user-
friendly. Sometimes commenters want to be able to respond to someone else's
comments, simply as part of an ongoing discussion. This is the feature that
allows them to do so. Also, it gives you, the author, a great way of interacting
with your audience through direct responses to every comment of theirs.

Creating Blog Content

[84]

• Break comments into pages with X top level comments per page and the X
page displayed by default: This feature won't be of any value to you unless
you're getting more than 200 comments per post, so you can confidently
leave it unchecked for now.

• Comments should be displayed with the X comments at the top of each
page: This option has two main settings (older and newer), and it lets you
select if want to display the newest comments first on the list or the oldest
comments first.

Now let's look at the settings that have to do with moderation. These two options
have to do with the circumstances that allow comments to appear on the site. They
are by the Before a comment appears header:

• Comment must be manually approved: As I mentioned before, if this box
is checked, every comment has to be manually approved by you before it
appears on the site.

• Comment author must have a previously approved comment: If you
uncheck the box above this, but check this one, you've relaxed your settings
a little bit. This means that if the person commenting has commented before
and had his or her comment approved, the person's future comments don't
have to be verified by you; they'll just appear on the website immediately.
The person just has to enter the same name and e-mail as the one in the
previously approved comment.

Now let's look at the settings that have to do with notification. These options
are under the E-mail me whenever header. These options are related to the
circumstances of receiving an e-mail notification about the comment activity.

• Anyone posts a comment: This is generally a good setting to keep. You'll
get an e-mail whenever anyone posts a comment—whether or not it needs
to be moderated. This will make it easier for you to follow the discussion on
your blog, and to be aware of a comment that is not moderated and requires
deletion quickly.

• A comment is held for moderation: If you're not particularly interested in
following every comment on your blog, you can uncheck the Anyone posts
a comment checkbox and only leave this one checked. You will only get an
e-mail about legitimate-looking comments that appear to need moderation
and need your approval.

Chapter 3

[85]

When to moderate or blacklist a comment
If you scroll down the page a bit, you'll see the Comment Moderation area:

This is an extension of the moderation settings from the top of the page. Note that
if you've checked the Comment must be manually approved checkbox, you can
safely ignore this Comment Moderation box. Otherwise, you can use this box to help
WordPress figure out which comments are probably okay and which might be spam
or inappropriate for your blog. You can tell WordPress to suspect a comment if it has
more than a certain number of links, as spam comments often are just a list of URLs.

The larger box is for you to enter suspect words and IP addresses:

• Here you can type words that are commonly found in spam (you can figure
this out by looking in your junk mail in your e-mail), or just uncouth words
in general.

• The IP addresses you will enter into this box would be those of any
comments you've gotten in the past from someone who comments
inappropriately or adds actual spam. Whenever WordPress receives
a comment on your blog, it captures the IP address for you so that
you'll have them handy.

Scroll down a bit more, and you'll see the Comment Blacklist box:

Creating Blog Content

[86]

Unlike the Comment Moderation box we just saw, which tells WordPress how to
identify the comments to suspect, the Comment Blacklist box tells WordPress how
to identify comments that are almost definitely bad. These comments won't be added
to the moderation queue and you won't get an e-mail about them; they'll be marked
right away as spam.

Avatar display settings
The final box on this page is the Avatars box. Just as I already mentioned in the
previous chapter, an avatar is an image that is a person's personal icon. Avatars in
WordPress are provided through Gravatar, a service available at http://gravatar.
com/, that lets you create your personal online profile, which is going to be then
consistently used on other websites across the Web. By default, avatars will show up
on your blog if you leave the Show Avatars radio button checked that's visible near
the bottom of the discussion settings page.

The second box, Maximum Rating, will tell WordPress if it should not show
avatars that have been rated too highly. Remember the rating we were setting while
uploading a new picture to Gravatar? This setting here is the place where you can
choose which pictures you want to allow on your own site.

The third box, Default Avatar, tells WordPress what avatar to use for visitors who
do not come with their own Gravatar. When you installed WordPress, it created a
comment for you on the first post, and also created a default avatar for you. You
can see the default avatar, Mystery Man, in use on the Hello world! post:

Chapter 3

[87]

Moderating comments
Now that we've thoroughly explored the settings for which comments need to
be moderated, let's discuss what you actually need to do to moderate comments.
Moderating means that you look over a comment that is in limbo and decide
whether it's insightful enough that it can be published on your site. If it's good,
it gets to appear on the frontend of your website; if it is bad, it's either marked as
spam or is deleted and is never seen by anyone but you and the poster who wrote it.

To view comments waiting for moderation, log in to your WP Admin and navigate
to Comments in the main menu.

If you have any comments waiting for moderation, there will be a little number in
the main menu telling you how many comments await moderation.

This main Comments page is fully featured, just like the Posts page. For each
comment, you see the following information from left to right:

• Commenter avatar, name, website address, e-mail address, and IP
• Comment text, along with links to approve it so that it shows up on the site

(the links appear when you hover your mouse over the comment), you can
also mark it as spam, trash it, edit it, quick edit it, or reply to it

Creating Blog Content

[88]

• Comment submission time and date
• The title of the post on which the comment was made (which is also a link

to edit that post), a number in parentheses indicating how many approved
comments are already there on that post (which is also a link that will filter
the comments list so that it shows only comments on this page), and a link to
the post itself (labeled as View Post)

Comments that are awaiting moderation have a yellow background, like the first
comment in the preceding screenshot (you can also see my Gravatar).

You can click on the Quick Edit link for any post to open form fields right within this
list. This will allow you to edit the text of the post and the commenter's name, e-mail,
and URL.

You can use the links at the top—All, Pending, Approved, Spam, and Trash—to
filter the list based on those statuses. You can also filter either pings or comments
with the Show all comment types pull-down filter menu. You can check one or more
comments to apply any of the bulk actions available in the Bulk Actions menus at
the top and bottom of the list.

Another quick way to get to this page, or to apply an action to a comment, is to
use the links in the e-mail that WordPress sends you when a comment is held for
moderation (provided you've selected this option in Settings | Discussion).

Additionally, this listing is where all pingbacks appear for your moderation. From
a blog owner's point of view, pingbacks look just like any other comments, which
means that you can edit them, mark them as spam, or trash them as you normally
would with standard comments.

How to eliminate comment spam
Comment spam is one of the most annoying things on the Internet if you're an online
publisher. Basically, a spam comment is a comment that has been submitted for the
sole purpose of getting a link back to a specific website. The main reason why people
submit spam comments is search engine optimization—the number of links pointing
to a site is a known SEO factor, and website owners around the world do whatever
they can to get as many links as possible. Unfortunately for us, sometimes it means
using various spam methods as well.

Chapter 3

[89]

The way WordPress comments are set up by default makes it possible for anyone
to get a link from your site just by submitting a comment and providing a website
address in one of the comment fields. If they do so and the comment gets approved,
the thing typed into the Name field of the comment becomes the text of the link and
the Website becomes the link's destination.

The worst thing about comment spam is that once your site gets even remotely
popular, you can start getting hundreds of spam comments a day; hence, dealing
with them manually becomes almost impossible.

Unfortunately, fighting comment spam is not something built into WordPress by
default. This means that you have to get some plugin(s) to enable this functionality.
For now, let's focus on the most popular spam protection plugin of today—Akismet.
The good thing about it is that it comes along with the standard WordPress
installation, so you should be able to find it in the Plugins section in your WP
Admin. We will cover plugins in detail later in this book, so now let's just review
how to get Akismet working on your blog. If your blog is built on WordPress.com,
then Akismet is already activated by default. For a standard, standalone blog, you'll
have to activate it first.

You can learn more about the Akismet spam-fighting service at http://
akismet.com/. Also, if you're interested in some alternative solutions,
please visit these two official plugin pages: http://wordpress.org/
extend/plugins/antispam-bee/ and http://wordpress.org/
extend/plugins/growmap-anti-spambot-plugin/.

Getting an Akismet API key
The Akismet plugin requires that you have a special API key. Getting this API key was
a lot simpler just a couple of years ago. All you needed to do is go to WordPress.com,
sign up for an account (even if you didn't intend to build a blog there), and you could
get your API key from the Settings menu. Now there's a new path. The starting point is
still quite similar, though. You need to go to WordPress.com and create a new account.
Please follow the instructions in Chapter 2, Getting Started, in order to do it. Once your
account is active, go to the signup page at Akismet.com and create a new account there
as well. Here's the exact address: https://akismet.com/signup/.

Creating Blog Content

[90]

This is what you'll see:

Apparently, Akismet wants to sell you some of their premium services, but luckily
this isn't mandatory. Click on the SIGN UP button under the plan labeled as
Personal and you'll immediately see a new button titled Sign up with WordPress.
com. This is where you get to connect your WordPress.com account with your new
Akismet account. Depending on the fact whether you're currently logged in to your
WordPress.com account or not, you might see another signup page or a custom login
page. In case of the former, just click on the I already have a WordPress.com account
link. For the latter, type in your email address and password to log in to your
WordPress.com account and then click on the Authorize button in order to finally
connect both accounts together. When you do this, you're going to be redirected
back to Akismet. Now this is tricky. The plan we've selected is based on voluntary
donations. If you're not willing to spend any money, just take the slider that's in the
center and slide it to the left, all the way to $0.00/yr. Apart from that, you just have to
provide standard details like your first and last name.

Your API key will arrive via e-mail to the address specified during registration.
Select and copy that text. You may want to paste it into a text file to be sure you
have it.

Chapter 3

[91]

Activating Akismet
Now go back to your WordPress installation and navigate to Plugins in the
main menu:

You'll see Akismet listed as the first plugin. Click on the Activate link. A yellow
message bar will appear at the top of the page that says Akismet is almost ready. You
must enter your Akismet API key for it to work. Click on that link and you'll be taken
to a page where you can enter your API key you copied from WordPress.com:

Paste your API key into the box. If you're feeling confident, you can also check the
box below it to discard spam comments automatically. Akismet is relatively good at
identifying which comment is actually spam, and checking this box will make those
comments disappear. However, if you're concerned about Akismet misidentifying
comments, leave this unchecked.

Now click on Update options>> and your blog is protected from comment spam!

Creating Blog Content

[92]

Adding and managing categories
Earlier in this chapter, you learned how to add a category quickly while adding a
post. Now let's talk about how to manage your categories in a bigger way. First,
navigate to Posts | Categories in your WP Admin. You'll see the Categories page:

This is a useful page that combines the ability to add, edit, and review all your
categories. As you can see, any category that you've added via the Edit Post page is
listed. You can edit, quick edit, or delete any category by clicking on the appropriate
link in the list.

If you add a category on this page, you can also choose its slug. The slug is the
short bit of text that shows up in the URL of your site if you have pretty permalinks
enabled. If you don't choose a slug, WordPress will create one for you by taking
the category name, reducing it to all lowercase, replacing spaces with dashes, and
removing any other punctuation mark.

Chapter 3

[93]

Another thing you can do on this page is choose a parent category for any category.
Some themes support displaying categories hierarchically, but not all do. In a good,
modern theme, if you create a custom menu for categories, all child categories will
be displayed as submenus.

The ability to create a hierarchy of categories is actually the main technical thing that
separates categories from tags. Other than that, both elements are quite similar in
construction, although they still have different purposes.

Summary
In this chapter, you learned everything you need to know to add content to your
blog and manage that content. You learned about posts, categories, and comments.
You discovered tags, spam, and excerpts. You also learned about adding and
editing images, using the visual editor (and the text editor), changing timestamps,
customizing excerpts, and the different ways of posting (for example, through e-mail
or external blogging tools).

Your control of your blog content is complete, and you are well equipped to set
your blog on fire!

In the next chapter, you'll learn about all the other types of content that you can
manage on your website with WordPress.

Pages, Menus, Media Library,
and More

You now have the blog part of your website fully under control. By now,
you've probably noticed that WordPress offers you a lot more than simply
posts, comments, tags, and categories.

In this chapter, we will explore and control all of the other content types that
WordPress already has. You'll be able to create static pages that aren't a part of your
ongoing blog, bookmark links that will drive visitors to other websites, add various
types of media to your posts, and create appealing image galleries to display photos
and other images. You'll also learn how to manage navigation menus and work with
the basic layout customization features to further enhance the capabilities of
your website.

Pages
At first glance, pages look very similar to posts. Both pages and posts have a
title and a content area in which we can write extended text. However, pages are
handled quite differently from posts. First of all, pages don't have categories, or tags.
Moreover, posts belong to your blog, which are meant to be a part of an ongoing
expanding section of your website, and are added regularly; pages, on the other
hand, are more static and aren't generally expected to change that much.

In short, I would advise to treat pages as pieces of static content, and posts as series
of articles published in a timely manner. In other words, pages are meant to hold
content that is equally up-to-date no matter whenever it is read. Posts are often very
time sensitive and present advice/news that's important today/now. For most blogs,
posts are the pillar of their content and make up more than 90 percent of the site.
Furthermore, posts appear in the RSS feed of a WordPress blog, while pages don't.

Pages, Menus, Media Library, and More

[96]

When you installed WordPress, a page was automatically created for you
(along with the first post and first comment). You can see it by clicking on the
Sample Page link in the main navigation menu at the top of your site, as shown
in the following screenshot:

Adding a page
To add a new page, go to your WP Admin, and navigate to Pages | Add New, or use
the drop-down menu in the top grey menu by clicking on New and then Page. This
will take you to the Add New Page screen, as shown in the following screenshot:

Chapter 4

[97]

The minimum you need to do in order to create a new page is type in a title and
some content. Then, click on the blue Publish button, just as you would for a post,
and your new page will become available under its unique URL.

You'll recognize most of the fields on this page from the Add New Post page.
They work the same for pages as they do for posts. Let's talk about the one
new section, the box named Attributes; consisting of elements such as Parent,
Template, and Order.

Parent
WordPress allows you to structure your pages hierarchically. This way, you can
organize your website's pages into main pages and subpages, which is useful if
you're going to have a lot of pages on your site. For example, if I were writing this
blog along with three other authors, we would each have one page about us on the
site, but they'd be subpages of the main About page. If I were adding one of these
pages, I'd first create a new About page, then create another page just for me named
About Karol, and finally choose About as the parent page for this new page.

Template
Theme designers often offer alternate templates that can be used for special pages.
However, the Twenty Thirteen WordPress theme—the default theme—doesn't come
with any additional templates.

Pages, Menus, Media Library, and More

[98]

Other themes may come with a variety of templates, depending on what the theme
designer thought you'd find useful. If you're creating your own WordPress theme,
you can create any number of templates that have different layouts or have special
content. Also, even when working with a stock theme, you can still tweak its
structure and introduce your own custom page templates.

One of the common uses for a page template is to craft a custom home page with
it—one that would present something else than just the standard listing of the most
recent posts.

Order
By default, the pages in your page list on the sidebar or main navigation of your blog
will be in alphabetical order by page title. If you want them in some other order,
you can specify it by entering numbers in the Order box for all of your pages. Pages
with lower numbers (for example, 0) will be listed before pages with higher numbers
(for example, 5). You can test this easily by editing your History page and giving
it the Order value of 5. As a result, you'll see it after the Sample Page link in the
top navigation menu. However, this isn't a very clear method of rearranging pages
inside menus. You can do it much more easily with a functionality named Custom
Menus (described later in this chapter). In the end, I would advise you to save all of
your pages with the Order value of 0.

Managing pages
To see a list of all the pages on your website in the WP Admin, navigate to
Pages | Edit in the main menu. You'll see the Pages screen, as shown in the
following screenshot:

Chapter 4

[99]

By now, this list format should begin to look familiar to you. You've got your list of
pages, and in each row are a number of useful links allowing you to Edit, QuickEdit,
Trash, or View the page. You can click on an author's name to filter the list by that
author. You can use the two links at the top, All and Published, to filter the pages by
status (if you have pages saved as Drafts or Pending Review, they will also appear
here). There's also filtering by date and category through the two drop-down menus
just above the list of pages. Additionally, you can check boxes and "mass-edit" pages
by using the Bulk Actions menu at the top and bottom of the list. You can also
search your pages with the search box at the top.

Menus
As of WordPress 3.0, there are now Custom Menus available within the WP Admin.
This wasn't always the case, but these days all modern themes support Custom
Menus, and so does the default theme, Twenty Thirteen.

The Custom Menus feature lets you create menus with links to pages, category
archives, and even arbitrary links to any URL (which also allows you to use links
to your individual posts). Then, you can place your custom menu into your theme.

Adding a menu
Let's take a look at the menu's management screen. To get there, just navigate to
Appearance | Menus:

Pages, Menus, Media Library, and More

[100]

To create your first menu, enter a title where it says Enter menu name here, for
example, Main. After doing so, you can select individual pages from the panel
on the left-hand side and click on the Add to Menu button to confirm:

You can add some custom links to the menu if you want to. This can be done
after clicking on the Links heading on the left-hand side, and then filling out
the required link information. To confirm, click on Addto Menu:

As you can see in the preceding screenshot, I'm using this opportunity to link
to one of my posts.

Chapter 4

[101]

Finally, you can add some category links. Click on the Categories heading
on the left-hand side, and then click on the checkboxes next to the categories
you want to have included. Click on Add to Menu to confirm, as shown in the
following screenshot:

Then, be sure to click on Save Menu in the upper-right corner. The following
screenshot is what my menu looks like now:

Pages, Menus, Media Library, and More

[102]

You can also drag items to the right-hand side to make them subitems of the item
above. For example, I'll add my Making Lasagne post as a subitem under Recipes.
Now, my menu looks like the following screenshot:

You can make more menus by clicking on the create a new menu link at the
top to repeat the preceding process. Now you might ask,"I created my new
menu, but how do I make it show up on my site?". Read on...

Displaying a menu
If you have a menu-enabled theme, then once you have one menu, a new box will
appear on the menus page showing you the menu locations. Twenty Thirteen has
just one menu location, and it's named Navigation Menu:

All you have to do to assign your newly created menu to the predefined menu area
in Twenty Thirteen is to check the box labeled Navigation Menu, as shown in the
preceding screenshot. After doing so, my primary navigation on the website looks
like the following screenshot:

Chapter 4

[103]

And when I hover my mouse over Recipes, I will also see my Making Lasagne post.
So, as you can see in the following screenshot, Twenty Thirteen displays subitems in
a rollover menu activated by the location of your mouse cursor:

Header
The functionality I'm about to describe is highly dependent upon your current theme,
however, most modern themes these days support header customizations, so learning
a few things about this feature will surely come handy to you sooner than later.

If you're starting your WordPress adventure with the default theme, Twenty
Thirteen, in the Appearance section, you can see one link labeled Header.
This is exactly where you can adjust the design of your site's header.

Pages, Menus, Media Library, and More

[104]

As you can see in the preceding screenshot, my header doesn't feature anything
fancy at the moment, just the name (Daily Cooking) and the tagline (Exploring
cooking every day of the week). But with just a little effort this can be changed in no
time. Most themes will allow you to select any image to be placed inside the header.
Twenty Thirteen has some specific requirements for this image, which you can see in
the preceding screenshot. The suggested size is 1600 pixels wide by 230 pixels high,
but you don't have to worry all that much about it because WordPress also provides
some handy image editing tools. All you have to do here is use the Choose Image
button and select one of the pictures from the media library (or upload a new one).
WordPress will immediately redirect you to the aforementioned image editing tools
where you can adjust and crop your image. The following screenshot is an example
of what it looks like:

After clicking on the Crop and Publish button, we're back at the settings screen
where we can handle two additional customizations:

Chapter 4

[105]

The preceding screenshot is the place to decide whether or not to display the header
text—the title of the site and the tagline—and select the default color for this text.
I'm going to change this color to white to make the header text more visible. After
clicking on the main Save Changes button, the header image is set. Here's what my
site looks like now:

Much better, right?

Advanced site customization
Yet another feature in WordPress that's highly dependent upon your theme is the
Customize Your Site module. If you still have the Welcome box enabled in your
Dashboard's screen settings, you can access the module by clicking on the big
Customize Your Site button, as shown in the following screenshot:

Pages, Menus, Media Library, and More

[106]

Another way of accessing this module is by visiting the following URL:
http://yoursite.com/wp-admin/customize.php. The following screenshot
is what you'll see (provided you're working with the default theme):

This module doesn't deliver any new functionality. It simply takes all the
customization features and displays them in one, easy-to-grasp place.

By looking through the individual tabs on the left-hand side, you can adjust various
aspects of your site that we've already talked about in this and the previous chapters.
The tabs are listed as follows:

• Site Title & Tagline
• Colors
• Header Image
• Navigation (you can choose which menu you want to assign as the Primary

Menu)
• Static Front Page

The best thing about this module is that it provides a live preview, which makes
editing the basic aspects of your design much quicker. When you're done, you can
either click on the Cancel button or the Save & Publish button.

Chapter 4

[107]

Links
WordPress gives you a very powerful way of organizing external links or
bookmarks on your site. This is a way to link other related blogs—websites you
like, websites that you think your visitors will find useful, or just any category of
link you want—to your blog. Speaking of categories, you can create and manage
link categories that are separate from your blog categories.

The possibility to manage links is one of the old school features in WordPress. It's
been available since forever. And that's probably why it's not available anymore
(for WordPress 3.5 and above). At least not by default. What I mean is that everyone
who had a site running on WordPress versions below 3.5 could access the link
manager normally. So if such a person then updated WordPress to Version 3.5,
the link manager remained intact. However, everyone who installs WordPress 3.5
from the ground up (as a completely new, fresh site) has link manager disabled.
Nevertheless, the link manager is still worth discussing for a while as it remains to
be one of the best ways to manage all external links (pointing to other sites) that you
want to feature on your site.

First of all, if you don't see the Links section inside the left sidebar in the WP Admin
(the following screenshot), it means your WordPress has the link manager disabled:

If that's the case, then you need to get one of the official WordPress plugins to enable
it. The plugin is named Link Manager and you can get it at http://wordpress.
org/extend/plugins/link-manager/. We will discuss how to work with plugins
in the next chapter.

Pages, Menus, Media Library, and More

[108]

If, on the other hand, the Links section is visible in your WP Admin, you can
proceed with the following. Navigate to Links | All Links, and you'll see something
that looks like the following screenshot:

Currently there are no links there, but this is a standard WordPress content listing
(just like the one for posts or pages), so you can create new links and manage existing
ones in a familiar manner.

Adding a new link
In your WP Admin, navigate to Links | Add New. This will take you to the Add
New Link page, which has a number of boxes in which you can add information
about your new link, as shown in the following screenshot:

Chapter 4

[109]

Of all the fields on this page, it's the top two that are the most important. You
need to give your link a Name, which is the text that people will see and can click
on. You also need to give a Web Address, which is the URL of the website. You can
optionally add a Description, which will show up when visitors hover over the
link and possibly in other places, depending on your theme.

If you're into the more advanced stuff, you can also check out the Categories
and Target fields.

The Categories box in the preceding screenshot should look familiar because it's very
similar to the Categories selection box for posts. However, Link Categories and Post
Categories are completely separate from each other. You can assign a category to the
new link that you're adding or create a new category by clicking on the + Add New
Category link. Your links will be organized by the categories on your website.

The Target box lets you choose whether your visitors will be taken to a new
window or tab, when they click on the link. I generally recommend using _blank
when sending people to an external website.

Pages, Menus, Media Library, and More

[110]

The other boxes on this page are used less commonly. You can use the Link
Relationship (XFN)box to specify XFN (XHTML Friends Network) relationships
between you and any individuals to which you link (you can get more info about
XFN at: http://gmpg.org/xfn/). Finally, the last box at the bottom of this page,
Advanced, will allow you to specify:

• An image that belongs with this link (for example, the logo of the company
whose site to which you are linking)

• The RSS feed for the website to which you're linking
• Any notes you have about the site, beyond what you entered into the

Description box
• A rating for the site from 0 to 9

To make use of any of these pieces of information, you need to have a theme that
recognizes and makes use of them.

At the top-right corner of the page is a Save box with a checkbox that you can check
if you want to keep the link private; that is, if you don't want it to show up on your
site to anyone but yourself.

For now, let's create a new link as a test. Pick your favorite website and input its
name into the Name field and its URL into the Web Address field (in my case, it's
the blog at http://themefuse.com/blog/). Next, create a new category using the
+ Add New Category button. You can name it My Favorite Sites, like I did, as
shown in the following screenshot:

Chapter 4

[111]

Displaying links
The Twenty Thirteen theme doesn't come with any feature that actually shows
your links. The easiest way to display them is to add a Links widget to your sidebar.
Other themes may have other built-in ways to display links. We'll cover widgets in
the next chapter.

Managing links and categories
You can manage your links just as you manage posts and pages by clicking on
Links. From here, you can click on the name of a link to edit it, click on the URL to
visit it, and see which categories you've chosen for it. Using the View all categories
pull-down menu, you can filter links by categories, change their order, and do
bulk deletes.

Just as with post categories, you can manage and add new link categories on
the Link Categories page. You can access this page by navigating to Links |
Link Categories:

Pages, Menus, Media Library, and More

[112]

This is a page that is very similar to the one available under Posts | Categories, only
that here it's meant for the link categories, exclusively. Therefore, from this page, you
can both add a new category using the form on the left-hand side, and also manage
your existing categories using the table on the right-hand side, just like you did with
post categories.

Media library
The media library is where WordPress stores all of your uploaded files—images,
PDFs, music, videos, and so on. To see your media library, navigate to Media in the
main menu (probably not a lot of media there at the moment):

The preceding screenshot shows the now-familiar management table/listing.
My media library has only one photo. I uploaded it to place it inside the Butternut
Squash soup post. As you can see from the preceding screenshot, it shows me
the following:

• A thumbnail of the image. If this were another type of media, I'd see an
icon representing the type of media.

• The title that I gave the file when I uploaded it, along with the format
extension.

• The author of the file.
• Information about which post or page the file is attached to. This will be

important when it comes to making an image gallery. The uploaded file will
be attached to the post or page that you are editing while uploading a file.

• The number of comments waiting on the attached post or page.
• The date when the file was uploaded.

Chapter 4

[113]

If you hover over the row with your mouse, links for Edit, Delete Permanently,
and View will appear. You can click on the file's title or the Edit link to edit Title,
Caption, Description, Alt text, and even the image itself. More on that in a bit.

You can also add a new file to your media library. Navigate to Media | Add New to
get a page similar to the upload media page that you got while uploading a file for a
post. When you click on the Select Files button and select the file to be uploaded, or
drag-and-drop it directly from your desktop, it will upload it and then give you the
same options you got when uploading an item through a page or post.

Enter a title, caption, and description if you want, and click on the Update button.

Pages, Menus, Media Library, and More

[114]

Your new item will appear in the media library and will be unattached to any post or
page. However, you'll still be able to use what you just uploaded in any post or page.

To do that, click on the Add Media button as you did before on the Add/Edit Post or
Add/Edit Page screen. However, instead of uploading a new file, select it from the
media library (the default screen after clicking on the Add Media button), as shown
in the following screenshot:

When you click on any image displayed on this Insert Media screen, you'll
see the same set of options you got after uploading an image. Now, you can click
on the Insert into Post button. The media item will now show as Attached to that
post or page.

Media Manager
The aforementioned Insert Media screen that is visible on the preceding screenshot
is also known as the Media Manager. This Media Manager is a relatively new feature
in WordPress as it was introduced in Version 3.5. Its interface is a lot different than
it was in the previous versions of the platform. It's certainly more visually attractive
and, at the same time, much easier to use.

You can always access the Media Manager from within the Add/Edit Post or Add/
Edit Pages creens by clicking on the Add Media button. We've already discussed
two ways of using it: uploading new media and attaching media that has been
previously uploaded. But that's not all. The Media Manager has a lot more
interesting stuff under the hood.

Chapter 4

[115]

First of all, if we take a look at the left sidebar, there are four links there
(please review the preceding screenshot). Starting from the top, we have:

• Insert Media
• Create Gallery
• Set Featured Image
• Insert from URL

Also, later on, when you have some third-party plugins installed, you might
find even more links in that sidebar, but for now, four it is.

Clicking on any of them will reload the center part of the screen to present a new
range of features. The Insert Media tab—the default one—we've mostly covered
already. It's where you can either upload new files or select existing ones from the
media library. This tab also provides a handy search box and a filtering drop-down
menu, as shown in the following screenshot:

The filtering dropdown won't be of much use right now, but once you have
hundreds of different media in the media library, being able to sort through them
will become invaluable. The filtering dropdown simply lets you display only media
of a specific type (Uploaded to this post, Images, Audio, Video, and All media
items). The search field is simply a search field, it works immediately as you type
(there's no submit button).

The second tab, Create Gallery, is a completely new gallery creation mechanism.
In its current form, it was also introduced in WordPress 3.5. The number of things
we can do in this module is truly impressive. It's all explained in the next chapter.

Pages, Menus, Media Library, and More

[116]

The third tab in the Media Manager, Set Featured Image, is yet another way for you
to assign a featured image to your posts. (The first method was from within the box
on the post editing screen itself.) This is a simple task. All you need to do is click on
the image you want to save as the featured one and then click on the Set featured
image button in the bottom-right corner.

Finally, we have the last tab, Insert from URL. Apart from the possibility to upload
your own images, WordPress also allows you to pick an image from the web and
have it displayed on your site. As always in such situations, you have to be careful
not to take a copyrighted image, but from the technical point of view, WordPress is
capable of importing any image that you input into the main field.

Chapter 4

[117]

As you can see in the preceding screenshot, I've used a link to an image on flickr.
com (an image from my personal account, actually). There are some additional
settings here that you should use. Apart from the Caption and Alt Text field (this is
the text that gets displayed in case the image fails to load for whatever reason), there
are also settings for the alignment and the URL destination of the link (if you want to
link your image to something).

The important thing worth pointing out here is that WordPress doesn't import
this external image into your media library. Instead, it hotlinks the image from the
source. In other words, the image is still on another server. What this means for
you is that you don't have any actual control over this image. It can be removed
overnight or replaced with another image without your knowledge. That's why in 90
percent of cases, it's better to download the image you want to use and then upload
it to the media library, instead of hotlinking it.

Adding an image gallery
Just like I've mentioned in the previous section, the gallery module that you can
find inside the Media Manager provides a completely redesigned modern way of
working with image galleries. Just to remind you, this new gallery module can be
accessed by clicking on the Add Media button when editing a post or a page, and
then clicking on the Create Gallery link in the left sidebar.

One of the most user-friendly aspects about creating image galleries in WordPress
is that you can drag-and-drop multiple images at once, and WordPress will
immediately start turning them into a gallery. However, before you can do that, you
have to choose where you want to display your new gallery, and that's what we're
going to do next.

Choosing a post or page
This is a very simple step, and we've been doing this previously, so here we go.

Pages, Menus, Media Library, and More

[118]

You can add a gallery (or multiple galleries) to any new or existing page or post.
I, for example, went with one of my existing posts, which you can see in the
following screenshot:

Note where I have left my cursor (it's right in the middle if you can't see it).
I made sure to leave it in a spot on the page where I want my gallery to appear,
that is, underneath my introductory paragraph.

Selecting/uploading images
You can start either by uploading some new images or selecting the ones already
in your media library. If it's the former you're after, then simply click on the Create
Gallery link on the left-hand side, grab some images from your desktop, and drag-
and-drop them onto the upload area, as shown in the following screenshot:

Chapter 4

[119]

If you want to work with some of your images that are already in the media library,
then just click on the Media Library link as shown in the following screenshot. As
an example, I've selected two images that I want to use (they have a checkbox in the
upper-right corner):

Pages, Menus, Media Library, and More

[120]

At this stage, you can adjust the titles and descriptions of the images if you want
to, and then click on the Create a new gallery button. In the next step, you have the
opportunity to rearrange your images by dragging them around the display area. You
can also adjust the captions (the captions will be saved so they can be reused later
on if you're creating a gallery using the same images). On the right-hand side, under
Link To, there's a drop-down menu where you can change the link destination for
each image. The way a gallery works in WordPress is when a visitor clicks on any
image, they will be redirected either to the media file itself or to the attachment page
(an individual page created for each image by default). Going with the default value
of Media File is the recommended choice. The other two settings: the number of
columns, and the Random Order checkbox, are pretty self-explanatory. When you're
done just click on the Insert gallery button.

Chapter 4

[121]

On the post editing screen, the gallery block itself doesn't look very attractive,
which you can see in the following screenshot:

However, when you view the gallery on the frontend of your site, it's going to look
great. The degree of its greatness depends closely on the theme you're using though.
When you click on any of the images, you'll be taken to a larger version of the image.

Also, while on the post editing screen, you can edit any image and any gallery by
clicking on the image itself and then on the Edit Image icon that's going to appear.
The icon to delete the image is just next to it, as shown in the following screenshot:

Pages, Menus, Media Library, and More

[122]

One more thing, if you're in the text view, you'll see the gallery shortcode instead
of the visual gallery block:

In this case, the gallery is inserted through a simple shortcode: [gallery
ids="60,15"]. These IDs are the individual IDs of the media files that are a
part of the gallery. What this means is that you can also edit your gallery by
hand, simply by replacing the IDs or adding some new ones.

Because I'm uploading the photos while editing this particular post, all of these
photos will be attached to this post, which is a nice way of indicating what images
go where.

Learning more
The [gallery] shortcode is quite powerful! Take a look at the
codex to get all of the parameters: http://codex.wordpress.
org/Gallery_Shortcode.

Chapter 4

[123]

Importing/exporting your content
The final thing I want to describe in this chapter is the feature of importing and
exporting your content. By default, WordPress allows you to "take" content from
other places and publish it on your site. There's a number of platforms supported,
including former Blogger, LiveJournal, Tumblr blogs, and more. You can see the
complete list by navigating to Tools | Import (it's also the starting point when
importing content), as shown in the following screenshot:

Importing content
If you want to import content from any source, after you click on any of the links
visible on the preceding screenshot, WordPress will prompt you to install some
plugins to fully enable the feature. Plugins are the topic of the next chapter, but the
way WordPress uses them for importing is really a hands-off approach so you don't
have to know much about plugins themselves in order to be able to import content.

Pages, Menus, Media Library, and More

[124]

Now, importing content from each of the available platforms is a bit different, but
the general process looks similar, so we're going to use another WordPress site as an
example here (that is, we're going to import content from another WordPress site).
The first step is to click on the WordPress link visible on the preceding screenshot.
Immediately, you'll see a prompt to install the WordPress Importer plugin, as shown
in the following screenshot:

You can just click on the red Install Now button and the process will start
automatically. When it finishes, you can navigate back to Tools | Import,
click on the WordPress link again, and the following screenshot is what you'll see:

A very simple interface where all you have to do is take a WordPress export file
and upload it to your site. The platform will take care of extracting the archive and
importing the content in it. As a result, your site is going to be filled with new posts,
pages, comments, custom fields, and navigation menus.

Chapter 4

[125]

The main purpose of this feature is to help everyone who's migrating their sites
from platforms, such as Blogger or LiveJournal. Imagine, if someone had a Blogger
blog with over a hundred posts in it, going through each one individually and
inputting it to WordPress by hand would be time-consuming. With this feature,
it can be done in minutes.

Exporting content
Exporting content is even simpler than importing. To start, navigate to
Tools | Export.

There's not much you can do here except select what you want to export and then click
on the big Download Export File button to download the WordPress export file.

Selecting All content will export your posts, pages, comments, custom fields, terms,
navigation menus, and custom posts. In a word, everything. Selecting just Posts or
Pages is pretty much self-explanatory.

When you click on the Download Export File button, you will end up with a file
that's just like the one we used when importing. This means that you can take it
and create a mirror-copy of your site somewhere else under another domain name.

Pages, Menus, Media Library, and More

[126]

Summary
This chapter explored all of the content WordPress can manage that's not directly
about blogging. You learned about static pages, menus, links, the media library,
the Media Manager, image galleries, header and background settings, and more.

You are now fully equipped to use the WordPress Admin panel to control all of
your website's content. Next, you'll learn how to expand your site's functionality by
installing new plugins. This is exactly what we'll be discussing in the next chapter.

Plugins and Widgets
The topic of plugins and widgets has grown a lot in recent years. Nowadays, it's
hard to imagine any WordPress site that could operate without at least a handful of
(essential) plugins or widgets.

In this chapter, we will get to know what plugins are, why to use them, how to use
them, where to get them, and how to be up-to-date and take notice of any new useful
plugin that gets released into the community. We will also talk about some of the
most basic and popular plugins in the WordPress world and why getting them might
be a good idea. Finally, we'll learn how to work with widgets to make our sidebars
even more functional and reader-friendly. Okay, let's get on with it!

Breaking down plugins – what are they?
Simply speaking, plugins are small scripts (files with executable PHP code) that
allow you to include new functionality in your WordPress site—functionality that is
not available or enabled by default.

One of the best things about WordPress is that it's a quite optimized platform. It
makes your site load quickly and doesn't contain much redundant code. However,
WordPress itself only offers the absolute essential range of features—the ones that
are useful to everyone. At the same time, the platform provides a straightforward
way of expanding the abilities of your site by introducing, you guessed it, plugins.
The idea is simple, if you want your site to be able to handle a specific and new
task, there's surely a plugin for that. Much like in the Apple world and the popular
expression: there's an app for that.

Plugins and Widgets

[128]

Why to use plugins
The best thing about plugins is that you don't need any specific programming
knowledge in order to use them. Essentially, they are just like standard applications
for iOS or Android. You can install them and enjoy the things they have to offer
without knowing what's going on inside.

Furthermore, the right combination of plugins can make your site more optimized,
more user-friendly, more attractive, more social-media-friendly, properly backed
up, protected against spam, and ultimately, unique. Plugins really are one of the best
things about WordPress.

You see, before content management systems like WordPress were popularized,
there was no easy way for site owners to introduce new functionalities on their
sites. Doing so always required hiring a professional programmer and investing in
the whole development process. Nowadays, this is no longer the case and virtually
anyone can have an impressive site without losing their shirt.

Where to get plugins
The community behind WordPress plugins is a huge one. There's no one central
plugin-building company, developers all over the world create plugins and
then distribute them across the Internet. And very often, they receive no direct
compensation whatsoever.

The best place to go for WordPress plugins is the official directory at
http://wordpress.org/extend/plugins/.

Chapter 5

[129]

There are over 27,000 different plugins available in the directory at the time of
writing and this number is constantly expanding with around 110 new plugins
being added every week. This really is an impressive number considering the fact
that many of those plugins are very advanced pieces of web software and not just
simple, one-script add-ons.

There's a search field available in the center of the page in the directory (visible in the
preceding screenshot), which allows you to search plugins by topic and by tag. You
can also view a list of the most popular and featured plugins. In short, the official
plugin directory is where you should always go first when looking for a plugin.

Plugins and Widgets

[130]

You can also do Google searches. I recommend searching for the problem you're
trying to solve and see what plugins other users recommend and why. Often, there
are multiple plugins that perform similar functions, and you will find the feedback of
other WordPress users valuable in choosing between them. However, as you do this,
be sure to keep an eye out for malicious or poorly-coded plugins that could break
your website or allow someone to hack into it. I am always wary of a new plugin
with no reviews, comments, or feedback from users, in addition, of course, to those
plugins that have bad feedback about them on the Internet.

To get even more in-depth with your plugin investigation, you can
also check out the changelogs and support forums for each plugin
you're considering for your site (every plugin page inside the official
plugin directory has a tab for the Changelog and Support). They
should give you an idea of how well or how poorly a given plugin is
coded, supported, and so on.

Apart from free plugins, there's also a big set of premium plugins (paid ones).
However, you won't find them in the official directory. Most of those plugins have
their own websites handling sales, customer support, and usage tutorials. If you're
interested, one of the more popular premium plugins directories can be found at
http://codecanyon.net/category/wordpress.

Finding new plugins
Generally speaking, if a given plugin proves that it's a quality solution and gains
some popularity, it will be showcased on the home page of the official directory in
the Featured Plugins section. But if you want to be up-to-date with things as they
happen, you can pay attention to what's going on at: http://wordpress.org/
extend/plugins/browse/new/

Additionally, a great way to discover new plugins is to become a regular at one of
the popular blogs about WordPress. Although these blogs are not official creations
(they are run by independent owners), they do provide an impressive range of
knowledge and advice, not only on plugins but also on other aspects related to
WordPress. The list includes:

• http://www.wpbeginner.com/

• http://digwp.com/

• http://yoast.com/

• http://wpmu.org/

Chapter 5

[131]

• http://themefuse.com/blog/

• http://wpengineer.com/

• http://net.tutsplus.com/category/tutorials/wordpress/

• http://wp.tutsplus.com/

• http://www.wprecipes.com/

Installing a plugin – the how-to
The steps for installing a plugin are simple:

1. Find your plugin.
2. Install and activate it.
3. Configure and/or implement it (if necessary).

There are two ways to get the plugin into your WordPress installation:

• Install manually
• Install from within the WP Admin

The first option, installing plugins manually, generally requires a bit more effort
than the second one, but sometimes it's the only way to work with some specific
plugins (mostly premium ones). The second option, installing from within the
WP Admin, is generally quicker and easier, but it's not possible in all cases. You need
to be on a server that's configured correctly, in a way that lets WordPress add files
(we talked about installing WordPress and server configuration in Chapter 2, Getting
Started). Plus, the plugin you want to install has to be available in the WordPress
Plugin Repository, that is, the official plugin directory.

In the following section, we'll go over the manual method first, and then handle
autoinstallation.

Manual plugin installation
As an example here, I will install a popular plugin for handling site backups—Online
Backup for WordPress. But the following procedure allows you to install
any WordPress plugin you can get your hands on.

To install a plugin manually, you must start by downloading the plugin archive
either from the official directory at http://wordpress.org/extend/plugins/ or
from some other website or source (usually when dealing with premium plugins).

Plugins and Widgets

[132]

In this case, the plugin is available in the official directory at:
http://wordpress.org/extend/plugins/wponlinebackup/

Just click on the orange-colored download button, and save the resulting ZIP file
on your computer where you can find it again.

Before downloading any plugin, check the plugin compatibility.
You can do it by looking at the parameter labeled Compatible up
to that's visible on the plugin page (preceding screenshot). You can
check which version of WordPress you are using on your site by
taking a look into the Updates section of the Dashboard (available
at http://yoursite.com/wp-admin/update-core.php).

Chapter 5

[133]

At this point, if your server is set up correctly, you'll be able to upload the ZIP file
directly by navigating to Plugins | Add New | Upload:

If this automatic uploader doesn't work for you, you can do this the
old-fashioned way:

First unzip, that is, extract the ZIP file you downloaded so that it's a folder,
probably named in this case, wponlinebackup.

Using your FTP client, upload this folder inside the wp-content/plugins/ folder
of your WordPress installation. You'll also see the two plugins in that folder that
WordPress came with —akismet and hello.php.

If you need some assistance with FTP software, please review
Chapter 2, Getting Started, where we talked about the topic of
installing WordPress.

www.allitebooks.com

http://www.allitebooks.org

Plugins and Widgets

[134]

Now, go to your WP Admin and navigate to Plugins. You'll see the three plugins on
this page. Just click on the Activate link in the Online Backup for WordPress row:

Now, you are ready for the final step, that is, configuring and ultimately making
use of the plugin.

But before we shift our attention to this, let's discuss an easier method of dealing
with plugin installation, which is actually the recommended way (if it's available
in your situation).

Autoinstallation
If the plugin you want to install is available in the official plugin directory at
http://wordpress.org/extend/plugins/ and your server configuration meets
the requirements for Autoinstallation (your web host has to grant you the read/
write/modify directory and file permissions; usually the case with the majority
of serious hosting companies), then you can search for and install a new plugin
from within the WP Admin. Just navigate to Plugins | Add New. If you already
know the plugin you want, type its name into the search box.

Chapter 5

[135]

When you see the plugin, you can click on Details to see the plugin's details:

I recommend you always look at this information carefully. Be sure to watch
for version compatibility. Just like with the manual installation method, there's
a parameter labeled Compatible up to here as well. In some cases, you can risk
installing a plugin that's a little outdated, but you should proceed with caution.

After the installation, you need to test the plugin carefully and verify that it's
behaving correctly. Most of the time, if the Compatible up to parameter indicates
an older version of WordPress, it doesn't necessarily mean that the plugin will fail
to work with a newer version. It just means that it hasn't been thoroughly tested.
Hence, the importance of performing your own tests. However, I strongly advise
against installing any plugins that haven't been updated in more than two years.
Luckily, whenever you encounter such a plugin, WordPress itself will warn you
through this message on the official plugin page:

Plugins and Widgets

[136]

Inside the plugin details section in the WP Admin there's a parameter labeled
Last Updated:

If everything is fine you can proceed by clicking the Install Now button, and you're
done installing! The next screen you see will invite you to activate the plugin:

In the case of this plugin, I do recommend you go ahead and activate it
(the Activate Plugin link visible on the preceding screenshot). Some plugins
are perfectly operational right after activation while others require some additional
tuning up. Here are the three most likely scenarios:

• You may not have to do anything. Some plugins simply change the way
WordPress does certain things, and activating them is all you need to do.

• You may have to configure a plugin's details before it begins to work.
Some plugins need you to make choices and set new settings.

• There may not be a configuration page, but you may have to add some
code to one of your theme's template files.

If you're unsure of what to do after you've uploaded and activated your plugin,
be sure to read the readme file that came with your plugin, or look at the FAQ
on the plugin's website.

Chapter 5

[137]

Many plugin authors accept donations. I strongly recommend giving donations to
the authors of plugins that you find useful. It helps to encourage everyone in the
community to continue writing great plugins that everyone can use.

If for some reason the Autoinstallation process has failed then you will need to
switch to the manual installation described in the previous section.

The must-have pack of plugins
Even though there are over 27,000 plugins available in the official directory, you
surely don't need all of them on your WordPress site. There is a small set that we
might call the "must-have pack". And obviously my list of must-have plugins can
be different from the next guy's, so please treat the following information more as
guidance rather than as a written-in-stone necessity. That being said, I am honest
here, and despite the fact that some of my blogs feature more than 25 plugins
working at the same time, the essential must-have list consists of only seven plugins.
All these handle a specific task geared towards making a WordPress site better and
more functional.

Backing up
Let's start with this one as we've already gone through the installation process of one
of the top backing up plugins—Online Backup for WordPress. Now, backing up is
probably the most important task for any website owner, and I'm saying this in all
seriousness. For instance, can you imagine a situation in which you lose your whole
site overnight with no ability to restore it? This might sound a bit hard to believe
right now, but it does happen. If it's a personal blog you've been running then it's not
that tragic. But for a business website, it's a completely different story.

Plugins and Widgets

[138]

This plugin allows you to handle website backups in an easy-to-grasp and hassle-
free way. It doesn't require any initial setup (there are some settings but the plugin is
already operational on the default ones), you can just go ahead and use it right away.
Simply go to Tools | Online Backup. There, you'll be able to handle both database
and filesystem backups, schedule backups to take place automatically, or perform
them manually whenever you wish to.

To get started, you can click on the Backup link visible in the top menu. On
the following screen you can select what you want to backup (Database and
Filesystem), and what you want to do with the backup once it's ready. The
available options are:

• Get it sent to the Online Backup for WordPress Vault (an online service
that's partly free, if you're interested)

• Download it to your local computer
• Have it e-mailed to you

Chapter 5

[139]

My suggestion is to try downloading it for the first time. Once you click on the Start
Manual Backup button, the backup process will begin and you will be informed
about the result shortly afterwards. Later on, it can take a while if you have a lot of
content on your site.

When the backup is ready you will be able to see it in the same Backup section:

Plugins and Widgets

[140]

There is also an option of scheduling regular backups (go to the Schedule section
through the link in the top bar). This is not 100 percent reliable though, so you
should probably set up a reminder to check if your backup has been e-mailed to
you or not. The frequency you choose should depend on how often you want to
edit your site; weekly backups are probably frequent enough for most people.

Apart from all this, the plugin also gives you the possibility to encrypt your backups,
so only you can access and then use them. To get the how-to on this feature, please
see the official user guide and help section under the Help & Support link and the
General Settings link in the top bar.

Enabling Google Analytics
Google Analytics is a very popular site stats and analytics solution. It's free, easy to
use for a beginner, and very powerful for anyone willing to get into it a little more
deeply. In short, Google Analytics lets you in on a set of stats and data regarding
the web traffic your site is getting, including things like: the exact number of visitors
(daily, monthly, and so on), traffic sources, your most popular content, and virtually
myriads other statistics. Google Analytics is available at https://www.google.com/
analytics/.

To enable Google Analytics on your site, you have to sign up for a Google account
first, then enable Analytics, add your site in the control panel (all available on the
official Google Analytics page, along with extensive tutorial documentation), and
then take the tracking code that Google gives you and include it in your site. This last
step is where the Google Analytics for WordPress plugin comes into play and makes
the whole thing a lot simpler. You can get it at http://wordpress.org/extend/
plugins/google-analytics-for-wordpress/.

Chapter 5

[141]

Once you download and activate it, go to Settings | Google Analytics (in WP Admin).
Although the plugin has a lot of settings, the only thing you must do in order to make
it work is to authenticate the plugin to enable connection with your Analytics account.
Just click on the Click here to authenticate with Google button. This will redirect you
to a page on Google where you have to click another button, Grant access, and then
you'll be taken back to your WP Admin. Now you can select your Google Analytics
account and profile that you want to use for monitoring the site.

If you're having problems with this semi-automatic way of authentication,
you can simply input your Analytics code (called the UA code) manually.
This code is visible in your profile at Google Analytics (usually starts with
UA- and is followed by nine numbers).

Once you're done with the authentication procedure, your site is fully connected
to Google Analytics and the traffic stats are being collected. After a while, you can
navigate to your profile in Google Analytics and see how your site's been doing in
terms of visitor popularity. Also, to get a more immediate indication whether the
tracking code has been set correctly or not, you can navigate to the new Real-Time
traffic section inside Google Analytics.

Caching
To be honest, caching is a pretty complicated concept. If you speak "engineering"
then here's the definition: In computer science, a cache is a component that
transparently stores data so that future requests for that data can be served faster.
What it means in plain English is that if you have caching enabled on your site, it
will load faster and be much more accessible for your audience/visitors. Luckily,
even though the concept itself is not that straightforward, the plugin that enables you
to cache is.

Plugins and Widgets

[142]

Currently, the top of the line plugin is called W3 Total Cache, available at
http://wordpress.org/extend/plugins/w3-total-cache/.

And it's not just me recommending it, a number of major hosting companies
and experts say that it provides THE way to get your site optimized fast. More
than that, the plugin is also in use on some major blogs around the web, for
example, http://css-tricks.com/.

The installation procedure is the same as with any other WordPress plugin. But right
after you activate it, you'll see that the usage is quite different. For one, it's accessible
through a completely new section in the left sidebar.

It's labeled Performance and it's placed right below Settings. Probably less than
a second after you click it, you will realize that this plugin is a huge one. It could
probably have a completely separate book written about it. So here, I will only
share the quick start guide, so to speak.

Go to Performance | General Settings and browse through the page. There's
a number of checkboxes labeled as Enable. Just to get started with the plugin,
I advise you to enable the following blocks:

• Page Cache
• Database Cache
• Object Cache
• Browser Cache

Chapter 5

[143]

And then click either of the Save all settings buttons. From now on, caching will be
fully enabled on your site and your visitors should start experiencing performance
improvements right away.

Obviously, we've only touched on the possibilities and customizations that this plugin
brings to the table, so I encourage you to give it a closer look in your spare time.

Search Engine Optimization (SEO)
SEO is one of the most popular topics online (at least among website owners). The
short truth is that working on your site's SEO, if done right, will raise its position in
the search engines (like Google) and will bring you more visitors on a daily basis.
The concept is pretty simple in theory, but the work involved in order to achieve
this can become a full-time job. If you're not interested in devoting a big chunk of
your time to SEO then at least get this plugin WordPress SEO, available at http://
wordpress.org/extend/plugins/wordpress-seo/ and have the basics handled.
The plugin is very popular in the blogosphere. Among others, it's being used by
blogs like http://css-tricks.com/ and http://www.viperchill.com/.

Similarly to the previous plugin—W3 Total Cache—this one has a custom section
within the WP Admin too. It's visible right below Settings and is called SEO.

Plugins and Widgets

[144]

The best way to get the core how-to on this plugin is to click the Start Tour button
visible at the top of the settings page.

This tour will guide you through the most basic settings and features of the plugin.
I really encourage you to spend a while optimizing your site with this plugin,
because this work will surely pay off in the long run, or even much sooner.

There's a separate resource published by the author of the WordPress
SEO plugin, Joost de Valk. It's where you should go to get true in-
depth info on how to set up the plugin, and also what other things
you can do to make your site more SEO-friendly. You can find it at
http://yoast.com/articles/wordpress-seo/.

Securing your site
The issue of site security and hacker attacks is a serious thing online these days. You
might be thinking that no one will try to harm your site in particular as you're not
that popular yet, right? Well, the reality can be harsh in this case. Most hacker attacks
are not about stealing your revenue or taking over your site as a whole, but they are
about adding a small piece of code on your site that will link out to other external
sites (most of the time either fraudulent sites or illicit content). The idea of such an
attack is that you won't find out that it ever took place. This is the biggest danger.

Don't sweat though, there's a plugin to the rescue, BulletProof Security, available
at http://wordpress.org/extend/plugins/bulletproof-security/.

Chapter 5

[145]

Getting started with this plugin requires some basic setting up. First of all,
download and activate it (the usual procedure). Next, navigate to the new
section in the WP Admin labeled BPS Security:

Here, do the following things:

1. Click on the Create secure.htaccess File button visible in the first column
as shown in the following screenshot:

Plugins and Widgets

[146]

2. Scroll down, check the radio button labeled BulletProof Mode under the
Activate Website Root Folder .htaccess Security Mode heading, and click
on the Activate button:

3. Scroll down, check the radio button labeled BulletProof Mode under the
Activate Website wp-admin Folder .htaccess Security Mode heading (it's
right below the previous heading), and click on the Activate button.

Chapter 5

[147]

At this point, your site is fully protected against various hacker attacks.
As usual, there are a lot more settings available in this plugin. However,
I wouldn't advise playing around with them without reading the official
documentation first. This type of protection is a very powerful mechanism
and it's easy to make a mess if you're not careful.

Jetpack
This mysterious name is actually what one of the most popular plugins of today
is called (it's being used by some mainstream blogs on the web; like Tim Ferriss'
http://www.fourhourworkweek.com/). Jetpack, by the guys behind WordPress.
com, offers a truly exceptional range of features and functionalities. The plugin
consists of a number of modules that can be enabled or disabled one by one. This
gives you full control over the features you want and don't want to use. Jetpack is
available at http://wordpress.org/extend/plugins/jetpack/.

After downloading and activating it, you'll see a new section in the WP Admin,
but this time, it's right below the Dashboard:

Plugins and Widgets

[148]

Inside, you can see all of the available modules and functionalities. Each comes
with a Learn More button, Configure/Deactivate button, and a quick information
on what the module has to offer.

In the current version, the modules are: Notifications, Publicize, WordPress.com
Stats, Jetpack Comments, Subscriptions, Likes, Carousel, Post By Email, Sharing,
Spelling and Grammar, VaultPress, Gravatar Hovercards, Contact Form, Tiled
Galleries, WP.me Shortlinks, Custom CSS, Shortcode Embeds, Mobile Theme,
Beautiful Math, Extra Sidebar Widgets, Infinite Scroll, Phonon, JSON API, Mobile
Push Notifications, and Enhanced Distribution.

As you can see, the list is impressive, to say the least. I won't go over each of the
modules here in detail because in total, it would probably require a chapter of
its own. Instead, I encourage you to click the Learn More button that's next to
each module and get a basic understanding of what they do. Quite possibly, the
ones you'll find most useful are: Publicize (share your content automatically to
various social media platforms), WordPress.com Stats (accessible stats), Sharing
(social media share buttons that your visitors can use), Spelling and Grammar (an
advanced spelling and grammar checker), Contact Form (let your visitors contact
you directly), and Shortcode Embeds (an easy way of including YouTube videos
and other external media in your content).

Switching to maintenance mode
The plugin that closes this short must-have list is called ThemeFuse Maintenance
Mode, and it's available at http://wordpress.org/extend/plugins/themefuse-
maintenance-mode/.

Sometimes when we're working on our sites, like for instance, playing with the
theme, adjusting sidebars, testing out new layouts, and so on, we don't want to
present our work-in-progress to the whole world. Instead, a much better solution is
to make the changes only visible to us while the rest of the world sees a placeholder
page, which informs them that there's something going on in the background and
that the site will be available soon.

Chapter 5

[149]

A page like the following screenshot:

This is exactly what the plugin in question allows you to do. The trick is that if
you're a logged in administrator, you'll be able to see the site normally. But whoever
comes across your site from the outside will see the placeholder page (it all happens
automatically, you don't have to do anything else other than enabling the plugin).

Right after installing and activating the plugin, go to Settings | ThemeFuse
Maintenance Plugin to adjust your coming-soon/placeholder page.

Plugins and Widgets

[150]

Available customizations include:

• Upload Logo: This specifies the possibility to upload a logo
• Upload Background: This specifies the possibility to upload a background
• Date: It specifies the date when the site is going to be back online
• Text: Text for the loader bar
• Completed: It shows a percentage value
• Content: It specifies some additional custom content to be displayed
• Twitter username: It is used to present a Twitter stream on the page

Be aware that the placeholder page will be visible until you deactivate the plugin.
Therefore, once your work with the site is done, don't forget to go to the Plugins
section in the WP Admin and deactivate the plugin. This will put your site back
online for the whole world to see.

If you're using the aforementioned W3 Total Cache plugin then it's a
good idea to flush the cache right after enabling ThemeFuse Maintenance
Mode (the empty all caches button in the main dashboard of W3 Total
Cache as shown in the following screenshot). This will make sure that
every visitor gets a consistent experience when browsing your site.

Widgets
Widgets are one of the native mechanisms in WordPress. Their main purpose is to
provide us with an easy-to-use way of customizing the sidebars and footers of our
site with the addition of extra content. Even though the most common placement of
widgets is indeed the sidebar, the only actual rule is that a widget can be displayed
inside a widget area. And a widget area can be anywhere a theme developer wants it
to be. Common widgets contain:

• A monthly archive of blog posts
• A clickable list of pages

Chapter 5

[151]

• A clickable list of recent posts
• A metadata box (containing log in/out links, RSS feed links,

and other WordPress links)
• Recent comments posted on the blog
• A clickable list of categories
• A tag cloud
• A block of text and HTML
• A search box, and so on

These days, most themes are widget-enabled with one or more widget areas
available for use. If I were to simplify this a bit, I'd say that widget areas behave
like locations for menus.

To control the widgets on your new website, navigate to Appearance | Widgets:

Plugins and Widgets

[152]

Twenty Thirteen comes with two widget areas. One of them is called the Main
Widget Area and the other the Secondary Widget Area. Let's discuss them both.

The Main Widget Area appears in the footer section of the site, while the
Secondary Widget Area sits in the sidebar on posts and pages. You can take
any of the widgets visible on the left-hand side and drag and drop them in the
right-hand area under Main Widget Area or Secondary Widget Area. For example,
let's take the Custom Menu block and drag it all the way to the Secondary Widget
Area. The result is as follows:

Now, we can give this block a title and also use the drop-down to select the custom
menu we want to include in this widget. Currently, there's only one menu that we've
created a while ago—Main. This is what the site looks like with the custom menu
placed in the sidebar:

Chapter 5

[153]

At this point, we have the main menu displayed two times on the site. One is in the
top area and the other is within the sidebar. As you can see, if you want to place your
custom menu somewhere on the site, you have two ways of doing so. You can assign
it by going to Appearance | Menus, or use it as a custom menu widget and place it
in any widget area that your theme supports.

Enabling any other type of widget is very similar to the process described above.
All you need to do is drag the widget you like and drop it onto the area where
you want to have it displayed. Then, once the widget is in place, you can adjust
its settings and content.

When it comes to working in the Widgets section, you can click on the little down
arrow at the right of any widget to expand the details and see the options. You can
drag a new widget in from the collection of Available Widgets on the left. You can
drag existing widgets up and down to change their order. You can delete a widget
by expanding it and then clicking on Delete.

Experiment with putting widgets into different widget areas and then refresh your
blog to see how they look. Always be sure to click on Save if you make changes to
a widget.

Also, at the bottom of the screen, there's one more section labeled Inactive Widgets.
Many widgets have their settings and parameters. And even if you don't want to
display a particular widget on your site at the moment, or don't necessarily want to
lose its settings in case you'd like to use the widget again in the future, this section
is where you should put it. Just like the label says, it's where you can drag your
widgets to remove them from the sidebar but keep them as inactive. This is also
where you will find any widgets that were previously active in a sidebar, but that
got deactivated automatically after switching to a theme that doesn't have the same
sidebar naming convention.

Plugins and Widgets

[154]

Summary
This chapter was all about expanding the features available on your site and making
your content more attractive without the need to touch any source code. Basically,
that's the whole idea behind plugins. Let's face it, most developers actually don't
need plugins because they can code things on their own. However, for the rest of the
world, plugins are what makes WordPress easy to use and attractive for everyone.

At this point we know how to control the content of our WordPress site, so now
it's about time to learn how to control the display. In the next chapter, we will start
discussing themes.

Choosing and Installing
Themes

One of the greatest advantages of using a Content Management System (CMS)
for your blog or website is that you are able to change the look and feel of your
website without being knowledgeable about HTML and CSS. Almost every CMS
allows users to customize the look of their site without having to worry about their
content being changed. These managed looks are named themes. On other platforms
(for example, Blogger, Joomla!, Drupal, and so on), themes are sometimes called
templates or layouts.

Thousands of WordPress themes are available for download free of cost and
thousands of more themes are available at a pretty low cost. Some of the free themes
are developed by members of the WordPress community and listed on WordPress's
main website, that is http://wordpress.org/extend/themes/.

Before you change the theme of your current site, you will want to know the
following aspects:

• Some basic things about the theme you're considering
• Finding quality themes
• Choosing the theme that best suits your content and audience
• Installing a theme

In this chapter, we will discuss all of these topics. This chapter is a ground-up
guide to using themes. In the next chapter, we will discuss the advanced topic of
developing your own themes.

Choosing and Installing Themes

[156]

If you are using WordPress.com to host your WordPress website,
you cannot upload themes to your site; you have to choose from the
hundred or so themes that WordPress.com makes available to you.

Finding themes
There are dozens of websites that offer WordPress themes for you to download
and implement on your own website. Many theme developers offer their themes for
free, whereas some charge a small fee. Of course, if you cannot find a free theme that
fits your needs, you can always hire a theme developer to create a customized theme
for you, or you can be your own theme developer (refer to Chapter 7, Developing Your
Own Theme).

WordPress Themes Directory
The first place you should always go to while looking for a theme is the official
WordPress Themes Directory that is available at http://wordpress.org/extend/
themes/. This is where everyone in the WordPress community uploads their free
themes and tags them with keywords that describe the basic look, layout, and
function of their theme. Have a look at the following screenshot:

Chapter 6

[157]

By looking at the list of popular themes on the right-hand side of the screen, you can
see which themes are chosen most often. Twenty Thirteen, as you already know, is
the default theme that WordPress uses automatically when you first install it.

To get a better idea of what a theme will look like than what's offered by the
thumbnail, just click on the title of the theme (in my case it's Responsive that is
available at http://wordpress.org/extend/themes/responsive). You'll be
taken to the theme's detail page, as shown in the following screenshot:

Choosing and Installing Themes

[158]

The preceding screenshot shows you the theme's description, all of the tags that
apply to it, the average rating given to it by other users, and some comments on
the theme. If you click on the Preview button, you'll get to see the theme actually
in action. The theme in action will appear as shown in the following screenshot:

This preview is very useful. It not only shows you exactly what the theme will look
like and what is included in the sidebar, but also includes examples of a variety of
different HTML and element styles so that you can see how they'll appear. These
elements include images, headings (1, 2, 3, 4, 5, and 6), paragraphs, lists, forms,
tables, blockquote, code, and links.

If you browse through this site and find a theme you like, make a note of it; we'll
discuss how to add it to your WordPress site later in this chapter.

Chapter 6

[159]

It's also worth pointing out that each theme in the official directory comes with its
own Support section and user Reviews section. You can view them by clicking on
one of the links available in the bar just below the theme's name (highlighted in the
following screenshot):

Main types of themes
As mentioned earlier, there are two main types of themes, namely free themes
and premium (paid) themes. Also, if you don't consider price being a factor here,
we can also divide themes into three additional groups, namely standard themes,
child themes, and theme frameworks.

We will discuss child themes in detail in the next chapter, so for now, let's just say
that a child theme is a theme that inherits the functionality of another theme, that is
the parent theme.

Standard themes are themes meant to work in their original form while allowing some
basic customizations and tuning up (just as the default theme, Twenty Thirteen).

Theme frameworks, on the other hand, are meant to be used as a base for custom
theme development and some heavy customizations to make them fit the user's
needs hand-in-glove. While going for theme frameworks probably sounds good
from your perspective right now, the fact is that they are usually highly code-heavy
products, which means that you can't really take full advantage of them if you don't
possess any programming skill or don't have anyone on your payroll who does. We
will discuss theme frameworks in the next chapter, when we start creating our own
themes. In short, creating a theme from the ground up will have more educational
value, but when it comes to getting the most out of your time and ending up with
the most quality result, theme frameworks are the way to go.

At the end, standard themes are what most bloggers and site owners work with
during their WordPress journeys. Especially if they don't need any advanced
customizations or don't run purpose-specific websites, such as animated sites
and interactive sites.

Choosing and Installing Themes

[160]

Finding more themes
If you can't find a theme in the directory that you like, you have other options.
There are other sites with free themes and also sites that sell themes for a price. Most
commercial themes are offered at two or three price points. The first price is simply
the cost of buying the theme for your own use and can be anywhere from $30 to
$100. Such a license allows you to use the theme on a single site. The second price is
the price you pay if you want to be able to use the theme on multiple sites (domains)
or when you need the project graphics (for example, Photoshop documents) and
other development files. In this case, it's usually from $60 to $200. The last price
point, although not that popular nowadays, is the exclusive license. You can get it if
you want to be the only user of the theme. That can be anywhere from $500 to even
$1,500, or more.

Let's focus on free versus paid themes here. While every theme in the official
directory is free, the rest of the Internet is split in half on this. Some sites provide free
themes exclusively while others offer paid ones exclusively. There's also a number
of distributors who sit in between. I, personally, don't advise getting any free themes
from anywhere other than either the official directory or one of the respected theme
stores, which offer some free themes as a promotional method. The reason is simple.
Only quality themes are allowed into the official directory, and I'm not just talking
about the look or the design. What matters apart from the design is also the code
structure and code quality. There's not one theme that features any mysterious
blocks of code, such as encrypted code or suspicious external links that will ever find
its way into the directory. That's what ultimately makes the official directory one of
the best sources of free WordPress themes on the Internet.

When it comes to various free themes being released in theme stores, the story is
quite similar. The "first league" of WordPress themes, so to speak, comprises of
respected, serious companies. So even when they release a free theme, they can't
afford it being low quality or lacking in any other way. Therefore, in most cases they
are safe to use as well.

The last thing we can witness online are hundreds, if not thousands of free themes
being released on random websites, promoted through paid advertising, "top
themes" lists, advertorial articles, and so on. Let me say this again, I don't advise
you to get any of those, even if the designs are attractive. The fact is that you'll never
know what sits on the inside and what security breaches can be taken advantage of
to hack into such a theme. They are also almost never supported by their creators
and there's no theme documentation or updates. In short, it is not worth it.

Chapter 6

[161]

If you want to learn more about why unknown-origin free themes
are unsafe to use, feel free to visit the article available at http://
newinternetorder.com/free-wordpress-themes-are-evil/

Finally, if you have some money you'd like to invest in your site and its' quality,
consider getting a full-blown premium theme, or even a premium theme framework.
As I've mentioned, the price range is around $30 to $100 depending on the
manufacturer and the features the theme comes with.

You are welcome to check out any theme provider you wish, but just to make things
quicker, the following is a go-to-first list of quality theme stores:

• StudioPress: http://www.studiopress.com/
• ThemeFuse: http://themefuse.com/
• DIYthemes: http://diythemes.com/
• WooThemes: http://www.woothemes.com/
• WiniThemes: http://winithemes.com/
• Rockable Themes: http://rockablethemes.com/
• ThemeForest: http://themeforest.net/category/wordpress

In general, the most good commercial theme sites let you see a preview of the theme
in action before you buy it. Some also let you customize the theme before download.
As with any other online shopping experience, do a little research before buying to
make sure you'll be getting a quality theme with decent support. There are plenty of
badly-coded themes out there, and even themes with malicious code. Before buying
a theme, verify the source of the theme and see if you can find feedback or reviews
from anyone else who has purchased it.

To find even more sites that offer themes, just do a Google search for WordPress
themes or premium WordPress themes and you'll get over sixty million hits. Also,
keep in mind that you can choose a basic theme now and customize it, or create your
own from scratch later as you build skills by reading this book.

Some not-design-related theme basics
For you to be better informed while choosing and installing themes, let's have a
quick look at some factors to consider, and what actually makes a theme.

Choosing and Installing Themes

[162]

The structure of a theme
A WordPress theme is actually a collection of files in a folder. There are no special
or unusual formats, just a few requirements for those files in the theme folder.
The only requirements for a folder to be a valid WordPress theme are as follows:

• It should have a style.css file and an index.php file
• The style.css file must have the basic theme information in its

first five lines

There are a number of additional files that you'll find in most of the theme folders.
They are as follows:

• The screenshot.png file is the little thumbnail that shows what the theme
looks like

• The images folder is where all images associated with the theme live
• A variety of files that are used for different purposes, for example header.

php, footer.php, page.php, single.php, archive.php, and so on

You don't have to worry about these details now, but knowing them will help
you identify what is going on in the themes you download for now. This will
also be useful in the next chapter when we discuss about making your own
theme from scratch.

Also, don't worry if you download a theme and its directory structure looks very
different from what's described here. Some theme developers decide to go with
their own structure in order to provide some extra features and a more customizable
environment. This is mostly the case with various theme frameworks and big
premium themes that come with their pre-made child themes.

When you download a theme, you are actually just downloading a zipped folder.

Factors to consider when choosing a theme
As you look through all of the available themes, you'll see that there is quite
a variety of both look and feel, and layout.

To be honest, picking the perfect theme involves effort and some thought.
A couple of years ago, there were just a handful of quality websites and stores
where you could get your hands on some themes. Now, there are hundreds to
thousands of them.

This all results in a situation where there are multiple factors to consider when
selecting a theme.

Chapter 6

[163]

The purpose of the theme
As I've already mentioned multiple times in this and the previous chapters,
nowadays, WordPress is perfectly capable of running any kind of site, and this is
reflected in the number of available themes. Therefore, the first question to answer is
what do you need the theme for?

Depending on the kind of site you're planning to launch, you should focus on
different types of themes. The following are some of the popular possibilities:

• Traditional blogs: They are the ones where the content is laid out in a
reverse chronological order, with only several pages of static content.

• Photo blogs: They are very much like the traditional blogs when it comes to
content organization, but in this case, the content consists mainly of photos.
This is a popular type of blog among photographers and other creative
individuals.

• Video blogs: They are very much like photo blogs, except now, we're dealing
with videos.

• Small business sites and corporate sites: Most small business sites don't
feature a lot of posts like traditional blogs. They usually focus on static pages
for providing the most important information about the business (such as
contact data and offer). This type is most commonly used by local businesses,
such as restaurants, cafes, hotels, and other similar "physical" businesses.
Corporate sites are very similar in nature, but are much bigger and feature
much more content.

• Online magazines: The main difference between traditional blogs and online
magazines is that the latter feature a lot more content with usually as many
as ten or more posts being published every day. This requires good content
layout and clear presentation.

• E-commerce sites: Traditionally known as online stores or shops. An
e-commerce store is any website that offers a shopping cart functionality and
allows its visitors to buy a wide range of products, much like they'd do in a
traditional store or supermarket.

• Software or app sites: These are websites devoted to promoting or selling
one specific product. Nowadays, it's usually some kind of an app or other
piece of software.

Choosing and Installing Themes

[164]

The trick while choosing a theme for your site is to understand its purpose and make
your decision based not only on the appearance of the theme but also on the thing
you need the theme for, its capabilities, as well as options for further customization.
The easiest way to do this is to pay attention to the categories of themes on the site
where you're looking for them. For instance, if you go to one of the popular theme
stores such as http://www.woothemes.com/product-category/themes/ or
http://themefuse.com/wp-themes-shop/, you'll see that they both feature great
mechanisms for filtering themes by purpose. The following screenshot shows how
ThemeFuse does it:

And the following screenshot is of WooThemes:

You can also do some research on the Internet and see what is the standard when it
comes to the themes being used in your niche and for your type of site. For example,
if you're thinking of launching a photo blog, check what sort of themes other photo
blogs use. Do they feature a lot of sidebars? How big are the photos they publish?
Are there a lot of static pages? And so on. The idea is this: Don't reinvent the wheel.
If there's a significant number of sites that are similar to the one you're planning
to launch, you should always try learning from them, and then make an educated
decision when choosing your theme.

Chapter 6

[165]

Theme licensing
If you're getting a theme from the official directory, this part doesn't concern you.

However, when getting a theme from a professional theme store, you usually have
two or more options regarding the license. As I've mentioned earlier, the price range
is usually $30 to $100. Now, there are many licensing models, but two of them are
the most popular web-wide:

• Standard, one-site license: It allows you to launch one site using the
theme. It's the recommended choice if you're just searching for a theme
for yourself and not to use it on other people's sites as well. This is the
cheapest kind of license.

• Developer license: It is targeted towards developers and people who want
to launch more than one site with a theme. Additionally, the package usually
includes PSD project files and other mid-development files (note that some
one-site licenses include those as well). Developer licenses can be as much as
two times more expensive than the standard, one-site licenses.

Up-to-date themes only
This is probably the most important parameter here. Your theme has to be up-to-date
or it will fail to take advantage of all the newest features in WordPress. The only bad
news is that you can't know for sure whether a theme is a modern one or not. You
can only rely on the details provided by the theme seller. But as bad as this sounds,
it's actually not that big problem because big theme stores can't afford to lie in their
marketing materials. So, whenever you see a message that the theme is compatible
with WordPress versions X.X, it's most likely true, provided you're getting a theme
from a respected company.

Also, a good rule of thumb is to check when the last update took place. Depending
on the theme store, this information can be displayed in various places so I can't
give you any specific advice where to look for it. Nevertheless, if you're getting your
theme from the official directory at http://wordpress.org/extend/themes/,
you can find this detail in the right-hand sidebar on every individual theme's page
(labeled Last Updated):

Choosing and Installing Themes

[166]

Themes that are customizable
When considering a theme, make sure to find answers to the following questions:

• Are the sidebars flexible? Can I choose how many sidebars I want to display?
• Is it widget-ready?
• Does it support custom menus?
• Is it complex or simple? Which do I prefer?
• How flexible is the content and layout? Can I choose the column count

and widths?
• Does it offer a Theme Settings page where I can customize layout, category

display, home page, and other options?

At this point in WordPress's development, I recommend rejecting any theme that
does not support widgets or custom menus. This is because these days, a situation
where you can use a theme right out of the box rarely happens, so having at least a
couple of customization possibilities goes a very long way.

Themes with responsive structure
This is one of the new parameters among modern themes. Back in the day, if you
wanted to make your site mobile-friendly, you needed to get some plugins and
additional mobile themes, and then enable them to work at the same time. Now,
with HTML5 and CSS3 you can use just one theme and be certain that it's going to
look great on every possible device (from desktop computers, to laptops, to mobile
devices). The keyword to all this is responsive design/structure.

Whenever a theme developer indicates that their theme is responsive, it means that
it's compatible with all the devices people use to access the Internet these days. In a
nutshell, whenever a theme is responsive, this fact will be surely mentioned on the
official sales or download page.

Support, reviews, and documentation
This is especially important if you're getting a paid premium theme. Quite simply,
since you're paying money, you naturally want to be sure that the product you're
getting is a quality one that provides good customer service and well-designed
functionality. Hence the importance of documentation, reviews, and customer
support. It's as simple as this.

I do admit that selecting a theme can take a while, especially if you have to
remember about all of the preceding aspects, but this is the work that will surely pay
off. Let's not forget that you're going to be stuck with the theme you choose for at
least a year or two (a common scenario), so you surely don't want to spend money
on a low-quality product.

Chapter 6

[167]

Installing and changing themes
Now that you've chosen the theme you want to use, you'll need to install it into your
WordPress website.

You'll have the following two choices, as you did when adding new plugins:

• If the theme you want is in the WordPress theme directory, and if your server
is set up properly, you can add the theme directly from within the WP Admin

• If either of those two conditions are not met, you'll have to download,
extract, and then upload the theme by hand

Adding a theme within the WP Admin
As mentioned in the preceding section, you can add a theme directly from within
your WP Admin if you've chosen a theme from the WordPress theme directory, if
you're using a current-enough version of WordPress, and if your server settings
allow. First, navigate to Appearance, and then click on the Install Themes tab, as
shown in the following screenshot:

Choosing and Installing Themes

[168]

This will look similar to the Add New Plugins page because you have some
subnavigation links at the top, namely Search, Upload, Featured, Newest, Recently
Updated along with a search box. You also see checkboxes that will let you narrow
down the type of theme for which you're looking (by color, by columns, by feature,
and so on). The theme programmers tag their themes with this information and this
is how the theme directory knows which themes meet these criteria.

I've already found a theme I like, so I'll put its name in the search box, as shown in
the following screenshot:

If I click on Live Preview, I will see the same theme preview that I saw on the main
theme directory page. Note that at this point, the theme preview will be the same as
the preview on the Themes Directory page, rather than a preview of your own site's
content. Until the theme is installed, you won't see a preview of your own site.

Chapter 6

[169]

If I click on Install and then confirm by clicking on Install Now, this theme will
be downloaded and added to my collection of themes, as shown in the following
screenshot:

If I click on the thumbnail or the Live Preview link on the Appearance page, I will
see a preview of the theme with my own content in it. If I like it, I can activate the
theme in one of the following two ways:

• By clicking on Activate Responsive in the upper-right corner of the Preview
window

• By clicking on Activate in the Responsive box on the main Appearance page

After activating, this theme will be used for my site instead of Twenty Thirteen, the
default WordPress theme.

Choosing and Installing Themes

[170]

Downloading, extracting, and uploading
If you can't install a theme from within the WP Admin for one of the two
aforementioned reasons, you'll have to use the mentioned steps instead.

Additionally, due to the growing popularity of external theme sources like various
theme stores and independent developers, downloading and installing a theme
manually becomes the default way of handling things, and gradually replaces the
traditional approach of getting a theme from the official directory.

Therefore, to provide a good example when explaining the manual installation,
I'm going to get a theme (a free one) from one of the premium theme stores and
guide you through the process of having it installed.

It doesn't matter where you get your themes from, the installation procedure always
starts once you have the theme downloaded to your computer. When this is done,
you'll see a ZIP file on your desktop.

The theme I'd like to try out is called Gadgetry and it's a free theme available at
ThemeFuse.com (http://themefuse.com/wp-themes-shop/free-wordpress-
theme/).

Depending on the source of the theme, you might be required to either create a
user account, make a purchase, or sign up to a newsletter, and so on, in order to get
the theme. Of course, sometimes, there's just a direct download link. ThemeFuse has
a pretty straightforward offer so I'm not going to describe the whole process
in detail. I already have the theme's ZIP file so let's take it from there.

At this point, you can upload the ZIP file through the WP Admin by navigating to
Appearance | Install Themes | Upload.

Chapter 6

[171]

You can select the ZIP file and upload it that way. If that doesn't work, continue with
the following steps to extract and upload the theme files.

1. If you're using Mac, the ZIP file may have automatically been unzipped for
you, in which case you'll see a folder on your desktop instead of the ZIP file
or in addition to the ZIP file (for example, tfuse-download-gadgetry). If
not, just do the extraction or unzipping manually so that you have the theme
folder on your desktop.

2. The following are the file contents of the Gadgetry/tfuse-download-
gadgetry folder that I downloaded:

It's got a style.css file and an index.php file, and so I know it's definitely
a valid theme.

Now, you need to upload the themes folder to your WordPress website. As you
did in Chapter 2, Getting Started, you need to FTP to your server. Once there, navigate
to your WordPress website's installation folder. Next, go to the wp-content folder,
and then to the themes folder. You'll see one themes folder in here already, named
twentythirteen (and possibly others as well). These are the themes that come
pre-installed with WordPress.

Choosing and Installing Themes

[172]

Upload the folder you just unzipped (for example, tfuse-download-gadgetry)
into the themes folder on your server. That's it!

Now, when you go to Appearance in your WP Admin, the theme will appear.
You can click on Live Preview and Activate just as if you'd added it from within
the WP Admin (in the preceding section).

Summary
This chapter described how to manage the basic look of your WordPress website.
You have learned where to find themes, why they are useful, what the basic
differences between various themes are, how to select the perfect theme for
your site, and how to install themes manually and through the WP Admin.

In the next chapter, you will learn step-by-step, how to build your own theme
from scratch.

Developing Your Own Theme
You know how to find themes on the Web and install them for use on your
WordPress site. However, you may not be able to find the perfect theme, you
may want to create a thoroughly personalized theme, or you may be a website
designer with a client who wants a custom theme.

In this chapter, you'll learn how to turn your own design into a fully functional
WordPress theme that you'll be able to use on your own site. You'll also learn
how to convert your theme folder into a ZIP file that can be shared with other
WordPress users on the Web.

All you will need before we get started is have the following:

• Your own design
• The ability to slice and dice your design to turn it into HTML

We'll start out with tips on slicing and dicing, so that your HTML and CSS files are
as WordPress friendly as possible, and then cover the steps for turning that HTML
build into a fully functional theme.

Note that I assume that you are already comfortable writing and working with
HTML and CSS. You don't need to be familiar with PHP because I'll be walking
you through all of the PHP code.

This chapter covers only the very basics of theme creation. This topic
actually deserves a whole book, and it has one! I highly recommend the
book WordPress Theme Development Beginner's Guide Third Edition by Rachel
McCollin and Tessa Blakeley Silver, Packt Publishing. This book covers in
detail everything you possibly want to know about creating your own
theme, including even such details as choosing a color scheme, considering
typography, writing the best CSS, and laying out your HTML using Rapid
Design Comping. If this chapter leaves you wanting more, go there!

Developing Your Own Theme

[174]

Setting up your design
Just about any design in the world can be turned into a WordPress theme. However,
there are some general guidelines you can follow—both in the design and the
HTML/CSS build of your theme—which will easily convert the design into a theme.

Designing your theme to be WordPress
friendly
While you can design your blog any way that you want, a good way to start
would be with one of the standard blog layouts.

Note that while these different standard layouts have differing numbers of
columns and column widths, they all have these essential parts:

• Header
• Main column
• Side column(s)
• Footer

WordPress expects your theme to follow this pattern, and so it provides functions
that make it easier to create a theme that has this pattern. As you're designing your
first blog theme, I suggest including these parts. Also, a design that stays within the
same general design patterns of WordPress themes will most easily accommodate
existing plugins and widgets.

That being said, a common situation in the WordPress world is to build custom
home pages or landing pages (purpose-specific pages, mostly commercial) that
feature completely different designs. Therefore, you might stumble upon websites
that don't look like they're built with WordPress at first glance. Also, many modern
theme frameworks give us the possibility to create such custom home pages as well
as other custom page templates (more about them later within the chapter). This is
all part of the trend to make WordPress capable of running any kind of website.

Chapter 7

[175]

The two-column layout is the simplest and the easiest to implement as a WordPress
theme, so we'll be using this layout as an example in this chapter.

Now, the example I'm actually using isn't an ordinary one. I got it from ThemeFuse
(http://themefuse.com/)—one of the top WordPress theme stores out there.
Basically, after a brief talk, one of the co-founders was happy to help me out and
agreed to provide a custom and free design for everybody to use (you can find both
the design and the complete WordPress theme that was built on it in the official code
bundle for this chapter). Here's what it looks like:

Now that the design is complete, we're ready for the next step, namely turning
the design into code.

Developing Your Own Theme

[176]

Two paths of theme development
Essentially, there are two paths you can follow while developing your new theme
(as I mentioned in the previous chapter). You can either work from the ground up,
that is, by building the HTML structure and the functional structure of the theme
manually, or you can work on top of an existing theme framework, where you only
have to adapt your design to work on the structure provided by the framework itself.
Both these paths have their pros and cons though, as always.

Building a theme from the ground up
The main advantage is the massive educational value of this path. When you're
developing a theme from scratch, you're learning the basis of theme construction
and function. This kind of knowledge goes a long way for your future projects
in WordPress.

On the other hand, it's also the longer of the two paths. In a professional production
environment (among people designing and developing themes as a profession),
creating themes from scratch is a highly time-consuming approach making it
quite ineffective. And it's not that much about adapting the design (which always
must be done, with theme frameworks as well), it's more about building the core
functionality of a theme.

Building a theme with a framework
The main advantage of this approach is its time efficiency and the quality of the final
result. For instance, if you're building a theme from scratch, you have to make sure
to keep your theme up-to-date long after the development process has been finished.
The thing is that WordPress gets updated very frequently (around once every 51
days) and many features change their purpose over time, get completely erased or
replaced with new ones. In such a scenario, only modern themes that are kept up-to-
date can take full advantage of those features. Updating your theme will obviously
take a massive amount of work. That is where theme frameworks come into play. In
essence, theme frameworks are themes with a very minimalist design and no visually
attractive aspects. The purpose of frameworks is to make them the base of any future
theme by acting as a parent theme. So the fact that the framework itself has no design
allows every creator to introduce almost any design imaginable, while at the same time
taking full advantage of the features and constructions provided inside the framework.
Now, the strength of quality frameworks is that they get updated almost as frequently
as WordPress plugins. In short, if you're using a framework, you don't have to worry
about your theme going out of date. Whenever there's an update available, you can
simply perform it and forget about the whole thing.

Chapter 7

[177]

This brings me to the main disadvantage of using theme frameworks. Most of the
time, theme frameworks are big and complex pieces of web software (PHP scripts).
So if you want to be able to use them effectively, you'll have to spend a significant
amount of time learning the framework. On top of that, if you decide to switch to
a different framework later down the road, you'll have to learn it all over again
(frameworks are usually very different from each other). As you can see, reaping
the benefits of using frameworks has its price.

Nevertheless, if you're still interested, here are some of the popular theme
frameworks (both paid and free ones):

• Thematic: http://themeshaper.com/thematic/
• Hybrid: http://themehybrid.com/themes/hybrid
• Gantry: http://www.gantry-framework.org/
• Whiteboard: http://whiteboardframework.com/
• Genesis: http://my.studiopress.com/themes/genesis/
• Thesis: http://diythemes.com/
• Some frameworks listed by WordPress: http://codex.wordpress.org/

Theme_Frameworks

In the end, I advise you to create your first theme manually, just to learn the craft
and get to know all the basic structures and mechanisms sitting inside WordPress.
Then, as the next step in your mastery (if you're planning to work on other themes in
the future), you can pick one of the popular theme frameworks, get deeply familiar
with it, and use it as the base for your future themes from that point on. Such an
approach will allow you to reach maximum time efficiency and save you the effort of
dealing with the core set of functionalities that every theme needs, regardless of the
design or purpose.

In this chapter I'm going to focus on the from the ground up approach as it is the one
that offers more educational value. Also, if I were to give you an in-depth guide on
building a theme with a specific framework, this guide wouldn't be usable for any
other framework, so from the ground up it is!

Your journey with theme development starts once you have a graphic design
prepared in Photoshop or some other similar tool. You can also take the code bundle
for this chapter and work with the aforementioned design from ThemeFuse. Either
way, the next step is to turn it into some HTML code.

Developing Your Own Theme

[178]

Converting your design to code
The next step towards turning your ideal design into a WordPress theme is
to slice images out of your design and write HTML and CSS files that put it all
together. For the purpose of this chapter, I assume that you already know basically
how to do this, and let's also assume we're working with a tableless layout! We'll
cover some pointers on how to do your slicing and dicing in a way that will fit best
into WordPress.

If you'd like to learn how to do Rapid Design Comping, which is how
to turn your design into HTML quickly and easily, be sure to check
out the book WordPress Theme Development Beginner's Guide Third
Edition by Rachel McCollin and Tessa Blakeley Silver, Packt Publishing.

Let's get down to business and take a look at the HTML structure that was built
based on the design I'm using.

Examining the HTML structure
Following is the very basic layout of the HTML file for my food blog design;
I'm showing it just to give you a general understanding of what we're going
to be working on:

<!DOCTYPE html>
<html lang="en">
<head>
 <title>Title</title>
 <!-- other head elements -->
</head>
<body>
<div class="body_wrap">
 <div class="header_top"><!-- header of the site -->
 <div class="container">
 <div class="logo"></div>

 <nav id="topmenu"><!-- topmenu -->
 <li class="menu-level-0 mega-nav">Navigation
items
</nav>

 <div class="topsearch"><!-- search form --></div>
 </div><!--/ container -->

Chapter 7

[179]

 </div><!--/ header_top -->

 <div id="middle" class="cols2">
 <div class="container clearfix">

 <div class="content" role="main">
 <div class="postlist">

 <div class="post-item"><!-- individual post -->
 <div class="post-title">
 <h2>Lorem Ipsum Dummy Text
</h2>
 <div class="post-meta">
 posted by ... | posted on ... |
comments 12</div
 </div>
 <div class="entry clearfix">
 <p>Lorem Ipsum More Dummy Text<a href="blog-details.
html" class="link-more">READ MORE</p>
 </div>
 </div>

 </div><!--/ post list -->
 </div><!--/ content -->

 <div class="sidebar" role="complementary"><!-- the sidebar -->

 <div class="widget-container widget_recent_entries">
 <h3 class="widget-title">Latest from the Blog:</h3>

 <li class="clearfix">Recent items

 </div><!--/ widget_recent_entries -->

 <div class="widget-container widget_tag_cloud">
 <h3 class="widget-title">Popular Tag Cloud:</h3>
 <div class="tagcloud">
 Tag-1 Tag-2
 </div>
 </div><!--/ widget_tag_cloud -->

 </div><!--/ sidebar -->

Developing Your Own Theme

[180]

 </div><!--/ container -->
 </div><!--/ middle -->

 <div class="footer"><!-- the footer -->
 <div class="container clearfix">
 <div class="botmenu">

 <li class="menu-level-0">2nd Menu

 </div>
 <div class="copyright">...</div>
 </div>
 </div>

</div><!--/ body_wrap -->
</body>
</html>

You can see that I've separated out these four major parts:

• The header is in div with class="header_top"
• The side column is in div with class="sidebar"
• The main column is in div with class="content"
• The footer is in div with class="footer"

I'd like to call your attention to a few other things that have been done here:

• There's a standard place for the logo. Of course, the logo.png file can be
replaced with another file that holds your actual logo.

• The <nav id="topmenu"> element, the main navigation, is in an unordered
list (ul). I did this because WordPress has a function that spits out the
navigation of your site in the order you choose. When WordPress spits out
the list, every linked item is in a list item tag (li).

• The sidebar is set with the attribute role="complementary". Roles are
one of the relatively new HTML parameters. Essentially, the role attribute
describes the role that the element plays in the context of the document. In
this case, the sidebar is complementary to the main content (and if you pay
close attention you'll notice that the main part, the content, is indeed set to
role="main"). In general, such attributes are meant to explain the purpose of
elements in the HTML structure.

Chapter 7

[181]

• Inside the sidebar, the recent posts list and the tag cloud are similar. There
are going to be a number of items that you may want to add to your sidebar,
including widgets. Many of these items will be lists with titles, so the HTML
structure makes it possible.

• Within the <div class="postlist"> element is a <div class="post-
item"> element. Even though this basic layout has just one post in it, I
know that I'll want to show more than one post at a time. So this <div
class="post-item"> element will be repeated for each post.

Now that I've got my basic layout, I'm going to add a few more HTML elements to
flesh it out a bit, including more information in <head> as well as the search box,
and some additional CSS. Then, I'll fill up the sidebar, header, content, and footer
with a bunch of dummy text so that it looks almost exactly like the theme's design
in Photoshop. I'm not including the complete HTML here, but you can find it in the
code bundle for this chapter (in the folder named HTML) if you'd like to do the same.

Examining the CSS
Generally, a very good practice in web development is to start your CSS design by
resetting all the default styles used by various web browsers. The main issue and
the reason why this is an important step is because most popular web browsers, or
should I say every single one of them, has its own default set of CSS styles. And if
you want your theme to look exactly the same in every browser, you have to start
your work by resetting those styles, whatever they might actually be. The good
thing about it is that you don't have to do it manually. You can just use one of the
reset scripts available on the Internet. For the purpose of this description, I'm using
the reset script by Eric Meyer (get it at: http://meyerweb.com/eric/tools/css/
reset/). So, what we're doing first is just taking the following CSS and placing it at
the beginning of our new style.css file:

html, body, div, span, applet, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
del, dfn, em, img, ins, kbd, q, s, samp,
small, strike, strong, sub, sup, tt, var,
b, u, i, center,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, embed,
figure, figcaption, footer, header, hgroup,
menu, nav, output, ruby, section, summary,
time, mark, audio, video {
 margin: 0;

Developing Your Own Theme

[182]

 padding: 0;
 border: 0;
 font-size: 100%;
 font: inherit;
 vertical-align: baseline;
}
/* HTML5 display-role reset for older browsers */
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
 display: block;
}
body {
 line-height: 1;
}
ol, ul {
 list-style: none;
}
blockquote, q {
 quotes: none;
}
blockquote:before, blockquote:after,
q:before, q:after {
 content: '';
 content: none;
}
table {
 border-collapse: collapse;
 border-spacing: 0;
}

Let's now take a look at the actual CSS, the things that build our design and not
just reset it. First, we'll review the CSS that displays everything you see in the design.
Note that I've got styles for all of the key elements such as the header, sidebar, main
content area, and footer.

Also please notice that this is just scaffolding, so to speak. It only indicates the
individual areas of the final CSS stylesheet. Listing the complete version here
wouldn't be very helpful, as I'm sure that you're much more likely to copy and
paste the code from the official bundle rather than rewriting it straight from here.
Therefore, I'm including the complete version in the aforementioned code bundle
and right now, I'm only presenting the individual areas of the CSS. This is just to
make the whole thing easier to grasp once you look at the complete stylesheet. To
be honest, the final CSS isn't actually that complex from a CSS-design point of
view, but it is quite long since it was created mostly by ThemeFuse, and they
want everything to look great (it's kind of their job). Here's the simplified version.

Chapter 7

[183]

Let's start with the general structure and the typography settings. This will make our
text formatting look nice:

/*===*/
/* 1. GENERAL TYPOGRAPHY */
/*===*/
/*-----------------------------------*/
/* General Styles */
body {
 font-family: 'Cabin', sans-serif;
 color:#4f5e62;
 font-size:14px;
 line-height:1.6em;
 position:relative}

.body_wrap {
 width:100%;
 position:relative}

What follows next is a set of rules that will take care of the alignment, fonts, font
sizes, block quotes, and other typical HTML elements:

/* Typography and structure
- setting general and text alignment (left, center, right, etc.)
- classes for clearing the alignment
- typography settings (fonts, font sizes, padding, etc.) for headings,
and other elements
- blockquotes display settings
- link formatting
- list formatting
- handling tables
- formatting forms and form fields */

Next, the structure of the site itself:

/*===*/
/* 2. SITE STRUCTURE */
/*===*/
/*-----------------------------------*/
/* Header Top */

Developing Your Own Theme

[184]

.header_top {
 width:100%;
 height:86px;
 background:url(images/header_top_bg.png) 0 0 repeat-x;
 top:0;
 z-index:2}

.header_top .container {
 width:940px;
 padding:17px 0 0 0}

.logo {
 overflow: hidden;
 height:50px;
 width:300px;
 float:left;
 z-index:2;
 position:relative}

.site-title {
 margin-top: 10px;
}

.logo img {
 max-width:100%}

/*-----------------------------------*/
/* Topmenu */

/* topmenu Dropdown classes */

/*-----------------------------------*/
/* Header */
.header {
 background-position:center top;
 position:relative;
 z-index:1}

/*-----------------------------------*/
/* Middle content */

/* Layout: Full Width, Sidebar Left, Sidebar Right */
#middle {
 clear:both;

Chapter 7

[185]

 position:relative;
 z-index:1;
 min-height:1px}

/* sidebar right */
#middle .content {
 width:624px;
 float:left;
 min-height:100px;
 margin:0 0 0 10px}

#middle .sidebar {
 width:250px;
 float:left;
 margin:0 10px 0 66px}

#middle.cols2 {
 padding:65px 0}

/*-----------------------------------*/
/* Footer */
.footer {
 background:url(images/footer_bg.jpg) 0 0 repeat-x}

.footer .container {
 padding:50px 0 40px 0;
 color:#747e82}

.footer p {
 margin:0}

.botmenu {
 text-align:left;
 text-transform:uppercase;
 font-size:12px;
 font-weight:500;
 width:580px;
 float:left}

.copyright {
 float:right;
 width:360px;
 margin-left:20px;
 font-size:13px;}

Developing Your Own Theme

[186]

Finally, we'll have to take care of the widgets, posts, comments, and other elements
native to WordPress:

/*===*/
/* 3. EXTENDED TYPOGRAPHY and SHORTCODES
/*===*/

/*===*/
/* 4. WIDGETS STYLES */
/*===*/

/* Sidebar Widget Container */
.sidebar .widget-container,
.content .widget-container {
 position:relative !important;
 line-height:1.4em;
 color:#292929;
 padding:0}

.sidebar .widget-container {
 padding-bottom:40px}

/*===*/
/* 5. POSTS */
/*===*/
/*-----------------------------------*/
/* Blog post list */
.entry {
 line-height:1.5em}

.post-item .entry,

.post-detail .entry {
 padding:0;
 color:#4f5e62}

.post-detail {
 padding-bottom:10px;
 margin-bottom:20px}

Chapter 7

[187]

.post-page {
 background:none}
.entry .post-title h2 {
 color:#110d09;
 display:block}

/*-----------------------------------*/
/* Pagination and Navigation */

/*-----------------------------------*/
/* Comment list */
.comment-list {
 position:relative;
 padding:0 0 10px 0;
 margin-top:30px}

.link-add-comment {
 position:absolute;
 top:10px;
 right:5px;
 color:#e8890f;
 font-weight:bold;
 text-transform:uppercase;
 font-size:13px}

/*-----------------------------------*/
/* Comment form */
.add-comment {
 margin:20px 0 40px 0;
 position:relative;
 background:#f2f2f2;
 border:1px solid #e6e6e6}

.contact-form {
 margin:40px 0}

/*-----------------------------------*/
/* Print styles */
@media print {
 /* ... */
}

Developing Your Own Theme

[188]

Inside this stylesheet, you will find many specific classes that aren't just my own
creations, but rather come from WordPress itself. Here's what I mean. When
WordPress spits out items that include page lists, category lists, archive lists, images,
galleries, and so on, it gives many of these items a particular class name. If you know
these class names, you can prepare your stylesheet to take advantage of them.

When you add an image to a post or page, WordPress gives you the option to have
it to the right, left, or at the center of the text. Depending on what you choose,
WordPress will give the image the class alignleft, alignright, or aligncenter.
Those classes, for example, are handled in the /* Floating & Alignment */
section of our CSS stylesheet. Another thing is that when you add an image with a
caption, WordPress gives it the class wp-caption. This particular thing is handled
in the /* Images */ section of the stylesheet we're using. Another useful class is
current_page_item. WordPress adds this to the list item in the pages menu, on
the page that you are currently working. This gives you the ability to visually mark
a page that the user is currently viewing. I'll mark it with a color change using the
following code:

.sidebar .widget-container .current_page_item a {
 color:#e8890f;
 background-color:#f2f2f2;
 text-shadow:0 1px 1px #fff}

WordPress uses many other classes that you can take advantage of while
building your stylesheet. I've listed a few of them in Chapter 12, Creating a
Non-blog Website Part Two – Community Websites and Custom Content Elements.

Now that you've got your HTML and CSS lined up, you're ready for the next step,
turning the HTML build into a WordPress theme.

Converting your build into a theme
You'll be turning your HTML build into a theme, which is composed of a number
of template files and other scripts. We are going to first dig into the inner workings
of a theme so as to get familiar with how it's put together. Then we'll actually turn
the HTML build into a theme folder that WordPress can use. Finally, we'll replace
the dummy text in your build with WordPress functions that spit out content. As I
mentioned in an earlier chapter, doing development for your WordPress website on
a local environment can make the whole process much smoother. Consider getting a
server up and running on your home computer using WAMP, MAMP, or some other
way to install Apache and MySQL.

Chapter 7

[189]

Creating the theme folder
The first step to turning your HTML build into a theme is to create your theme
folder and give it everything it needs to be recognized as a theme by WordPress.
Let's look at an overview of the steps and then take them one by one:

1. Name your folder and create backup copies of your build files.
2. Prepare the essential files.
3. Add a screenshot of your theme named screenshot.png.
4. Upload your folder.
5. Activate your theme.

Let's take these steps one by one now:

• Naming your folder and making backup copies: You'll want to give your
build folder a sensible name. I'm naming my theme Conexus Kitchen
because it's a custom simplified version of the Conexus, a multipurpose
theme by ThemeFuse, and since it is meant to run my cooking blog, the new
name kind of makes sense. I'll name the folder conexus-kitchen.
Now I suggest creating backup copies of your HTML and CSS files. As you'll
eventually be breaking up your build into template files, you can easily lose
track of where your code came from. By keeping a copy of your original
build, you'll be able to go back to it for reference.

• Preparing the essential files: WordPress has only the following two
requirements to recognize your folder as a theme:

 ° A file called index.php
 ° A file called style.css with an introductory comment

Just rename your main design's HTML file to index.php, and that takes care
of the first requirement.
To satisfy the second requirement, your stylesheet needs to have an
introductory comment that describes the basic information for the whole
theme: title, author, and so on. Also, it has to be at the very top of the
stylesheet. I've added this comment to my style.css file:
 /*
Theme Name: Conexus Kitchen
Theme URI: http://themefuse.com/demo/wp/conexus/
Description: Conexus is created by ThemeFuse.
Version: 1.0

Developing Your Own Theme

[190]

Author: ThemeFuse
Author URI: http://themefuse.com
Tags: gray, white, two-columns, editor-style, custom-menu
*/

The preceding structure has been created based on the template available at
http://codex.wordpress.org/Theme_Development#Theme_Stylesheet.
Whenever you're creating a new theme, it's always good to check the current
recommended template beforehand.
When you add this comment section to your stylesheet, just replace all the
details with those that are relevant to your theme.

• Adding a screenshot: Remember when we first learned how to activate
a new theme that there were thumbnail versions of the themes in your
Appearance tab? You'll want a thumbnail of your own design. It has
to be a PNG file with the name screenshot.png. Just do the following:

1. Flatten a copy of your design in Photoshop.
2. Change the image width to 600 px and the height to 450 px.
3. Save for web as a PNG-8.

The preceding requirements (600 px by 450 px) are the current ones
at the time of writing. To get the latest guidelines at any point in time
please revisit the official codex at http://codex.wordpress.org/
Theme_Development#Screenshot.

4. Name your file screenshot.png and save it in your build folder.

• Uploading your folder: Using your FTP software, upload your template
folder to wp-content/themes/ in your WordPress build. It will share the
themes folder with twentythirteen and any other theme you've added
as you installed WordPress. In the following screenshot, you can see my
conexus-kitchen theme living in the themes folder:

Chapter 7

[191]

• Activating your theme: You've got the absolute basic necessities in there
now, so you can activate your theme (though it won't look like much yet).
Log in to your WP Admin and navigate to Appearance. There you'll see
your theme waiting for you.

When you click on the thumbnail or the Activate link of your theme, an
overlay window will appear on top of the page with a preview of what
your site will look like. Don't be alarmed if it's not perfect. The stylesheet
might not be pulled in correctly at this point.
Click on the link in the upper-right corner to activate your theme. This is
another good reason to have a development server. You wouldn't want to have
this incomplete theme active on a live site while you finish the final pieces!

Speaking of final pieces, your theme is now ready to have all of the WordPress
content added.

Adding WordPress content
Right now, your index.php file is your only theme file. We'll be breaking it up into
template files a bit later. First, we need to replace the dummy text with WordPress
functions that will spit out your actual content into your theme.

Developing Your Own Theme

[192]

The functions.php file
In short, the functions.php file is meant to set up your theme and provide some
helper functions and settings to make the usage of the theme easier. Apart from that,
this file also has many other applications that we're not going to be discussing here,
as it is beyond the scope of this book.

In essence, functions.php is a kind of file that allows you to perform a very wide
scope of modifications. Even though there is a set of standard things that should
always be taken care of while dealing with a functions file, no one restricts you from
doing virtually anything you wish.

For instance, you can create a classic PHP function such as my_function_name()
and then call it from within one of your template files (such as index.php) through
<?php my_function_name(); ?>, but this is just one of the possible scenarios.

Although this isn't a requirement, it's always good to start your functions.php
file with the following lines of code (just as a good reference point):

<?php
/**
 * CKitchen functions and definitions.
 *
 * @package WordPress
 * @since 1.0
*/

The preceding lines of code provide the essential info about the theme, the platform
for which the theme has been built for (@package) and the version number (@since).

Next in line is the $content_width variable. Here's how to use it:

if(!isset($content_width))
 $content_width = 624; //pixels

This parameter is often overlooked by many theme developers, despite the fact that
it can mean a lot to the final form of the theme. It's simply the maximum width of
the content area allowed in your theme (in pixels). For example, if you ever upload
a picture that massively exceeds this value, it will always be scaled down to prevent
messing up your site's layout. The exact value you should set depends on your CSS
and design. The value 624 in the preceding example is just that, an example.

Chapter 7

[193]

The next part in our functions.php file is the setup of the default features the theme
is going to enable. Let's use a separate function to handle this:

function ckitchen_setup() {
 //Adds RSS feed links to <head> for posts and comments.
 add_theme_support('automatic-feed-links');

 //This theme uses wp_nav_menu() in two locations.
 register_nav_menus(array(
 'primary' => 'Primary Menu',
 'footer_menu' => 'Footer Menu',
));
}
add_action('after_setup_theme', 'ckitchen_setup');

The function ckitchen_setup() is going to be executed at just the right time,
triggered by the action after_setup_theme called at the end to set up the basic
features of our theme properly. Most of the code is pretty self-explanatory due to
the comments, but there's just one thing I'd like to mention individually. This part
(registering two menus):

register_nav_menus(array(
 'primary' => 'Primary Menu',
 'footer_menu' => 'Footer Menu',
));

This is a small piece of code that will let us assign any custom menu to appear as
the primary menu and the footer menu later on. It is also what we'll use to set in our
new theme. In addition, the preceding function allows you to register even more
menu areas if you wish so, and all you'd have to do is add this line: 'secondary' =>
'Secondary Menu'.

Next, let's enable our stylesheet CSS file to load with our theme, or more accurately,
to be "enqueued" and then load in precisely the right moment. Here's how to do it:

function ckitchen_scripts_styles() {
 $directory = get_stylesheet_directory_uri();

 wp_register_style('style', $directory.'/style.css');
 wp_enqueue_style('style');

Developing Your Own Theme

[194]

 wp_register_style('screen', $directory.'/screen.css');
 wp_enqueue_style('screen');

 wp_register_style('googleFontsCabinSanchez','http://fonts.
googleapis.com/css?family=Cabin:400,500,400italic,600,700|Sanchez');
 wp_enqueue_style('googleFontsCabinSanchez');
}
add_action('wp_enqueue_scripts', 'ckitchen_scripts_styles');

As you can see, there are two stylesheets. One is the default one, that is, style.css,
and the other one is screen.css, which is meant to ensure proper display on user
devices with smaller screens. The last two lines take care of embedding some cool
Google fonts that will improve the theme's typography.

Nowadays, the preceding code is the best practice for including various CSS
styles and also JS scripts into our themes. You can still go with the traditional
(alternative) approach through <link rel="stylesheet" href="<?php
bloginfo('stylesheet_url'); ?>" type="text/css" media="screen" />
placed inside the header section of your design, but it will lower the performance of
your site as CSS styles and various JS scripts tend to take a long time to load. So, it's
always better to deal with them through the modern wp_enqueue_scripts handle.

Finally, there are two calls to the WordPress function add_theme_support(), which
lets WordPress know that the theme enables post thumbnails and custom menus.

The preceding code closes our first, template-like functions.php file. Later, we will
add new lines to it to make it even more functional. Now, the interesting part is that
there is no closing PHP tag in the functions file (that is, no ?>). This is not a typo or
anything. It's intentional. Since most of the file is pure PHP, we don't need this tag
for anything.

<?php
/**
 * CKitchen functions and definitions.
 *
 * @package WordPress
 * @since 1.0
 */

if(!isset($content_width))
 $content_width = 624; //pixels

Chapter 7

[195]

function ckitchen_setup() {
 //Adds RSS feed links to <head> for posts and comments.
 add_theme_support('automatic-feed-links');

 //This theme uses wp_nav_menu() in two locations.
 register_nav_menus(array(
 'primary' => 'Primary Menu',
 'footer_menu' => 'Footer Menu',
));
}
add_action('after_setup_theme', 'ckitchen_setup');

function ckitchen_scripts_styles() {
 $directory = get_stylesheet_directory_uri();

 wp_register_style('style', $directory.'/style.css');
 wp_enqueue_style('style');

 wp_register_style('screen', $directory.'/screen.css');
 wp_enqueue_style('screen');

 wp_register_style('googleFontsCabinSanchez','http://fonts.
googleapis.com/css?family=Cabin:400,500,400italic,600,700|Sanchez');
 wp_enqueue_style('googleFontsCabinSanchez');
}
add_action('wp_enqueue_scripts', 'ckitchen_scripts_styles');

add_theme_support('post-thumbnails');
add_theme_support('menus');

Just to remind you, this whole functions.php file can be found inside the code
bundle for this chapter.

The <head> tag
First, we'll set up the header section of our HTML file. Let's start with the charset
and the device-width parameters. Simply, here are the two lines to begin with right
after the opening <head> tag:

<meta charset="<?php bloginfo('charset'); ?>" />
<meta name="viewport" content="width=device-width" />

Developing Your Own Theme

[196]

The first one holds the character set that your blog uses. The other defines the width
of the viewport used. Here, it's set to the width of the device being used (this allows
everyone to view the site correctly, including desktop computer users, iPad users,
Android phone users, and so on).

Next, you'll want WordPress to be able to place your blog's name in the title bar of
your browser. So replace your dummy title with the following code in the title tag:

<title><?php wp_title('|', true, 'right'); ?><?php bloginfo('name');
?></title>

This will spit out the title of the current page, then the separator we've set (|), and
finally the name of the site. Later, you may want to download the WordPress plugin,
which will change <title> page by page, depending on what's appropriate.

You need to add another important chunk of code:

• To put header tags into your theme for the pingback URL
• Other miscellaneous WordPress stuff

Add the following lines to your <head> section:

<link rel="profile" href="http://gmpg.org/xfn/11" />
<link rel="pingback" href="<?php bloginfo('pingback_url'); ?>" />

Finally, add the following line right before the closing </head> tag:

<?php wp_head(); ?>

Now add the body_class() function to the body tag, so it looks like this:

<body <?php body_class() ?>>

This is how your header looks:

<head>
<meta charset="<?php bloginfo('charset'); ?>" />
<meta name="viewport" content="width=device-width" />
<title><?php wp_title('|', true, 'right'); ?><?php bloginfo('name');
?></title>
<link rel="profile" href="http://gmpg.org/xfn/11" />
<link rel="pingback" href="<?php bloginfo('pingback_url'); ?>" />
<?php wp_head(); ?>
</head>
<body <?php body_class(); ?>>

Chapter 7

[197]

The header and footer
It's time to start adding the content that you can see. Let's first replace the dummy
text in the main navigation bar and header with WordPress content tags.

WordPress will generate a linked list of pages for you, as I mentioned earlier. Just
replace your dummy text with this code, replacing the whole navigation tag:

<?php
 wp_nav_menu(array(
 'theme_location' => 'primary',
 'container' => 'nav',
 'container_id' => 'topmenu',
 'menu_class' => 'dropdown',
 'link_before' => '',
 'link_after' => ''
));
?>

What's this code saying? Basically, it just calls the wp_nav_menu() function, which
handles the whole process of displaying the menu correctly on its own.

Next, you can replace your dummy blog title and dummy blog description with the
following two tags:

<div class="logo">
 <h1 class="site-title"><a href="<?php echo esc_url(home_url('/'));
?>" title="<?php echo esc_attr(get_bloginfo('name', 'display'));
?>" rel="home"><img src="<?php echo get_template_directory_uri();
?>/images/logo.png" alt="<?php echo esc_attr(get_bloginfo('name',
'display')); ?>" ></h1>
</div>

These tags pull information from where you set the blog name and description in the
WP Admin, and you can simply change them from Settings | General. As you can
see, additionally, we're linking the logo to the home page—a standard practice in
modern website design.

Developing Your Own Theme

[198]

Now, the part of your HTML that describes the header looks as follows:

<div class="header_top">
<div class="container">
 <div class="logo"><!--logo-->
 <h1 class="site-title"><a href="<?php echo esc_url(home_
url('/')); ?>" title="<?php echo esc_attr(get_bloginfo('name',
'display')); ?>" rel="home"><img src="<?php echo get_template_
directory_uri(); ?>/images/logo.png" alt="<?php echo esc_attr(get_
bloginfo('name', 'display')); ?>" ></h1>
 </div>
 <!--menu-->
 <?php
 wp_nav_menu(array(
 'theme_location' => 'primary',
 'container' => 'nav',
 'container_id' => 'topmenu',
 'menu_class' => 'dropdown',
 'link_before' => '',
 'link_after' => ''
));
 ?>
 <div class="topsearch"><!-- additional search field-->
 <form id="searchForm" method="get" action="<?php echo home_
url('/'); ?>">
 <input type="text" name="s" id="stext" value="" class="stext">
 <input type="submit" id="searchSubmit" value="<?php
_e('Search','themefuse'); ?>" class="btn-search">
 </form>
 </div>
 <div class="clear"></div>
</div><!-- /.container -->
</div><!-- /.header top bar -->

Are you wondering why you should bother with some of this when you could have
just typed your blog title, URL, and description to the theme? One reason is that if
you ever want to change your blog's title, you can just do it in one quick step in the
WP Admin and it will change all over your site. The other reason is that if you want
to share your theme with others, you'll need to give them the ability to easily change
the name through their own WP Admin panel. Keep in mind, anything, anything at
all, that will change from site to site based on the site's purpose and content should
not be hardcoded into the theme but should be to be dynamically generated.

Chapter 7

[199]

Now when I refresh the site, my dummy text in the header has been replaced with
actual content from my blog:

The two links visible in the header are live links coming from one of my custom
menus. One additional thing you've probably noticed is that I also replaced the
logo.png file to show something relevant to my cooking site.

Just to tie things up, I'm going to add the same code to my footer to close the main
<div class="body_wrap"> element, to display the Proudly powered by WordPress
message, and to include the wp_footer() function/hook that's often used by many
plugins in one way or the other, so every theme should feature it. My footer section
now looks as follows:

<div class="footer">
 <div class="container clearfix">
 <div class="botmenu"><?php
 wp_nav_menu(array('theme_location' => 'footer_menu', 'link_
before'=> '', 'link_after' => '')); ?></div>
 <div class="copyright"><a href="http://wordpress.org/"
title="WordPress" rel="generator">Proudly powered by WordPress

 Created with the CONEXUS KITCHEN theme by <a href="http://
themefuse.com">Themefuse</div>
 </div><!-- /.container -->
</div><!-- /.footer -->

</div><!-- /.body_wrap -->
<?php wp_footer(); ?>
</body>
</html>

As you can see, inside the footer, I'm also calling the other custom menu area I've
created in the functions.php file. This is handled by the following line of code:

<div class="botmenu"><?php wp_nav_menu(array('theme_location' =>
'footer_menu', 'link_before'=> '', 'link_after' => ''));
?></div>

Developing Your Own Theme

[200]

The sidebar
Now we can move along to adding WordPress-generated content in the sidebar,
which still has just the dummy text:

Essentially, this part of our work is pretty simple. All we have to do is replace the
dummy text with some WordPress functions that will handle displaying various
bits of dynamic content; in this case, the archives.

Starting from the top, replace the dummy text showing the list of recent posts
and the tag cloud with the piece of code that follows:

<div class="widget-container widget_archive">
 <h3 class="widget-title">Archives</h3>

 <?php wp_get_archives(); ?>

</div>

Chapter 7

[201]

Just to note that by default, WordPress displays individual archive items as the
elements. So in order to place them correctly in our HTML structure, we have to use
either the or tag, although the tags are much more common.

The classes you can see in the preceding code will make sure that our Archives links
look just the way they should be (according to our main stylesheet).

Now, after all these modifications, the part of your HTML that describes the sidebar
looks as follows:

<div class="sidebar" role="complementary">
 <div class="widget-container widget_archive">
 <h3 class="widget-title">Archives</h3>

 <?php wp_get_archives(); ?>

 </div>
</div>

Later in the chapter, we'll be making this a widget-ready area, but for now, we'll
keep it like this. Remember, this approach is all about learning the structure of
WordPress themes.

Save this file and reload your theme, and you'll see that your dummy text has been
replaced with WordPress output for Archives.

I know it doesn't look like much, but after all, there's not that much content on the
site at the moment.

Developing Your Own Theme

[202]

The main column – the loop
The most important part of the WordPress code comes next. It's called the loop,
and it's an essential part of your theme. The loop's job is to display your posts in
reverse chronological order, choosing only those posts which are appropriate. You
need to put all your other post tags inside the loop. The basic loop text, which has to
surround your post information, is displayed using the following code:

<?php if (have_posts()) : ?>
<?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('listing', 'blog'); ?>
<?php endwhile; else: ?>
 <h5>Sorry, no posts matched your criteria.</h5>
<?php endif; ?>

The get_template_part() function call that's right in the middle fetches another
file, listing-blog.php, which contains the rest of the loop, but for now, let's just
focus on the main section here.

There are two basic parts of the loop:

• Individual post information
• What to do if there are no appropriate posts

The first part is handled by a standard PHP while loop that goes through every post
and for each element calls the listing-blog.php file, which we'll discuss in a minute.
The second part is a very straightforward piece of code, as it only displays a short
message that there are no posts that can be displayed.

So let's take a look at the listing-blog.php file and try to figure out how the loop
works. Here's the final version of the file:

<div class="post post-item">
 <div class="post-title">
 <h2><a href="<?php the_permalink(); ?>"><?php the_title();
?></h2>
 <div class="post-meta">
 posted by <?php the_author_posts_link(); ?> |
 posted on <?php echo get_the_date();
?> |
 <a href="<?php comments_link(); ?>" class="link-
comments"><?php comments_number('no comments', '1 comment', "%
".'comments'); ?>
 </div>

Chapter 7

[203]

 </div>

 <?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft">
 <?php echo ''.get_
the_post_thumbnail().''; ?>
 </div>
 <?php endif; ?>

 <div class="entry clearfix">
 <?php the_excerpt(); ?>
 </div>
</div><!-- /.post-item -->

If you give it a closer look, you'll notice that it's very similar to the static HTML
version I shared earlier in this chapter. The only difference is that instead of the
dummy text, there are calls to specific WordPress functions and commands. Let's
take it from the top; the file starts with these two lines:

<div class="post post-item">
 <div class="post-title">

These are the exact two lines we used in the HTML version. Next, we have one line
that displays the link and the title of the current individual post, instead of using
the dummy text:

<h2><a href="<?php the_permalink(); ?>"><?php the_title(); ?></h2>

In it, the_permalink() handles the link, and the_title() handles the title.
You have to admit that the standard naming of functions in WordPress is quite
self-explanatory, by the way.

The next part handles the post details such as the author info, the date, and the
comment links (which other visitors can click to submit their own opinion about
the post):

<div class="post-meta">
 posted by <?php the_author_posts_link(); ?> |
 posted on <?php echo get_the_date(); ?></
span> |
 <a href="<?php comments_link(); ?>" class="link-comments"><?php
comments_number('no comments', '1 comment', "% ".'comments'); ?>
</div>

Developing Your Own Theme

[204]

One interesting thing I'd like to point out here is the call to the
comments_number() function:

<?php comments_number('no comments', '1 comment', "% ".'comments'); ?>

Here, you can see that there are three arguments passed, separated by commas:

• The first option tells WordPress the text that it has to display when there
are no comments.

• The second option tells WordPress the text that it has to display when
there is just one comment.

• The third option tells WordPress text that it has to display for more than
one comment. The percent symbol (%) gets replaced with the actual number
of existing comments.

Next, we have a small section for handling the thumbnail. Our theme simply
displays the thumbnail that goes along with each post just to make it more
recognizable within the listing. By the way, these thumbnails are created
automatically once you upload an image to go along with a given post
and assign it as the featured image.

<?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft">
 <?php echo ''.get_
the_post_thumbnail().''; ?>
 </div>
<?php endif; ?>

Finally, there's the most important part, displaying the actual post content
(actually a shortened version of it). You can notice that I am only displaying the
excerpts of the posts inside this loop (through the the_excerpt() function call,
rather than showing the full contents of the post). However, if you want to go the
other way, you can use the following instruction instead. This will display the full
contents of the posts and not just the excerpts:

<?php the_content('Continue reading →</
span>'); ?>

Chapter 7

[205]

Once we have this part done, all we have to do is to take the first part of the
loop (the short one, not the listing-blog.php file) and put it into our index.
php file in the place where the main column lives. In my case, that's div with
class="postlist":

<div class="content" role="main">
 <!-- post list -->
 <div class="postlist">
 <?php if (have_posts()) : ?>
 <?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('listing', 'blog'); ?>
 <?php endwhile; else: ?>
 <h5>Sorry, no posts matched your criteria.</h5>
 <?php endif; ?>
 </div>
</div>

I'm happy to say that this is it when it comes to the basic understanding of the loop.
Of course, its structure allows you to do many more things and include many custom
features. But for now, we are good with what we have here.

Okay, now save your index.php file and reload your website. Here's the theme
in action:

Developing Your Own Theme

[206]

Later in the chapter, I will show you how to create a custom page template, which
will take advantage of the loop and use it for a slightly different purpose.

If you'd like to learn more about the useful built-in WordPress
template tags and functions you can implement while building
up your theme, you can find it in WordPress Theme Development
Beginner's Guide Third Edition by Rachel McCollin and Tessa
Blakeley Silver, Packt Publishing.

Creating templates within your theme
You've now got a functional basic template for your theme. It works great on
the main blog page and successfully loads content for anything you can click
on in your site.

However, we want slightly different templates for other types of content on our site.
For example, a Single Post page needs to have a Comments form where visitors can
post comments; the Page page doesn't need to show the date, category, or tags; and
the Category page should show the category name.

Before we can create other templates, we need to break up the main index.php file
into parts so that these different templates can share the common elements. I've
mentioned many times the importance of the header, sidebar, and footer. We're
going to break them up now. First, let's take a quick look at how it works.

Understanding the WordPress theme
The WordPress theme is actually composed of a number of template files. This
allows the different parts of the site (such as the frontend, blog archive, page, single
post, search results, and so on) to have different purposes. Breaking the index.php
file into template files allows us to not only share some common parts of the design,
but also have different code in the different parts.

As I mentioned earlier, we'll soon be breaking up the four main pieces of the design
(the header, sidebar, main column, and footer) so that WordPress can make good use
of them. That's because while the header and footer are probably shared by all pages,
the content in the main column will be different. Also, you may want the sidebar on
some pages, but not on others.

We'll first create these template files and then move on to other, more optional
template files.

Chapter 7

[207]

Breaking it up
We're going to break up the index.php file by removing some of the code into
three new files:

• header.php

• footer.php

• sidebar.php

header.php
First, cut out the entire top of your index.php file. This means cutting the doctype
declaration, <head>, any miscellaneous opening tags, and the header div. In my
case, I'm cutting out all the way from this initial line:

<!DOCTYPE html>

And I'm including these lines:

 </div><!-- /.container -->
 </div><!-- /.header top bar -->

Then, paste this text into a new file named header.php that you created within your
theme folder.

Now at the very top of the index.php file (that is, where you just cut the header text
from), write in this line of WordPress PHP code:

<?php get_header(); ?>

This is a WordPress function that includes the header.php file you just created.
If you save everything and reload your website now, nothing should change. If
something changes, you've made a mistake.

footer.php
Next, we will create the footer file. To create this, first cut out all of the text at the
very bottom of the index.php file, from the <div class="footer"> div, and all the
way through the </html> tag. In my case, this is the entire text I cut:

<div class="footer">
 <div class="container clearfix">
 <div class="botmenu"><?php
 wp_nav_menu(array('theme_location' => 'footer_menu', 'link_
before'=> '', 'link_after' => '')); ?></div>

Developing Your Own Theme

[208]

 <div class="copyright"><a href="http://wordpress.org/"
title="WordPress" rel="generator">Proudly powered by WordPress

 Created with the CONEXUS KITCHEN theme by <a href="http://
themefuse.com">Themefuse</div>
 </div><!-- /.container -->
</div><!-- /.footer -->

</div><!-- /.body_wrap -->
<?php wp_footer(); ?>
</body>
</html>

Paste the text you just cut into a new footer.php file that you create within
your theme folder.

Now at the very bottom of the index.php file (from where you just cut the
footer text), write in the following line of WordPress PHP code:

<?php get_footer(); ?>

This is a special WordPress function that includes the footer.php file you just
created. Again, you should save everything and reload your website to make
sure nothing changes.

The sidebar.php file
There is just one more essential template file to create. For this one, cut out the
entire div containing your sidebar. In my case, it's the following text:

<div class="sidebar" role="complementary">
 <div class="widget-container widget_archive">
 <h3 class="widget-title">Archives</h3>

 <?php wp_get_archives(); ?>

 </div>
</div>

Paste this text into a new file in your theme folder named sidebar.php.

Now in index.php, add this function in the place you just cut your sidebar from:

<?php get_sidebar(); ?>

Chapter 7

[209]

This will include the sidebar. In the case of my design, I will want the sidebar on
every page. So it's not very crucial for it to be a separate file. I could have included it
in the footer.php file. However, in some templates, including the default template
that came with your WordPress installation, the designer prefers to not include the
sidebar in some views such as the Page and single posts.

Your four template files
You've now got four template files in your theme folder, namely header.php,
footer.php, sidebar.php, and the now-much-shorter index.php. By the way,
my index.php file now has only a handful of WordPress functions and the loop.
The following is the entire file:

<?php get_header(); ?>

<!-- middle -->
<div id="middle" class="cols2">
 <div class="container clearfix">
 <div class="content" role="main"><!-- content -->
 <div class="postlist"><!-- post list -->
 <?php if (have_posts()) : ?>
 <?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('listing', 'blog'); ?>
 <?php endwhile; else: ?>
 <h5>Sorry, no posts matched your criteria.</h5>
 <?php endif; ?>
 </div>
 </div>
 <?php get_sidebar(); ?>
 </div><!-- /.container -->
</div><!-- /.middle -->

<?php get_footer(); ?>

This whole cutting-and-pasting process to create these four files was just to set the
scene for the real goal of making alternative template files.

Developing Your Own Theme

[210]

Archive template
WordPress is now using the index.php template file for every view on your site.
Let's make a new file—one that will be used while viewing a monthly archive,
category archive, or tag archive.

To create your archive template, make a copy of index.php and name this copy
archive.php.

Now navigate to a monthly archive on the site by clicking on one of the month
names in the sidebar. At this point, it looks exactly like the main listing—the one
handled by index.php.

Let's make one more change to the archive template. I'd like it to display a message
that lets the users know what type of archive page they are on. Currently, the archive
looks the same as the main index listing and this isn't the most optimized situation.
To fix it, just add this code below the <?php if (have_posts()) : ?> line:

<h1>
 <?php if (is_category()) { ?>
 Archive for the '<?php single_cat_title(); ?>' Category
 <?php } elseif(is_tag()) { ?>
 Posts Tagged '<?php single_tag_title(); ?>'
 <?php } elseif (is_month()) { ?>
 Archive for <?php the_time('F, Y'); ?>
 <?php } ?>
</h1>

Now, when I click on a month, category, or tag, I see a new heading at the top of the
page that lets me know where I am:

Chapter 7

[211]

Single template
The next template we need to create is for the single post view. To view a single post,
you can usually just click on the post title. Right now, the single post page looks like
the site's front page (because it's using index.php); except with just one post.

To get started, again make a copy of index.php and name the copy single.php.
This is the template that WordPress will look for first when it's serving a single post.
If it doesn't find single.php, it'll use index.php.

Without further delay, here's my single.php file. You should notice that the file
features almost exactly the same elements as index.php. The only difference is that
they are placed inside slightly different HTML elements to improve the way the
contents of the posts are presented.

<?php get_header(); ?>

<!-- middle -->
<div id="middle" class="cols2">
 <div class="container clearfix">
 <div class="content" role="main"><!-- content -->
 <article id="post-<?php the_ID(); ?>" <?php post_
class(array('post-item', 'post-detail')); ?>>
 <?php while (have_posts()) : the_post(); ?>
 <div class="post-title">
 <h1><?php the_title(); ?></h1>
 <div class="post-meta">
 posted by <?php the_author_posts_link();
?> |
 posted on <?php
echo get_the_date(); ?> |
 <a href="<?php comments_link(); ?>"
class="link-comments"><?php comments_number('no comments', '1
comment', "% ".'comments'); ?>
 </div>
 </div>

 <div class="entry clearfix">
 <?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft"><?php
echo get_the_post_thumbnail(); ?></div>
 <?php endif; ?>

 <?php the_content(); ?>
 </div>
 <?php endwhile; ?>

Developing Your Own Theme

[212]

 </article>

 <?php comments_template('', true); ?>
 </div>

 <?php get_sidebar(); ?>
 </div><!-- /.container -->
</div><!-- /.middle -->

<?php get_footer(); ?>

Three specific things that are worth pointing out here are:

• The <article> tag is present. The individual post's content is displayed
inside this tag.

• The call to the the_content() function instead of the the_excerpt()
function is made. This time, we're displaying the whole content of the post,
not just the excerpt.

• The call to the comments_template('', true) function is made. It displays
the comment form and the individual comments that have been submitted
for this post.

Page template
The last template we're going to create is for the static page view. On my food blog
site that would be the History page, for example:

Chapter 7

[213]

In short, I want to get rid of everything that is not essential. This includes the
comment form, the publication date, the author info, and so on. To make this
possible, let's start by creating a copy of index.php and naming it page.php. When
you edit your version of the file, remove the code for the date, categories, and tags.
With mine, what I did was use an additional <article> tag to display the contents
of the page inside it. In the end, this is how my page.php file looks:

<?php get_header(); ?>

<!-- middle -->
<div id="middle" class="cols2">
 <div class="container clearfix">
 <div class="content" role="main"><!-- content -->
 <article id="post-<?php the_ID(); ?>" <?php post_
class(array('post-detail')); ?>>
 <div class="entry clearfix">
 <?php while (have_posts()) : the_post(); ?>
 <h1><?php the_title(); ?></h1>
 <?php the_content(); ?>
 <?php endwhile; ?>
 </div>
 </article>
 </div>

 <?php get_sidebar(); ?>
 </div><!-- /.container -->
</div><!-- /.middle -->

<?php get_footer(); ?>

Now my History page looks much cleaner.

Developing Your Own Theme

[214]

Generated classes for body and post
As you're modifying your theme to make accommodations for different types of
pages, you should also know about the CSS classes that WordPress will put into your
theme. One of them is classes in the body tag and the others are classes in the post
div. If you look carefully at the code we've been using, you'll see these two functions:

• body_class()

• post_class()

The body_class() function adds a whole bunch of classes to the body tag,
depending on the page you're viewing. For example, the main page of my site has
these classes in the body:

<body class="home blog logged-in">

My Butternut Squash Soup single post page's body tag looks like this:

<body class="single single-post postid-15 logged-in">

If I wanted to style anything differently on different pages, I could do it largely with
CSS without having to create another template.

The post_class() function does something similar with the post div, giving the div
different classes depending on the characteristics of the post itself. For example, my
Butternut Squash Soup post's div has these classes:

<article id="post-11" class="post-11 post type-post status-publish
format-standard hentry category-podcast category-recipes tag-hot tag-
soup tag-vegetarian post-item post-detail">

And my History page's post div has these:

<article id="post-46" class="post-46 page type-page status-publish
hentry post-detail">

By using these classes in my stylesheet, I could style every post differently
depending on its category, tag, post type, and so on. Keep that in mind as
you design your next theme!

This becomes extremely important while working with theme frameworks further
down the road. Although modifications inside PHP files are allowed, most of the
time, you can customize the design of your whole site just by working in the CSS
and tweaking various classes (both the native ones in WordPress and the new ones
that the framework uses). Situations where a whole new site working on a theme
framework gets built purely in the CSS files are not uncommon.

Chapter 7

[215]

Other WordPress templates
In addition to archive.php, single.php, and page.php, there are a number of
other standard template files that WordPress looks for before using index.php for
particular views. We're not going to create those files here, but you should feel free
to experiment on your WordPress installation. These files are as follows:

• rtl.css is a custom CSS file that gets used, and included automatically
whenever the website's text direction is right to left

• archive.php trumps index.php when a category, tag, date, or author
page is viewed

• single.php trumps index.php when an individual post is viewed
• single-{post-type}.php trumps index.php when an individual post of a

given custom type is viewed; for example, if you're using a custom post type
to present quotes, you can create a file such as single-quotes.php, which
will then be used for displaying single posts from the custom post type
named quotes

• page.php trumps index.php while looking at a static page
• search.php trumps index.php when the results from a search are viewed
• 404.php trumps index.php when the URI address finds no existing content
• front-page.php trumps index.php when the home page is viewed but only

if you use a static front page (Settings | Reading in the WP Admin)
• home.php trumps index.php when the home page is viewed, which

is the home page template by default; however, if you use a static front
page (Settings | Reading in the WP Admin), this is the template for the
page with the latest posts

• taxonomy.php trumps index.php when a custom taxonomy is viewed
• attachment.php trumps index.php when a single attachment is viewed
• image.php trumps attachment.php, which trumps index.php when a

single image attachment is viewed
• A custom template page, selected via the WP Admin, trumps page.php

when that particular page is viewed
• category.php trumps archive.php, which trumps index.php when

a category is viewed
• tag.php trumps archive.php, which trumps index.php when a tag

page is viewed
• author.php trumps archive.php when an author page is viewed
• date.php trumps archive.php when a date page is viewed

Developing Your Own Theme

[216]

In addition, when you browse the official code bundle for this chapter, you'll see that
many of the preceding files have been created and are actually available inside the
bundle. We're not covering them here, however, as it would probably be too much
information at this point.

You can find a detailed flow chart of the template hierarchy here:
http://codex.wordpress.org/Template_Hierarchy. You
can get a more detailed discussion of creating these built-in template
pages in WordPress Theme Development Beginner's Guide Third Edition
by Rachel McCollin and Tessa Blakeley Silver, Packt Publishing.

In this chapter, we've experimented with the uses of quite a number of WordPress
template tags. In Chapter 12, Creating a Non-blog Website Part Two – Community Websites
and Custom Content Elements, I have listed more of the most useful template tags.

Next, we'll explore making custom templates for pages.

Creating and using a custom page template
WordPress allows you to create custom templates. These can be used only for pages
(not for posts). A custom template allows you to display the content differently, or
easily use built-in WordPress functions within a template.

Just to give you a good example of what custom page templates are and how they
can benefit your site (no matter what theme you're using), let's create a custom
version of the archives template. This is also what we will use to create a custom
Archives page that should be much more useful to our readers than the standard
one. Here's what the archives look like on my blog right now:

Chapter 7

[217]

There are just a couple of small links in the sidebar that redirect the visitors to a
standard monthly archive presenting posts published between March 2013 and
June 2013. Of course, later on, when there are more posts on your site, there will
be many more links shown (exactly one link for each month of your site's existence).

Now, as far as the idea of archives goes, I have to admit, somewhat reluctantly,
that WordPress was never good at this. One of the few problems with the platform
as a web publishing solution was the fact that posts usually have very short life
spans. Whenever you publish a post, it sits on the front page for a while and then it
vanishes in the archives never to be seen again, no matter if it's still relevant or not.
In the end, it's really hard for a new visitor to find these old posts on your site.

One of the few chances you have at reviving those old posts is mastering the art of
SEO (search engine optimization) and driving some new traffic to your old posts
through your SEO efforts only (it's the most popular solution). But luckily, it's not the
only way around to fix this issue. Again, custom page templates are an interesting
remedy here.

In the preceding screenshot, you can see that the default version of the archives is
just a sidebar widget with some links to the individual months. The problem with
such content organization is that it provides really a bad user experience. Archives,
in general, are not about listing everything in one place; they are about providing a
hub where the visitor can go and find some specific piece of content. For example,
think about how archives work in your local library. This is what you want to
eventually have on your site as well. So what we're going to do here is say no to
the traditional archives template in WordPress and create a custom page template to
handle the archives manually. Then, we're going to link to this archive from one of
the menus. Here's how to do it.

On our new archives page, we want to achieve the following things:

• Display a piece of custom text, for instance, as a form of introduction or a
notification message explaining what's in the archives

• Display a categories archive, which will be a list all the categories in use on
the site

• Display a tag cloud, which will be a form of tag archive where all of the
tags in use on the site are displayed one after the other (inline, not in a list
format), and the font size increases for the tags that have been used more
often than others

• Display a list of 15 latest posts or whatever number you wish
• Display a monthly archives block, the fact that they are displayed at the bottom

is not accidental, as this block is not particularly useful for a typical visitor

Developing Your Own Theme

[218]

To do this, we need to create a template. These are the steps we'll take:

1. Create the template file.
Make a copy of page.php within your theme and give it a new name. I like
to prepend all my custom template files with tmpl_ so that they are sorted
separately from all the WordPress template files that I will create. I'll name
this file tmpl_archives.php.
In order for WordPress to be able to identify this file as a template file,
we need to add a specially styled comment to the top of the page (just as
we did with style.css). The comment needs to be formatted like this:
 <?php
 /* Template Name: Blog Archives Custom */
 ?>

In the WP Admin panel, the template will be identified by this template
name, so make sure the name signals to you for what the template is used.

2. Add WordPress functions.
This is a crucial part of the process, but thankfully not a complicated one at
this stage. Look over your new template file and find the occurrence of:
<h1><?php the_title(); ?></h1>
<?php the_content(); ?>

Now erase those two lines and put this in their place:
<?php get_template_part('content', 'tmpl_archives'); ?>

This is the result we're after; the middle part of your tmpl_archives.php file
should now look like this:
<article id="post-<?php the_ID(); ?>" <?php post_
class(array('post-detail')); ?>>
 <div class="entry clearfix">
 <?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('content', 'tmpl_archives');
?>
 <?php endwhile; ?>
 </div>
</article>

Chapter 7

[219]

Next, create a completely new file called content-tmpl_archives.php
and put the following code in it:
<div class="post-item">
 <div class="post-title">
 <h2><a href="<?php the_permalink(); ?>"><?php the_title();
?></h2>
 </div>

 <div class="entry clearfix">
 <?php the_content(); ?>

 <div style="float: left; width: 50%;">
 <h2>Categories</h2>

 <?php wp_list_categories('orderby=name&title_li='); ?>

 </div>
 <div style="float: left; width: 50%;">
 <h2>Tags</h2>
 <?php wp_tag_cloud('smallest=8&largest=20'); ?>
 </div>
 <div style="clear: both;"></div><!-- clears the floating
-->

 <?php
 $how_many_last_posts = 15;
 echo '<h2>Last '.$how_many_last_posts.' Posts</h2>'; $my_
query = new
 WP_Query('post_type=post&nopaging=1');
 if($my_query->have_posts())
 {
 echo '';
 $counter = 1;
 while($my_query->have_posts() && $counter<=$how_many_
last_posts)
 {
 $my_query->the_post();
 ?>

Developing Your Own Theme

[220]

 <a href="<?php the_permalink() ?>"
rel="bookmark" title="Permanent Link to <?php the_title_
attribute(); ?>"><?php the_title(); ?>
 <?php
 $counter++;
 }
 echo '';
 wp_reset_postdata();
 }
 ?>

 <h2>By Month</h2>
 <p><?php wp_get_archives('type=monthly&format=custom&aft
er= |'); ?></p>
 </div>
</div><!-- /.post-item -->

The preceding code includes some additional functionalities on our new
archives template. Actually, because we are creating a custom template,
we can add any of the WordPress functions we discovered earlier in the
chapter, as well as any other WordPress function in existence (refer to
Chapter 12, Creating a Non-blog Website Part Two – Community Websites and
Custom Content Elements).
What we did here is the following. Here are some of the more interesting
parts of the code. Starting with the first part:
<div style="float: left; width: 50%;">
 <h2>Categories</h2>

 <?php wp_list_categories('orderby=name'); ?>

</div>

It's about adding a complete list of categories that are present on the site. The
div elements are responsible for displaying this block on the left-hand side
and allowing the next block, tags, to be placed next to it (it's a more effective
way of achieving such an effect than using HTML tables because it's a more
cross-device-friendly approach).
The next part of the code:
<div style="float: left; width: 50%;">
 <h2>Tags</h2>
 <?php wp_tag_cloud('smallest=8&largest=20'); ?>
</div>
<div style="clear: both;"></div><!-- clears the floating -->

Chapter 7

[221]

It has a very similar purpose, only this time we're displaying the
aforementioned tag cloud. The last div element visible in the preceding code
is meant to clear the float parameter used in the previous div elements.
Next, we have the part responsible for displaying the latest posts:
<?php
$how_many_last_posts = 15;
echo '<h2>Last '.$how_many_last_posts.' Posts</h2>'; $my_query =
new WP_Query('post_type=post&nopaging=1');
if($my_query->have_posts())
{
 echo '';
 $counter = 1;
 while($my_query->have_posts() && $counter<=$how_many_last_
posts)
 {
 $my_query->the_post();
 ?>
 <a href="<?php the_permalink() ?>" rel="bookmark"
title="Permanent Link to <?php the_title_attribute(); ?>"><?php
the_title(); ?>
 <?php
 $counter++;
 }
 echo '';
 wp_reset_postdata();
}
?>

Currently, the code displays 15 latest posts, but this can be adjusted if you
just change the value of the $how_many_last_posts variable.
Finally, there's the block that displays a traditional monthly archive, where
every month is represented as a standard link:
<h2>By Month</h2>
<p><?php wp_get_archives('type=monthly&format=custom&after= |');
?></p>

At this point, you can save the file and proceed to the next step.

3. Apply the template to a page.
Leave your HTML editor, and log in to your WP Admin. You need to edit
or create the page in which you want to use this template. In this case, I will
create a page and name it Archives.

Developing Your Own Theme

[222]

On the Edit Page page, look for the Template menu within the Page
Attributes box (at the right, by default).

Change it from Default Template to Blog Archives Custom, and click on
Update (note that you can also change a page's template using Quick Edit
by navigating to Pages | Edit). Now, in order to see the page somewhere,
you have to add it to one of the menus. We already covered this in Chapter 4,
Pages, Menus, Media Library, and More, so I'm sure you can get it done quickly.
Once you have this handled, you can return to the frontend of your website
and click on the Archives page. However, because your site is not that
content-heavy at this point, you won't get a staggering effect:

Chapter 7

[223]

You'll have to wait a while to get the full value of a custom archives page. For
example, here's what the preceding code delivers on one of my sites that has
more than 200 posts published:

There is no limit to the number of custom templates you can make in your
WordPress theme.

Now that we are done making templates for the conexus-kitchen theme,
the theme directory has grown quite a lot.

Making your theme widget friendly
If you want to be able to use the widgets in your theme, you will need to make your
theme widget friendly (also known as widgetizing your theme). Widgetizing is
actually pretty easy, and involves just the following three steps:

1. Go back to your "static" sidebar.
2. Add some specific functions to the functions.php file.
3. Add conditional code to your sidebar.

Nearly all the PHP code you need to add in steps 2 and 3 can be pasted from
already existing files, so the nonprogrammers out there shouldn't be too intimidated!
Let's get started.

Developing Your Own Theme

[224]

Going back to our "static" sidebar
The use of quotation marks probably makes you wonder what this is all about. The
fact is that even though we have a sidebar at this stage, which is a static one, we're
only using it as a placeholder—content that's going to be replaced with our dynamic
widgets. In its final form, the static sidebar content will only be used if no widgets
are selected in Appearance | Widgets.

This is actually not a requirement, per se, but it's always good to provide some "just
in case" content like this. Now, the best part is that we already have this sidebar
content created. We've been doing this a number of pages earlier when we were
discussing the basic structure of a standard WordPress theme. Just to remind you
what I'm on about, this is the structure we're working with:

<div class="sidebar" role="complementary">
 <div class="widget-container widget_archive">
 <h3 class="widget-title">Archives</h3>

 <?php wp_get_archives(); ?>

 </div>
</div>

The first step to widgetizing such a sidebar is to register some standard widget
areas. We're going to start with three new such areas. This is all done in the
functions.php file.

Working with functions.php
As I said earlier, the functions.php file can contain many different elements, so
now, it's about time to focus on how to actually enable dynamic sidebars also known
as widgets. In order to do that, go back to your functions.php file and add the
following lines of code:

function ckitchen_register_sidebar($name, $id, $before_widget, $after_
widget, $before_title, $after_title) {
 register_sidebar(array(
 'name' => stripslashes($name),
 'id' => $id,
 'before_widget' => $before_widget,
 'after_widget' => $after_widget,
 'before_title' => $before_title,
 'after_title' => $after_title

Chapter 7

[225]

)
);
}
function ckitchen_register_sidebars() {
 ckitchen_register_sidebar('Post Sidebar','post-
sidebar','','','','');
 ckitchen_register_sidebar('Page Sidebar','page-
sidebar','','','','');
 ckitchen_register_sidebar('Main Sidebar','main-
sidebar','','','','');
}
add_action('widgets_init', 'ckitchen_register_sidebars');

In the preceding code, I'm using two functions to register three separate widget areas.
The main ckitchen_register_sidebar() function is just a container function that
calls the WordPress' register_sidebar() function for registering the widget areas.
The ckitchen_register_sidebars() function (the second one) is where the actual
registration happens. In this function, there are three separate calls to ckitchen_
register_sidebar() with different parameters for specific widget areas. As you can
see, the widget areas that have been enabled are called Post Sidebar (the sidebar for
individual posts), Page Sidebar (the sidebar for pages), and Main Sidebar (the sidebar
used in all other situations, including the front page—index.php).

Now, the final add_action('widgets_init', 'ckitchen_register_sidebars')
function call is what actually registers the widget areas (it's the most important line
of code here).

Adding conditional code to sidebar
The third and final step is to add conditional code to your sidebar.php file. This
code says, "If the person using this theme wants to use widgets, don't show this stuff.
If he or she doesn't want to use widgets, do show this stuff." That way, a person not
using widgets will see whatever default items you put into the sidebar.php file (in
our case, the archives).

This is how the sidebar.php file looks with the widgets enabled:

<div class="sidebar" role="complementary">
 <?php
 $show_default_sidebar = false;
 if(is_page()) {
 if(!function_exists('dynamic_sidebar') || !dynamic_
sidebar('page-sidebar'))
 $show_default_sidebar = true;

Developing Your Own Theme

[226]

 }
 elseif(is_single()) {
 if(!function_exists('dynamic_sidebar') || !dynamic_
sidebar('post-sidebar'))
 $show_default_sidebar = true;
 }
 elseif(is_archive() || is_search() || is_front_page() || is_
home()) {
 if(!function_exists('dynamic_sidebar') || !dynamic_
sidebar('main-sidebar'))
 $show_default_sidebar = true;
 }

 if($show_default_sidebar) {
 ?>
 <div class="widget-container widget_archive">
 <h3 class="widget-title">Archives</h3>

 <?php wp_get_archives(); ?>

 </div>
 <?php } ?>
</div>

There are some differences between this code and the code listed a couple of pages
ago (our static sidebar). As you can see, the static sidebar is still a part of this new
version, but it has been surrounded with some additional PHP code. Our widget-
enabled sidebar.php file starts by defining a new variable $show_default_
sidebar, which is set to false. This variable is then used to determine if any
widgets have been assigned to its respective widget area. The main if{} conditional
statement checks what kind of page we're dealing with (whether it's a post, a
standard page, or something else), and then selects the correct widget area that
should be displayed. In case there are no widgets assigned to that widget area, the
$show_default_sidebar variable is set to true and the default sidebar appears
(the one containing only the archive listing).

To make things clear, let me just admit that the only line of code WordPress needs to
recognize and display a specific widget area (in this case, page-sidebar) is this one:

if(!function_exists('dynamic_sidebar') || !dynamic_sidebar('page-
sidebar'))

Chapter 7

[227]

Adding some widgets
At this point, your theme is ready for widgets! You can now go to WP Admin,
navigate to Appearance | Widgets, and add widgets (when you do, the default
archive listing will disappear). For example, as you can see in the following
screenshot, I added three widgets to one of the widget areas:

Developing Your Own Theme

[228]

Be sure to click on Save and then return to your website and reload the page. The
default items you had placed in the sidebar have been replaced with widgets, as
shown in the following screenshot:

Further widgetizing options
What we just covered is the simplest way to widgetize a theme. There are actually
a lot of options that you could utilize while adding the code to your sidebar.php
and functions.php pages. For example, there are options that allow you to do the
following: widgetizing more than one sidebar giving each a name, widgetizing a part
of your sidebar but leave in some default items, customizing the search form widget,
and many, many more.

To learn about the variety of options available and how to take
advantage of them, take a look at the codex: http://codex.
wordpress.org/Widgetizing_Themes.

Chapter 7

[229]

Enabling a menu in your theme
As of WordPress 3, users can now control more easily what appears in menus.
Instead of having to show all the pages in the menu, you can choose to show
a selection of pages, and/or categories, and/or other options (as we saw in
Chapter 4, Pages, Menus, Media Library, and More).

The good news I have for you right now is that menus are already enabled in the
structure of the theme we're creating here. Because we used the wp_nav_menu()
function in the header of the site (in the file header.php), if the user creates a menu
in Appearance | Menus and then assigns it to the area indicated as primary, it will
show up in that spot. The same goes for the other menu area, footer_menu, which is
placed in the footer.

If you want to have more than one navigation menu in your theme, you can register
multiple navigation menu locations and let the user create multiple menus and
choose which menu goes in which location. To learn more about that, check out this
page of the codex: http://codex.wordpress.org/Navigation_Menus.

The wp_nav_menu() function is quite powerful, and can take a number
of parameters that will let you control the classes and IDs, the name of
the menu, and more. Take a look here in the codex for details: http://
codex.wordpress.org/Function_Reference/wp_nav_menu.

Creating a child theme
If you can find an existing theme or theme framework that you like, and you
just want to use your CSS and HTML skills, you can create a child theme. A
child theme uses the parent theme as a starting point and, without changing
the theme framework itself, alters just the bits you want to alter.

As a matter of fact, using child themes is the recommended way of making
modifications to any theme. The rule of thumb is simple: if you want to change
anything at all about a stock theme (either inside the source code, graphics, or
template files), do it through a new child theme.

In plain English, a child theme inherits the functionality and features of the parent
theme. The biggest value in creating child themes is that you can introduce any bells
and whistles you wish without altering the structure of the parent theme. I know that
this sounds like some additional work because if you just want to change a couple
of lines of code, it's always going to be quicker to do it directly within the theme.
However, taking the longer, child theme way has its benefits.

Developing Your Own Theme

[230]

The main one is that if you were to modify the original theme directly, all your
modifications would vanish the minute you updated the theme. However, if you're
using child themes, you can take full advantage of any update that the original
theme's authors release. Let me say this again, preserving your modifications after
performing a theme update is impossible unless you're using a child theme.

Another benefit of working with child themes is that you have a very clear look
over the modifications that you've introduced into your theme. Basically, every new
thing that you're implementing through a child theme has to be placed in a new file;
so even when you come back to review your child theme after a while, you can still
easily identify every piece of your work.

The final benefit, actually, there's probably a lot more of them, but the final one on
this short list is that it's very easy to revert every modification you've introduced
through a child theme. In short, if something is causing some serious problems and
you have to fix your site quickly (you know, an emergency), you can simply delete
the files responsible. If you were modifying your original theme directly, going
through every file individually would surely take much more time and would
make any sort of quick recovery very difficult to achieve.

Let's take a quick look at how to make a child theme.

Creating the new theme directory
Just to make things easier to understand here, we'll take the theme that we've been
creating in this chapter and build a child theme for it. The starting point is really
simple. Create a new folder in wp-content/themes/ and name it conexus-child.

Creating the stylesheet
The only file you need to start with in this directory is the stylesheet (style.css).
The stylesheet needs the usual header and a new line:

/*
Theme Name: Conexus Child
Description: Child theme for the Conexus theme. Child themes are the
recommended way of making modifications to a theme.
Author: So and So
Author URI: http://yoursite.com
Template: conexus-kitchen
*/

Chapter 7

[231]

The key line in that code is Template: conexus-kitchen. This tells WordPress that
your new theme is a child theme of conexus-kitchen, the directory name of the
conexus-kitchen theme (it's case sensitive). To make your child theme start out
with the CSS from the parent theme, add this code below the comment:

@import url("../conexus-kitchen/style.css");

If you don't use the preceding line of code, your child theme will begin its existence
on a blank stylesheet. In most cases, this is not a desirable scenario.

Using your child theme
That's it! Your new theme now shows up on the Appearance page:

Developing Your Own Theme

[232]

Well, okay, the theme is not really useful at this point, but it does exist and we
can use it as the base for further modifications.

By default, it will use all of the main theme's styles, template files, functions,
and everything else. If you activate it, it will present your site as if you were
using your main theme.

If you want to change anything, do so in your child theme's folder. You will
override the main theme's original template file if you create a template file
(for example, single.php, index.php, and archive.php). The functions.php
file works a little differently, however. If you create a functions.php file, it will
be in addition to the main theme's original functions.php file; it will not override.
In fact, your new file will be loaded first, right before the original file. If you want to
override a specific function in the original functions.php file, just create a function
with the same name. You can also create completely new functions that are not
present in the parent theme.

Like I said, every other template file you create inside the child theme (such as
page.php and single.php) will override its namesake so it's the perfect method to
include a new, slightly different design or some new features. Apart from replacing
existing template files, you can also add new ones that are not present in the parent
(including custom page templates).

In the end, the whole topic of child themes is quite an easy one to grasp, once you
spend a little while trying out different things and checking how your site reacts
to the things you include in the child theme.

The WordPress codex has a page devoted to learning about child
themes at http://codex.wordpress.org/Child_Themes.

Sharing your theme
If you want to turn your template into a package that other people can use, you just
have to take the following steps:

1. Make sure you have the rights to redistribute images, icons, photos, and so
on, that you included in your theme.

Chapter 7

[233]

2. Remove all unnecessary files from your theme's folder. Be sure you don't
have backup versions or old copies of any of your files. If you do delete any
file, be sure to retest your theme to ensure you didn't accidentally delete
something important.

3. Make sure the comment at the top of the style.css file is complete and
accurate.

4. Create a Readme.txt file. This is a good place to let future users know with
what version of WordPress your theme is compatible and if it has any special
features or requirements.

5. Zip the folder and post your theme ZIP file on your own website for people
to download, or post it directly in the WordPress Themes Directory at
http://wordpress.org/extend/themes.

Even though the preceding process looks like a standard step-by-step one, it's
actually nothing like it. To be honest, your theme has to be a really quality one if
it's to be allowed into the directory. For example, every theme undergoes a human
review, which often results in your theme not passing it. In this case, you just have to
make the requested changes, resubmit your work, and keep trying until you get in.

These steps are outlined in a rather general way. If you'd like more details on the
process of preparing and sharing your theme in the WordPress community, I highly
recommend taking a look at the book WordPress Theme Development Beginner's
Guide Third Edition by Rachel McCollin and Tessa Blakeley Silver, Packt Publishing. In
this book, the author spends an entire chapter discussing the details involved with
sharing your theme and makes recommendations regarding licensing, alternative
packaging techniques, getting feedback, versioning, and tracking theme usage.

And speaking about licensing, by default, WordPress is available under the GNU
General Public License (GPL). In plain English, this means that WordPress (the
platform) is free and every derivative work that is built upon it has to be filed under
GPL too—this includes themes. In short, every piece of PHP code you find inside
WordPress, various themes, or plugins is GPL (that includes premium themes and
plugins as well). When it comes to artwork and CSS, GPL might not apply. If you
want to learn more about the GPL licensing, it's best if you go straight to the official
legal opinion at http://wordpress.org/news/2009/07/themes-are-gpl-too/.

Now, apart from the official directory, you can also share your theme through
other channels. First of all, you have to decide whether you want your theme to be
available for free or not. In the case of the former, you can reach out to some popular
blogs about WordPress and WordPress design, and simply let them know that you
have a theme you'd like to share. Most of the time (if the theme looks attractive), they
will have no problem notifying their community that there's a cool new free theme.

Developing Your Own Theme

[234]

If you want to make your theme a premium one, you can go to ThemeForest
(http://themeforest.net/) and try submitting it there. The only challenge is that
your theme must really be a quality one if you don't want to get a lot of refunds.

I'm not forcing you to share your theme with the community right away, but once
you build some expertise and build your themes to be really cool and useful, you
really should reach out to the community and share your work.

Finally, if you're interested in creating an impact with your new theme in the
community, consider launching a website dedicated to your theme. This website
will be a place where you can publish a demo version, deliver some documentation,
provide support forums, and other things to deliver great user experience.

Summary
You have now crossed to the other side of the "theming" world. You have learned
how to make your own theme. With just the most basic HTML and CSS abilities,
you can create a design and turn it into a fully functional WordPress theme.

In this chapter we saw how to do the following:

• Turning your HTML build into a basic theme
• Creating WordPress templates to influence the display of a variety

of views on your site
• Creating custom templates to be applied to pages within your site
• Making your new theme widget-ready
• Creating a child theme
• Sharing your theme with everyone else in the WordPress community

In the next chapter, we'll discuss the topic of feeds, podcasting, and offline
blogging. This information will allow you to expand your blogging habits
and make your work more diverse.

Feeds, Podcasting, and
Offline Blogging

Let's start off with a definition. For those of you who aren't sure, the following
is what a feed is (when it comes to websites):

"A web feed is a data format used for providing users with frequently
updated content."

 —Wikipedia

Let's take a closer look at this concept. The key idea here is frequently updated
content. A website that features a blog or updated news or any type of content that
changes regularly will want to offer users a feed. This is because most users will not
want (or remember) to visit every such website every day, and users will lose track
of which websites have new content today, which don't, what they've already seen,
and so on.

If you think about it, feeds are rapidly becoming the only sensible way of consuming
content on the internet (no matter if it's written content, audio, or videos). With
information overload being one of the most common problems that people
experience online in the 21st century, visiting every website that we like manually
is becoming quite unmanageable.

Instead, we can use a feed aggregator (or feed reader). The idea is simple, you can
tell the feed reader about all of the regularly updated websites in which you are
interested, and the feed reader will grab the updated content and display it all in one
place. I, for example, used to enjoy one of the most popular feed readers of all time,
that is Google Reader. The only problem was that it ceased to exist on July 1, 2013.
Currently, there's a number of alternatives that grew strong after Google's moves.

Feeds, Podcasting, and Offline Blogging

[236]

I'm a Feedly user right now (http://www.feedly.com/), but you are free to choose
your own favorite. Also, let me just tell you that for me, life without a feed reader
would really be much more difficult. I know that it might sound very strange or
like a big exaggeration, but I mean it. Just to give you some stats; currently, I'm
subscribed to over 540 different feeds, and the best thing is that I only need a few
minutes a day to catch up with the most important news and articles. How's that for
time efficiency? Actually, I don't even need to visit all these sites directly, I can read
every article inside the feed reader. This also adds up to a saving in terms of page
load time, as feeds contain fewer advertisements and have only the textual content in
which you'll be interested, you don't have to wait for website design elements or ads
to render.

What this all boils down to is this: If you are going to create a website with
frequently updated content, you'll want to offer your users a feed so that they can
add it to their reader. Also, you'll want to be sure you are familiar with feeds and
feed readers so that you can both understand what your users are seeing and also
offer them everything they are likely to want.

In this chapter, you will learn about feeds, how to provide feeds for your own
website's content, and some useful plugins to make all this happen.

But wait, there's more! We're also going to cover podcasting, which for some site
owners is an important element of their online presence, and offline blogging apps,
which is the best way to create a blog or a website content offline and then export it
to the web with just a couple of clicks.

Feed basics
Feeds are pure contents (or just summaries of content) presented in a structured way
via XML, and are usually organized with the most recent information on top. You
can always stay up-to-date using feed aggregators (software that can read feeds).
Using them, you can also have the content you want delivered or collected for you in
the way and place you want. This applies not only to written content from blogs or
new websites, but also audio and video content (that is, podcasts).

Typically, web feeds are either in Really Simple Syndication (RSS)or Atom format.
RSS has changed over the past decade, and thus is often referred by a version
number. The most up-to-date version of RSS is RSS 2.0.1. The older versions that
are still somewhat in use are 0.91 and 1.0. However, to be honest, in my some-years'
experience with blogging and WordPress, I can't recall a moment when I had to
worry about or even be aware of the version I'm currently using. This is one of those
things that goes unnoticed for the most part.

Chapter 8

[237]

If you ever find that you have readers on your blog who write to you complaining
that their feed reader can't read your RSS feed, then you could consider publishing
links for the older formats (we'll review how to do that later in the chapter), or using
a web tool such as FeedBurner. Tools such as these can serve up feeds in different
formats, so your visitors can receive your content in whichever way they choose.

Feed readers
Your subscribers will read your content using a feed reader. Feed readers are either
web-based or client-side software, which grab the XML content from all the feeds
you want and format it legibly. WordPress was programmed with this need in mind
and it automatically helps you format your posts so that they come in nicely through
the feed readers.

Let me say this again, the functionality of content feeds is built in into WordPress
by default. This means that you don't have to do anything at all to make it available.
However, you may want to take a look at your blog in a few feed readers to see how
your content looks. There are a few different basic types of feed readers, namely
online, desktop, mobile, and so on.

As I mentioned a couple of pages ago, Google Reader which is the most popular feed
reader in its time, is no longer available. In those last couple of months prior to its
shutdown, most users shifted their subscriptions to other tools. Some of the popular
solutions of today include:

• (The aforementioned) Feedly: http://www.feedly.com/
• The Old Reader: http://theoldreader.com/
• NewsBlur: http://newsblur.com/
• Net News Wire: http://netnewswireapp.com/
• FeedDemon: http://feeddemon.com/
• RSS Bandit: http://rssbandit.org/
• Vienna RSS: http://www.vienna-rss.org/

Feeds, Podcasting, and Offline Blogging

[238]

Every feed reader is constructed in a way that lets you add new feeds easily, organize
them into folders and sections, see which feeds have been updated, and also see which
items within each feed you have already read. The following is a screenshot of Feedly:

When it comes to desktop tools, they are usually easy to use and offer the same
number of features. The only problem is that most desktop tools are not meant
to work simultaneously on multiple devices. What this means is that you might
experience some problems getting your feeds synchronized if you like to consume
content on your desktop, laptop, smartphone, and other gear at the same time. At the
end, for personal and professional use, web-based solutions tend to do a better job.

Learning more
You can find an extensive list of these and other feed readers on Wikipedia
(http://en.wikipedia.org/wiki/List_of_feed_aggregators).

Your built-in WordPress feeds
Just as I've mentioned earlier, luckily for you, feed generation is automated in
WordPress. The WordPress installation has a feed generator included. The feed
generator generates feeds from posts, comments, and even categories. It also
generates all versions of RSS and Atom feeds.

You can find the feed generator for your WordPress blog (that we created
in the previous chapter) if you point your browser to any of the following
URLs (replace yoursite.com with the URL of your WordPress installation),
and if you have pretty permalinks turned on for your site:

• RSS 2.0 feed: http://yoursite.com/feed/
• RDF/RSS 1.0 feed: http://yoursite.com/feed/rdf/

Chapter 8

[239]

• RSS 0.92 feed: http://yoursite.com/feed/rss/
• Atom feed: http://yoursite.com/feed/atom/
• Comments RSS 2.0 feed: http://yoursite.com/comments/feed/

If you do not have permalinks turned on for your site, you will need to use the
following URLs instead:

• RSS 2.0 feed: http://yoursite.com/?feed=rss2
• RDF/RSS 1.0 feed: http://yoursite.com/?feed=rdf
• RSS 0.92 feed: http://yoursite.com/?feed=rss
• Atom feed: http://yoursite.com/?feed=atom
• Comments RSS 2.0 feed: http://yoursite.com/?feed=comments

The following screenshot is similar to what I see in my web browser when
I navigate to the RSS 2 URL:

Adding feed links
WordPress automatically generates even the feed links that you see in the preceding
screenshot, so you don't have to type them in or remember what they are for. If
you're using an existing theme, there's a good chance it's already got the feed links
in it, in which case you can skip the following section. If it doesn't, or if you want to
learn more about adding feed links to your own templates, continue on here!

Feeds, Podcasting, and Offline Blogging

[240]

You can use handy built-in WordPress functions to add feeds to your theme.
Actually, this is something we have partially done in the previous chapter. Just to
remind you what I'm talking about, we used the following code to enable feed links
in the <head> section of our custom theme. The following code was placed in the
functions.php file of our theme:

functionckitchen_setup() {
 //Adds RSS feed links to <head> for posts and comments.
 add_theme_support('automatic-feed-links');

 /* other code */
}
add_action('after_setup_theme', 'ckitchen_setup');

The first instruction within the ckitchen_setup() function is exactly what makes
sure that the automatic feed links are going to be included in the right place. The
presence of these links in the <head> section allows various feed readers to pick up
your feeds just by using the main URL of your site (in other words, visitors don't
have to know the exact addresses of your feed URLs, instead they can subscribe
through the main site's URL).

The only additional thing that we can do at this point to make our theme even more
usable is to include some custom feed links in the footer, so that every visitor can
click on them directly. This is exactly what I'm going to describe in the next section.

Feeds for the whole website
First, let's start by going back to the footer.php file that we created in the previous
chapter. If you don't have it at your disposal at the moment, simply download the
code bundle for Chapter 7, Developing Your Own Theme, and install it on your site.

Using your FTP software or the built-in WordPress theme editor, edit the footer.
php file in your themes folder. Just after the Proudly powered by WordPress
message, add the following code:

| <a href="<?= esc_url(get_bloginfo('rss2_url')) ?>"
 class="rss">Posts | <a href="<?=
 esc_url(get_bloginfo('comments_rss2_url')) ?>"
 class="rss">Comments

Chapter 8

[241]

I've also added an RSS icon in PNG format to the theme's images folder, and the
following CSS to the stylesheet:

.rss, p.rss a {
 background: url(images/rss.png) no-repeat;
 padding: 0 0 0 17px;
 color: #E69730;
}

p.rss { background: none; padding: 0; }

Now, when you reload your site, you'll see links for those two feeds in the footer.
Have a glimpse at the following screenshot:

WordPress will generate the feed URLs for you based on your site settings
so that you don't have to hardcode them into your template. If you want to
add links for other kinds of feeds, replace rss2_url in the earlier mentioned
link with the following text:

• For RSS 1.0: rdf_url
• For RSS 0.92: rss_url
• For Atom: atom_url

Feeds for comments
On the individual posts page, we can add a feed to allow users to subscribe to the
comments on a particular post. Sometimes a single post on a blog can draw a lot
of attention, with dozens or hundreds of people adding comments. People who
comment, and even those who don't comment, may be interested in following the
thread, or subscribing to it.

Feeds, Podcasting, and Offline Blogging

[242]

Using your FTP software or the built-in WordPress theme editor, edit the single.
php file in your themes folder. If you're using the theme we built during Chapter
7, Developing Your Own Theme, find the code that we added in it, which includes
the comments template <?phpcomments_template('', true); ?> and add the
following code just before it:

<p class="rss">
 <?phppost_comments_feed_link('Subscribe to these comments'); ?>
</p>

If you are not using the theme we built in Chapter 7, Developing Your Own Theme,
you can add the preceding code anywhere in single.php as long as it is inside the
if and while loops of the loop. Now, when you look at a single post page, you'll see
the subscription link just above the comments form, as follows:

More built-in feeds are available within WordPress. Learn about
them at http://codex.wordpress.org/WordPress_Feeds.

Tracking subscribers with FeedBurner
Unlike visitors to your website's pages, your feed users cannot be tracked through
normal site-tracking software, such as Google Analytics or Site Meter. The most
popular way to track feed users is through the free services provided by FeedBurner
(http://feedburner.google.com).

To use FeedBurner, you will need to divert all of your feed links through FeedBurner
instead of sending people directly to your WordPress RSS feeds. FeedBurner will
then keep a track of the number of subscribers for you and provide you with a
separate dashboard, statistics, and other features.

Chapter 8

[243]

Burning your feed on FeedBurner
You'll have to create a FeedBurner account before you can start using it. Just navigate
to http://feedburner.google.com/, log in with your Google account, and follow
the sign up instructions. You'll have the option to set up your feed there. Make sure
that you select the correct feed that you want to connect to FeedBurner (usually, it's
the main feed that is available at http://yoursite.com/feed/, not the comments
feed that is available at http://yoursite.com/comments/feed/). Next, you can
tweak your feed's title and set its custom URL, as shown in the following screenshot:

Then click on Next, and you're done.

If you want to, you can stay on the Feedburner options page and enable various
stats and other features. But for now, you can just click on the Skip directly to feed
management link and complete the setup process.

FeedBurner plugin
In order to complete the process on both sides (right now, we've only enabled
Feedburner to work with our site, but we didn't let our site know about Feedburner's
existence), we need an additional plugin. There are some alternate possibilities
out there, but I advise you to use the FD Feedburner Plugin. This plugin will tell
WordPress that when someone clicks on one of your feed URLs, which are generated
by WordPress, redirect them through FeedBurner. You can download the plugin
from http://wordpress.org/extend/plugins/feedburner-plugin/.

Feeds, Podcasting, and Offline Blogging

[244]

Upload and activate the plugin as you learned in Chapter 5, Plugins and Widgets.
Then go to the configuration screen by navigating to Settings | FeedBurner. Enter
your FeedBurner URL into the appropriate textbox (the one labeled Redirect my
feeds here). You can add a comments feed if you want to track that as well. When it
comes to the Advanced Options field, you can leave everything checked, as shown
in the following screenshot. After all, it's the main feed we want to supercharge
through Feedburner:

Starting immediately, the feed URLs that WordPress generates (though they
appear to be the same) will actually redirect the user to FeedBurner so that it
can collect stats.

You won't be able to see your user data right away. FeedBurner will take a few days
to collect statistics on your subscribers. Once it has enough data, you'll be able to log
in and see how many subscribers you have, which feed readers they are using, and a
lot of other data.

Podcasting
A podcast is a special feed that includes a reference to an audio or video file instead
of just a text. People use a podcasting client, such as iTunes or Juice to collect and
listen to the episodes.

Fun fact: The word podcast is a combination of iPod and broadcasting

Have you ever considered creating your own podcast? It's like having your own
radio or TV show. Your subscribers, instead of reading your posts at their computers,
can listen through their headphones to your content at any time.

Chapter 8

[245]

Adding a podcast to your WordPress blog is outrageously easy. While generating
your blog's RSS feeds, WordPress automatically adds an <enclosure> tag, which
is available in RSS 2.0, if a music file is linked within that post, and this tag is read
by podcast clients. Therefore, all you have to do is make a post; WordPress will do
the rest for you.

Creating a podcast
For basic podcasting, the following are just two steps you have to take:

1. Record.
2. Post.

Let's have a glimpse at these steps in detail.

Recording yourself
You can record your voice, a conversation, music, or any other sound you'd like to
podcast using any commercial or free software and save it as an MP3 file. You may
also find that you need to do some editing afterwards.

Some good free software to consider using is as follows:

• I recommend using Audacity, which is a free, cross-platform sound
recorder, and editor. You can download Audacity from http://audacity.
sourceforge.net/. You may have to do a bit of extra fiddling to get the MP3
part working, so pay attention to the additional instructions at that point. If
you don't want to learn the basics of audio compression and equalization,
you may also want to use a leveling tool such as the Levelator, which can be
found at http://www.conversationsnetwork.org/levelator. Although
it's no longer updated as of the end of 2012, it still works well for leveling the
volumes in a simple audio file.

• If you are working on Mac OS and like to use free software, have a
glimpse at Garage Band. It comes with the OS, so it will already be
installed on your computer.

• If you want to examine some advanced pieces of audio software, named
Digital Audio Workstation (DAW), used by professional podcast producers
and musicians, look into Sonar X2, Studio One, Logic, or ProTools.

• To learn more about the basics of audio recording and production for
podcasters, which will make your podcasts sound professional, feel free to
check the in-depth tutorial that is available at http://www.hongkiat.com/
blog/audio-production-for-podcasters/.

Feeds, Podcasting, and Offline Blogging

[246]

Making a post
Now that you've created an MP3 file and it's sitting on your computer, you're ready
to make a WordPress post that will be the home for the first episode of your podcast,
as follows:

1. In the WP Admin, click on New Post on the topmost menu. Enter some
initial text into your post if you want to provide an explanation of this
episode. I suggest you also, at this point, to add a new category to your
blog named Podcast.

2. Just so we learn the basics of including media files, let's upload your media
file via the media manager. Later on in this chapter, I will explain why this
is not always the most effective approach. But for now, we're here to learn.
Start by clicking on the Add Media button and drag-and-drop your MP3. If
all goes well, your file will be on the server shortly (remember that audio files
are bigger than images so uploading will always take a little longer).

3. Next, insert the MP3 file into your post. The following screenshot is of the
options screen:

Chapter 8

[247]

4. WordPress gives you three main possibilities under the Embed or Link
section. The default one is Embed Media Player. If you select it, WordPress
displays your audio file inside an interactive player, as shown in the
following screenshot. However, here, we're going to select the second option,
that is Link to Media File:

5. Click on Insert into post.
6. Make any other changes or additions you want to make to your post,

publish the post, and you're done. The final result is visible in the following
screenshot (it's just a standard link):

That's it! Your website's RSS 2.0 feed and its Atom Feed can now be used by
podcast clients to pick up your podcast.

You can use your own podcast client (iTunes, in my case) to subscribe right away.
In iTunes, I navigate to Advanced | Subscribe to podcast, and paste in the RSS
URL of the new Podcast category I just created, for example http://yoursite.com/
category/podcast/feed/. At this point you (and your visitors) can enjoy the new
podcast you've just created.

Dedicated podcasting
Setting up a dedicated podcast is easy; we already did it previously! You just
need to use a separate category for all of your podcast posts. Whenever you post a
podcast episode, be sure to assign it to this category only. Furthermore, in addition
to providing a link to the podcast feed on the archive page, you'll want to make this
link available in the sidebar of your site.

First, navigate to the archive page for your podcast category and copy the URL, for
example http://yoursite.com/category/podcast/feed/. Also, to make things
easier for iTunes users, you can add an iTunes-specific link. It is the same as your
other link, but replace http:// with itpc://.

Feeds, Podcasting, and Offline Blogging

[248]

Now, create a new text widget for your sidebar and add this HTML to it (replace
yoursite.com with your actual domain), as follows:

 The
 Podcast
 iTunes
 Podcast feed

That's it! The preceding simple lines of code will display two neat links pointing to
the podcast.

The WordPress codex has a section on getting started with podcasting.
Have a glimpse at http://codex.wordpress.org/Podcasting.

Podcasting plugins
We just learned that it's quite easy to add a podcast to your WordPress website.
However, if you want additional features, you may want to use a podcasting plugin.
Some additional features might be as follows:

• Automatic feed generation
• Preview of what your podcast will look like in iTunes
• Download statistics
• Automatic inclusion of a player within your post on your website
• Support for separate category podcasts
• And many more features

There are a number of podcast-related plugins available in the WordPress plugin
repository. The three most popular are as follows:

• PowerPress: http://wordpress.org/extend/plugins/powerpress/
• PodPress: http://wordpress.org/extend/plugins/podpress/
• Podcasting plugin by TSG: http://wordpress.org/extend/plugins/

podcasting/

Chapter 8

[249]

For an in-depth guide on how to use the PowerPress plugin, which
is my favorite one on the preceding list, and how to configure it
correctly, please visit this 30-minute video tutorial by Pat Flynn at
http://www.youtube.com/watch?v=Ei67QMWD4MA#!

In it, you'll learn how to optimize your podcast and how to set it
up properly so it can be picked up by iTunes, and then shared across
the community.

Also there are hundreds more, which you can find by looking at all plugins tagged
podcasting, http://wordpress.org/extend/plugins/tags/podcasting. You'll
have to read the plugin descriptions and user reviews to decide which of these might
be the best match for you.

Using a service to host audio files for free
Just as I mentioned a while ago, the old-school approach of uploading your podcast
straight to your blog has its flaws, which doesn't make it the most effective way
to handle things these days. First of all, if you want to host the media file on your
main server (the one where your website is hosted), you can quickly encounter
serious bandwidth problems, especially if your podcast becomes popular. Also,
there's a problem with the maximum upload size in WordPress. Depending on your
webhost, you might not be able to upload files larger than 2 MB, 8 MB, or 16 MB. The
following screenshot shows how this problem looks like in the uploader:

Therefore, if you anticipate having a large number of subscribers, or if you plan on
producing such a large volume that you'll run out of space on your own server, you
can use an external hosting service that will host your audio files either for a fee or
even free of cost. Some options to consider are as follows:

• Libsyn: It is an effective and affordable podcast hosting that is available
at http://www.libsyn.com/

• Archive.org: Once you sign up for an account, you can contribute
your audio files to be placed in the podcast directory. It is available
at http://archive.org/details/audio

• PodBean: It is a free podcast hosting that is available at
http://podbean.com/

Feeds, Podcasting, and Offline Blogging

[250]

If you choose to do this, first upload your file to the service you've selected and
make a copy of the URL it gives you for the file. Now you need to insert it into your
WordPress post by using one of the aforementioned plugins. After doing so, your
podcast episode will become recognizable by podcast directories.

Offline blogging tools
Offline blogging tools or external blogging tools are some of the things I talked about
briefly in Chapter 3, Creating Blog Content. Essentially, those tools allow you to create
content for your site or blog offline, import it into the site and ultimately publish it
for the whole world to see.

The more likely question that's on your mind right now is: Why not create the
content directly in WordPress or even use software like Microsoft Word?

The benefits
Despite of the fact that internet access is widely available in the 21st century, you
can still encounter some difficulties while travelling (scratch that, you surely will
encounter them), or even occasional downtimes in your office, or at home. In such
cases, connecting to the WP Admin of your site will be impossible, so you need to
have some alternatives.

The first alternative that comes to mind is Microsoft Word or Open Office; it isn't
really such a good solution. Although these tools are perfect for creating various
documents, they use some specific methods of text formatting, which are not
compatible with WordPress. As a result, if you try to copy and paste your post from
Word to WordPress, you will get a lot of formatting garbage and the initial simple
formatting you've had, such as bold fonts, italics, links, will get messed up.

With dedicated offline blogging apps, there's no such problem. Basically, they were
created for the sole purpose of creating content offline (on your desktop computer,
laptop, or mobile device), and then exporting it to a WordPress site.

Additionally, since the content is created offline, each post or article is kept as
a single file, which you can easily send via e-mail, backup via Dropbox, or do
anything else you'd normally do with a file.

To be honest with you, I do 100 percent of my WordPress blogging through an
offline blogging tool. Again, that's 100 percent.

Chapter 8

[251]

The tools
Offline blogging tools is an area where Windows users have it much better than their
Linux or Mac friends. That's because some time ago, Microsoft released a tool named
Windows Live Writer (it works on Windows only). And as far as I know, it's the
best tool around. Additionally, there's something very "non-Microsofty" about it;
it's free. You can get it at http://explore.live.com/windows-live-writer.

If you're mainly a Mac user, check out the following two editors: MarsEdit (http://
www.red-sweater.com/marsedit/) and Qumana (http://www.qumana.com/)

Finally, for iOS, refer to the official WordPress app or an alternative app named
Blogsy. They can be both used to write posts locally, on your iOS device, and then
have them exported to your blog once you go online.

Using Windows Live Writer
As it turns out, the tool is very simple to use and that's one of the reasons why
it's so great. It doesn't require any specific modifications to your WordPress site,
which means that your blog is 100 percent ready to work with Windows Live Writer
right from the get-go. The only configuration you need to take care of is within the
Writer itself.

The installation process is pretty straightforward like all Microsoft's products, so I
won't be describing it here. Also, you can have the Writer already installed on your
Windows computer. This can happen if you've been using Microsoft's live package
before as Writer is a part of it. The following screenshot shows how the main screen
of Writer looks once you download and install it:

Feeds, Podcasting, and Offline Blogging

[252]

The design is really clear and at first, it seems like there's not much we can do inside
this tool. It's probably the simplest text processing tool Microsoft has to offer these
days. However, as you'll quickly realize, it has everything a blogger or a WordPress
site owner might need. Let's start with the setup; how to connect Writer with your site.

When you attempt to use the tool for the first time, it will ask you about the kind of
site you want it to connect to. If you've missed this automatic wizard, you can always
click on the drop-down menu icon in the upper-left corner of the screen (visible in
the preceding screenshot), navigate to Options | Accounts, and then
click on the Add... button, which will have the same effect. The following screenshot
is the place where you can set new blog accounts:

Writer can work with multiple WordPress sites at the same time, which makes it
very useful for people managing websites professionally. Let's try setting up your
first site. In the screen visible in the preceding screenshot, select WordPress and
click on the Next > button. You will be taken to the next screen where you can input
the address of your blog, your username and password. Once you click on Next>
again, Writer will attempt to connect to your site. In the final step, you have the
opportunity to set the blog's nickname, which will be visible only inside Writer.

If all goes well up to this point, you'll be taken back to the main screen. Let's take
it apart and see what Writer has to offer. The top bar has only three tabs, namely
Home, Insert, and Blog Account (plus the main drop-down menu and the help
icon), as shown in the following screenshot:

Chapter 8

[253]

The Home tab is where you can handle all the basic tasks of creating and formatting
your content. You should be familiar with most of these features as they are quite
similar to what you can find inside Microsoft Word:

The next tab is Insert; it offers a more in-depth look into all the things we can include
within our content, as shown in the following screenshot:

The final tab, that is Blog Account, provides some additional options to view your
blog's dashboard, update the theme, and adjust other parameters you might find
important, as shown in the following screenshot:

Right under the main tabs, there's an additional section where you can set your
post's categories, tags, and publication date (and when you click on the View all
link, also things, such as the excerpt and slug), as shown in the following screenshot:

Finally, we have the status bar at the bottom. This is where, apart from the ability
to edit your post, you can preview what it's going to look like on your site, view
the HTML source code of it and check the current word count and post status:

Feeds, Podcasting, and Offline Blogging

[254]

Of course, as I said before, once you click either on the Publish button or the
Send draft to blog button, your post is going to be exported directly to your
site where you can perform some further fine tuning.

To be honest, that is all about Writer and the topic of offline blogging tools in
general. In short, their purpose is to make your content creation process much
quicker with much less hassle. Once you get to know Writer better (or any other
similar tool), you will realize that working with WordPress can be as easy as
creating a standard document in Word or Open Office.

Summary
There was a lot going on in this chapter. First, we focused on feeds (RSS) and their
importance for every website that aims at being reader-friendly. Next, there was the
topic of podcasting and a brief getting-started guide about it (how to configure your
feeds, what plugins to use, and so on). Finally, we talked about offline blogging tools
that can make your life a lot easier as an online content publisher.

In the next chapter, we'll discuss the topic of developing your own plugins and
widgets, what the basics are and how to get your head around them.

Developing Plugins and
Widgets

Earlier in this book, you learned how to install plugins. Plugins are essentially a
way to add to or extend WordPress's built-in functionality. There are thousands of
useful plugins (at the time of writing, the official counter at http://wordpress.
org/plugins/ shows over 27,000 plugins) available from the online WordPress
community, and they perform all different kinds of functions. In the earlier chapters,
we installed plugins that catch spam, allow FeedBurner to track RSS followers,
back up your site, give you basic SEO features, and more. You can also get plugins
that manage your podcasts, create a Google XML site map, integrate with social
bookmarking sites, track your stats, translate into other languages, and much more.

Sometimes, however, you'll find yourself in a situation where the plugin you need
just doesn't exist. Luckily, it's quite easy to write a plugin for WordPress that you can
use on your own site and share with the larger community if you want. All you need
is some basic PHP knowledge, and you can write any plugin you want.

This chapter is divided into three major parts:

• In the first part, we'll create two plugins using an easy-to-follow
step-by-step process

• In the second part, we'll create a widget using the built-in WordPress
widget class

• In the third part, we'll look at shortcodes

Developing Plugins and Widgets

[256]

Plugins
In this section, we'll create a plugin via a simple step-by-step process. We'll first
see what the essential requirements are, then try out and test the plugin, and then
briefly discuss the PHP code.

Building plugins from scratch
First of all, we're here to learn about WordPress, so in this particular case, we will
indeed build things from scratch. This is always the best approach to get an in-depth
look into how a particular technology works.

However, later on, once you're working with WordPress on a regular basis managing
your own or other people's websites, I actually advise you to always look for an
already existing plugin before deciding to write a new one yourself. As I said, there
are over 27,000 plugins in the official directory alone, not to mention all the premium
plugins available all over the web. In short, if you need some functionality, most
likely, there's a plugin for that so you can just go out and get it.

Why is this the recommended approach? If I'm correct, you've chosen to use
WordPress because you wanted to make your site as functional as possible with
the least amount of effort possible. Following this line of thought, using an existing
plugin simply requires much less effort than building one. Also, many existing
plugins are already used by thousands of other people and have large communities
supporting them. Choosing a quality plugin is, therefore, a lot safer path to take.

I feel that I should emphasize this clearly because experience tells me that
many young WordPress developers tend to press their peers to create things
from scratch just for the heck of it; despite the fact that there are other and better
solutions available.

Moreover, please remember that everything that's a derivative work based on
WordPress is available under GPL. So, there's nothing standing in your way to
take an existing plugin, build upon it, make it better, and then reshare your
version with the world. That way, we all win and there's no redundant work.

But before we can do that, we indeed must learn the craft by constructing
something of our own from start to finish. Onwards then!

Chapter 9

[257]

Plugin code requirements
Just as there were requirements for a theme, there are requirements for a plugin.
At the very least, your plugin must:

• Be placed in the wp-content/plugins folder (inside the root folder of
WordPress)

• Have a PHP file with a unique name (not used by any other plugin in the
main wp-content/plugins folder)

• Have a specially structured comment at the top of the file (see at
http://codex.wordpress.org/File_Header)

That's it. Then, of course, you must have some functions or processing code,
but WordPress will recognize any file that meets these requirements as a plugin.

If your plugin is a simple one, you can just place a unique PHP file straight in your
wp-content/plugins folder, so it can sit next to the default Hello Dolly plugin that
WordPress comes with. However, a much better practice is to create a subfolder
(again, unique) and place your PHP file there. It makes the wp-content/plugins
folder seem much more organized. Plus, you never know when your plugin is
going to need some additional files (it's always easier to simply add new files to a
previously existing plugin folder than to restructure the plugin from scratch).

Basic plugin – adding link icons
As a demonstration, we will create a simple plugin that adds icons to document links
within WordPress. For example, in Chapter 8, Feeds, Podcasting, and Offline Blogging,
we added a link to an MP3 file. It looks like the following screenshot now:

Developing Plugins and Widgets

[258]

Once this plugin is complete, the link will look like the following screenshot instead:

To accomplish this, we have to do the following:

• Provide images of the icons that will be used.
• Have a PHP function that identifies the links to documents and adds a

special CSS class to them.
• Have a stylesheet that creates the CSS classes for displaying the icons.
• Tell WordPress that whenever it prints the content of a post (that is,

using the the_content() function), it has to run the first PHP function.
• Tell WordPress to include the new styles in the <head> tag.

Keep this list in mind as we move forward. Once all these five requirements
are met, the plugin will be done.

Let's get started!

Naming and organizing the plugin files
Every plugin should have a unique name so that it does not conflict with any
other plugin in the WordPress universe. When choosing a name for your plugin
and the PHP file, be sure to choose something unique. You may even want to do a
Google search for the name you choose in order to be sure that someone else isn't
already using it.

Apart from the main plugin file itself, your plugin can contain any number of other
files and subfolders. If the situation calls for it, you can even use media files such as
audio and videos to go along with your plugin. Of course, additional CSS or JS files
(or even full libraries) are allowed as well.

In this case, as my plugin will be composed of multiple files (a PHP file, a stylesheet,
and some image files), I'm going to create a folder to house my plugin. I'll name the
plugin Add Document Type Styles, and the folder name, ahs_doctypes_styles,
will be prefixed with my initials as extra security to keep it unique. The PHP file,
doctypes_styles.php, will live in this folder. I've also collected a number of
document type icons.

Chapter 9

[259]

The folder I created for my plugin now looks like the following screenshot:

It is best practice to also create folders such as images, css,
and js inside your plugin's folder if what you're building
will consist of more files.

Now that I've got the images in my folder, I've taken care of the first requirement
in the list of requirements my plugin has to meet.

If your plugin has any unusual installation or configuration options,
you may also want to include a readme.txt file in this folder that
explains this. This readme file will be useful both as a reminder to you
and as an instructional document to others who may use your plugin
in the future. If you plan to submit your plugin to the WordPress
plugin directory, you will be required to create a readme file. To get
the template for such a file, please visit http://wordpress.org/
extend/plugins/about/readme.txt.

As mentioned earlier, your plugin has to start with a special comment that tells
WordPress how to describe the plugin to users on the plugins page. Now that I've
got my folder and a blank PHP file created, I'll insert the special comment. It has
to be structured like the following code. This really is fundamental (explained at
http://codex.wordpress.org/File_Header).

<?php
/*
Plugin Name: Add Document Type Styles
Plugin URI: http://springthistle.com/wordpress/plugin_doctypes
Description: Detects URLs in your post and page content and applies
style to those that link to documents so as to identify the document
type. Includes support for: pdf, doc, mp3 and zip; you can add more!
Version: 1.2.1
Author: April Hodge Silver & Karol K
License: GPL2*/
?>

Developing Plugins and Widgets

[260]

Another good piece of information to have in your plugin is about
licensing. Most plugins use the GPL (GNU General Public License).
This license essentially means that anyone can use, copy, and enhance
your code, and that they are not allowed to prevent anyone else from
redistributing it. I've also added a note about the GPL to my plugin's
PHP file. Remember that all PHP code you encounter in any WordPress
plugin is GPL by default. However, graphic files, CSS, JavaScript, and
other elements might have a different license, so be careful when copying
other people's work and making it part of your own.

That's all about the introductory code. Now we can add the meat.

Writing the plugin's core functions
The core of any plugin is the unique PHP code that you bring to the table.
This is the part of the plugin that makes it what it is. Since this plugin is so
simple, it only has a few lines of code in the middle.

The second requirement the plugin has to meet is have a PHP function that identifies
links to documents and adds a special class to them. The following function does just
that. In keeping with my efforts to ensure that my code is unique, I've prefixed both
of my functions with ahs_doctypes_:

function ahs_doctypes_regex($text) {
 $text = preg_replace(
 '/href=([\'|"][[:alnum:]|[:punct:]]*)\.(pdf|doc|mp3|zip)
 ([\'|"])/', 'href=\\1.\\2\\3 class="link \\2"', $text);
 return $text;
}

When the function is given some text, it will perform a search for any HTML anchor
tag linking to a PDF, DOC, MP3, or ZIP file, and replace it with a class to that anchor.
Then, the function returns the altered $text.

The third requirement the plugin has to meet is have a stylesheet that creates classes
for displaying the icons. The following function fetches our stylesheet:

function ahs_doctypes_styles() {
 wp_register_style('doctypes_styles',
 plugins_url('doctypes_styles.css', __FILE__));
 wp_enqueue_style('doctypes_styles');
}

Chapter 9

[261]

As you can see in the preceding code, this function uses the same enqueue
mechanism that we used in Chapter 7, Developing Your Own Theme, when registering
the stylesheets for our custom theme. Here's the CSS file the preceding function
fetches (inside doctypes_styles.css):

.link {
 background-repeat: no-repeat;
 padding: 2px 0 2px 20px;
}
.pdf { background-image: url(icon-pdf.gif); }
.doc { background-image: url(icon-doc.gif); }
.mp3 { background-image: url(icon-mp3.gif); }
.zip { background-image: url(icon-zip.gif); }

Indeed a very simple file, containing just a handful of styles and icons to distinguish
our document links.

Adding hooks to the plugin
We get our code to actually run when it is supposed to by making use of WordPress
hooks. The way in which plugin hooks work is—at various times while WordPress is
running, it checks to see if any plugins have registered functions to run at that time.
If there are, the functions are executed. These functions modify the default behavior
of WordPress. The WordPress Codex says it best:

[…] There are two kinds of hooks:

1. Actions: Actions are the hooks that the WordPress core launches at specific
points during execution, or when specific events occur. Your plugin can specify
that one or more of its PHP functions are executed at these points, using the Action
API.

2. Filters: Filters are the hooks that WordPress launches to modify text of various
types before adding it to the database or sending it to the browser screen. Your
plugin can specify that one or more of its PHP functions is executed to modify
specific types of text at these times, using the Filter API.

This means you can tell WordPress to run your plugin's functions at the same time
when it runs any of its built-in functions. In our case, we want our plugin's first
function, ahs_doctypes_regex(), to be run as a filter along with WordPress's
the_content() function. (This is the fourth requirement a plugin has to meet.)

Developing Plugins and Widgets

[262]

Now add the following code to the bottom of the plugin:

add_filter('the_content', 'ahs_doctypes_regex');

This uses the add_filter hook that tells WordPress to register a function named
ahs_doctypes_regex() when it is running the function named the_content().
By the way, if you have more than one function that you want added as a filter to
the content, you can add a third argument to the add_filter() function. This third
argument would be a number representing the load priority (the default value is 10,
highest priority is 1, there are no particular limits for the lowest, you can even assign
values such as 100 or 999), and WordPress would run your functions in the order
from smallest to largest.

All that's left in our list of requirements that a plugin has to meet is the fifth
requirement: tell WordPress to include the new styles in the <head> tag. This is
actually done the same way it's been done for themes, which is through the following
hook using add_action() with the wp_enqueue_scripts handle:

add_action('wp_enqueue_scripts', 'ahs_doctypes_styles');

Here is the complete plugin PHP file (minus the license, which I removed for space
considerations):

<?php
/*
Plugin Name: Add Document Type Styles
Plugin URI: http://springthistle.com/wordpress/plugin_doctypes
Description: Detects URLs in your post and page content and applies
style to those that link to documents so as to identify the document
type. Includes support for: pdf, doc, mp3 and zip; you can add more!
Version: 1.2.1
Author: April Hodge Silver & Karol K
License: GPL2
*/

// this function does the magic
function ahs_doctypes_regex($text) {
 $text = preg_replace('/href=([\'|"][[:alnum:]|[:punct:]]*)
 \.(pdf|doc|mp3|zip)([\'|"])/',
 'href=\\1.\\2\\3 class="link \\2"', $text);
 return $text;
}

// this functions adds the stylesheet to the head
function ahs_doctypes_styles() {

Chapter 9

[263]

 wp_register_style('doctypes_styles',
 plugins_url('doctypes_styles.css', __FILE__));
 wp_enqueue_style('doctypes_styles');
}

add_filter('the_content', 'ahs_doctypes_regex', 9);
add_action('wp_enqueue_scripts', 'ahs_doctypes_styles');
?>

Please make sure that there are no blank spaces before <?php
and after ?>. If there are any spaces, the PHP will break,
complaining that headers have already been sent. This is quite
a common mistake developers stumble into during their initial
attempts with WordPress plugins.
It's also a good idea not to use the PHP closing tags (?>) at all
at the end of your PHP files. It saves you from some of the most
unfortunate execution errors.

Make sure you save and close the preceding PHP file. You can now do one of
the following two things:

• Using your FTP client, upload ahs_doctypes_styles/ to your wp-content/
plugins/ folder

• Zip up your folder into ahs_doctypes_styles.zip and use the plugin
uploader in the WP Admin to add this plugin to your WordPress installation

Once the plugin is installed, it will show up on the plugins page, as shown in the
following screenshot:

Now you can activate it. That's all you have to do! Let's take a look at the plugin.

If you need more in-depth advice on installing and working with
plugins then feel free to review Chapter 5, Plugins and Widgets,
where we discussed plugins and widgets in detail.

Developing Plugins and Widgets

[264]

Trying out the plugin
If you look at the podcast post we created in an earlier chapter, you'll notice that an
MP3 icon has been added to it, as shown in the following screenshot:

You can also try adding a new post with links to PDF, ZIP, or DOC files. This can be
done by uploading the files and clicking on Insert into Post.

When you view this post, you'll see that icons have been automatically added to it by
the plugin, as shown in the following screenshot:

Now that you've learned about a basic plugin that uses hooks to piggyback on
the existing WordPress functionality, let's enhance this plugin by giving the user
some controls.

Adding an admin page
As you have already seen, some plugins add a page to the WP Admin where you or
the user can edit plugin options. We've seen this with Online Backup for WordPress,
W3 Total Cache, FeedBurner, WordPress SEO, and others. Now let's modify our
plugin to give the user some control over which document types are supported.

Chapter 9

[265]

First, deactivate the plugin we just wrote. We'll make changes to it and then
reactivate it.

The following screenshot shows what the new management page will look like
when we are done:

The following are the steps we'll carry out to modify the plugin in order to make
this new page possible:

• Add functions that create an admin page and save the user's input in
a new option

• Modify the ahs_doctypes_regex() function so that it retrieves the
user's input

• Add hooks for the admin page functions

Let's get started!

Adding management page functions
The management page that we will create is going to add an option to the WP
Admin. This uses the existing space in the WordPress options table in the database,
so no database modifications are required. The name of the new option has to be
unique. I'm going to call the new option ahs_supportedtypes, and I'll be sure to
use supportedtypes_ in all of my function names to ensure that they are unique.

There are six functions we need to add to the plugin so that an admin page can be
added to the WP Admin. Let's take a look at the first two:

1. The first function adds the new option, ahs_supportedtypes, when the
plugin is activated, and also sets the default value.
function set_supportedtypes_options() {
 add_option("ahs_supportedtypes","pdf,doc,mp3,zip");
}

Developing Plugins and Widgets

[266]

2. The second function removes the new option when the plugin is deactivated.
function unset_supportedtypes_options () {
 delete_option("ahs_supportedtypes");
}

3. Let's look at the new third function:
function modify_menu_for_supportedtypes() {
 add_submenu_page(
 'options-general.php',
 //The new options page will be added as a sub menu to
 //the Settings menu.
 'Document Types', //Page <title>
 'Document Types', //Menu title
 'manage_options', //Capability
 'ahs_doctypes_styles', //Slug
 'supportedtypes_options' //Function to call
);
}

This function adds a new item to the Settings menu in the WP Admin using
add_submenu_page. This takes six arguments, namely, where the options
page should be placed, page title, menu link text, the user at the maximum
level who can access the link, what file to open (none, in this case), and the
function to call, supportedtypes_options().

4. The supportedtypes_options() function is, in fact, the fourth new function
we are adding:
function supportedtypes_options () {
 echo '<div class="wrap"><h2>Supported Document
 Types</h2>';
 if(isset($_POST['submit'])) {
 update_supportedtypes_options();
 }
 print_supportedtypes_form();
 echo '</div>';
}

This function actually displays our new page. It prints a title, checks
to see if someone has clicked on the Submit button, and if it is clicked,
the supportedtypes_options() function updates the options, and then
prints the form.

Chapter 9

[267]

5. The new fifth function we have to add is responsible for updating
options if the Submit button has been clicked on.
function update_supportedtypes_options() {
 $updated = false;
 if ($_POST['ahs_supportedtypes']) {
 $safe_val = addslashes(strip_tags(
 $_POST['ahs_supportedtypes']));
 update_option('ahs_supportedtypes', $safe_val);
 $updated = true;
 }
 if ($updated) {
 echo '<div id="message" class="updated fade">';
 echo '<p>Supported Types successfully updated!</p>';
 echo '</div>';
 } else {
 echo '<div id="message" class="error fade">';
 echo '<p>Unable to update Supported Types!</p>';
 echo '</div>';
 }
}

6. The last function we need to add, the new sixth function, prints the form
that users will see. Please make sure to have no spaces before, nor after the
closing tag (EOF;).

function print_supportedtypes_form() {
 $val_ahs_supportedtypes =
 stripslashes(get_option('ahs_supportedtypes'));
 echo <<<EOF
<p>Document types supported by the Add Document Types plugin
are listed below.
To add a new type to be linked, take the
following steps, in this order:

 Upload the icon file for the new doctype to <i>
 wp-content/plugins/ahs_doctypes_styles/</i>
 Add a line for the new doctype to the stylesheet at
 <i>wp-content/plugins/ahs_doctypes_styles/style.css</i>

 Add the extension of the new doctype to the list
 below, keeping with the comma-separated format.

</p>

Developing Plugins and Widgets

[268]

<form method="post">
 <input type="text" name="ahs_supportedtypes" size="50"
 value="$val_ahs_supportedtypes" />
 <input type="submit" name="submit"
 value="Save Changes" />
</form>
EOF;
}

Those six functions together will take care of adding a link in the menu, adding
the management page for that link, and updating the new option.

Modifying the ahs_doctypes_regex() function
Now that the users are able to edit the list of supported document types by
appending the document types they want, we should have a way of telling the
ahs_doctypes_regex() function to use the user's list instead of a built-in list. To do
that, we need to use get_option('ahs_supportedtypes') in our ahs_doctypes_
regex() function. The get_option() function will retrieve the value that the user
has saved in the new option we just created. Modify your ahs_doctypes_regex()
function so that it looks like, as follows:

function ahs_doctypes_regex($text) {
 $types = get_option('ahs_supportedtypes');
 $types = preg_replace('/,\s*/', '|', $types);

 // add the class to links

 $text = preg_replace('/href=([\'|"][[:alnum:]|[:punct:]]*)
 \.('.$types.')([\'|"])/i', 'href=\\1.\\2\\3 class="link \\2"',
 $text);

 return $text;
}

Adding hooks
We have added our management page functions, but now we have to tell WordPress
to use them. To do that, we just need to add the following three new hooks:

add_action('admin_menu','modify_menu_for_supportedtypes');
register_activation_hook(__FILE__,"set_supportedtypes_options");
register_deactivation_hook(__FILE__,
 "unset_supportedtypes_options");

Chapter 9

[269]

The first hook tells WordPress to add our link to the menu when it creates the menu
with admin_menu(). The next two hooks tell WordPress to call the activation and
deactivation functions when the plugin is activated or deactivated.

Trying out the plugin
We have added all of the new functions. Now it's time to save the file and see what
happens. You can go ahead and reactivate the plugin. Now when you look at the
Settings menu, you will see that the new link has been added:

Click on the new link (Document Types) to see the management page.

If you follow the three steps here on the management page (upload the file icon,
add a new style to the stylesheet, and add the extension to the option), then that
new document type will be supported.

Developing Plugins and Widgets

[270]

There are already a number of ways in which this plugin could be improved.
Some of them are:

• Instead of making the user upload his or her new icon using FTP, the
plugin could allow the user to upload the new icon directly via the new
management page

• The plugin could display the icons for the supported document types
on the management page, so the users can see what they look like

• The plugin could check to make sure that for every document type in the
option field there is an existing icon, else it displays an error to the user

Perhaps you'd like to try to make these changes yourself!

Testing your plugins
Just a minute ago, we tried out our new plugin, so it's probably a good moment to
say a word or two about testing your plugins and making sure that they don't cause
any problems for regular users in general.

Our particular plugin is a very simple one, the only thing it does is process each
link it finds inside any post's or page's content and adds a custom icon next to it.
However, even such a simple plugin can be a possible security breach point. For
example, the only place where the user can input anything is the Plugin section
in the WP Admin (the field handling the supported file types). Now, there is a
possibility that someone might use this field to input a piece of specific PHP code
instead of a standard file type. That is why our update_supportedtypes_options()
function has the following two lines:

$safe_val = addslashes(strip_tags($_POST['ahs_supportedtypes']));
update_option('ahs_supportedtypes', $safe_val);

Thanks to those lines of code, everything that the user inputs will have all PHP and
HTML tags stripped by strip_tags(), and then every character that needs to be
quoted in database queries will be handled by addslashes(). Using such functions
is a just-in-case practice, but it tends to be something that eventually pays off.

Apart from testing our work against some of the common hacking practices such as
code injection and SQL injection, we also need to handle all kinds of unconventional
uses we can think of. For instance, would anything bad happen if someone inputted
a value that's not a standard file type? Or what if the CSS file goes missing all of a
sudden? These are just some of the questions a good testing session should answer.

Chapter 9

[271]

One more good way of testing plugins is to hand them over to a handful of trusted
users and ask for feedback. Someone who's entirely new to your plugin will usually
do a way better job at testing it than you—the author.

Of course, this short section here only scratches the surface of plugin testing and
code testing in general, so I encourage you to give it a closer look on your own.
There are many great resources on the Internet and in the nearest bookstore.

Plugin with DB access – capturing searched
words
We're going to leave the doctypes plugin behind now, and create a new plugin,
featuring active use of the database. Let's create a simple plugin that stores all the
words that visitors search for using the blog's search function.

The database table structure for this plugin will be as follows:

Table wp_searchedwords

Field Type Null Key Default Extra
Id INT NOT

NULL
PRI auto_

increment

Word VARCHAR(255) NULL
created DATETIME NOT

NULL
Today
00:00:01

Now, let's write the plugin code.

Even though previously it says that the table is named wp_
searchedwords, it won't always be the case. It's all based on
the table prefix that's set on your site (the default one is indeed
wp_). Here, I'm going to refer to the table as wp_searchedwords
anyway, out of convenience.

Developing Plugins and Widgets

[272]

Getting the plugin to talk to the database
The first part of this plugin has to be run only when the plugin is activated.
This will be the initialization function. One of its tasks is to create or update the
database table (the table will be created only if it hasn't been created before).

function searchedwords_init($content) {
 global $wpdb;
 $sw_table_name = $wpdb->prefix.'searchedwords';

 if (isset($_GET['activate']) && 'true' == $_GET['activate']) {
 $sql = 'CREATE TABLE ''.$sw_table_name.'' (
 id INT NOT NULL AUTO_INCREMENT,
 word VARCHAR(255),
 created DATETIME NOT NULL DEFAULT \''.date('Y-m-d').'
 00:00:01\',
 PRIMARY KEY (id)
)';

 require_once(ABSPATH.'wp-admin/includes/upgrade.php');
 dbDelta($sql);
 }

 // in case a search has just been performed, store the searched
 // word
 if (!empty($_GET['s'])) {
 $current_searched_words = explode(" ",urldecode($_GET['s']));
 foreach ($current_searched_words as $word) {
 $wpdb->query($wpdb->prepare("INSERT into '$sw_table_name'
 VALUES(null,'%s','".date('Y-m-d H:i:s')."')", $word));
 }
 }
}

This function connects to the database using various function calls such as dbDelta(),
$wpdb->query(), and $wpdb->prepare(). The dbDelta() function takes care of
creating the table or updating it (whatever is needed at the time; find out more at
http://codex.wordpress.org/Creating_Tables_with_Plugins). Apart from that,
when dealing with the WordPress database, you can utilize any database-related PHP
function in existence. Or you can use the WordPress' class member function, $wpdb-
>get_results(), as well. The function we're using here also stores the searched word
in the database table if a search has just been performed. This is done through the
$wpdb->query() and $wpdb->prepare() functions.

Chapter 9

[273]

Adding management page functions
We now need a familiar-looking function that adds a management page to the admin
menu. In this case, we're using add_management_page() instead of add_submenu_
page() because this plugin is more of a tool than something that needs settings.

function modify_menu_for_searchedwords() {
 $page = add_management_page(
 "Searched Words",
 "Searched Words",
 'manage_options',
 'ahs_capture_searches',
 'searchedwords_page'
);

 // Using registered $page handle to hook stylesheet loading
 add_action('admin_print_styles-' . $page,
 'searchedwords_admin_styles');
}

The final line of the preceding function loads the stylesheet for the admin page.
We'll need it to make the plugin's output look nice in WP Admin. There are two
additional functions that make this possible, as follows:

function searchedwords_admin_init() {
 // registering the stylesheet for the admin
 wp_register_style('ahscapturesearchesstyles',
 plugins_url('ahs_capture_searches.css'));
}

function searchedwords_admin_styles() {
 // enqueue the stylesheet for the admin
 wp_enqueue_style('ahscapturesearchesstyles');
}

Finally, we also need a function that retrieves the information from the database
and displays it on the new management page (again, everything done through the
$wpdb object):

function searchedwords_page() {
 global $wpdb;
 $sw_table_name = $wpdb->prefix.'searchedwords';

 $searched_words = $wpdb->get_results("SELECT COUNT(word) AS
 occurrence, word FROM '$sw_table_name' GROUP BY word ORDER BY
 occurrence DESC");
 echo '<div class="wrap"><h2>Searched Words</h2>';
 echo '<table class="searchwords">';

Developing Plugins and Widgets

[274]

 if($searched_words !== NULL) {
 echo '<tr><th>Search words</th><th># searches</th></tr>';
 foreach($searched_words as $searched_word) {
 echo '<tr><td>'.$searched_word->word.'</td><td>'.
 $searched_word->occurance.'</td></tr>';
 }
 $searched_perfomed = true;
 }
 else {
 echo '<tr><td colspan="2"><h3>No searches have been preformed
 yet</h3></td></tr>';
 }
 echo '</table></div>';
}

That's it, only two. The previous plugin had more functions because data was
being captured from the user and being saved. Here, that's not necessary.

Lastly, we just need to add three hooks:

add_filter('init', 'searchedwords_init');
add_action('admin_init', 'searchedwords_admin_init');
add_action('admin_menu', 'modify_menu_for_searchedwords');

The first hook tells WordPress to run the initialization function when the plugin
is activated, or when a search is performed. The second hook takes care of the
admin stylesheet. The third hook modifies the admin menu to add a link to the
new management page.

Trying out the plugin
As with the last plugin, you can now either upload your plugin using FTP to
wp-content/plugins, or you can turn it into a ZIP file and add it using the
uploader in the WP Admin.

Once you've installed it, activate it. Look at the menu under Tools and you'll see
a link to the new management page, as shown in the following screenshot:

Chapter 9

[275]

When you click on Searched Words, you'll see a new page that the plugin created,
as shown in the following screenshot:

The new page shows that no searches have been performed since the plugin was
activated. Do a few searches on your site and return to the following page:

Learning more
There are hundreds of hooks available in WordPress—way too many to cover in this
book. You can learn more about the hooks discussed in this book, as well as learn
about all of the other hooks available, by going online. Start out at the following
online reference sites:

• The Plugin API contains very thorough information about writing plugins
and using hooks: http://codex.wordpress.org/Plugin_API

• For a complete list of action hooks: http://codex.wordpress.org/Plugin_
API/Action_Reference

• For a complete list of filter hooks: http://codex.wordpress.org/Plugin_
API/Filter_Reference

• You may also want to take a step back and look at the general Plugin
Resources page in the WordPress Codex: http://codex.wordpress.org/
Plugin_Resources

• If you want to submit your plugin to the WordPress Plugin Repository, you'll
have to take steps similar to those you took when preparing a theme, and
you'll also have to get hooked up to the WordPress SVN repository. Learn
more about how to submit a plugin to the WordPress Plugin Repository at:
http://codex.wordpress.org/Plugin_Submission_and_Promotion

Developing Plugins and Widgets

[276]

Widgets
Writing a widget bears some similarities to writing a plugin, but in some ways
it's easier because there is a widget class that you can leverage for some of the
functionality. In other ways, it's a bit more time-consuming as there's a lot of
mandatory code that every widget has to feature.

Custom tag cloud widget
In this section, we'll see how to write a widget that displays a custom tag cloud that
we can then place in the sidebar. There will also be the possibility to change the title
of the widget, and although this is a tag cloud widget, we'll be able to switch tags to
categories and display them using a tag-cloud-style as well.

This isn't a complete from-the-scratch design, though. I'm actually using one of
ThemeFuse's (http://themefuse.com/) widgets that came with the Conexus theme
we were using in Chapter 7, Developing Your Own Theme, when learning how to build
themes (also available in the code bundle for Chapter 7). The changes I'm making
will give the widget a slightly different look. Again, it's the educational aspect we're
after. In its final form, it will look like the following screenshot:

Just as a comparison, here's what the standard tag cloud widget (the native one
in WordPress) looks like:

Let's get started!

Chapter 9

[277]

Naming our widget
In this case, we're going to create the widget as a standalone plugin. So just like any
other plugin, it needs a unique name and a unique appearance in the wp-content/
plugins folder.

Again, I encourage you to search the web whenever you're creating a
new widget or plugin just to make sure that there's nothing out there
going by the same name.
That being said, there actually are two quite interesting plugins
for custom tag clouds. Feel free to check them out: 3D Tag Cloud
(http://wordpress.org/plugins/cardoza-3d-tag-cloud/)
and Ultimate Tag Cloud Widget (http://wordpress.org/
plugins/ultimate-tag-cloud-widget/).

I'll name the new plugin file (which holds the widget) kk_tag_cloud_widget.php,
and put it in its own kk_tag_cloud_widget folder inside wp-content/plugins.

This main PHP file starts just like any other plugin, with the following declaration:

<?php
/*
Plugin Name: Karol K's Tag Cloud Widget
Description: Displays a tag cloud, ThemeFuse style.
Author: Karol K & <a href="http://
themefuse.com/">ThemeFuse
Version: 1.0
*/

Widget structure
When building a widget using the widget class, your widget needs to have the
following structure:

class UNIQUE_WIDGET_NAME extends WP_Widget {

 public function __construct() {
 $widget_ops = array();
 $control_ops = array();
 $this->WP_Widget('base id', 'name', $widget_ops,
 $control_ops);
 }

 public function form ($instance) {
 // prints the form on the widgets page
 }

Developing Plugins and Widgets

[278]

 public function update ($new_instance, $old_instance) {
 // used when the user saves their widget options
 }

 public function widget ($args,$instance) {
 // used when the sidebar calls in the widget
 }
}

// initiate the widget

// register the widget

My unique widget name for this project is KK_Widget_Tag_Cloud. Now, let's go
over each of the preceding functions one by one and explain what's going on.

Widget initiation function
Let's start with the widget initiation function. Blank, it looks like as follows:

public function __construct() {
 $widget_ops = array();
 $control_ops = array();
 $this->WP_Widget('base-id', 'name', $widget_ops, $control_ops);
}

In this function, which is the constructor of the class, we initialize various things that
the WP_Widget class is expecting. The first two variables, to which you can give any
name you want, are just a handy way to set the two array variables expected by the
third line of code.

Let's take a look at these three lines of code:

• The $widget_ops variable is where you can set the class name, which is
given to the widget div itself, and the description, which is shown in the WP
Admin on the widgets page.

• The $control_ops variable is where you can set options for the control box
in the WP Admin on the widget page, such as the width and height of the
widget and the ID prefix used for the names and IDs of the items inside.
For my basic widget, I'm not going to use this variable (it's optional).

• When you call the parent class' constructor, WP_Widget(), you'll tell it the
widget's unique ID, the widget's display title, and pass along the two arrays
you created.

Chapter 9

[279]

For this widget, my code now looks as follows:

public function __construct() {
 $widget_ops = array('description' => 'Your most used tags in
 cloud format; same height; custom background');
 $this->WP_Widget('kk-tag-cloud', 'KK Tag Cloud', $widget_ops);
}

Widget form function
This function has to be named form(). You may not rename it if you want the
widget class to know what it's purpose is. You also need to have an argument
in there, which I'm calling $instance, that the class also expects. This is where
the current widget settings are stored.

This function needs to have all of the functionalities to create the form that users
will see when adding the widget to a sidebar. Let's look at some abbreviated code
and then explore what it's doing:

public function form($instance) {
 $instance = wp_parse_args((array) $instance, array(
 'template' => ''));
 $current_taxonomy = $this->_get_current_taxonomy($instance);
 ?>
 <p>
 <label for="<?php echo $this->get_field_id('title');
 ?>">Title</label>
 <input type="text" class="widefat" id="<?php echo $this-
 >get_field_id('title'); ?>" name="<?php echo $this-
 >get_field_name('title'); ?>" value="<?php if (isset (
 $instance['title'])) {echo esc_attr($instance['title']
);} ?>" />
 </p>
 <p>
 <label for="<?php echo $this->get_field_id('taxonomy');
 ?>">Taxonomy</label>
 <select class="widefat" id="<?php echo $this-
 >get_field_id('taxonomy'); ?>" name="<?php echo $this-
 >get_field_name('taxonomy'); ?>">
 <?php foreach(get_object_taxonomies('post') as $taxonomy) :
 $tax = get_taxonomy($taxonomy);
 if(!$tax->show_tagcloud || empty($tax->labels->name))
 continue;
 ?>

Developing Plugins and Widgets

[280]

 <option value="<?php echo esc_attr($taxonomy) ?>" <?php
 selected($taxonomy, $current_taxonomy); ?>><?php echo
 $tax->labels->name; ?></option>
 <?php endforeach; ?>
 </select>
 </p>
 <?php
}

First you use a WordPress function named wp_parse_args(), which creates
an $instance array that your form will use. What's in it depends on what
defaults you've set and what settings the user has already saved.

Then you create form fields. For each form field, I make use of the built-in functions
that will create unique names and IDs and input existing values, as follows:

• $this->get-field_id() creates a unique ID based on the widget instance
(remember, you can create more than one instance of this widget)

• $this->get_field_name() creates a unique name based on the
widget instance

• The $instance array is where you will find the current values for the
widget, whether they are defaults or user-saved data

All the other code in there is just regular PHP and HTML. If you give the user the
ability to set a title, and name that field title; WordPress will show it on the widget
form when it's minimized. The widget form this will create will look like the
following screenshot:

Chapter 9

[281]

Widget save function
When a user clicks on the Save button on the widget form, WordPress uses AJAX
to run your save function. You need to be sure to save whatever the user types in,
which is all we're doing in this case, but you can put other functionalities here if
it's appropriate for your widget (for example, database interactions, conversions,
calculations, and so on). The final code for this function is as follows:

public function update($new_instance, $old_instance) {
 $instance['title'] = $new_instance['title'];
 $instance['taxonomy'] =
 stripslashes($new_instance['taxonomy']);
 return $instance;
}

Be sure this function is named update() and is prepared to accept two instances, one
with old data and one with the just-submitted data. You can write your code to check
the $new_instance array for problems, and thus return the $old_instance array if
the new one isn't valid. The $instance array you return will be what's shown in the
update widget form.

Widget print function
The third main function in your widget class is the one that is called by the sidebar
when it's time to actually show the widget to people visiting the website. It needs
to retrieve any relevant saved user data and print out information for the website
visitor. In this case, our final print function looks like the following:

public function widget($args, $instance) {
 extract($args);
 $current_taxonomy = $this->_get_current_taxonomy($instance);
 if(!empty($instance['title'])) {
 $title = $instance['title'];
 }
 else {
 if('post_tag' == $current_taxonomy) {
 $title = 'Tags';
 }
 else {
 $tax = get_taxonomy($current_taxonomy);
 $title = $tax->labels->name;
 }
 }

Developing Plugins and Widgets

[282]

 $title = apply_filters('widget_title', $title, $instance,
 $this->id_base);

 $before_widget = '<div class=
 "widget-container kk_widget_tag_cloud">';
 $after_widget = '</div>';
 $before_title = '<h3 class="widget-title">';
 $after_title = '</h3>';

 echo $before_widget;
 if ($title) echo $before_title . $title. $after_title;
 echo '<div class="kk_tagcloud">';
 wp_tag_cloud(apply_filters('widget_tag_cloud_args',
 array('taxonomy' => $current_taxonomy)));
 echo "</div>\n";
 echo $after_widget;
}

The preceding function calls one more helper function responsible for fetching the
current taxonomy. A very simple one, though, as shown in the following code snippet:

function _get_current_taxonomy($instance) {
 if (!empty($instance['taxonomy']) &&
 taxonomy_exists($instance['taxonomy']))
 return $instance['taxonomy'];

 return 'post_tag';
}

The first thing I do in the main function is extract the data in the instance, which has
the information the website administrator had saved when filling out the widget
form. Then, the widget takes a look into the selected taxonomy (tags or categories)
and displays all individual items as a simple one-line list.

Custom widget styles
Our small widget has its own stylesheet that needs to be included in the current
theme's head section, like any other stylesheet.

The file is named kk_tag_cloud_widget.css and contains the following:

.kk_widget_tag_cloud .kk_tagcloud {
 line-height:1.5em;
}

Chapter 9

[283]

.kk_widget_tag_cloud .kk_tagcloud a {
 background:#eee;
 color:#e8750f;
 display:inline-block;
 line-height:30px;
 margin:3px 2px;
 padding:0 11px;
 font-size:12px !important;
 border-radius:3px;
 -webkit-border-radius:3px;
 text-transform:uppercase;
}

.kk_widget_tag_cloud .kk_tagcloud a:hover {
 color:#f2f2f2;
 background:#404040;
}

.f_col .kk_widget_tag_cloud .kk_tagcloud a {
 color:#e6e6e6;
 background:#5a6164;
}

.f_col .kk_widget_tag_cloud .kk_tagcloud a:hover {
 background:#f2f2f2;
 color:#404040;
}

Nothing fancy, just a set of classes that will make sure that the widget looks great.
Again, it's a slight customization based on ThemeFuse's original stylesheet.

The only thing we have to do with this stylesheet is enqueue it through a standard
WordPress hook. Place this in your main plugin's file:

function kk_tag_cloud_widget_styles_load() {
 wp_register_style('kk_tag_cloud_widget_styles',
 plugins_url('kk_tag_cloud_widget.css', __FILE__));
 wp_enqueue_style('kk_tag_cloud_widget_styles');
}
add_action('wp_enqueue_scripts',
 'kk_tag_cloud_widget_styles_load');

Developing Plugins and Widgets

[284]

Initiating and hooking up the widget
That's it for widget functionality! Now you just need to add a little code
that will hook the widget up to the rest of WordPress.

function KK_Widget_Tag_Cloud_Reg() {
 register_widget('KK_Widget_Tag_Cloud');
}
add_action('widgets_init', 'KK_Widget_Tag_Cloud_Reg');

This tells WordPress that when it initiates widgets, it should register our
new widget.

The entire code of this widget is available on the official
Packt website. You can download it for free, along with
the bundles for other chapters.

Trying out the widget
Your widget is ready to go! Save all of your changes, and upload your widget
to wp-content/plugins. Go to the Installed Plugins page, and you'll see your
widget waiting to be activated, as shown in the following screenshot:

Activate it, and then navigate to Appearance | Widgets. You'll see the widget
waiting to be added to a sidebar, as shown in the following screenshot:

Chapter 9

[285]

Drag the widget to a sidebar, and then click on the little down arrow to edit it.
You'll see the options slide down, as shown in the following screenshot:

You can enter a title or leave it blank for the default, and choose the taxonomy
to use. Then click on Save as you would with any widget. When you return to
the frontend of the site and reload, the new tag cloud will be right there, as
shown in the following screenshot:

Learning more
You can browse the following online reference sites to learn more about widgets:

• The WordPress Widgets API is located at: http://codex.wordpress.org/
Widgets_API

• WordPress lists a number of widgets on the following page: http://codex.
wordpress.org/WordPress_Widgets

• If you want to find more widgets to install on your website, visit the widgets
section of the Plugin Repository at: http://wordpress.org/ plugins/
tags/widget

Developing Plugins and Widgets

[286]

Bundling a widget with an existing plugin
If you're writing a plugin and you'd like to make a widget available with it, you don't
have to create a separate widget plugin. Just include all of the widget code,
like what we created in the preceding section, in with your plugin's PHP file. When
the user activates the plugin, the widget you created will automatically show up on
the widgets page in the WP Admin. No need for a separate file!

Shortcodes
Shortcodes are a handy way to let a nontechnical person, that is, the editor of the
website, include dynamic functionality within pages and posts, without having to
actually use any PHP, complex HTML structures, or custom JavaScript. In other
words, shortcodes are handy reusable pieces of code, yet they don't require any
actual coding experience or knowledge on the end user's part.

Shortcodes and the way they work
The way a shortcode works is that you tell WordPress to look at text within square
brackets ([]) and evaluate it by running a PHP function. That PHP function can live
in your functions.php file of your theme, or in a plugin file, or in a widget file. Let's
create a simple shortcode and include it in with our most recent widget, the one we
were developing just a minute ago for showing a custom tag cloud.

Types of shortcodes
Shortcodes are a pretty simple concept by definition, but we can still distinguish
three main types:

• Single-tag shortcodes: These shortcodes are executed with just a single tag,
for example: [my_first_shortcode/].

• Double-tag shortcodes: These shortcodes are executed with opening and
closing tags, for example: [my_2nd_shortcode]some text here[/my_2nd_
shortcode] (please notice that the closing tag has an additional /). As
you can see, there's also some content within the tags. This content can
be processed by the shortcode function.

• Shortcodes with attributes: These shortcodes can have one or two tags and
also a number of attributes we can use to customize the output, for example:
[my_3rd_shortcode name="Karol" twitter="carlosinho"]some text
here[/my_3rd_shortcode].

Chapter 9

[287]

Creating a simple shortcode
Let's create a simple shortcode that will make it possible to use our widget's
output inside any given post or page.

This is going to be a double-tag shortcode with one additional attribute, which
we'll use to indicate whether the output should be formatted using our custom
CSS or WordPress' native styling.

Let's start by creating a new function at the bottom of our kk_tag_cloud_widget.
php file and then we'll go through each individual line, as follows:

function kk_tag_cloud_handler($atts, $content=null) {
 extract(shortcode_atts(array(
 'use_css' => '1',
 'taxonomy' => 'post_tag'
), $atts));

 $tax = 'post_tag';
 if(taxonomy_exists($taxonomy))
 $tax = $taxonomy;

 $result = '';
 if ('0' != $use_css) $result .=
 '<div class="kk_widget_tag_cloud"><div class="kk_tagcloud">';
 if (null != $content) $result .=
 addslashes(strip_tags($content)).' ';
 $result .= wp_tag_cloud(apply_filters('widget_tag_cloud_args',
 array('taxonomy' => $tax, 'echo' => false)));
 if ('0' != $use_css) $result .= '</div></div>';

 return $result;
}

First of all, note that this function does not echo or print anything. It just returns a
string. If you let your function print, it won't look correct on the website.

Inside our function, the first line handles the custom attributes that the shortcode
receives (in this case, just the use_css parameter for indicating whether the styles
should be used or not, and the taxonomy parameter to indicate the taxonomy that
should be shown in the shortcode). WordPress will hand off the $atts argument
automatically and we only have to use the extract() function to turn the attributes
the user submits into variables available in the function. The values in the array passed
to extract() set the defaults, in case the user chooses no options. In general, there is
no limit to the number of options that you can make available to shortcode users.

Developing Plugins and Widgets

[288]

The next line extracts the taxonomy identifier and tries to turn it into a valid
taxonomy. In case the user's input is not valid, the default post_tag taxonomy
will be used.

The final part of the function handles the display based on the state of the
use_css attribute. Pretty basic at this point.

There's also a possibility to include a custom text as the main content of the
shortcode. This can be useful in some situations.

What we have to do now is tell WordPress that this function is a shortcode,
and we tell it what the shortcode is using a hook. Be sure to choose something
unique! I've chosen kk_tag_cloud as the name for this shortcode, so the hook
looks like the following code snippet:

add_shortcode('kk_tag_cloud', 'kk_tag_cloud_handler');

To use this shortcode in our content, all we have to do is edit any given post
or page and put a following line in it:

[kk_tag_cloud taxonomy="category"]choose one:[/kk_tag_cloud]

Such a usage will have the following effect:

We can also use the shortcode, as shown in the following code snippet:

[kk_tag_cloud use_css="0" taxonomy="category"]choose
 one:[/kk_tag_cloud]

This will disable the custom styles and produce the following effect:

Chapter 9

[289]

To display the tag cloud in its default form (showing the tags and using the custom
stylesheet), all we have to do is execute the shortcode, as shown in the following
code snippet:

[kk_tag_cloud][/kk_tag_cloud]

The effect is as shown in the following screenshot:

There are very few limitations regarding what you can and cannot do with
shortcodes. However, the most common usages are for embedding online videos
from sites such as YouTube, using the [youtube] shortcode, for example, or for
showing various social media boxes and activity streams.

Enabling shortcodes in widgets
By default, shortcodes are ignored inside widgets. So, if you were to add a Text
widget with your shortcode in it, as shown in the following screenshot:

Developing Plugins and Widgets

[290]

Then all that would show is the shortcode itself:

This can be fixed by adding the following line just after our shortcode definition:

add_filter('widget_text', 'do_shortcode', 11);

And now all shortcodes on the site will be evaluated in widgets. In other words,
you can place any shortcode inside a text widget. In this particular case, however,
you can see that enabling our shortcode inside a text widget has very little sense,
as we can clearly just use our tag cloud widget normally instead, but for other
implementations (other shortcodes) it can indeed be useful.

Summary
In this chapter, you learned everything you needed to know about creating basic
plugins and widgets. Now you know how to structure the PHP file, where to put
your functions, and how to use hooks. You also learned about adding management
pages and enabling plugins and widgets to have database access. On top of all that,
you learned how to create shortcodes, a powerful tool that lets you make dynamic
functionality available to all WordPress users. With your already-existing knowledge
of PHP and HTML, you now have tools to get started with writing every plugin and
widget your heart may desire.

The next chapter will be all about community blogging: running multiuser blogs,
and other aspects of turning your site into a serious online magazine.

Community Blogging
So far in this book, we've focused on looking at a personal website, one that
belongs to and is used by just one person. However, many blogs are used in a
different way—there may be a single blog or website with a variety of writers,
editors, and administrators. This makes the site more like a community project
or even an online magazine.

Furthermore, it's by no means uncommon for bigger online publishers to use
WordPress as the base for their websites. In which case, the site has a number of
authors, editors, reviewers, and overall contributors with varying responsibilities.
Not to mention the technical staff or designers.

In this chapter, we'll discuss allowing a blog to have multiple authors with
differing levels of control over blog administration and content. We'll explore user
management for multiple users on one blog, as well as other aspects of blogging as
a member of a community. We'll also take some time to look at using a non-blog
website with multiple users.

Concerns for a multiauthor blog
A multiauthor blog is useful when a group of people with similar interests wants
to collaborate and share space to publish their writing, or if an organization or
company wants to have an online magazine. If that group wants to publish news
on a particular topic, or on many topics in a broad sense, then they'll each need to
be able to log in and post their content, update their profile, and so on. For example,
I can decide that I want every member of my family to be able to contribute to my
Daily Cooking blog. Each of my sisters, brothers, cousins, aunts, and uncles can add
their recipes and discoveries regarding food, which has the potential to make my
food blog a richer and more exciting place for visitors.

Community Blogging

[292]

However, content moderation is also of essential importance to a multiauthor blog.
The best way to keep a blog clean and on topic is by using a moderation flow that
restricts the display of content until it travels through an approval process. Such
practice is usually called workflow, and it makes working in large groups much
easier and more manageable.

User roles and abilities
WordPress includes the ability to have an unlimited number of users. Each of the
users can be assigned one of the five (or six) roles. Let's look at these roles one at a
time, starting with the most powerful.

Super Admin
Even though it sounds very appealing, the Super Admin (aka Network Admin)
role isn't actually that fancy. Basically, WordPress has now allowed users to build
a multisite setup (mentioned a couple of pages ago). This is a scenario where you
have more than one site built on just a single WordPress installation. Now, the Super
Admin is a role that has complete administration access to all websites that are part
of a given multisite network.

Honestly speaking, if you don't have any multisite structure set up on your
WordPress installation then you won't even see the Super Admin role in the
WP Admin.

The presence of the multisite structure itself reduces some of the
capabilities of other user roles described in the following section,
so the following list should be treated as a resource for single-site
installations.

Administrator
When you installed WordPress, it created a user for you with administrative powers.
This role is called administrator, and every WordPress site must have at least one
admin (you will not be allowed to delete them all). As you have already seen in the
earlier chapters, administrators can do everything.

Chapter 10

[293]

The administrator's primary purpose is to manage everything
about the website.

In general, you're not going to want to have a lot of administrators on a single blog
or website. It is best to keep just one administrator for a blog with 10 to 20 authors
and editors or perhaps up to three administrators for a blog with dozens of users.

Some examples of actions that only a user with an administrator role can take are:

• Switching blog theme
• Adding, editing, activating, or deactivating plugins
• Adding, editing, or deleting users
• Managing general blog options and settings

When creating more administrator accounts (or managing the main one),
make sure to use only complex passwords that are hard to break using any sort
of brute-force methods. In a nutshell, use as many numbers, special characters,
combinations of uppercase and lowercase letters as you can. A lot of hacking
attempts revolve around password guessing, so the more complex your password
is, the tougher it will be to break.

Editor
After the administrator, the editor has the most powerful role. This role is for users
who need to manage everything about the content of a website, but don't need to be
able to change the basic structure, design, or functionality of the blog itself (that's for
administrators).

The editor's primary purpose is to manage all of the
content of the blog.

Community Blogging

[294]

To get an idea of how the screen looks when a user logs in as an editor, let's
take a look at the editor's menu (on the right-hand side) in comparison with
the administrator's menu (on the left-hand side):

As you can see, the top section is unchanged (apart from the Updates link).
However, nearly the entire bottom menu, with Appearance, Plugins, and Users
(which is replaced by Profile), has disappeared. We can see that the editor is left only
with the ability to edit his or her own profile, and to access the Tools section, which
includes any plugin pages that allow editor-level access (for example, Searched
Words, Document Types).

The examples of actions that a user with an editor role can take are:

• Managing all posts
• Creating and editing pages
• Moderating comments
• Managing categories, tags, and links
• Editing other users' content

Chapter 10

[295]

There's one very useful aspect of the editor role. If you give it a closer look, you'll
realize that it has all the credentials one would need to publish any piece of content
on a given WordPress site. This makes it perfect for everyday use, even for single-
author blogs or sites. Therefore, what I actually encourage you to do is set a separate
editor account for yourself, and then use it for posting and editing content, instead
of working with the default administrator account. Such a setup is a lot safer,
particularly if someone tries to hijack your password or if any other bad thing
happens to your account. The site itself won't get harmed (considering the fact that
editors can't install new plugins or delete any existing ones).

For multiauthor blogs or sites, the editor role is meant to be assigned to users who
are in charge of the content published on the site. Essentially, as the name itself
indicates, the editor role is perfect for editors.

Author
Authors have much less access than editors. Authors can add and edit their own posts,
and manage posts made by their subordinates. However, they can neither edit posts
made by other authors, nor manage comments on posts that don't belong to them.

The author's primary purpose is to manage his or her own content.

To get an idea of the experience of a user with the role of an author, let's take a look
at the author's menu (on the right-hand side) in comparison with the editor's menu
(on the left-hand side):

Community Blogging

[296]

As you can see, the Links and Pages sections have disappeared, and so has the
management page (under the Settings menu), which was available to editors
(Document Types). Additionally, if the author looks at the complete list of posts,
 he or she will only have the ability to View, and not Edit, Quick Edit, or Delete,
posts that he or she did not author (highlighted):

As you would imagine, the author role is perfect for, well… authors—users who
are actively involved in creating content for your site. Authors can, for example,
do the following:

• Submitting and publishing their posts
• Managing their posts after the publication
• Moderating comments under their posts

Contributor
Contributors are only able to write posts and submit them for review. These posts
will be in the Pending Review status until an editor or administrator agrees to
publish them. Contributors cannot upload images or other files, view the media
library, add categories, and edit comments, or any of the other tasks available to
more advanced users.

The contributor's primary purpose is to submit content
for consideration.

One important thing worth mentioning is that although contributors can create and
submit their work for review, once the article is published, they no longer have the
possibility to edit it in any way. However, they do get access to the comments section
(for moderation).

Chapter 10

[297]

When it comes to the real-world applications of this role, it's most commonly used
when working with guest bloggers or posters, or any other regular contributors that
are not part of your in-house team. Guest posting is really popular nowadays and
handling it through contributor accounts is much less labor-intensive than receiving
articles via e-mail and then having to copy-and-paste them to WordPress.

Subscriber
Subscribers have no ability to do anything at all. They can only log in and edit their
profile, that's it (adjust their first name, last name, password, biographical info, and
so on). Depending on the permissions set in Settings | Discussion, blog visitors
may have to sign up as subscribers in order to be able to post comments. Also, there
are some plugins that handle sending informational updates to subscribers, such as
newsletters or e-mail notifications of new posts.

Most of the time, this role is used as a placeholder. Take, for example, a specific
author who had been contributing to your site regularly in the past, but hasn't
submitted anything in months. Instead of deleting his or her account completely,
you can simply change his or her role to subscriber.

Managing users
To manage users, log in (as an administrator, of course) and navigate to Users.
You'll see a list of your existing users:

Community Blogging

[298]

When we installed WordPress, it created only your first user (which is how you've
been logging in all this time). Let's create a new user, and assign that user the next
most powerful role, that of an editor. To do this, navigate to Users | Add New.
You'll see the Add New User form:

As you can see, only the Username, E-mail, and Password fields are required.
You can also change the Role from the default (Subscriber) to one of the other
roles. In this case, I've selected Editor. Then, I click on the Add New User button.

Apart from the required fields, it's also good practice to fill in First Name and Last
Name. This can make the task of further managing the user accounts much clearer.

Chapter 10

[299]

I can repeat this process to add an author, a contributor, and a subscriber.
When I'm done, the Users page (where the users can be managed) will look
like the following screenshot:

As with any other management list in WP Admin, you can roll over a row to see the
management links (visible in the preceding screenshot). In this case, you can Edit
or Delete users. You can use the checkboxes and the Bulk Actions menu, or use the
filter links to view only users with particular roles. You can change the role of one or
more users on this page by checking the box (or boxes) and using the Change role
to... drop-down menu.

Community Blogging

[300]

Enabling users to self register
Adding users yourself is not the only way to add users to your WordPress
website. You can also give your users the ability to register themselves. First,
navigate to Settings | General and make sure you've checked Anyone can
register next to Membership:

I strongly recommend leaving New User Default Role as Subscriber; though
Contributor could also be fine if the purpose of your blog requires it. However,
allowing new users to automatically be assigned a role with more power than
that is just asking for trouble.

Next, add a link somewhere on your blog that links users to the login and
registration pages. The easiest way to do this is to use the widget named Meta,
which comes with your WordPress installation. It will add a widget to your
sidebar with a few useful links, including Log in and Register.

Chapter 10

[301]

Of course, if this is not exactly the collection of links you want, you can create
your own widget (we talked about widgets in Chapter 5, Plugins and Widgets)!
Users clicking on Register will be taken to the following basic registration page
that asks for only Username and E-mail:

After submitting this form, the user will be e-mailed a password, and the main
site administrator will be sent an e-mail notification of the new registration. The
user can now log in and edit his or her profile, or do more if an administrator
changes his or her role.

Learning more
You can learn more about the built-in WordPress roles and capabilities here:
http://codex.wordpress.org/Roles_and_Capabilities.

Community Blogging

[302]

User management plugins
At the time of this writing, there were over 200 plugins tagged users in the
WordPress Plugin Directory: http://wordpress.org/plugins/tags/users.
We can actually divide those plugins into a handful of groups as the functionality
offered is exceptionally wide. For example, there are plugins for:

• Dealing with various author accounts, co-authoring posts, and
multi-author sites

• Constructing membership sites around WordPress where members can get
access to premium packages of content based on their subscription model

• Building a classic e-commerce store where everybody can make a purchase
from the available directory of "things"

• Building an online forum based on WordPress
• Building an e-mail newsletter sent to given site's users directly from within

WordPress, instead of using external services
• Launching a social network on WordPress
• Managing user profiles for registered users

As you can see, the number of possibilities is really striking. If we want to, we
can do essentially anything with a WordPress site and its users. Our imagination
is the only limit.

There are three plugins that people often find useful when a number of people edit
a website, especially if they have a range of authority over final website content.

• Peter's Post Notes: http://wordpress.org/plugins/peters-post-notes/
allows each user to add a note whenever they edit a post. Such a note can,
for example, inform the editor that the post needs an image before it can be
published.

• Peter's Collaboration E-mails: http://wordpress.org/plugins/peters-
collaboration-e-mails/ (another plugin by the same developer) allows
you to set up sending of e-mails (along with the note that has been included,
via the first plugin above) whenever a contributor authors a new post, when
the post is published, and if the post's status is changed again.

Chapter 10

[303]

• Edit Flow: http://wordpress.org/plugins/edit-flow/ is one of the
bigger editing plugins and it offers a ton of features. Basically, it's a complete-
package kind of plugin for large publishing teams that need to set up a custom
workflow to improve their writing and publishing processes. Even more
powerful are the plugins that let you control what certain users are allowed
to do within the WP Admin if the exact structure of the five roles WordPress
offers you by default aren't quite right. The two most commonly used are:

• Adminimize: http://wordpress.org/extend/plugins/adminimize/.
Without digging too deeply into the backend of roles and capabilities, this
plugin lets you streamline the administration interface. You can hide certain
menu items and also some boxes on the Add/Edit screens.

• Membership: http://wordpress.org/plugins/membership/. This one
is among the top membership plugins on the market and probably the best
free plugin available. In short, it's a complete membership site solution that
allows you to publish members-only content, manage user accounts and
even handle online payments for your premium memberships.

Finally, let's not forget about one of the more popular areas in modern website
launch—social networks (such as Facebook). As it turns out, you don't need a huge
budget at your disposal to launch such a network. A plugin such as BuddyPress
(http://buddypress.org/) has all the functionality you'd need and best of all, it's
free. We'll actually give BuddyPress a closer look in the next chapter where we'll
focus on building non-blog websites, but I just wanted to mention it here to keep
the message complete.

Creating a multisite website
In the past, there used to be a separate version of WordPress named WordPress
MU (pronounced as myoo) that allowed you to create a master blog with many
sub-blogs—essentially giving each user their own (limited) blog.

Community Blogging

[304]

Well, as of WordPress 3.0, this capability is a built-in feature in WordPress,
and just needs to be enabled. If you go to the old WordPress MU URL
(http://mu.wordpress.org/), you'll see the following:

You may be wondering what makes a WordPress site, which can have multiple
authors, different from a WordPress MU site. Here's the official definition from
wordpress.org:

A multisite network is a collection of sites that all share the same WordPress
installation. They can also share plugins and themes. The individual sites in the
network are virtual sites in the sense that they do not have their own directories on
your server […] and they do have separate tables in the database.

In other words, the multisite structure allows you to have a main website and for
every user to have their own subsite, which gets its own subdomain or subdirectory.
As the administrator of the site, you can choose how much flexibility to give users:

• How much control they have over their own sidebars and widgets
• How many themes they can choose from (if any)
• How many plugins they can choose from (if any)

Apart from that, you can also choose to launch a number of sites under a single
domain for yourself, rather than handing them over to the users on your site. This
can be a good idea for large online publishers with a couple of branches focusing on
different topics and niches.

Chapter 10

[305]

Websites that use WordPress MS include:

• wordpress.com

• blogs.nytimes.com

• metblogs.com

• trueslant.com

• blog.mozilla.com and more

As I mentioned earlier in the chapter, when you create a multisite structure,
you'll get one more user account role called the Super Admin. This is the main
administrator account for the whole network. The sole presence of this account
reduces some of the capabilities of the standard administrator account. For example,
in a multisite structure, standard administrators can no longer do the following:

• creating or editing users
• installing, editing, deleting, or updating themes
• installing, editing, or updating plugins
• updating core

The other roles retain their standard capabilities. Additionally, every user
account, apart from the Super Admin, is assigned to a single subsite and not
the network as a whole.

A full discussion on setting up and administering the WordPress MS capabilities
is outside of the scope of this book. However, you can find a thorough and helpful
tutorial in the WordPress codex at http://codex.wordpress.org/Create_A_
Network.

Summary
In this chapter, we learned how to manage a group of users working with a single
blog, which is a community of users. Community blogging can play an important
role in a user group or a news website. We also learned how to manage the different
levels of privileges for users in a community.

In the next chapter, we'll walk through the process of creating a complete non-blog
website from scratch.

Creating a Non-blog Website
Part One – The Basics

As you have seen while reading this book, WordPress comes fully equipped to
power a blog with all of its particular requirements of post handling, categorization,
chronological display, and so on. However, powering blogs is not WordPress'
only purpose. In fact, there are millions of websites out there right now running
WordPress, where blogging is not the primary focus of the website. I myself have
built many such sites.

Just to give you a general idea of what's possible, here's a list of popular non-blog
type websites that you can build and launch using WordPress (we will cover some
of them in more detail later in this and the next chapter):

• Static websites: They feature just a handful of static subpages that are not
meant to be updated very often. Also, the main content is not organized
chronologically like blog posts.

• Corporate or business websites: They are similar to the previous type, but
usually a bit bigger in size and in the number of subpages; additionally,
most business sites have official or toned down designs.

• E-commerce stores: They are websites where anyone can browse through a
number of products and then use a shopping cart to make a purchase. Apart
from the shopping cart functionality, there's also online payment integration
and often a backend inventory management system.

• Membership websites: They are websites where some of the content
is available only to those users who have signed up for a membership
and (often) paid a small fee for the privilege; such members-only areas
can contain any type of content the site owner finds suitable. However,
WordPress doesn't limit this in any way.

Creating a Non-blog Website Part One – The Basics

[308]

• Video blogs: They are just like standard blogs; only instead of text-based
posts, the blogger publishes video-posts.

• Photo blogs: They are just like the previous type of blog, only revolving
around photos; a common type of blog for photographers, graphic designers,
and other people of similar professions.

• Product websites: In short, it's a similar type of site to an e-commerce store,
only this time, we're usually dealing with just a single product on sale. It's a
popular type of website for all kinds of web apps, iOS, or Android apps.

• Social networks: They are just like Facebook, but only run on WordPress.
• Niche business websites: Some examples of such sites are local restaurant

websites, hotel websites, coffee shop websites, personal portfolio websites,
art gallery websites, and so on.

Again, if I were to explain shortly what a general non-blog website is, I'd say that it's
any kind of website where the blog is not the main functionality used by the website
owner. And of course, non-blog websites make up the majority of the internet as a
whole. However, since we're discussing WordPress here, which many still believe
to be a blog system only, I just want to assure you that it's no longer the case. These
days, WordPress can be used for virtually anything.

In this chapter and the next chapter, we will go through some of the types of
websites mentioned earlier and present an effective way of building them with
WordPress. We'll also use the knowledge we've acquired in the previous chapters,
so it's best that you get familiar with everything that's been going on so far before
consuming the information on the following pages.

Also, there are a number of new pieces of functionality we have not explored in
previous chapters, and this is on what we will be focusing. These include:

• Designating a standard page to be the front page of the website
• Creating a custom post type with a custom taxonomy
• Altering the custom post type display in the WP Admin

Let's get started!

Chapter 11

[309]

The must-do tasks
Even though there are many different types of sites one can build with WordPress,
there are some steps that are mandatory for all of them.

For instance, no matter what type of website you want to launch, you always have
to start by installing WordPress properly. This is exactly what we talked about in
Chapter 2, Getting Started. Nothing is different in this case. The installation process is
the same, all of the steps are the same, and the final result is the same too; you end
up with a clean, blank WordPress installation. Also, whenever installing specific
themes and plugins, make sure to follow the same guidelines we discussed in
Chapter 5, Plugins and Widgets and Chapter 6, Choosing and Installing Themes.

Last but not the least, to ensure that your site is secure and has a good user
management structure, you have to keep in mind all the best practices revolving
around user accounts, and editorial workflow (publishing new content).

Basically, the only element that's different when building a non-blog website
is the process of picking the theme and selecting the exact plugins for the site.
Additionally, if you want to take it to the next level, you'll have to look into
implementing various functionalities by hand or getting a custom solution
made for you by a professional.

Luckily though, the process itself is not much more difficult than working with
a standard blog. So once you have some experience with WordPress under your
belt, you'll be able to get it done just as quickly.

Static websites
Let's start with static websites as they are the simplest type of non-blog websites and
also the easiest ones to create (which shouldn't be surprising).

The best part about static websites is that building such a thing doesn't require any
specific themes or plugins. The secret is your mindset as the developer. In essence,
to pull this off effectively, the only things you need to do are:

• Utilize the WordPress' pages functionality
• Tune up the default home page to create a more static experience

Creating a Non-blog Website Part One – The Basics

[310]

The process
Firstly, let's tackle one common misconception. The point of a static website isn't
to make the content hard-coded into the HTML or PHP files at all. The actual point
is to abandon the standard chronological organization of content (to abandon the
blog functionality) and to focus on building a site where pages exist on their own,
independent of one another. So, in the end, we can still edit everything pretty easily
through the WP Admin, and the only difference is that we're not using the standard
WordPress' posts for anything. Instead, we're focusing on the WordPress' pages.

During the setup process of a good static page you'll have to:

1. Pick a WordPress theme that fits your goals and one that looks attractive
for your particular project (something we talked about in Chapter 6, Choosing
and Installing Themes); this is a mandatory step for any type of non-blog
website. Not every theme will fit every type of website. So whenever picking
a specific theme, keep in mind what you want to use the website for. This is
going to make your time easier as a developer and the future visitors' work
easier once the site is launched.

2. Create a list of all the static pages that you want to make a part of your
website. For instance, for a local pet grooming service, the pages could
be: gallery, offer and pricing, testimonials, contact, and map.

3. Create each page in the WP Admin (section Pages | Add New).
4. Create one more page, call it HOME and tweak it to provide a good home

page experience. For instance, start by focusing on the elements
that a first-time visitor would consider useful on your home page.
A good home page should answer the question of what this site is about.

5. Create easy-to-grasp menus to make the navigation a breeze.

Steps 1-3 are pretty straightforward, so let's just focus on the last two.

Building your home page
By default, WordPress takes the main blog listing (the chronological list of posts)
and uses it as the home page. This is not a desired situation in our case since there
will be no posts. What we'll do instead is create a custom page and then use it as
a static front page (homepage).

We'll start by doing something that should be very familiar to us at this point—go
to Pages | Add New and create a new page titled HOME. What you'll place on
this page is up to you. Essentially, a home page should be a great starting page for
anyone who visits a given site for the first time. For instance, I've decided to go
with a short intro message, a list of some popular articles on the site, a contact form
provided by the Jetpack plugin, and an interactive map from Google Maps.

Chapter 11

[311]

Once you have your page ready, the only thing you have to do is assign it as the
front page. Go to Settings | Reading, click the radio button next to A static page
and select your new page as the Front page, like this:

The other setting, that is, Posts page is not important at this stage, as posts are not
the focus of this particular project.

When I go to my main website now, the home page no longer presents the standard
listing. Now I can see this:

Creating a Non-blog Website Part One – The Basics

[312]

I have to admit, the word HOME doesn't look that pretty, so I will probably
change it to something like Welcome to make it more visitor-friendly, but this
is only an example.

If you want to make your home page more fancy, you can create a custom page
template (described in Chapter 7, Developing Your Own Theme), which will allow
you to include any design elements you might need and also a ton of custom
functionality. Again, it all depends on the project.

Creating easy-to-grasp menus
The last element of this static-website puzzle is a proper menu (or proper menus).
Because our home page is just like any other page one can create in WordPress.
It will appear in the default pages menu (Pages Widget), which isn't the most
optimized situation.

Therefore, whenever working with static websites, make sure to use only custom
menus created by navigating to Appearance | Menus. This gives you full control
over what gets displayed either in the header, the sidebar, or anywhere else on the
site. For example, you can see that I've added a new link pointing to the home page
in the top header menu on my site:

Just like I said, nothing difficult here.

Corporate or business websites
When we look at the main idea of corporate or business websites, it becomes
apparent that their construction is similar to static websites. The only difference
is that they are much bigger (they have more pages and more content) and the
design seems much more official. Also, most businesses like to publish some
announcements occasionally, so a blog-like functionality is required too
(but it still won't take the role of the main element on the site).

In essence, creating a quality corporate site with WordPress is all about picking (or
building) the right theme. If you do a quick research on the Web, you'll see that most
corporate sites (at least the good ones) feature hardly any design. The thing that
makes them stand out is their very subtle branding (through a certain color scheme
or clever use of logos) and stellar navigation layout. What this means is that the
easiest way to build a great corporate site with WordPress is to:

Chapter 11

[313]

• Pick a clean theme with good content organization and featuring almost no
design bells and whistles

• Include specific branding elements and pick the right color scheme
• Build a nice user-friendly navigation structure through custom menus
• Construct a custom home page
• (Optional) Add one visual element in the form of a home page slider

to make the site seem more alive

Let's take the list one by one.

Picking a clean theme
This is something we talked about in the previous chapters so let me just point you
towards some of the top places where you can get WordPress themes real quick.
They are: the official directory (http://wordpress.org/themes/), ThemeFuse
(http://themefuse.com/), WooThemes (http:// woothemes.com/), and Theme
Forest. The thing to keep in mind is to go straight to the business-related part of
the theme directory we're browsing. For example, at Theme Forest, go straight to:
http://themeforest.net/category/wordpress/corporate. This will make the
selection process a lot quicker.

Keep in mind that if it's a free theme you're after, you should
always get it from the official directory (we discussed this in
Chapter 6, Choosing and Installing Themes). Also, if you want to build
a theme on your own, look into some of the free theme frameworks
like Gantry (http://www.gantry-framework.org/), or
Thematic (http://thematictheme.com/).

Features to look for in a quality corporate theme include:

• Minimal design that lets you include your branding elements
• Easy way of adding a logo and other graphics
• Custom header functionality
• Favicon support
• Responsive layout (meaning that it'll be equally as attractive on a

desktop computer and on a mobile phone)
• Widget areas

Creating a Non-blog Website Part One – The Basics

[314]

• Breadcrumbs
• Customizable sidebars
• Customizable layouts (for example, full-width, 1-sidebar, 2-sidebar,

and so on)
• Multiauthor support (there's usually a number of people taking care

of a corporate site simultaneously)
• Built-in color schemes to choose from
• SEO-compatible
• Custom page templates for home page, contact page, FAQ, offer,

gallery, team, testimonials, 404 error, portfolio, and so on.
• Cross-browser compatible

Now, your theme doesn't have to do all of the above, but this list should be a good
benchmark in determining how suitable the theme you're about to pick is when it
comes to running a corporate site.

Branding elements
From a business point of view, branding is the most important parameter of a
recognizable site. Therefore, make sure that the logo and the corporate identity of
the company both match the color scheme of the theme. Also, as I mentioned in the
previous section, a good theme should allow you to pick the color scheme from one
of the predefined ones.

Finally, turn the logo into a favicon and upload it to the site too (this can be done
through your theme's built-in favicon functionality or via a plugin like All In One
Favicon (http://wordpress.org/plugins/all-in-one-favicon/). This will
give the site some additional visibility in the bookmarks menu (should any visitor
bookmark it).

Good navigation
This is most likely the toughest part of the job when building a corporate site.
Mainly because we can never be sure how much content the site is eventually going
to feature. There's always the danger that our navigation will either be too much
for those handful of pages of content, or too little for hundreds of pages. There are,
however, some best practices you can follow:

Chapter 11

[315]

• Focus on providing an extensive menu in the footer. This will make sure that
every visitor will be able to find what they're looking for once they scroll
down to the bottom of the page. This is easily doable with footer widget
areas that every good corporate theme should provide you with. Here's
an example by Samsung:

• Create a top menu with only a couple of the most essential pages. Sometimes
only News and About will be enough:

• Create a sidebar menu linking to the important areas of the site, like specific
categories, products, announcements, or other things the average visitor
might find interesting.

Creating a Non-blog Website Part One – The Basics

[316]

• Use breadcrumbs. Breadcrumbs are small links that present the path of the
visitor in relation to the home page. Most themes provide this functionality
by default. It's best to place them just below the header. Here's an example
where breadcrumbs are used (highlighted):

• Display a visible search field. A large number of visitors coming to a
corporate site are after a specific piece of information, so they naturally
start looking for a search field right away. Therefore, making their life
easier is a very good idea. A good placement for a search field is in the
header and in the main sidebar (sidebar menu) for maximum visibility.

Custom home page
Just like with static websites, the default blog listing rarely makes a good home page
for a corporate site. Going with a custom home page is always a better strategy and
gives us a more optimized way of presenting the company, its goals, and field of
expertise. To create such a home page, you can safely follow the instructions earlier
in this chapter when we were discussing static websites.

Now, like I said, showing the default blog listing as the home page is not a good
approach here. We should provide at least some integration with the blog-part of the
website. The two most sensible solutions are to either link to a blog listing page in a
visible place on the home page, or include a simplified listing as a widget in one of
the available widget areas on the home page itself.

Chapter 11

[317]

The latter can be done by a Recent Posts widget that's available in WordPress
by default (we covered widgets and how to use them in Chapter 5, Plugins and
Widgets). The former can be done as follows:

1. Create a new page (Pages | Add New) and name it NEWS. The page doesn't
have to feature any content. It only needs to exist with a unique name. I'm
suggesting NEWS because it gives a clear indication of what the page is for.

2. Go to Settings | Reading and set your new page as the default posts page.
It will look as follows:

3. As you can see, there's also the old HOME page that's currently set as the
Front page, we're going to leave it like that itself.

4. Place the link to the new blog section (NEWS) in the top menu (preferably).
You can do it in Appearance | Menus.

5. Now, if you navigate to your new NEWS page (something like
http://yoursite.com/news), you will see the default blog listing
that the company—the owner of the website—can use to publish
various announcements or other content.

Optional slider
The last element worth discussing here is a home page slider. Although most corporate
websites are not about the graphics, introducing this single visual element is often
in place. Animated sliders make every website seem more alive and attractive to the
visitor. For a corporate site, the slider can present photos from events, individual
announcements, product offers, contact details, and a number of other things.

Now, some themes will come with a slider functionality built in right from
the get-go. If they don't, you can always get a plugin to handle the job. The
only downside is that most slider plugins are not free. Among those that are
free, I can point out two:

Creating a Non-blog Website Part One – The Basics

[318]

Meteor Slides
It is available at http://wordpress.org/plugins/meteor-slides/.

It allows you to pick specific images from the media library (or upload new ones), set
them as slides, and then display them whenever you wish. You can display images
either through a widget or by using a shortcode ([meteor_slideshow]). The slides
themselves are actually organized as a new separate content type—Slides—right
next to the default content types like Posts and Pages (more on custom content types
in the next chapter).

This means that you can manage them just like you would manage your standard
posts and pages.

The only downside is that the plugin in its current form doesn't allow you to display
custom text content as a slide. You're basically limited to images only.

It's kind of difficult to show you what the slider looks like through a static
screenshot, but anyway, just so you get the general idea, here's my current home
page after using the [meteor_slideshow] shortcode at the top of the content block
(please notice the navigation arrows on either side of the image):

Chapter 11

[319]

SlideDeck 2 Lite Responsive Content Slider
It is available at http://wordpress.org/plugins/slidedeck2/.

This is the second free slider plugin I can recommend. Even though it's the light
version, it still offers an impressive range of features and a lot of possible ways to
create a slideshow. Right after installing the plugin and going to its section in the
WP Admin (right below Comments), you'll see a rich user interface:

In the middle, there's a message that states Currently, you have ZERO
SLIDEDECKS CREATED. Above the message, there's a Create SlideDeck
button (visible in the preceding screenshot). Click on it to get started.

Creating a Non-blog Website Part One – The Basics

[320]

The window that will appear in the middle of the screen presents a number of possible
ways to create a slider. You can, for example, fetch some content from Twitter, or even
videos from YouTube. There's also the Your Posts link that we're going to use in this
example. After clicking this link, you'll be redirected to another page where you'll be
able to adjust the posts you want to have displayed in the slider.

One of the easiest ways to have specific content displayed in the slider is to use the
following settings:

What I did here is select the Filter by Taxonomy? option, then Categories, and then
pick a new category, Featured, as the one that should feed the posts for the slider.
That way, whenever I want to place something new in the sidebar, all I have to do is
assign it to the Featured category.

Chapter 11

[321]

The plugin delivers a lot of customization features when it comes to the graphics
and the overall presentation of the slider. I encourage you to play around with it
for a while. Describing everything here would probably take a chapter of its own.
Anyway, here's what I was able to get after some tuning up (the slider itself can be
placed anywhere you wish with a simple shortcode):

Sliders are not a mandatory thing for corporate sites, but they might improve
the user experience so they're probably worth a try.

E-commerce stores
As I said at the beginning of the chapter, e-commerce stores, in general, are websites
where anyone can browse through a number of products and then use a shopping
cart to make a purchase. Also, most e-commerce stores offer some kind of online
payment integration, which allows every visitor to make and complete a purchase
quickly. Additionally, sometimes there's even a backend inventory management
system (an online warehouse of sorts) to make backend business management
easier and integrated with the website.

Creating a Non-blog Website Part One – The Basics

[322]

Now, the best thing about this line of business is that you can actually launch an
e-commerce store with WordPress, which, in my opinion, is simply incredible. As a
former website developer, I remember how expensive and time consuming it was to
build such a store from the ground up. Now, you can just install WordPress, get a
proper theme, buy/download a specialized e-commerce plugin, and you're good to
go. This is a prime example of how technology meets the expectations of running a
business the modern way.

Okay, enough with the introduction. Now, let's focus on the actual process of
building a quality e-commerce store.

First of all, the thing with e-commerce stores on WordPress is that they are extremely
plugin-driven. What I actually mean is that if you want to launch such a website, you
will need to get one main e-commerce plugin that's going to be responsible for the
complete set of operations available in your store. In short, this plugin will run your
store. For that reason, choosing the right plugin is extremely important, which is
something I'm sure you understand.

There are numerous premium plugins in the market. They offer a ton of features and
integrate with almost any online payment processing method possible. But what's
actually quite surprising is the fact that some of the best plugins are completely free.
Here's my favorite four:

• WP e-Commerce: http://wordpress.org/plugins/wp-e-commerce/
• WooCommerce: http://wordpress.org/plugins/woocommerce/
• eShop: http://wordpress.org/plugins/eshop/
• Easy Digital Downloads: https://easydigitaldownloads.com/
• Cart66 Lite: http://wordpress.org/plugins/cart66-lite/

Each of them offers an impressive range of features. I won't even attempt to
list them here because it would take a chapter of its own. Instead, I will focus
on one of them—my personal favorite, and use it to go through the whole process
of setting up an e-commerce store that's optimized and ready to run any retail-based
online business.

Without further delay, my plugin of choice is WooCommerce. It's beautifully
designed and offers a truly exceptional range of features, which I will get into in
a minute. But before I do that, if you're planning to launch your own store, it's
advisable to test all of the plugins mentioned earlier and pick the one that you like
the most. In other words, don't use WooCommerce just because I say it's cool. Make
your own educated decision. After all, it's your business we're talking about here.

Chapter 11

[323]

Now, let's talk about the plugin. The main reason why I like WooCommerce this
much is because it can be integrated with any theme. And I really do mean any.
However, for a real-life business website (not just a test website like we're going to
build in a minute), I still think that you should use an optimized e-commerce theme.
Again, feel free to visit one of the popular theme stores to get something of top
quality. I listed a number of them in Chapter 6, Choosing and Installing Themes.

In short, a good e-commerce theme should:

• Have a clear design
• Present the center content block in an attention-grabbing way (this is where

the products are going to be displayed)
• Allow you to tune the number of sidebars you want to display
• Be responsive (viewable on any device)
• Have a good navigation structure that's ready to house hundreds, if not

thousands of subpages (product pages)
• Offer a built-in featured content slider, which you'll be using for showcasing

promoted products
• Handle multilingual content
• Provide some level of social media integration (sharing product links on

Twitter or Facebook)

In this chapter, for educational purposes, I will use the custom theme we were
working on in Chapter 7, Developing Your Own Theme, the one for my cooking blog.
But go ahead and feel free to use any theme you wish.

Standard setup
The initial part of the setup process is the same for all WordPress sites, including
e-commerce WordPress sites. In other words, just proceed to installing the platform
like you normally would. You can go back to Chapter 2, Getting Started, for more
information.

As a result of this, you should have a nice blank WordPress site. Next, download and
install the theme you'll use as the base of your store. As I said, I will go forward with
my cooking blog theme.

Creating a Non-blog Website Part One – The Basics

[324]

Getting the plugin
To get WooCommerce, you can either go to http://wordpress.org/plugins/
woocommerce/ or install it straight from the WP Admin (Plugins | Add New). Just
input WooCommerce into the main search field. Most likely, the first plugin on the list
is the one you're looking for. Click on Install Now and when the process finishes,
activate the plugin.

This is what you'll see after activating the plugin:

WooCommerce informs you right away about some of the actions you might
have to take to be able to use the plugin to its fullest potential.

Chapter 11

[325]

The first button in the preceding screenshot is a tricky one (labeled Install
WooCommerce Pages). When you click on it, the plugin will create a range
of pages that are meant to hold different parts of your new store. Although
doing so might seem like cluttering the store right from get-go, it's actually
a good idea because it provides a starter structure. I would therefore advise
going ahead and clicking it after all.

When the process is done, you'll be redirected to the following page:

This page will guide you through a range a new and useful features and also list
some of the under-the-hood elements, like custom functions and action handles. But
let's not get into this right now. In this chapter, we're just going to implement some
basic integration between the plugin and our current theme. Here's how to do that:

1. Create an additional custom menu to handle the new pages that the plugin
created, and then assign the menu to the footer.

2. Adjust the main settings of the plugin.
3. Create a custom container page to handle the plugin's content.
4. Add some products and launch the store.
5. Check the stats: orders, coupons, and reports.

Creating a Non-blog Website Part One – The Basics

[326]

Custom menu for the store
Currently, the theme we're using takes all the pages we have on the site and displays
links pointing to them in the footer. This doesn't look very nice though:

It actually looks like the design is seriously messed up. Quite simply, our footer is
not capable of showing this many links at the same time. To fix this, we're just going
to create a new menu and then assign it to the footer.

We already know how to do this. Just go to Appearance | Menus and create a new
menu (as described in Chapter 4, Pages, Menus, Media Library, and More). Mine is
called Shop, and there are just three pages in it:

Chapter 11

[327]

Next, the menu is assigned to the footer:

Finally, as a result, the footer looks much better now:

Main settings of the plugin
WooCommerce really is a complete solution when it comes to e-commerce, and the
number of features scares even me. The following section presents some of the most
crucial ones.

By going to WooCommerce | Settings | General you can set things like:

• Base Location: It is where your business is based. It is important for taxes,
which the plugin helps you handle too.

• Currency: It shows what currency prices are listed in the store and which
currency gateways will take payments in.

• Allowed Countries: It is the list of countries you're willing to ship to.
• Coupons: It shows if your store allows the use of coupons.
• Guest checkout: It shows if visitors have to register in order to make a

purchase.
• Basic styling of the core elements of the plugin: It includes things such as

call to action buttons, tabs, price labels, and so on.
• Downloadable products support: The plugin also lets you sell digital

products and have them delivered right away through a secure download.

Creating a Non-blog Website Part One – The Basics

[328]

Apart from the General settings tab, you can also (and probably should) adjust
other parameters in tabs like:

• Catalog: It shows various product options and product data parameters
(like weight, size, and so on).

• Pages: It includes basic page settings. Here, you can assign the core pages
of the store, for example, the page on your site that should hold the cart,
and so on.

• Inventory: It includes various stock management settings.
• Tax: It is a handy section for tax handling and tax calculations.
• Shipping: It includes shipping and shipping rates.
• Payment Gateways: It includes payment collection settings.
• Emails: As in all e-commerce stores, e-mail is the main channel of

communication with customers. In this section, you can set how your
store should handle emails.

• Integration: This is where you can integrate your store with external
solutions like Google Analytics or other tracking software.

Getting through all of these tabs and adjusting the settings will take a while for an
actual e-commerce store. But here, we're just scratching the surface and finding out
what's possible with a quality plugin like this. Therefore, don't spend too much time
on all these settings tabs. Just glance over them, set the features that are the most
interesting to you and proceed to the next step.

Custom container page for the store
Since WooCommerce is quite a popular plugin, some themes are advertised to be
compatible with it right from the start. Unfortunately, ours isn't. You can see this by
going to http://yoursite.com/shop/ (the default subpage for the store). This is
what you'll likely see:

Chapter 11

[329]

Everything looks wrong. There's no sidebar and things are cramped up in the
middle. This is very easy to fix though. And that's actually one of the strengths
of WooCommerce. All you have to do is the following:

1. Create a copy of your page.php file.
2. Rename the copy to woocommerce.php.
3. Edit the new file, find the <article></article> block, erase it completely,

and in its place put this single line: <?php woocommerce_content(); ?>
4. Save the file.

Creating a Non-blog Website Part One – The Basics

[330]

Now, your woocommerce.php file should look like this:

<?php get_header(); ?>

<!-- middle -->
<div id="middle" class="cols2">
 <div class="container clearfix">
 <div class="content" role="main"><!-- content -->
 <?php woocommerce_content(); ?>
 </div>

 <?php get_sidebar(); ?>
 </div><!-- /.container -->
</div><!-- /.middle -->

<?php get_footer(); ?>

From now on, this file will be used to display any piece of content coming from
WooCommerce.

The preceding is the simplest way of integrating a theme with
WooCommerce. If you want to learn more, feel free to visit:
http://docs.woothemes.com/document/third-party-
custom-theme-compatibility/

When we refresh the http://yoursite.com/shop/ page now, this is what we'll see:

Chapter 11

[331]

These changes make the page look a lot better. The sidebars are back and the main
section is displayed neatly in the center. There's nothing else left to do now other
than to add some products and start using the store.

Adding products
When it comes to products, WooCommerce follows the standard content
organization method in WordPress. This means that you can manage products
just like you'd manage any other piece of content (pages or posts).

What I've done here is added three products by going to Products | Add Product
and filling out the product fields. Please notice that products also have their own
categories and tags.

Creating a Non-blog Website Part One – The Basics

[332]

This is what my Products section in the WP Admin looks like right now:

And this is the front page of the store:

Chapter 11

[333]

Finally, here are some screenshots presenting the individual areas of the store and of
the transaction procedure. The product page appears as follows:

What happens when you add something to the cart? The following screenshot
shows what you can expect:

Creating a Non-blog Website Part One – The Basics

[334]

The cart itself:

The checkout page looks like this:

Chapter 11

[335]

Stats – orders, coupons, and reports
The last element of the plugin worth discussing here for a minute is the
management backend—the orders, coupons, and reports sections.

Orders can be found by going to WooCommerce | Orders. You can manage them
just like any other piece of WordPress content. There are a number of additional
fields and parameters though, so there might be a slight learning curve. But still,
a very friendly and easy to use environment.

To view reports, go to WooCommerce | Reports. There's a nice graphical
representation of what's been going on in your store. You can view the sales,
coupons used, customer activity, and your current stock. Right now, I don't have
much going on in my store, so the graph looks like this:

Creating a Non-blog Website Part One – The Basics

[336]

You can add various coupons by going to WooCommerce | Coupons and then send
them out to your customers. Or you can make them available on the Internet publicly
as a promotional method.

That's pretty much it when it comes to using the plugin and launching a nice
e-commerce store with WordPress. The most remarkable thing here is how easy
it is to actually do it. Just imagine how much time it would take to create something
with similar functionality from the ground up, or, better yet, the cost required to
set it up. The possibilities that WordPress and various plugins deliver these days
are really incredible. I'm sure that a couple of years ago, no one would have even
believes that launching a quality e-commerce store could be done this easily.

One last thing, WooCommerce is not entirely free. If you want to install additional
features, the official extensions are anything between USD 29 and USD 99. So for
some specific, real-world applications, some financial investment might be required.
This actually happens with most, if not all, e-commerce plugins.

Summary
We covered a lot of material in this chapter. We started by listing a number of
popular types of non-blog websites that you can build successfully with WordPress.
Then, we went through some of those types individually and discussed the specific
elements to focus on in order to guarantee a quality final product.

The next chapter is part two of our guide on creating a non-blog website. In it, we'll
go through some of the more user-centered types of websites, like membership sites,
photo and video blogs, and finally, building your own social network.

Creating a Non-blog Website
Part Two – Community
Websites and Custom

Content Elements
Let's get straight down to business here. In the previous chapter, we've seen different
types of non-blog websites. This chapter is a continuation of the topic, so let's do two
things. First, let's go through some of the more trendy uses of WordPress and focus
on a step-by-step process of reaching a great final result. Second, let's discuss some of
the custom content elements you can create in WordPress, such as custom post types,
custom taxonomies, and customizing the admin display slightly.

Membership websites
When we're talking WordPress, from a technical point of view, a membership site
is not very different from a standard blog site. The only thing that sets it apart is the
fact that some of the content is protected by a level of access rights. In other words,
the content is premium. And if anyone wants to get access to it, they usually have to
take out their wallets and pay a small fee.

Even though membership sites might sound like a very niche thing to build with
WordPress, there are actually more and more of such sites being launched every
year. Many online businesses, especially in the educational niches, have realized
that the membership model is one that provides very predictable profits and can
be promoted in a variety of different ways.

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[338]

But let's stick with WordPress as our main topic and leave the marketing issues
aside, starting with some technical aspects of building a membership site.
The following are the functionalities a membership site can/should offer:

• The possibility to feature various types of content, including text
(standard articles), audio, video, PDF files, presentations, and photos

• An easy method of user registration and subscription
• Different levels of subscriptions (with different access rights)
• Integrated online payments (for premium subscriptions)
• Free trials
• Easy user account management and subscription management
• E-mail newsletter integration
• Teaser content (when you're showing part of the premium content

to tease visitors into subscribing)
• Internal stats

The list of functionality is quite extensive, and some of it might not be that clear at
first, but we're going to explain everything in just a while. Just like with our previous
examples, we're going to build a functional membership site here and discuss some
of the more important aspects of the process along the way.

For this purpose, let's use the theme from Chapter 7, Developing Your Own Theme.
Like I said, membership sites are very similar in construction to standard blogs. And
although you can look for specialized themes, often the default theme you're using
right now will do the job well enough. The only requirement is that, from a user's/
visitor's point of view, your membership site theme should provide good content
presentation and should be able to handle various types of content. That is all.

Taking the simple approach
Even though the recommended approach to building a membership site is
based on using specialized plugins, there's also an alternative path. But it's neither
functional nor professional, so I'm mentioning it just to keep the message complete.
I'm talking about using the simple password protection feature that's built into
WordPress by default.

Chapter 12

[339]

Basically, if you want to limit access to a given piece of content, all you have to do
is go to the WP Admin, then to Posts or Pages, and click on the Quick Edit link
beneath a given piece of content. There's a Password field at the bottom. After filling
it out and clicking on Update, your content is no longer publicly visible from that
point forward. Anyone who wants to view it has to enter the password.

Although this simple method does work and it does the job of limiting access
to specific pieces of content, it's not the prettiest one, at least not for serious
membership sites. Besides, it doesn't handle the subscription process itself
and forces you to find a way to deliver the passwords to your subscribers manually.

As it turns out, the simplest solutions are not always the best.

Using membership plugins
The only sensible method of building a membership site on WordPress is with the
help of some specialized membership plugins. Of course, just like with any other
type of site, you can still devote your time and effort to building everything from the
ground up by hand. But similarly to e-commerce stores, it would take way too long
before you could show any truly quality effects. So membership plugins it is!

As usual, there are many plugins available on the market, and finding the perfect
one for your particular project might take a while, especially if you want to test every
feature before making the site available to the world and your customers.

Now, the only downside is that most of those membership plugins are premium.
Seriously premium, so to speak. Some price tags go as high as $297 (I'm going to
point you to a free solution in just a minute).

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[340]

Therefore, if you do have some money to invest in your membership site, I would
advise looking into the following two plugins:

• WishList Member (http://member.wishlistproducts.com): This plugin
is used by hundreds of sites worldwide; it's probably the most popular
membership plugin available. The single site license is $97 and it provides
a number of side services apart from the platform itself (training videos,
unlimited updates, unlimited support). The multisite license is $297. It is
not cheap, but it might be a great idea for professional web designers and
developers.

• WP-Member (http://wp-member.com): This plugin is slightly cheaper
than WishList Member, currently priced at $47 (single site) and $97
(multisite). There's also an additional developer license for $147.

When it comes to the functionality, both plugins offer an extraordinary amount of
stuff. Also, both cover all of the items I mentioned on the list a couple of pages ago,
plus some additional bells and whistles (for example, secure RSS feeds and data
encryption).

Now, I'm not actually advising you to spend any money at this point, but we're here
to learn, so I'm only mentioning these plugins because they are the top of the game in
their field: membership plugins for WordPress.

Taking the free approach
This is probably a good moment to talk about a solution that's way cheaper to apply.
Actually, the plugin I'm about to describe is free. It's simply named Membership and
you can get it at http://wordpress.org/plugins/membership/.

The sole fact that it is free doesn't mean that it offers a poor range of features though,
or that it isn't built with quality in mind. This is still one of the top membership site
plugins available. Why is it free? It's based on a freemium model. This means that if
you want to get more functionality or unlock some of the extra features, you'll have
to get the Pro version, which costs $19.

Installing the plugin
This is a standard installation process. All you have to do is either go to
http://wordpress.org/plugins/membership/ to get the plugin and then upload
it to your plugins folder. Or, you can fetch it straight from the Plugins | Add New
section in the WP Admin.

Chapter 12

[341]

When you activate the plugin, you will be prompted to enable the plugin's
functionality. This can be done from the admin bar in your WP Admin, as
shown in the following screenshot:

After doing so, you'll see a completely new section in the main sidebar, right below
the Settings bar. It's named Membership, as shown in the following screenshot:

At this point, I advise you to go through the short user guide that will begin
displaying automatically when you try to visit the Membership section. This will
give you a basic overview of the plugin, as shown in the following screenshot:

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[342]

The main block that's displayed right in the middle lets you get started quickly by
creating your first membership site. We'll just select Standard membership site and
proceed to the next step.

The free version of the plugin allows you to create two levels of access. Let's call ours
Free and Premium. (I'm also selecting PayPal as the gateway for handling payments.)

When I click on Finish, I'm basically done with the setup process. That wasn't
hard, was it?

Chapter 12

[343]

Using the plugin
Right after the setup process is complete, you will be presented with another
on-screen user guide on how to use the plugin for doing the everyday work.
This guide is quite a long one, 34 steps, but it does present all of the most crucial
functionalities of Membership. So, in fact, I do advise you to go through it from start
to finish.

In short, the individual sections of the plugin allow you the following functionalities:

• Manage subscribers (navigate to Membership | All Members): With this
you can assign subscribers to their subscription plans, manage subscription
levels, and even check expiration dates

• Manage subscription levels (navigate to Membership | Access Levels):
There's also one more level on top of the two we created during setup named
Visitors and it controls what unregistered visitors see

• Manage subscription plans (navigate to Membership | Subscription
Plans): This lets you control things such as descriptions, pricing, and the
subscription levels that a specific subscription plan has access to

• Manage payment gateways (navigate to Membership | Payment
Gateways): The plugin allows you to receive payments through various
channels

• Other options (navigate to Membership | Options): This is where you can
control other areas of the site that haven't been covered elsewhere

Now, let's talk about how managing your content actually works and what you can
do to prevent some users from accessing the premium parts of it. Don't be afraid by
the fact that the way this plugin handles content management is quite advanced.
First, we have the access level settings available in Membership | Access Levels.

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[344]

The following screenshot shows what we'll see after going there and selecting our
Free level for editing:

We can set each access level to utilize a set of Positive Rules, Negative Rules, or
Advanced (both) rules. Basically, positive rules are how we can assign the content
that a given access level can view, while negative rules do the opposite thing. For
example, if I add all of my posts to the set of negative rules, I will effectively prevent
every Free member from viewing any of them, as shown in the following screenshot:

Chapter 12

[345]

Mind that this is just an example, and setting up everything properly so it actually
makes sense in a real world application will take a significant while.

Apart from the basic access level settings, we can also use the shortcodes provided.
For example, if we want to allow some content to be viewed by our Free members,
the only thing we have to do is enclose it in the [level-free] shortcode. For
example, as shown in the following code snippet:

[level-free]some content[/level-free]

As you can see, the plugin tries to make this as easy to grasp as possible.

There are a lot more features waiting for you inside Membership and I do
encourage you to test it out for yourself if you're ever building a full-blown
membership site. But for now, it's about time we switch to the next type of
site on the list: multimedia blogs.

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[346]

Video and photo blogs
Let's cover these two types of WordPress sites together because the individual goals
for each are often very similar (although the designs might still be a bit different).

In short, a video blog is one where the author mainly publishes videos, instead of
traditional text-based posts. A photo blog, on the other hand, is essentially the same
thing, only revolving around photos.

Now, why would you even bother with a customized setup for a video blog or a
photo blog in the first place, when you can just use a standard WordPress installation
with a traditional blogging-optimized theme? Well, to be honest here, you can go
with a standard setup indeed, and your video/photo blog will be just about fine. But
with some additional work (not much) put on building something that's tailor-made
for multimedia blogs, your site can get a big advantage over your competition. That's
mostly in terms of usability and content presentation.

For instance, let's focus on some of the interesting features you can put on a
video blog:

• Main blog listing built as a grid layout with big thumbnails, so every visitor
can see the snapshots of the videos right away

• Videos on the main listing presented as concise blocks containing the
thumbnail and a small amount of text to convince people to click over
to the video

• Wide main blog listing with just a narrow sidebar on the left (or right)
• Integrated social media features (including the YouTube subscription

buttons)
• Social media comments, fetched from the platform where the video is

originally hosted
• Custom backend to host the videos on the blog (or on an external server)
• Shareable embed code, so your visitors can embed the videos easily
• Custom player to replace the native YouTube or Vimeo players

And for a photo blog, interesting features are

• Custom home page featuring one main photo (photo of the day)
• Automatic photo slider on the home page

Chapter 12

[347]

• Lightbox functionality for viewing the photos in full size
• Wide main blog listing
• Integrated social media features
• Social media comments
• Custom backend to host photos
• Shareable embed code
• Custom photo controls (for example, save, view full size, share, and so on)

As you can see, most of these features can work equally well on both video blogs and
photo blogs. As usual with WordPress, you can get most of them either by obtaining
a quality theme, or by using some third-party plugins. Let's cover both approaches.

Exploring themes for video and photo sites
Being quite popular kinds of blog, both video and photo blogs have a very big
number of themes available on the Internet. Be careful, though. Searching for a
theme on Google can get you in trouble. Well, maybe not in trouble per se, but if you
end up downloading a theme from a random site, you have no guarantee that it's a
secure solution and that there's no malicious or encrypted code inside. A much better
method is to either to go the official directory or to some of the recognized theme
stores.

For starters, let's check out what's available in the directory:

• Portfolio Press (http://wordpress.org/themes/portfolio-press): This
is one of the more popular portfolio themes in the directory, currently at
over 240,000 downloads. It offers an optimized structure that allows you to
publish photos, videos, art, or other types of graphics. Not much in terms of
additional features, though.

• Rustic (http://wordpress.org/themes/rustic): This is another portfolio
theme, based on a well-organized grid layout. It comes with some portfolio
capability, and lets you add music, videos, or photos to your content.
Additionally, there's an integrated Lightbox.

• Photolistic (http://wordpress.org/themes/photolistic): This is a neatly
designed theme with clear content presentation and minimal structure. It is
perfect for anyone who wants to focus more on showcasing content rather
than guiding attention towards the theme itself.
As you'd imagine, the premium side of the Internet—the theme stores—have
a lot more to offer for video and photo bloggers.

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[348]

• VideoGrid (http://themefuse.com/wp-themes-shop/videogrid): This is
a great looking theme based on a grid layout. The main listing uses a number
of square blocks optimized to host any sort of multimedia content. There
are two color scheme variations: dark and light. There's also an advanced
filtering mechanism to make the site user-friendly. In the end, the theme
seems like a great solution for bloggers planning to publish a lot of content
on a regular basis.

• PhotoArtist (http://themefuse.com/wp-themes-shop/photo-artist):
This is another theme by ThemeFuse. This one is for photographers,
artists, and anyone who wants to start publishing visual content. It offers a
fullscreen slider, lightbox functionality, social media integration, and handy
shortcodes for easier usage.

• WooTube (http://www.woothemes.com/products/wootube): As you
can probably tell, this is a video theme. It features an automatic resize
functionality to get your videos to look good on any device, an integrated
embed code that you can share with the readers, and seven custom
color schemes.

• Chocolate WP (http://themeforest.net/item/chocolate-wp-
responsive-photography-theme/299901): This is a very nice photo blog
theme with responsive structure (optimized for any device), a full screen
photo or video home page, three home page sliders, nine custom color
schemes, and an overall great design with a luxury feel to it.

Getting any of these premium themes will require an investment, so do it only if
you're devoted to creating a really quality multimedia blog.

Getting plugins for video and photo sites
As I said, apart from video and photo optimized themes, you can also get a number
of plugins that will make your site more functional. The good news is that we're only
going to focus on free plugins.

Let's start with two plugins that I already mentioned in Chapter 11, Creating a
Non-blog Website Part One – The Basics:

• Meteor Slides (http://wordpress.org/plugins/meteor-slides/)
• SlideDeck 2 Lite Responsive Content Slider (http://wordpress.org/

plugins/slidedeck2/)

Chapter 12

[349]

These are both great plugins for getting a nice slider functionality. This sort of thing
does a good job at improving the overall user experience, especially when dealing
with a multimedia-driven site. For a detailed description of these plugins, please
review the previous chapter, the Static websites section.

Now, other plugins that can come handy are as follows:

• WP Smush.it (http://wordpress.org/plugins/wp-smushit): This
plugin doesn't present any particular output on the frontend of your site
because what it actually does is automatically optimize your images in the
background. What happens is, whenever you upload a new image to the
image library on your WordPress site, the plugin processes the image and
compresses it to reduce the size. The important detail is that the image still
looks the same with no loss in quality. This is a great plugin for saving your
bandwidth, especially if you're publishing a lot of images.
The installation process is quite standard. Once the plugin is activated, it
starts working in the background with no supervision required.

• WP jQuery Lightbox (http://wordpress.org/plugins/wp-jquery-
lightbox): This plugin delivers a really good looking lightbox functionality
powered by jQuery, a popular Java Script library. The best thing about this
plugin is that it's ultra easy to use. All you have to do is activate it and it
will immediately start taking care of the images you're displaying on your
blog. The plugin will intercept image clicks and show the image file in a nice
lightbox instead of loading them individually (on a blank page).

For example, the following screenshot is my Making Lasagne post and the
image in it (image not particularly related to lasagne, so sorry about that):

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[350]

Now, when I try to edit the image, all I have to do to enable lightbox is to
click on the Link to Image button, which will place the direct address of
the image file in the Link URL field, as shown in the following screenshot:

After clicking on the Update button and saving changes to the post,
my lightbox is enabled, as shown in the following screenshot:

Lastly, I have two social media plugins I'd like to show you. The first one is named
Twitter Mentions As Comments (http://wordpress.org/plugins/twitter-
mentions-as-comments/).

It does exactly what the name says, which is scouting Twitter in search of any
mentions of your content and then publishing those mentions as comments under
given posts. In short, it's a great way to make your content seem more alive by
showcasing some social media activity.

Chapter 12

[351]

This plugin is very easy to use, with just one Settings section under Settings |
Twitter | Comments. Most of the time, the plugin works automatically.

The second plugin is simply named Facebook and it's the official Facebook plugin
for WordPress (http://wordpress.org/plugins/facebook/).

This plugin can give you a good level of integration between your main site and
your Facebook page or profile. With it, you can publish new posts on Facebook
almost automatically and also allow Facebook users to comment on your content
using their accounts. This is just a small part of the full functionality. I'd advise
you to give this plugin a closer look yourself. Since it's an official plugin, every
new functionality that Facebook makes available for WordPress blogs is sure to
be introduced as quickly as possible.

Just to sum up the topic of multimedia blogs, I have to point out that this is a very
crowded area among both theme and plugin developers. The plugins previously
mentioned will give you a good start, but having your finger on the pulse and
paying attention to what's new on the market (cool new plugins and themes) is the
actual best way to keep your photo or video blog on top of its game. That being said,
getting and testing every new plugin out there is not the recommended approach.
However, from time to time, you can find a true gem that's going to help you take
your blog to the next level.

Social networks
Finally, it's time to discuss one of the most surprising topics in relation to building
various types of websites with WordPress. As it turns out, the platform can be very
well used to run a fully functional social network. In other words, you can have your
own Facebook if you like to... at least when it comes to the functionality.

And speaking about functionality, in short, a social network built with WordPress
can offer the following:

• Support any number of user accounts
• Facebook-like publishing method for users (a "Wall" or an activity stream)
• Forums
• Blogs and micro blogs
• Friends
• Groups
• Private messages
• Comments
• Photo and video content
• And much, much more

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[352]

That being said, building and then running a well-constructed social network
utilizing all of the available features will require some serious work. This is way
above the scope of this book. So here, we're only going to focus on the basic setup
process and getting started. If you're planning to launch an actual social network and
make it available to the world, you should probably get more info, either by going to
the official online documentation or obtaining some publications on the topic.

Essentially, social networking on WordPress works through one specific plugin:
BuddyPress, although calling it just a plugin is a massive understatement.
BuddyPress is actually a whole online publishing environment on its own that
integrates with WordPress. Unlike other plugins, it doesn't just display some custom
content here and there. It actually changes the whole appearance (structure) of your
WordPress site to make it look and operate like a social network.

Let's take the topic step-by-step, starting with the installation.

Installing a social network
Nothing fancy here, all you have to do is either go to http://buddypress.org/,
download the main plugin, and then upload it to your WordPress site, or search for
the plugin from within the WP Admin (Plugins | Add New) using the BuddyPress
name. The installation process of the plugin itself is quite standard, meaning that
after getting it on your server you only have to click on the Activate button. Right
after doing so, you will see the following welcome screen:

Chapter 12

[353]

It's actually advisable to go through the information in it to get a basic understanding
of the platform and the things it has to offer.

Next, visit the Settings section under Settings | BuddyPress. First, pick the
components you'd like to use on your new social network. For testing purposes,
I just enabled all of them, as shown in the following screenshot:

Remember that whenever you need any help working with BuddyPress, or any other
element in WordPress, you can click on the Help drop-down section that's visible
in the preceding screenshot. Also, to get more info about the available components,
feel free to visit http://codex.buddypress.org/user/setting-up-a-new-
installation/configure-buddypress-components/.

The second tab on this settings page, titled Pages, lets you assign the pages that will
house some standard areas of your social network, for example, the activity stream,
user groups, member profiles, and so on. You can create new pages here or use the
ones that BuddyPress has already created during install.

Finally, there's the last tab, Settings, where you can adjust some of the other
standard settings, such as the presence of the top toolbar, various profile settings,
and group settings.

That's basically it when it comes to the main settings area. As you can see,
the plugin is designed in a way that makes using it as easy as possible.

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[354]

Designing your social network
In its current form, BuddyPress can work with any WordPress theme. That's right,
you don't have to get an optimized social networking design if you don't want to.
BuddyPress will manage to display its contents inside either the main content
block of your current theme or the widget areas you have available (quite similar
to WooCommerce, which we talked about in the previous chapter).

However, as usual, if you want to make your social network look more professional
then you should probably look around and get something that's specially optimized
for social networks. The best rule of thumb when searching for such themes, in my
opinion, is to compare them against the biggest social network of them all: Facebook.
Although some people don't enjoy the design that Facebook offers, it still is the most
successful social network around, so they are clearly doing something right. Treating
them as a benchmark of sorts is, therefore, a very good idea.

For my quick example in this chapter, I'm going to leave my cooking theme for a while
and look for something more optimized to run a social network. And I don't have
to look far because BuddyPress comes with its own default theme. Once you have
the plugin installed, you can find the theme in Appearance | Themes. It's named
BuddyPress Default. After activating it, my site looks like the following screenshot:

Chapter 12

[355]

Really nothing that fancy. It's basically just a standard social network design with
good focus on the person publishing the content in the main content block. We can
give the site some flair by installing a free child theme named Frisco for BuddyPress.

You can get it by either going to http://wordpress.org/themes/frisco-for-buddypress
or searching for Frisco in the Appearance | Themes | Install Themes section. The
following screenshot shows what my site looks now after activating this new theme:

In my opinion, it's a more refined and modern design than the default theme.
However, mind that this is a child theme, which means that you have to actually
keep the default BuddyPress theme on your server for the new theme to work. Frisco
also comes with some predefined color schemes to choose from. As you can see in
the preceding screenshot, I went with the one named Green.

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[356]

If you think that your site looks good enough at this point, then you can go
straight to using it without focusing any more on the setup. However, if you really
want to get to know the platform and the way it's built, I advise you to go to the
official documentation, which is one of the best BuddyPress resources available
(http://codex.buddypress.org/). It's also where you can learn all the ins and
outs of BuddyPress development, creating your own themes or even BuddyPress
extension plugins.

Extending the functionality
BuddyPress is constructed in a way that provides the basic social networking
functionality and site organization. If you want to extend your social media site and
give it some new features, you can install a number of BuddyPress plugins. You can
find them at http://buddypress.org/extend/plugins/. Basically, they are just
like other WordPress plugins (the installation process is the same), but instead of
delivering some new functionality to WordPress, they focus more on BuddyPress.

One such plugin that I recommend you should get first is BuddyPress Media
(http://wordpress.org/plugins/buddypress-media/). It lets your users add
photos, music, and videos to their BuddyPress profiles.

User accounts and activity
Just like other social networks, sites built with BuddyPress provide some standard
user registration features. Apart from the fields that are required by WordPress
itself (in order to create a new account), you can set your own fields and user details.
Navigate to Users | Profile Fields to get started.

Chapter 12

[357]

Right now, there's just one field and one group of fields as shown in the preceding
screenshot. You can add new groups by clicking on the Add New Field Group
button, and add new fields by clicking on the Add New Field button for each group
individually. Let's add just one additional field to test this. I'll call it City. Please
keep in mind that this is just a simple field, so the user won't be allowed to choose a
city, or to check if the city actually exists.

Each field has a number of parameters, such as description, whether it's required
to fill it out or not, field type, and visibility.

After completing the procedure, I now have two custom fields on my
registration page, which is available for the world to see under the default URL:
http://yoursite.com/register-2/ (this obviously can be changed).

Every user who registers gets access to a standard range of social networking
features, meaning that users can manage their own profiles and also connect with
other registered users.

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[358]

When I try to visit the profile of one of my former editor accounts that I created as a
test, I can see the following screenshot:

John doesn't have much going on in his profile yet, but I can still add him as my friend,
send him a public message (which work very similarly to @mentions on Twitter), or a
private message through the internal messaging system. When John publishes a status
update, I can comment on it or mark it as my favorite. This is all very intuitive and in
tune with the experience we're familiar with after years of browsing Facebook.

Additionally, just to mention one of the more general features, I can create groups
and encourage users to gather around a similar interest. Finally, if you have some
additional BuddyPress plugins installed, then you will obviously have many more
features at your disposal.

There is a lot more stuff waiting for you inside BuddyPress and I actually encourage
you to do some researching and learning on your own, especially if you're planning
to launch a social network at some point. But for now, I think that we've got the topic
covered, at least when it comes to giving you an introduction to social networking
with WordPress and getting started with the best social networking plugin available:
BuddyPress.

Introducing custom post types
While building some of the sites described in this and the previous chapter, you may
stumble upon what's called custom post types. Or you may even decide to create
them yourself for the purpose of your individual projects. But let's take it from the
top. The custom post type functionality was added to WordPress in Version 3.0
because people wanted to be able to specify new objects.

Chapter 12

[359]

The most commonly known objects are posts and pages, but there are actually
already three other custom types in the WordPress backend: attachments, revisions,
and navigation menus. However, if we feel that the situation/project calls for it, we
can create any number of new post types by taking advantage of the custom post
type functionality and its wide versatility.

For example, while building an e-commerce store using WooCommerce, you will
find a new section in the WP Admin named Products (we talked about this in the
previous chapter). These products are nothing else than a custom post type created
by WooCommerce to make the store more functional and easier to grasp for the
average user.

The need for custom post types can appear in other, even simpler, scenarios as well.
For instance, when a writer is building a personal portfolio site, he or she might need
a custom post type named book to present publications in an attractive way instead
of just using standard posts. This is exactly what we're about to do in this section
of the chapter. So, let's learn how custom post types work by building a new one
named book.

For this purpose, we'll go back to our main cooking blog theme: Conexus Kitchen.
In its default form, it doesn't feature any custom post types and that's a good thing,
as we've got a blank canvas to work on.

To specify that you'd like to have a custom post type in your theme, you can
add some code to your theme's functions.php file. This is what we'll be doing.
However, keep in mind that you can also attach the custom post type to a plugin
or a widget if you don't want it to be tied to a particular theme.

Registering a new post type
To register a new post type, all you have to do is add some simple code to your
functions.php file. It's good practice to tie the creation of the new type to init of the
theme, so that it gets called at a good point in the booting process, so we'll use the hook
for init. Your initial custom post type code looks like the following code snippet:

add_action('init', 'book_init');
function book_init() {
 register_post_type('book');
}

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[360]

The register_post_type() function takes an array as its second parameter, and in
that array you can specify whether the object is public, whether it should be involved
in rewriting the URL, what elements it supports on its editing page, and so on. Let's
set up an array of all the arguments and then pass it to the function. Now our code
looks like the following:

add_action('init', 'book_init');
function book_init() {
 $args = array(
 'description' => 'A custom post type that holds my books',
 'public' => true,
 'rewrite' => array('slug' => 'books'),
 'has_archive' => true,
 'supports' => array('title', 'editor', 'author', 'excerpt',
 'custom-fields', 'thumbnail')
);
 register_post_type('book', $args);
 flush_rewrite_rules();
}

I've chosen each of these parameters because they make sense for the book custom
post type. Let's take a look at them:

• description: This one's pretty self-explanatory.
• public: This means that the post type is available publicly, like posts and

pages are, rather than hidden behind the scenes. It'll get a UI, it can be shown
in navigation menus, and so on.

• rewrite: This specifies that the post type can be used in the rewrite rules for
pretty permalinks.

• has_archive: This enables post type archives (a classic index page such as
we can see for our standard posts).

• supports: This is an array of the capabilities users see when creating or
editing an item. For books, we're including six of ten possible items.

The final function call, flush_rewrite_rules(), will allow us to show a standard
archive listing of the books later on (just as for a standard post listing, but for our
custom post type).

These are just some of the arguments you can pass. Read about
the others in the codex: http://codex.wordpress.org/
Function_Reference/register_post_type.

Now that we've got the basic post type set up, let's add some labels.

Chapter 12

[361]

Adding labels
You can add labels to your custom post type so that WordPress knows what to
say when talking about it. First, let's simply create an array of all the labels. Put
this as the first thing inside the book_init() function, as shown in the following
code snippet:

$labels = array(
 'name' => 'Books',
 'singular_name' => 'Book',
 'add_new' => 'Add New',
 'add_new_item' => 'Add New Book',
 'edit_item' => 'Edit Book',
 'new_item' => 'New Book',
 'view_item' => 'View Book',
 'search_items' => 'Search Books',
 'not_found' => 'No books found',
 'not_found_in_trash' => 'No books found in Trash'
);

Then add a single line of code to the $args array, telling it to use the labels, such as
the following code snippet:

$args = array(
 'labels' => $labels,
 'description' => 'A custom post type that holds my books',
/* the rest of the function remains the same */

The next step is to add messages, which is what WordPress tells the user
when they are doing stuff with books.

Adding messages
Whenever a user updates, previews, or does anything with a book, you'll want him
or her to see an accurate message. All we need to do is create an array of messages,
and then hook them in to WordPress. Here's the code:

add_filter('post_updated_messages', 'book_updated_messages');
function book_updated_messages($messages) {
 $messages['book'] = array(
 '' /*Unused. Messages start at index 1*/,
 sprintf('Book updated. View book',
 esc_url(get_permalink($post_ID))),
 'Custom field updated.',
 'Custom field deleted.',
 'Book updated.',

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[362]

 (isset($_GET['revision']) ? sprintf('Book restored to revision
 from %s', wp_post_revision_title((int)$_GET['revision'],
 false)) : false),
 sprintf('Book published. View book',
 esc_url(get_permalink($post_ID))),
 'Book saved.',
 sprintf('Book submitted. Preview
 book', esc_url(add_query_arg('preview', 'true',
 get_permalink($post_ID)))),
 sprintf('Book scheduled for: %1$s.
 Preview book',
 date_i18n('M j, Y @ G:i', strtotime($post->post_date)),
 esc_url(get_permalink($post_ID))),
 sprintf('Book draft updated. <a target="_blank"
 href="%s">Preview book', esc_url(add_query_arg(
 'preview', 'true', get_permalink($post_ID))))
);
 return $messages;
}

This code creates a function named book_updated_messages() that sets up an array
of messages and returns it. We call this using the filter for post_updated_messages.

Now, our custom post type is ready to use! Go to your WP Admin, and reload
it. You'll see a new menu has appeared under Comments. It's named Books.
Let's add a book:

Chapter 12

[363]

I've given it a custom field named book_author, and I've also
uploaded a featured image for the book cover.

I'll also add a couple more. Now, when you go to the main Books page, you'll see
your books listed, as shown in the following screenshot:

If you click on View for one of these books, you'll see the book displayed using the
single.php theme template, as shown in the following screenshot:

Let's make some new template files to display our books.

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[364]

Creating book template files
WordPress needs to know how to display your new post type. We have to create a
template for a single book and one for the list of books.

First, we'll make a book version of single.php. It must be named single-post
type name.php, which in our case is single-book.php. Using page.php as our
starting point (as it's already the closest to what we'd like our book page to look
like), we're going to add displays of the custom field, book_author, and the featured
image. So let's start by taking our page.php file, making a copy of it, and renaming it
single-book.php. Then let's include the featured image functionality. After all these
operations, the file looks like the following code snippet:

<?php get_header(); ?>

<!-- middle -->
<div id="middle" class="cols2">
 <div class="container clearfix">
 <div class="content" role="main"><!-- content -->
 <article id="post-<?php the_ID(); ?>"
 <?php post_class(array('post-detail')); ?>>
 <div class="entry clearfix">
 <?php while (have_posts()) : the_post(); ?>
 <h1><?php the_title(); ?></h1>
 <?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft">
 <?php echo get_the_post_thumbnail(); ?></div>
 <?php endif; ?>
 <?php the_content(); ?>
 <?php endwhile; ?>
 </div>
 </article>
 </div>

 <?php get_sidebar(); ?>
 </div><!-- /.container -->
</div><!-- /.middle -->

<?php get_footer(); ?>

Now, let's take our custom field, book_author, and display it right below the
featured image. We can do that by adding one new line of code (highlighted) in
between the featured image code and the main content code:

<?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft">
 <?php echo get_the_post_thumbnail(); ?></div>

Chapter 12

[365]

<?php endif; ?>
<p>by <?php echo get_post_meta($post->ID, 'book_author', true);
 ?></p>
<?php the_content(); ?>

Now when you visit a single book page, the author's name is displayed and the
book's cover shows up automatically:

Our next task is a page that will show a listing of the books, like index.php does.
If you go to http://yoursite.com/books/ now, you'll see something like the
following screenshot:

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[366]

This is basically a standard archive listing. In fact, WordPress uses the default
archive.php file to show the listing of every new custom post type. We can
customize this by creating a new template file and calling it archive-book.php.
To be more exact, every template file controlling the archive for any new custom post
type has to be named archive-post_type.php. The easiest way of creating such a
file is by making a copy of the standard archive.php file or the index.php file and
renaming it archive-book.php. Then we can take it from there and modify the file
to fit our requirements. So what I'm going to do here is use my index.php as the
template and do some fine tuning around it.

Right now, my new archive-book.php file doesn't offer any custom way of
displaying by books. Here's what the main loop looks like:

<?php if (have_posts()) : ?>
<?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('listing', 'blog'); ?>
<?php endwhile; else: ?>
 <h5>Sorry, no posts matched your criteria.</h5>
<?php endif; ?>

As you can see, the actual display is done by the get_template_part('listing',
'blog') function call. Let's change it so it fetches a new listing type, our books, and
then create the listing file itself. Here's my new loop after the changes (the new part
highlighted):

<?php if (have_posts()) : ?>
<?php while (have_posts()) : the_post(); ?>
 <?php get_template_part('listing', 'book'); ?>
<?php endwhile; else: ?>
 <h5>Sorry, no posts matched your criteria.</h5>
<?php endif; ?>

(You can see the full code if you look at the code download for this chapter.)

Now, let's make a copy of the standard listing-blog.php file and rename it to
listing-book.php. Right away, I'm going to erase the sections that handle the
display of the post author link, the post date, and the comments (our custom post
type doesn't support comments at the moment; you can enable them any time if
needed). Next, I will make the thumbnail a bit smaller. Quite frankly, I don't have
do this, but I believe that the book listing will look better with smaller thumbnails.
Finally, I will add one line of code just above the the_excerpt() function call, in
order to display my custom field, book_author. The finished file now looks like the
following code snippet (new elements highlighted):

<div class="post post-item">
 <div class="post-title">

Chapter 12

[367]

 <h2><a href="<?php the_permalink(); ?>"><?php the_title();
 ?></h2>
 </div>

 <?php if(has_post_thumbnail()) : ?>
 <div class="post-image alignleft">
 <?php echo '<a href="'.esc_url(get_permalink()).'"
 >'.get_the_post_thumbnail($post->ID, 'thumbnail').''; ?>
 </div>
 <?php endif; ?>

 <div class="entry clearfix">
 <p>by <?php echo get_post_meta($post->ID, 'book_author',
 true); ?></p>
 <?php the_excerpt(); ?>
 </div>
</div><!-- /.post-item -->

And here's the final effect:

Registering and using a custom taxonomy
Just to follow the example given a while ago with our custom post type for books,
let's now create a custom taxonomy. Essentially, you might not want to mix book
categories and post categories, so we are going to create a custom taxonomy named
Book Categories.

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[368]

Add the following code to your functions.php file:

add_action('init', 'build_taxonomies', 0);
function build_taxonomies() {
 register_taxonomy(
 'book_category',
 'book',
 array(
 'hierarchical' => true,
 'label' => 'Book Category',
 'query_var' => true,
 'rewrite' => array('slug' => 'available-books')
)
);
}

Like the register_post_type() function, the register_taxonomy() function
allows you to register a new taxonomy within WordPress. You can read up on
the details of all of the parameters you can add in the codex (http://codex.
wordpress.org/Function_Reference/register_taxonomy). For now, you can see
we're calling it a book_category; it belongs to the object type book, it's hierarchical,
you can query it, and it needs to be included in the rewrite of URLs with a custom
slug, available-books.

Next, we need to make this taxonomy available to books. Simply find the $args array
we used when registering the book post type, and add the following item to the array:

'taxonomies' => array('book_category'),

When you return to the WP Admin and edit a book, you'll see that Book Categories
have appeared on the right, and they are also in the main navigation pane on the left.

Chapter 12

[369]

Now that you've added some categories and assigned them to the books, let's take
a look at displaying those categories on the front of the website. First, we'll add
them to the single book display. Open single-book.php, and add this code in an
appropriate place within the loop, for example, just below the title:

<?php echo get_the_term_list($post->ID, 'book_category',
 'Categories: ', ', ', ''); ?>

You're using the get_the_term_list() function, which takes the
following arguments:

• ID of the post ($post->ID)
• Name of the taxonomy (book_category)
• Print before the list (Categories:)
• Separate items in the list with (,)
• Print after the list ()

Also, now that you've got categories, you can visit Appearance | Menus and
add links to those categories to your header menu, and you can also create a
custom menu with all the categories and add it to one of the sidebars.

If, at any point during the creation of your custom post type and custom
taxonomy, you get a 404 from WordPress when you don't think you
should, then visit Settings | Permalinks. Sometimes WordPress needs
to refresh the permalinks to make the new links work correctly.

Customizing the admin display
The final thing we can do to realize our new Book custom post type fully is to change
its display in the admin. We don't need to know the WordPress user who created a
given book, but we do want to see the book categories and the thumbnail. Let's go
back to functions.php.

First, we'll change the columns that are displayed, as shown in the following
code snippet:

add_filter('manage_book_posts_columns', 'ahskk_custom_columns');
 function ahskk_custom_columns($defaults) {
 global $wp_query, $pagenow;
 if ($pagenow == 'edit.php') {
 unset($defaults['author']);
 unset($defaults['categories']);
 unset($defaults['date']);

Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements

[370]

 $defaults['book_category'] = 'Categories';
 $defaults['thumbnail'] = 'Image';
 }
 return $defaults;
}
add_action('manage_book_posts_custom_column',
 'ahskk_show_columns');
function ahskk_show_columns($name) {
 global $post;
 switch ($name) {
 case 'book_category':
 echo get_the_term_list($post->ID, 'book_category',
 '', ', ', '');
 break;
 case 'thumbnail':
 if (has_post_thumbnail($post->ID)) echo
 get_the_post_thumbnail($post->ID, array('40', '40'));
 break;
 }
}

The first bit says "don't show author, date, and categories, but do show book
categories and thumbnail," and the second bit says "for the book categories
column print the list of categories, and for the thumbnail column print the
get_post_thumbnail() function."

Revisit the Books page in the WP Admin, and it now looks like the
following screenshot:

Chapter 12

[371]

Summary
This chapter was part two of our non-blog website journey with WordPress. I hope
you've enjoyed the material. Here, we went through the process of setting up video
blogs, photo blogs, membership sites, and social networks. Along the way, we took
a closer look at some interesting plugins and their functionalities, just to make our
lives easier as WordPress developers. Finally, we created a custom post type and a
corresponding custom taxonomy.

The next and final chapter of this book is available as a downloadable bonus on our
website: http://www.packtpub.com/. You can get it for free through a standard
download link. The chapter covers some general maintenance and troubleshooting
for WordPress administrators, as well as providing a list of useful functions, CSS,
and template files.

I believe that at this point, you are well-equipped to work with WordPress and use
it to build your next great site! WordPress is a top-notch CMS that has matured
tremendously over the years. The WordPress Admin panel is designed to be user-
friendly, and is continuously being improved. The code that underlies WordPress
is robust, and is the creation of a large community of dedicated developers.
Additionally, WordPress's functionality can be extended through the use of plugins
and themes.

I hope you have enjoyed this book, and have gotten a strong start to administering
and using WordPress for your own site, whatever it may be. Be sure to stay connected
to the WordPress open source community! Thank you for reading, you rock!

Index
Symbols
$control_ops variable 278
3D Tag Cloud 277
+ Add New Category button 110
<head> tag 195, 196
[youtube] shortcode 289

A
About page 97
Activate link 91
Add button 58
add_filter() function 262
Add Media button 60, 117, 246
Add New Link page 108
Add New Page screen 96
Add New Post page 56
Add New User form 298
add_theme_support() 194
Adminimize

URL 303
administrator 292, 293
admin page, plugins

adding 264, 265
ahs_doctypes_regex() function,

modifying 268
hooks, adding 268
management page functions,

adding 265-268
trying out 269, 270

Advanced Options field 244

advanced options, post
content, protecting 75
Custom Fields 72, 73
custom post format settings 77, 78
Discussion box 71
excerpt 69, 70
pingbacks 70
post author, modifying 75
post revisions 73, 74
post slug 76
trackbacks 70

ahs_doctypes_regex() function 268
Akismet

about 89
activating 91

All In One Favicon 314
Allow comments box 71
Allow trackbacks and pingbacks on this

page box 71
Appearance | Install Themes | Upload 170
Archive.org

URL 249
archive.php file 215
archive template 210
audio files

free hosting 249
Authorize button 90
authors

about 295, 296
actions 296

Avatar display settings
Default Avatar box 86
Maximum Rating box 86

Avatars box 86

[374]

B
b2/cafelog 8
blog

about 9
posting on 55, 57, 69, 78

Blog Account tab 253
blog engine 8
blog post 55
body_class() function 214
Book Categories 367
book_init() function 361
BuddyPress

URL 303
BuddyPress Media plugin 356
build, converting into theme

about 188
loop 202-206
theme folder, creating 189-191
WordPress content, adding 191

BulletProof Security 144

C
caching 141, 142
Cart66 Lite

URL 322
Categories box 59, 109
Categories page 92
category

about 10
adding 92
managing 92, 111, 112

Category page 206
child theme

about 159
creating 229
new theme directory, creating 230
stylesheet, creating 230
using 231, 232

Chocolate WP 348
Choose Image button 104
ckitchen_register_sidebar() 225
ckitchen_register_sidebar() function 225
ckitchen_register_sidebars() 225

ckitchen_setup() function 240
Codex

about 19
URL 19

Comment Blacklist box 85, 86
comment feeds

about 241, 242
comments

about 10, 82
adding 82
blacklisting 85, 86
discussion settings 82
moderating 85-88

Comment spam
Akismet, activating 91
Akismet API key 89, 90
eliminating 88, 89

Compare any two revisions box 74
Conexus Kitchen blog theme 359
Configure/Deactivate button 148
content

about 10, 123
exporting 125
importing 123-125

Content Management System (CMS)
about 7
advantage 155

contributor 296
corporate or business websites

about 312
building, steps 313
clean theme, picking 313
custom home page 316, 317
elements branding 314
features 313, 314
good navigation 314-316
Meteor Slides 318
optional slider 317
SlideDeck 2 Lite Responsive Content Slider

319-321
Create a new gallery button 120
Create Gallery tab 115
Create secure.htaccess File button 145
Create SlideDeck button 319
CSS

examining 181

[375]

Custom Fields 72
Customize Your Site button 105, 106
Custom Menu block 152
Custom Menus 12
custom page template

creating 216-223
new archives page, tasks 217

custom post format settings 77, 78
custom post types

about 358
admin display, customizing 369, 370
book template files, creating 364-366
custom taxonomy, registering 367-369
description parameter 360
has_archive parameter 360
labels, adding 361
messages, adding 361, 363
public parameter 360
registering 359, 360
rewrite parameter 360
supports parameter 360

custom tag cloud widget
about 276
form function 279, 280
hooking up 284
initiating 284
initiation function 278, 279
naming 277
online reference sites 285
print function 281, 282
save function 281
structure 277, 278
stylesheet 282, 283
trying out 284, 285

D
Dashboard 56
DB access plugins

about 271
management page functions, adding 273,

274
table, creating 272
trying out 274, 275

dbDelta() function 272

dedicated podcast
setting up 247

design, converting to code
about 178
CSS, examining 181-188
HTML structure, examining 178-181

design setup
theme development, paths 176
WordPress-friendly theme, designing 174,

175
developer license 165
Discussion box 71
discussion settings

about 82
Avatar display settings 86
moderation 82
notification 82
submission 82, 83, 84

DIYthemes
URL 161

Download Export File button 125
drafts 67

E
Easy Digital Downloads

URL 322
E-commerce stores

about 307, 321, 322
coupons, using 335, 336
custom container page 328-331
custom menu 326, 327
orders 335
plugin settings 327, 328
products, adding 331-334
reports, viewing 335
standard setup 323
theme, requirements 323
WooCommerce plugin, getting 324, 325

Edit Flow
URL 303

Edit Image button 64
editor 293-295
Edit Post screen 57
eShop

URL 322

[376]

excerpt
about 69
working 70

external blogging tools 80, 81
extract() function 287

F
Facebook plugin

URL 351
featured image

designating 65
feed

about 235, 236
burning, on FeedBurner 243
feed readers 237, 238
web feed 235

feed aggregator. See feed reader
FeedBurner

about 264
feed, burning on 243
URL 242
used, for subscribers tracking 242

FeedBurner plugin
about 243, 244
FD Feedburner Plugin 243
URL 243

feed links
adding 239, 240
comment feeds 241, 242
FeedBurner plugin 243, 244
feed, burning on FeedBurner 243
subscribers, tracking with FeedBurner 242
website feeds 240, 241

Feedly
about 12
URL 236

feed reader
about 235-238
FeedDemon, URL 237
Feedly 237
list, URL 238
Net News Wire, URL 237
NewsBlur, URL 237
RSS Bandit, URL 237

The Old Reader, URL 237
types 237
Vienna RSS, URL 237

Fetch
URL 30

Filezilla
URL 30

Filter by Taxonomy? option 320
footer.php 207-209
free approach

about 340
plugin, functionalities 343
plugin, installing 340-342
plugin, using 343-345

freemium model 340
Frisco for BuddyPress theme 355
functions.php file 192-194, 232

G
Gadgetry theme 170
Gantry

URL 313
Generate strong password button 26
get_option() function 268
get_post_thumbnail() function 370
get_template_part() function 202
get_the_term_list() function 369
Globally Recognized Avatar. See Gravatar
GNU General Public License (GPL) 23, 233
Google Analytics

enabling 140, 141
GPL (GNU General Public License) 260
Gravatar

features 51
getting 50, 51
G rated 51
PG rated 51
R rated 51
X rated 51

H
header

about 103, 104
Crop and Publish button 104

[377]

image 104
Save Changes button 105

header.php 207, 209
High-Dots-Per-Inch (HiDPI) 16
History page 212
home.php file 215
Home tab 253
hooks

about 261
actions 261
filters 261

HTML structure
examining 178

I
IIS (Internet Information Services) 29
image

adding, to post 59, 61
default sizes, controlling 62, 63
featured image, designating 65
uploaded image, editing 63, 64

image gallery
adding 117
images, selecting 118-122
images, uploading 118-122
page, selecting 118
post, selecting 117

Insert gallery button 120
InsertintoPost button 114
Insert Media screen 114
Insert Media tab 115
Insert More Tag button 66
Insert tab 253
Installed Plugins page 284
Install Now button 124
IRC(Internet Relay Chat) 19

L
Let's go! button 32
Libsyn

URL 249
Link Manager 107
links

about 107

adding 108, 109
displaying 111
managing 111, 112

Link to Image button 350
Live Preview link 169
Lost your password? link 50

M
Making Lasagne 76
manual installation, WordPress

about 28
downloading step 30
environment, preparing 29
files, uploading 30, 31
hand-built configuration file, using 34, 36
steps 31-34
upgradation step 30

MarsEdit 81
media library

about 112, 113
Add Media button 114
image gallery, adding 117
Media Manager 114-118
navigating 113
Select Files button 113
Update button 113

Media Manager 114-117
Membership

URL 303
membership websites

about 307, 337, 338
free approach 340
functionalities 338
Membership 340
membership plugins, using 339
simple approach 338, 339
WishList Member 340
WP-Member 340

menu
about 99
adding 99-102
displaying 102, 103
enabling, in theme 229

[378]

Meteor Slides
URL 348

mod_rewrite option 29
more tag (<!-- more -->) 70
multiauthor blog

concerns 291, 292
multimedia blogs 345
multisite website

creating 303-305
must-do tasks 309
must-have pack plugins

about 137
backing up plugins 137-140
caching 141, 142
Google Analytics, enabling 140, 141
Jetpack 147
Search Engine Optimization (SEO) 143, 144
site, securing 144-146
ThemeFuse Maintenance Mode 148, 150

N
new plugins

Autoinstallation 134-136
installing 131
manual installation 131-134
searching 130

Niche business websites 308
non-blog type websites

corporate or business websites 307
E-commerce stores 307
membership websites 307
Niche business websites 308
photo blogs 308
product websites 308
social networks 308
static websites 307
video blogs 308

O
offline blogging tools

about 250, 251
MarsEdit 251
Qumana 251

using, benefits 250
Windows Live Writer 251
Windows Live Writer, using 251-254

Online Backup for WordPress 264
open source 8

P
page

about 12, 95
About Me 12
adding 96, 97
Contact Us 12
managing 98, 99
order 98
parent 97
Sample Page link 96
template 97, 98

Page page 206
page.php file 215
Pages | Edit 98
page template 212, 213
Password protected radio button 76
pending articles 67, 68
Peter's Collaboration E-mails

URL 302
Peter's Post Notes

URL 302
PhotoArtist 348
photo blog

about 308
features, adding to 346, 347

Photolistic 347
pingbacks 70, 71
Plugin Directory

about 20
URL 302

plugins
about 11, 127, 255, 256
admin page, adding 264
building, from scratch 256
code requirements 257
core function, writing 260, 261
files, naming 258, 260
files, organizing 258, 260
hooks, adding to 261, 263

[379]

link icons, adding 257, 258
references 275
testing 264, 270
trying out 264
using 128
using, locations 128-130

PodBean
URL 249

podcast
about 244, 245
creating 245-248

podcasting plugin
PodPress 248
PowerPress 248
TSG 248
using 248

Portfolio Press 347
post

about 10, 55
advanced options 69
body 66
default image sizes, controlling 62, 63
drafts 67
featured image, designating 65
images, adding to post 59, 61
lead 66
managing 69
pending articles 67, 68
simple post, adding 55-57
text editor, using 65
timestamps 68
uploaded image, editing 63, 64
visual editor, using 65

post_class() function 214
post options

categories 57, 58
tags 58

Press This 78
Private radio button 76
Products | Add Product 331
Product websites 308
Publish button 57, 59, 254
publishing platform 8

Q
Quick Edit link 88
Qumana 81
quotes 215

R
Readme.txt file 233
Really Simple Syndication. See RSS
recipes 10
register_post_type() function 360, 368
register_taxonomy() function 368
Restore This Revision button 74
Revisions box 75
Revisions functionality 74
Rockable Themes

URL 161
RSS 12, 236
rtl.css file 215
Run the install button 33
Rustic 347

S
Save & Publish button 106
Screen Options 69
Search Engine Optimization (SEO) 143, 144
Send draft to blog button 254
SEO (Search Engine Optimization) 15
Set featured image button 65
Settings menu 269
Settings | Permalinks 46
Settings | ThemeFuse Maintenance Plugin

149
shortcodes

about 286
creating 287-289
enabling, in 289, 290
types 286
working 286

shortcodes, types
double-tag 286
shortcodes with attributes 286
single-tag 286

[380]

sidebar 200, 201
sidebar.php file 208, 209, 225
SIGN UP button 90
single.php file 215
Single Post page 206
single template 211, 212
SlideDeck 2 Lite Responsive Content Slider

URL 348
SmartFTP

URL 30
social network

about 308, 351, 352
designing 354-356
installing 352, 353
user accounts 356, 357

Softaculous
used, for WordPress installation 37-40

Standard, one-site license 165
standard themes 159
Start Manual Backup button 139
static websites

about 307, 309
easy-to-grasp menus, creating 312
home page, building 310-312
process 310

StudioPress
URL 161

subscribers
about 297
tracking, FeedBurner used 242

Super Admin 292
supportedtypes_options() function 266

T
tags 10
taxonomy parameter 287
template, creating with theme

404.php file 215
about 206
archive.php file 215
archive template 210
attachment.php file 215
author.php file 215
category.php file 215
date.php file 215

front-page.php file 215
home.php file 215
image.php file 215
index.php file, breaking into 207
page.php php file 215
page template 212, 213
rtl.css file 215
search.php file 215
single.php file 215
single-{post-type}.php file 215
single template 211, 212
tag.php file 215
taxonomy.php file 215
WordPress theme 206

Text tab 65
the_content() function 212, 261
the_excerpt() function 204, 366
Thematic

URL 313
theme

about 11
adding, within WP admin 167-169
building, from ground up 176
building, with framework 176, 177
downloading 170-172
extracting 170-172
finding 156-161
installing 167
menu, enabling 229
not-design-related theme, basics 161, 162
paid theme 160
selecting, factors 162
sharing 232, 233
stores 161
structure 162
types 159
types, child themes 159
types, standard themes 159
types, theme frameworks 159
uploading 170, 171
used, for template creating 206
WordPress Themes Directory 156-158

Theme Directory 20
theme folder

activating 191
backup copies, creating 189

[381]

essential files, preparing 189
naming 189
screenshot, adding 190
uploading 190

ThemeForest
URL 161, 234

theme frameworks 159, 177
ThemeFuse

URL 161, 175, 313
ThemeFuse Maintenance Mode

about 148
customizations 150

theme, making theme widget friendly
conditional code, adding to sidebar 225,

226
functions.php, working with 224, 225
some widgets, adding 227
static sidebar 224
steps 223
widgetizing options 228

theme, possibility types
e-commerce sites 163
online magazines 163
photo blogs 163
small business sites and corporate sites 163
software or app sites 163
traditional blogs 163
video blogs 163

theme selecting, factors
customizable themes 166
documentation 166
purpose 163, 164
responsive structure themes 166
review 166
support 166
theme licensing 165
theme licensing, developer license 165
theme licensing, Standard, one-site license

165
up-to-date themes 165

timestamps 68
Tools | Export 125
Tools | Import 124
trackbacks 70, 71
Twitter Mentions As Comments plugin 350

U
Ultimate Tag Cloud Widget 277
Update button 73
update_supportedtypes_options() function

270
user management plugins

about 302
Adminimize 303
BuddyPress 303
Edit Flow 303
Membership 303
Peter's Collaboration E-mails 302
Peter's Post Notes 302

user roles
administrator 292, 293
authors 295, 296
contributors 296
editor 293-295
subscribers 297
Super Admin 292

users
about 12
enabling, for self-registration 300, 301
managing 297-301

V
video blog

about 308
features, adding to 346

VideoGrid 348
video site

Meteor Slides plugins 348
plugins, searching 348-351
SlideDeck 2 Lite Responsive Content Slider

plugins 349
WP jQuery Lightbox plugins 349
WP Smush.it plugins 349

video site themes
Chocolate WP 348
PhotoArtist 348
Photolistic 347
Portfolio Press 347
Rustic 347
VideoGrid 348
WooTube 348

Visual tab 65

[382]

W
web feed 235
weblog. See blog
weblogger 9
weblogging 9
website feeds 240, 241
What You See Is What You Get (WYSIWYG)

editor 15
widget form function 279, 280
widget initiation function 278
widgetizing 223
widget print function 281
widgets

about 11, 150-153, 224, 276
Available Widgets 153
bundling, with existing plugin 286
contents 150
controlling 151
custom tag cloud widget 276
Inactive Widgets 153
Main Widget Area 152
Secondary Widget Area 152

widget save function 281
Windows Live Writer 81

using 251-254
Wini themes

URL 161
WooCommerce | Orders 335
WooCommerce plugin

URL 322
obtaining 324

WooCommerce | Reports 335
WooCommerce | Settings | General 327
WooThemes

URL 161, 313
WooTub 348
WordCamp 18
WordPress

about 8
blog 18
built-in feeds 238, 239
choosing 13
Codex 19
comments 10

Custom Menus 12
features 13-17
forum 19
installing, through Softaculous 37-40
media library 112
news 18
online resources 17, 18
page 12
plugins 11, 255
post 10
recipes 10
reference links 17
RSS 12
tags 10
theme 11
users 12
using, for blog 8
using, for website 8
widgets 11
WordPress.com 14
WordPress.org 14

WordPress.com
about 14
first content, publishing 27, 28
URL 26
using 26, 27
WordPress, manual installation 28

WordPress.com installation
versus own server installation 25

WordPress content
<head> tag 196
footer 197-199
functions.php file 192-195
header 197-199
sidebar 200, 201

WordPress Importer plugin 124
WordPress MS

websites 305
WordPress MU

about 303
URL 304

WordPress.org 14
WordPress post

creating 246, 247
WordPress SEO 264

[383]

WP_Widget class 278
writing options

external blogging tools 80
mobile apps for iAndroid 81
mobile apps for iOS 81
posting via email 79
Press This 79

WYSIWYG (What You See Is What
You Get) 65

X
XFN (XHTML Friends Network) 110

WordPress themes. See theme
WordPress Themes Directory 156-158
WordPress website

building 23-25
WP Admin

item lists 54, 55
Title 54

WP Admin panel
about 41-45
Dashboard page 41, 44
Dismiss link 44
first comment, writing 48-50
first post, creating 47, 48
general blog information, changing 45, 46
Help tab 42
log in 41
lost password, retrieving 50
main menu 43, 44
Screen Options tab 42
top bar 42

WP e-Commerce
URL 322

WP jQuery Lightbox plugin 349
wp_nav_menu() function 197, 229
WP Smush.it plugin 349

Thank you for buying
WordPress 3.7 Complete Third Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

WordPress 3 Complete
ISBN: 978-1-84951-410-1 Paperback: 344 pages

Create your own complete website or blog from
scratch with WordPress

1. Learn everything you need for creating your
own feature-rich website or blog from scratch

2. Clear and practical explanations of all aspects
of WordPress

3. In-depth coverage of installation, themes,
plugins, and syndication

4. Explore WordPress as a fully functional
content management system

WordPress Plugin Development
Beginner's Guide
ISBN: 978-1-84719-359-9 Paperback: 296 pages

Build powerful, interactive plugins for your blog and
to share online

1. Everything you need to create and distribute
your own plugins following WordPress
coding standards

2. Walk through the development of six complete,
feature-rich, real-world plugins that are being
used by thousands of WP users

3. Written by Vladimir Prelovac, WordPress
expert and developer of WordPress plugins
such as Smart YouTube and Plugin Central

Please check www.PacktPub.com for information on our titles

WordPress Plugin Development
Cookbook
ISBN: 978-1-84951-768-3 Paperback: 318 pages

Over 80 step-by-step recipes to extend the most
popular CMS and share your creations with
its community

1. Learn to create plugins and configuration panels
in order to bring new capabilities to WordPress

2. Tailor WordPress to your needs with new
content types, custom widgets, and fancy jQuery
elements, without breaching security needs

3. Detailed instructions on how to achieve each
task, followed by clear explanations of concepts
featured in each recipe

WordPress Theme Development
Third Edition Beginner's Guide
ISBN: 978-1-84951-422-4 Paperback: 252 pages

Learn how to design and build great WordPress themes

1. Learn how to design WordPress themes and
build them from scratch

2. Learn how to create a WordPress theme design
using HTML5 and CSS3

3. With clear and easy-to-follow worked examples
to help you build your first WordPress theme if
you’ve never done it before

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.packtpub.com
	Table of Contents
	Preface
	Chapter 1: Introducing WordPress
	Getting into WordPress
	Using it for a blog or a website

	Understanding the common terms
	Post
	Categories and tags
	Comments
	Theme
	Plugin
	Widget
	Menus
	RSS
	Page
	Users

	Choosing WordPress – the reason why
	A long time in refining
	Active in development
	Large community of contributors
	Amazingly extendable

	Getting to know the WordPress family
	Digging into WordPress – the features
	Getting familiar with the new feature list since 3.0
	Learning more

	Learning more with online WordPress resources
	Staying updated through
WordPress news
	Understanding the Codex
	Getting support from other users
	Using theme and plugin directories
	Summary

	Chapter 2: Getting Started
	Building your WordPress website – start here
	Using WordPress.com
	Publishing your first content on a
WordPress.com blog
	Installing WordPress manually
	Preparing the environment
	Downloading WordPress
	Upgrading from an earlier version of WordPress
	Uploading the files
	Installing WordPress
	Installing WordPress through a hand-built configuration file
	Learning more

	Installing WordPress through an auto-installer script

	The WP Admin panel
	Changing general blog information
	Creating your first post
	Writing your first comment
	Retrieving a lost password

	Getting a Gravatar
	Summary

	Chapter 3: Creating Blog Content
	WP Admin conventions
	Lists of items

	Posting on your blog
	Adding a simple post
	Common post options
	Categories and tags
	Images in your posts
	Using the visual editor versus the text editor
	Lead and body
	Drafts, pending articles, timestamps, and managing posts

	Advanced post options
	Excerpt
	Sending pingbacks and trackbacks
	Discussion
	Custom Fields
	Working with post revisions
	Changing the author of the post
	Protecting content
	The pretty post slug
	Custom post format settings

	Additional writing options
	Press This
	Posting via e-mail
	External blogging tools
	Mobile apps for iOS and Android

	Discussion on your blog – comments
	Adding a comment
	Discussion settings
	Submission, notification, and moderation settings
	When to moderate or blacklist a comment
	Avatar display settings

	Moderating comments
	How to eliminate comment spam
	Getting an Akismet API key
	Activating Akismet

	Adding and managing categories
	Summary

	Chapter 4: Pages, Menus, Media Library, and More
	Pages
	Adding a page
	Parent
	Template
	Order

	Managing pages

	Menus
	Adding a menu
	Displaying a menu

	Header
	Advanced site customization
	Links
	Adding a new link
	Displaying links
	Managing links and categories

	Media library
	Media Manager
	Adding an image gallery
	Choosing a post or page
	Selecting/uploading images

	Importing/exporting your content
	Importing content
	Exporting content

	Summary

	Chapter 5: Plugins and Widgets
	Breaking down plugins – what are they?
	Why to use plugins
	Where to get plugins
	Finding new plugins
	Installing a plugin – the how-to
	Manual plugin installation
	Auto-installation

	The must-have pack of plugins
	Backing up
	Enabling Google Analytics
	Caching
	Search Engine Optimization (SEO)
	Securing your site
	Jetpack
	Switching to maintenance mode

	Widgets
	Summary

	Chapter 6: Choosing and Installing Themes
	Finding themes
	WordPress Themes Directory
	Main types of themes
	Finding more themes

	Some not-design-related theme basics
	The structure of a theme
	Factors to consider when choosing a theme
	The purpose of the theme
	Theme licensing
	Up-do-date themes only
	Themes that are customizable
	Themes with responsive structure
	Support, reviews, and documentation

	Installing and changing themes
	Adding a theme within the WP admin
	Downloading, extracting, and uploading

	Summary

	Chapter 7: Developing Your Own Theme
	Setting up your design
	Designing your theme to be WordPress-friendly
	Two paths of theme development
	Building a theme from the ground up
	Building a theme with a framework

	Converting your design to code
	Examining the HTML structure
	Examining the CSS

	Converting your build into a theme
	Creating the theme folder
	Adding WordPress content
	The functions.php file
	The <head> tag
	The header and footer
	The sidebar

	The main column – the loop

	Creating templates within your theme
	Understanding the WordPress theme
	Breaking it up
	header.php
	footer.php
	The sidebar.php file
	Your four template files

	Archive template
	Single template
	Page template
	Generated classes for body and post
	Other WordPress templates
	Creating and using a custom page template

	Making your theme widget-friendly
	Going back to our "static" sidebar
	Working with functions.php
	Adding conditional code to sidebar
	Adding some widgets
	Further widgetizing options

	Enabling a menu in your theme
	Creating a child theme
	Creating the new theme directory
	Creating the stylesheet
	Using your child theme

	Sharing your theme
	Summary

	Chapter 8: Feeds, Podcasting, and Offline Blogging
	Feed basics
	Feed readers
	Learning more

	Your built-in WordPress feeds
	Adding feed links
	Feeds for the whole website
	Feeds for comments
	Tracking subscribers with FeedBurner
	Burning your feed on FeedBurner
	FeedBurner plugin

	Podcasting
	Creating a podcast
	Recording yourself
	Making a post
	Dedicated podcasting

	Podcasting plugins
	Using a service to host audio files for free

	Offline blogging tools
	The benefits
	The tools
	Using Windows Live Writer

	Summary

	Chapter 9: Developing Plugins and Widgets
	Plugins
	Building plugins from scratch
	Plugin code requirements
	Basic plugin – adding link icons
	Naming and organizing the plugin files
	Writing the plugin's core functions
	Adding hooks to the plugin
	Trying out the plugin

	Adding an admin page
	Adding management page functions
	Modifying the ahs_doctypes_regex() function
	Adding hooks
	Trying out the plugin

	Testing your plugins
	Plugin with DB access – capturing searched words
	Getting the plugin to talk to the database
	Adding management page functions
	Trying out the plugin

	Learning more

	Widgets
	Custom tag cloud widget
	Naming our widget
	Widget structure
	Widget initiation function
	Widget form function
	Widget save function
	Widget print function
	Custom widget styles
	Initiating and hooking up the widget
	Trying out the widget
	Learning more

	Bundling a widget with an existing plugin

	Shortcodes
	Shortcodes and the way they work
	Types of shortcodes
	Creating a simple shortcode
	Enabling shortcodes in widgets

	Summary

	Chapter 10: Community Blogging
	Concerns for a multi-author blog
	User roles and abilities
	Super Admin
	Administrator
	Editor
	Author
	Contributor
	Subscriber

	Managing users
	Enabling users to self-register
	Learning more

	User management plugins
	Creating a multisite website
	Summary

	Chapter 11: Creating a Non-Blog Website Part 1 – The Basics
	The must-do tasks
	Static websites
	The process
	Building your homepage
	Creating easy-to-grasp menus

	Corporate or business websites
	Picking a clean theme
	Branding elements
	Good navigation
	Custom homepage
	Optional slider
	Meteor Slides
	SlideDeck 2 Lite Responsive Content Slider

	E-commerce stores
	Standard setup
	Getting the plugin
	Custom menu for the store
	Main settings of the plugin
	Custom container page for the store
	Adding products
	Stats – orders, coupons, and reports

	Summary

	Chapter 12: Creating a Non-blog Website Part Two – Community Websites and Custom Content Elements
	Membership websites
	Taking the simple approach
	Using membership plugins
	Taking the free approach
	Installing the plugin
	Using the plugin

	Video and photo blogs
	Exploring themes for video and photo sites
	Getting plugins for video and photo sites

	Social networks
	Installing a social network
	Designing your social network
	Extending the functionality
	User accounts and activity

	Introducing custom post types
	Registering a new post type
	Adding labels
	Adding messages
	Creating book template files

	Registering and using a custom taxonomy
	Customizing the admin display

	Summary

	Index

