
www.allitebooks.com

http://www.allitebooks.org

XMPP: The Definitive Guide

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

XMPP: The Definitive Guide
Building Real-Time Applications with Jabber

Technologies

Peter Saint-Andre, Kevin Smith, and Remko Tronçon

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

www.allitebooks.com

http://www.allitebooks.org

XMPP: The Definitive Guide
by Peter Saint-Andre, Kevin Smith, and Remko Tronçon

Copyright © 2009 Peter Saint-Andre, Kevin Smith, Remko Tronçon. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Production Editor: Loranah Dimant
Copyeditor: Genevieve d’Entremont
Proofreader: Loranah Dimant

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
April 2009: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. XMPP: The Definitive Guide, the image of a kanchil mouse deer on the cover, and
related trade dress are trademarks of O’Reilly Media, Inc.

JABBER® is a registered trademark licensed through the XMPP Standards Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-52126-4

[M]

1243450993

www.allitebooks.com

http://safari.oreilly.com
http://www.allitebooks.org

Table of Contents

Preface . xi

Part I. An Overview of XMPP

1. Introduction . 3
What Can You Do with XMPP? 3

Services 3
Applications 5

Brief History 7
Open Source and Open Standards 8
Extensibility 9
Summary 9

2. Basics of XMPP . 11
Architecture 11
Addresses 14

Domains 15
Users 15
Resources 15
Internationalization 16
XMPP URIs 16

Streaming XML 16
Communication Primitives 18

Message 18
Presence 19
IQ 20
Extensibility 23
Asynchronicity 24
Error Handling 24

Hello Hello World World: Building a Basic XMPP Application 25
Summary 27

v

www.allitebooks.com

http://www.allitebooks.org

Part II. The XMPP Toolkit

3. Presence . 31
Is Anybody Home? 31
Authorization Required: The Subscription Handshake 31
How Presence Is Propagated 33
Availability Status 35
Presence Priorities 36
Directed Presence 37
Going Offline 37
Rich Presence 38
Presence and Rosters 39
Using Presence 42

Presence-Based Routing 42
Access Control 43
Presence As a Transport 43

Summary 44

4. Instant Messaging . 45
I Think, Therefore IM 45
Chat Sessions 47
Are You There? Chat State Notifications 48
Looks Matter: Formatted Messages 52
Who Are You? vCards 53
Talk to the Hand: Blocking and Filtering Communication 55

Blocking: The Simple Approach 55
Advanced Blocking and Filtering 57

More Messaging Extensions 58
Summary 58

5. Discovering the World . 59
Items and Info 59
Using Service Discovery with Servers and Services 61
Using Service Discovery with Clients 64

Explicit Service Discovery 64
Entity Capabilities: Service Discovery Shorthand 66

Summary 68

6. Data Forms . 69
Basic Structure 69
Using Data Forms 71
Defining Your Terms: Form Types 73

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Including Media in Data Forms 74
Summary 75

7. Multi-Party Interactions . 77
Starting the Party 77
Groupchat Basics 78
Crowd Control 81
What’s in a Nick? 85
Configure This! 87
Privacy, Security, and All That Jazz 91
MUC As a Data Transport 92
Summary 93

8. Publish/Subscribe . 95
Why It Matters 95
Quickstart 97
Subscriptions 98
Publishing and Receiving Notifications 100
Payloads: To Send or Not to Send? 102
Items: To Store or Not to Store? 103
Discovering Nodes 104
Node Management 107

Creating and Deleting Nodes 107
Node Configuration 108
Managing Node Access 112
Item Aggregation via Collection Nodes 114

Personal Eventing: PubSub Simplified 117
Summary 122

9. Jingle: Jabber Does Multimedia . 123
To Instant Messaging and Beyond 123
The Jingle Model 124
Making a Call 127
A Swarm of NATs 131
Jingle on ICE 132
Additional Jingle Actions 135
Summary 136

10. Sending Binary Data . 137
Starting Small: Bits of Binary 137
Moving On Up: Transferring Midsize Files In-Band 139
Thinking Big: Sending Large Files Out-of-Band 142

Sending Data Directly 142

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Sending Data Through a Proxy 143
Negotiating File Transfer 145

File Transfer Using Stream Initiation 146
Session Negotiation Using Jingle 149

Summary 152

11. Remote Commands . 153
Controlling Clients 153

A Simple Command 154
Commands and Data Forms 156

Providing Custom Commands 160
Advanced Workflows: SOAP, RPC, IO Data 163
Summary 163

12. Connection Methods and Security . 165
Negotiating an XMPP Stream 165
Authentication Options 171
Encrypting the Connection 172
Server Federation 174
Server Components 179
BOSH: XMPP over HTTP 180
Serverless Messaging 189
XMPP Security 192

Encryption 193
Authentication and Identity 194
Spam and Abuse 195

Summary 196

Part III. Putting It All Together

13. Design Decisions . 199
Is XMPP the Right Choice? 199
How the XMPP Community Works 201
Writing XMPP Software 202

Mixing, Matching, and Extending Existing XMPP Software 202
Client Extension, Bot, Component, or Server Module? 203
Rolling Your Own Client or Server 205

Extending XMPP 207
How to Design Custom Extensions 207
Standardizing New Extensions 209

Summary 210

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

14. Building an XMPP Application . 211
The CheshiR Microblogging Platform 211
First Sprint: The CheshiR XMPP IM Bot 211

Analysis 211
Design 212
Coding 214

Second Sprint: Configuring the CheshiR XMPP IM Bot 216
Analysis 216
Design 216
Coding 217

Third Sprint: Scaling the CheshiR XMPP Service Using a Server Component 218
Analysis 218
Design 219
Coding 220

Fourth Sprint: Registering with the CheshiR Server Component 221
Analysis 221
Design 222
Coding 222

Fifth Sprint: Extending the Server Component with Rosters 224
Analysis 224
Design 224
Coding 224

Future Sprints 227
A CheshiR Server Module or Dedicated Server? 227
Summary 228

Part IV. Appendixes

A. A Guide to XMPP Specifications . 231

B. Popular Servers, Clients, and Libraries . 253

C. Further Practical Considerations . 263

Glossary . 269

Bibliography . 273

Index . 277

Table of Contents | ix

www.allitebooks.com

http://www.allitebooks.org

Preface

Why XMPP?
In 1800, it took one or two years to send a message from London to Calcutta and receive
a reply. You needed to find a ship’s captain you trusted, who piloted his sailing ship
around the Cape of Good Hope and probably stopped in various ports along the way.
Then your contact in Calcutta needed to write a reply and send it back to London in a
similar fashion. Not exactly instant messaging!

With the invention of the steamship and the opening of the Suez Canal, the time was
reduced to a month or two. Air mail reduced the time further to a week or two, and
eventually to a few days (“when it absolutely, positively has to be there overnight”).
The deployment of commercial email systems introduced us to wait times of only a few
minutes (depending on how often you polled your server). And instant messaging (IM)
systems such as ICQ® took communication to its logical conclusion: nearly immediate
interaction.

As a result of these developments, the useful half-life of information has shrunk sig-
nificantly, in many cases to mere seconds. For many people, IM trumps email. Blogging
trumps newspapers and magazines. Microblogging trumps blogging. Groupchat
trumps email discussion lists. Shared editing and whiteboarding trump carefully crafted
presentations. Immediate notifications trump once-a-day updates. And the list goes on.

What all these technologies have in common is that the interactions happen in close
to real time. To make this possible, we need technologies for real-time communication.
Ideally such technologies would be open standards providing the real-time equivalent
of HTTP, HTML, and the other building blocks of today’s Internet, because over the
long term open standards provide stronger security, greater extensibility, and the pos-
sibility for more innovation at the edges than do closed technologies.

The Extensible Messaging and Presence Protocol (XMPP) is just such an open tech-
nology for real-time interaction. Consider some of its advantages:

• XMPP is proven. Over 10 years of development has resulted in a stable, widely
deployed, seriously tested, Internet-scale technology, with dozens of interoperable
codebases, tens of thousands of deployed services, and millions of end users.

xi

• XMPP is secure. It provides built-in support for channel encryption and strong
authentication, inherent resistance to many forms of malware, a diverse ecosystem
of implementations, a decentralized network without a single point of failure, and
significant deployment at some of the most security-conscious financial organiza-
tions and government agencies worldwide. Work on more advanced features (such
as user-friendly end-to-end encryption) continues so that XMPP will be even more
secure.

• XMPP is decentralized. Unlike standalone communication silos, XMPP technolo-
gies are deployed in a decentralized client-server architecture with an unlimited
number of servers. Any person or organization can run their own XMPP server and
connect it to the rest of the network using standard Internet infrastructure such as
the Domain Name System (DNS), and certificates are freely available through the
XMPP Standards Foundation (XSF) to enable secure federation of XMPP traffic.

• XMPP is extensible. Because XMPP is at its core a technology for rapidly delivering
XML from one place to another, it has been used for a wide range of applications
beyond instant messaging, including gaming, social networking, Voice over IP
(VoIP), real-time collaboration, alerts and notifications, data syndication, geolo-
cation, intelligent workflows, machine-to-machine communication, and custom
applications.

• XMPP is scalable. The “push” model of information transfer used in XMPP solves
serious scaling problems associated with traditional HTTP-based polling ap-
proaches; as a result, it enables you to build applications that were literally im-
possible until now.

• XMPP is a standard. The core aspects of XMPP have undergone rigorous public
review within the Internet Engineering Task Force (IETF), and extensions to XMPP
are published in an open, developer-oriented standards process run by the XSF.
This approach has resulted in strong technologies that can be freely implemented
under any licensing terms, from open source to shareware to proprietary code.

• XMPP is a community. Open standards, a large number of software products, and
a communications network are all good, but the “secret sauce” of XMPP may be
its vibrant and friendly community of technologists, developers, open source
projects, commercial software companies, service providers, and end users. This
community is committed to working together to solve problems and build great
new applications.

For these reasons, more and more software developers and service providers are using
XMPP to build real-time applications or add real-time interfaces to existing applica-
tions. And you can, too, because XMPP provides a simple but powerful set of tools that
can help you solve real-world problems. This book will show you how.

xii | Preface

Jabber and XMPP
Throughout this book, we use the terms “Jabber” and “XMPP” inter-
changeably. These technologies were originally developed by Jeremie
Miller and the Jabber open source community in 1998–1999. When the
community submitted its core protocols to the Internet Engineering
Task Force (IETF) in 2002, it chose the name “Extensible Messaging
and Presence Protocol” to distinguish the protocol from the broader
technology and developer community. You can think of the relationship
as “XMPP is to Jabber as HTTP is to the Web.” The term Jabber was
proactively trademarked by Jabber, Inc. (now part of Cisco Systems,
Inc.) in 2000 to protect the open source community, but the XSF sub-
licenses the term for use in open source projects and other community
activities.

Is This Book for You?
This book may be for you if:

• You are a software developer who needs a helpful guide to building a real-time
application or extending an existing system, as well as relevant reference materials
to use during your project.

• You are a product manager or software architect who is looking for suggestive ideas
and case studies regarding real-time systems.

• You are a software architect or developer who needs a brief but thorough overview
of XMPP.

• You are a researcher, teacher, or student who is designing a research project.

• You are interested in new technologies and the emergence of the real-time Internet.

Above all, this book provides a practical guide to XMPP. Because XMPP is a well-
documented protocol, we regularly refer you to the XMPP specifications for relevant
details (these specifications come in two flavors: the core protocols are defined in the
Requests for Comments or “RFC” series published by the IETF, and dozens of exten-
sions are defined in the XMPP Extension Protocol or “XEP” series published by the
XSF). Because XMPP is widely supported by a large number of servers, clients, and
code libraries, both open source and commercial, we refer you to those projects for
assistance with real-world implementation. Instead of covering all protocol details and
possible implementations, we show how XMPP technologies can be used to solve cer-
tain classes of problems by helping you to “think in XMPP” and covering the “gotchas”
that can trip up those who are new to XMPP technologies.

Throughout this book, we assume that you are familiar with the very basics of computer
networking, common Internet applications (such as email and the World Wide Web),
and structured data formats (such as HTML). However, we often treat these technol-
ogies as the starting points for our discussion or as “contrast objects” for XMPP, which

Preface | xiii

differs from applications such as the Web in important ways that we’ll describe as we
go. Finally, we include some examples using the Python programming language, so
some familiarity with Python can also help you understand the concepts we describe.

Getting the Most Out of This Book
To get the most out of this book, we do not recommend that you read it cover to cover
in one sitting (although you are welcome to do so!). Instead, first explore the sections
that interest you or that you need to complete a particular task, perhaps after reading
the introductory materials in Part I. You might also consider skimming over the details
of each XML example on your first reading so that you get the general idea of each use
case and protocol extension.

The book is organized as follows:

• Part I provides an overview of XMPP. The first chapter talks about XMPP at a high
level and introduces you to some ways XMPP is being used to build real-time
applications. The second chapter describes the basics of XMPP technologies, in-
cluding architectural issues, addressing, and communication primitives. Read this
section first if you’d like a relatively quick orientation to XMPP technologies.

• Part II consists of a series of “developer stories” that illustrate how the tools in the
XMPP toolkit can help you solve particular classes of problems. Each chapter in
Part II introduces the XMPP concepts and services that you need in a given problem
domain, describes how to use those tools, and provides examples showing how
specific protocols come into play. Read the chapters here that interest you most.
The order doesn’t matter, because we recap concepts where needed, and provide
cross-references to more detailed treatments in other chapters.

• Part III shows you how to put it all together by walking you through the thought
processes and design decisions involved in building an XMPP-based application.
Read this part after you have a feel for XMPP from the first two parts, and as you
begin to dig into a large project that uses XMPP to construct a business application
or real-time service.

• Part IV consists of the appendixes, which help you understand the terminology of
XMPP; introduce you to the wealth of XMPP servers, clients, and code libraries;
and guide you through the large “stack” of XMPP protocol specifications so you
can quickly find what you need. Use these appendixes as reference material on an
ongoing basis, or as a quick index to the myriad of XMPP resources available on
the Internet.

xiv | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for protocol examples and sample code, as well as within paragraphs to refer
to protocol aspects such as XML elements, attributes, and namespaces, code fea-
tures such as variable and function names, databases, data types, environment
variables, statements, keywords, etc.

Constant width bold
Indicates user input in examples showing an interaction. Also indicates empha-
sized code elements to which you should pay particular attention.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

About the Examples
In Parts I and II, we include a large number of protocol examples (but not nearly as
many as you will find in the XMPP specifications, which are extremely thorough). Each
example contains a snippet of XML that would be sent over the wire to communicate
a message, share presence information, retrieve data, initiate a command sequence,
return an error, and the like. These chunks of XML are essentially copied directly from
the XMPP specifications with additional notes to highlight their most important and
relevant aspects. However, sometimes our examples are incomplete or shortened for
readability, so be sure to check the official XMPP specifications for the most accurate
examples and protocol descriptions!

Most of the examples in this book use Lewis Carroll’s Alice’s Adventures in Wonder-
land as the backdrop (Alice and her friends are much more interesting than “User A”
and “User B”!). The domain names in these examples are things like wonderland.lit,
which clearly don’t work on today’s Internet, because the .lit top-level domain has not
yet been assigned. This is intentional (we don’t want to bother anyone who owns a real
domain name like wonderland.com).

Preface | xv

In Part III, we intersperse protocol examples with software code showing one possible
implementation of several protocol interactions. This software code is written in the
Python programming language, a popular, easy-to-read language for scripting and ap-
plication development.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “XMPP: The Definitive Guide, by Peter
Saint-Andre, Kevin Smith, and Remko Tronçon. Copyright 2009 Peter Saint-Andre,
Kevin Smith, and Remko Tronçon, 978-0-596-52126-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xvi | Preface

http://my.safaribooksonline.com/?portal=oreilly

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596521264/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Finally, the authors of this book can usually be found on the XMPP network in the
jdev@conference.jabber.org chat room.

Acknowledgments
We would like to thank Mary Treseler for her editorial guidance throughout this
project, and her patience with an enthusiastic but not entirely disciplined group of
authors. We’d also like to thank our technical reviewers for their thorough comments
on, and insight into, the contents of this book; it was greatly improved by their input.
Thank you Dave Cridland, Brian Dainton, Kellan Elliott-McCrea, Michelle Fisher,
Nathan Fritz, and Jack Moffitt.

Peter Saint-Andre
Thanks are due to the many developers who helped me understand these technologies
as they were being designed in the early days of the Jabber open source community. I
would like to especially recognize the help of my friend Peter Millard, who patiently
answered my never-ending questions about Jabber technologies from 1999 until his
death in 2006. I dedicate my work on this book to his memory.

I would not have been able to contribute to XMPP all these years without the generous
support of my employer, Jabber, Inc. (now part of Cisco Systems, Inc.).

Most fundamentally, my wife, Elisa, has always cheerfully tolerated my obsession with
XMPP despite countless hours working on specs, posting to discussion lists, writing
blog entries, traveling to conferences, and all the rest.

Kevin Smith
Many of the members of the XMPP community have been supportive over the last seven
or so years since my first involvement, and I’d like to acknowledge particularly those
people I’ve worked with in the Psi and Sleek projects, and those I’ve worked with on
the XMPP Council in expanding my knowledge of XMPP and software development.
Thanks to Peter and Remko especially, for all the fun we’ve had with this book.

Preface | xvii

http://www.oreilly.com/catalog/9780596521264/
http://www.oreilly.com

My wife, Cath, has my unending gratitude for her support in my numerous XMPP-
related and other free-time-swallowing commitments.

Remko Tronçon
My first words of gratitude go to my coauthors, Peter and Kevin. Not only did they
make the writing of this book an incredibly fun experience, but they are also the reason
why I got into XMPP in the first place. Thanks to Kevin, the other Psi developers, and
the whole Psi userbase, I got the chance to take my first steps into the XMPP world.
Thanks to the support of “patron saint” Peter and the rest of the XMPP community, I
was able to take this involvement one step further, and joined the conversation to define
the XMPP standards. The XMPP community is without a doubt one of the most pleas-
ant and accessible groups of people out there on the interwebs. Thanks to everyone out
there who ever talked to me!

My most important source of inspiration, however, comes from outside the digital
world. Kim has always unconditionally supported me in all my time-consuming activ-
ities, and has continuously pushed me to work harder, even in times when she hardly
received any of the attention she deserved.

xviii | Preface

PART I

An Overview of XMPP

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Introduction

What Can You Do with XMPP?
The Extensible Messaging and Presence Protocol (XMPP) is an open technology for real-
time communication, using the Extensible Markup Language (XML) as the base format
for exchanging information. In essence, XMPP provides a way to send small pieces of
XML from one entity to another in close to real time.

XMPP is used in a wide range of applications, and it may be right for your application,
too. To envision the possibilities, it’s helpful to break the XMPP universe down at a
high level into services and applications. The services are defined in two primary spec-
ifications published by the Internet Engineering Task Force (IETF) at http://ietf.org/
(the “RFC” series), and in dozens of extension specifications published by the XMPP
Standards Foundation at http://xmpp.org/ (the “XEP” series); the applications are soft-
ware programs and deployment scenarios that are of common interest to individuals
and organizations, although the core services enable you to build many other applica-
tion types as well.

RFC Revisions
As of this writing, [RFC 3920] and [RFC 3921] are under active revision
to incorporate errata, clarify ambiguities, improve their readability, de-
fine additional error codes, etc. These documents, called [rfc3920bis]
and [rfc3921bis] in the terminology of the IETF, provide the most ac-
curate definition of XMPP and might have been published as replace-
ment RFCs (with new numbers) once you read this book. For the latest
versions of the revised specifications, visit http://xmpp.org.

Services
In this context, a service is a feature or function that can be used by any given applica-
tion. XMPP implementations typically provide the following core services:

3

http://ietf.org/
http://xmpp.org/
http://xmpp.org

Channel encryption
This service, defined in [RFC 3920] and explained in Chapter 12 of this book,
provides encryption of the connection between a client and a server, or between
two servers. Although channel encryption is not necessarily exciting, it is an im-
portant building block for constructing secure applications.

Authentication
This service, also defined in [RFC 3920] and explained in Chapter 12 of this book,
is another part of the foundation for secure application development. In this case,
the authentication service ensures that entities attempting to communicate over
the network are first authenticated by a server, which acts as a kind of gatekeeper
for network access.

Presence
This service, defined in [RFC 3921] and explained in Chapter 3 of this book, en-
ables you to find out about the network availability of other entities. At the most
basic level, a presence service answers the question, “Is the entity online and avail-
able for communication, or offline and not available?” Presence data can also
include more detailed information (such as whether a person is in a meeting).
Typically, the sharing of presence information is based on an explicit presence
subscription between two entities in order to protect the privacy of user
information.

Contact lists
This service, also defined in [RFC 3921] and explained in Chapter 3 of this book,
enables you to store a contact list, or roster, on an XMPP server. The most common
use for this service is an instant messaging “friend list,” but any entity that has an
account on a server can use the service to maintain a list of known or trusted entities
(e.g., it can be used by bots).

One-to-one messaging
This service, defined in [RFC 3920] and explained in Chapter 4 of this book, en-
ables you to send messages to another entity. The classic use of one-to-one mes-
saging is personal IM, but messages can be arbitrary XML, and any two entities on
a network can exchange messages—they could be bots, servers, components, de-
vices, XMPP-enabled web services, or any other XMPP entity.

Multi-party messaging
This service, defined in [XEP-0045] and explained in Chapter 7 of this book, ena-
bles you to join a virtual chat room for the exchange of messages between multiple
participants, similar to Internet Relay Chat (IRC). The messages can be plain text,
or can contain XML extensions for more advanced functionality, such as room
configuration, in-room voting, and various session control messages.

Notifications
This service, defined in [XEP-0060] and explained in Chapter 8 of this book, ena-
bles you to generate a notification and have it delivered to multiple subscribers.

4 | Chapter 1: Introduction

This service is similar to multi-party messaging, but it is optimized for one-to-many
delivery with explicit subscriptions to specific channels or topics (called “nodes”).

Service discovery
This service, defined in [XEP-0030] and explained in Chapter 5 of this book, ena-
bles you to find out which features are supported by another entity, as well as any
additional entities that are associated with it (e.g., rooms hosted at a chat room
service).

Capabilities advertisement
This service, defined in [XEP-0115] and explained in Chapter 5 of this book, is an
extension to the presence service that provides a shorthand notation for service
discovery data so that you can easily cache the features that are supported by other
entities on the network.

Structured data forms
This service, defined in [XEP-0004] and explained in Chapter 6 of this book, ena-
bles you to exchange structured but flexible forms with other entities, similar to
HTML forms. It is often used for configuration and other tasks where you need to
gather ad-hoc information from other entities.

Workflow management
This service, defined in [XEP-0050] and explained in Chapter 11 of this book,
enables you to engage in a structured workflow interaction with another entity,
with support for typical workflow actions, such as moving to the next stage of a
business process or executing a command. It is often used in conjunction with data
forms.

Peer-to-peer media sessions
This service, defined in [XEP-0166] and explained in Chapter 9 of this book, ena-
bles you to negotiate and manage a media session with another entity. Such a
session can be used for the purpose of voice chat, video chat, file transfer, and other
real-time interactions.

These are some of the core services available to you (or your application) as a participant
in an XMPP network. The XMPP developer community has defined additional features
in various XMPP extensions, but here we focus on the services that we think you will
find most useful in building real-time applications.

Applications
Given that you have a dozen core services at your disposal, what can you build? Here
are a few possibilities:

Instant messaging
The classic instantmessaging systems that most people are familiar with combine
three of the core services: presence, contact lists, and one-to-one messaging. Such

What Can You Do with XMPP? | 5

systems can and often do include more services and features, but if you have these
three services, you can build a bare-bones IM application.

Groupchat
The multi-party messaging service enables you to build groupchat systems similar
to IRC. Often, groupchat systems are used for more specific applications, such as
real-time trading systems in the financial industry, situation rooms for first res-
ponders and military personnel, and virtual classrooms.

Gaming
Combined with custom extensions, both one-to-one messaging and multi-party
messaging enable you to build simple gaming systems. For example, the Chesspark
service (http://www.chesspark.com/) is built entirely using XMPP. Other game de-
velopers are using XMPP to add presence and contact list features to existing
multi-party games.

Systems control
The combination of one-to-one messaging and data forms makes it possible to
deploy lightweight systems for control of and interaction with remote systems.
Deployed applications in this domain include network management, scientific
telemetry, and robotic control.

Geolocation
The XMPP notification service is payload-agnostic. One defined payload format is
geolocation, which enables you to build fascinating location-based applications,
such as vehicle tracking.

Middleware and cloud computing
A number of companies and research groups are actively working on XMPP-based
systems for computation services, lightweight middleware, and management of
cloud computing infrastructures. While the use of XMPP may be surprising here
because such applications have traditionally relied on heavyweight messaging
technologies, we have seen XMPP begin to nibble away at the lower end of this
market. It appears that companies that already have an XMPP infrastructure in
place figure they might as well use it for non-IM use cases. These systems often use
the workflow extensions we explore in Chapters 6 and 11 for structured message
exchange. Specific applications include bioinformatics.

Data syndication
Popular social networking applications are increasingly using the XMPP notifica-
tion service to solve a particular problem they have: constant polling for updated
information. Existing HTTP-based deployments have been found not to scale, be-
cause quite often a particular feed has not changed since the last time it was polled.
By contrast, the XMPP notification service sends out an update only when a feed
has changed, saving a significant amount of bandwidth and server resources that
otherwise would be wasted on polling.

6 | Chapter 1: Introduction

http://www.chesspark.com/

Voice over IP (VoIP)
The Google Talk application that launched in August 2005 first popularized the
use of XMPP for voice chat. Since then, the XMPP extensions for media session
services (called Jingle) have been formalized through the XSF, and have been
implemented and deployed by the likes of Nokia and the One Laptop Per Child
project. The same extensions can also be used to negotiate a wide range of media
session types, including video, file transfer, whiteboarding, and collaborative
editing.

Identity services
Given the existence of stable identifiers (JabberIDs) and a robust authentication
service, it is possible to use XMPP in building identity and authorization services
such as OpenID and OAuth.

Other application examples include data transfer, live chat integrated into websites,
mobile device communications, and presence-enabled directories. We will mention
relevant applications throughout this book to illustrate the most popular and interest-
ing uses of XMPP.

Although we highlight many applications of XMPP, unfortunately we can’t cover all of
them. Not only do we lack the space and time, but the list keeps growing every day.
Moreover, the most cutting-edge uses of XMPP are not standardized yet, which makes
them too much of a moving target to describe in a book. Examples of ongoing work at
the time of this writing include collaborative document editing, whiteboarding, calen-
dar integration, file sharing, and personal media networks. If you want to learn more
about these topics, we suggest that you get involved with the XMPP community (see
Chapter 13) as we define new ways of using XMPP.

What does the future hold for XMPP technologies? Although we don’t know for sure,
the trends seem clear: deployment of XMPP systems at more organizations and service
providers, XMPP interfaces to more web applications, use of XMPP features to solve
more business problems, and continued growth in the XMPP developer community.
It’s an exciting time to be working on XMPP technologies, and we invite you to join
the conversation!

Brief History
Jabber/XMPP technologies were invented by Jeremie Miller in 1998. Jeremie was tired
of running four different clients for the closed IM services of the day, so in true open
source fashion, he decided to scratch an itch, releasing an open source server called
jabberd on January 4, 1999. Before long, a community of developers jumped in to help,
writing open source clients for Linux, Macintosh, and Windows; add-on components
that worked with the server; and code libraries for languages such as Perl and Java.
During 1999 and early 2000, the community collaboratively worked out the details of

Brief History | 7

the wire protocols we now call XMPP, culminating in the release of jabberd 1.0 in May
2000.

As the community grew larger and various companies became interested in building
their own Jabber-compatible (but not necessarily open source) software, the loose col-
laboration evident in 1999 and 2000 became unsustainable. As a result, the community
(spearheaded by a company called Jabber, Inc., acquired by Cisco in late 2008) formed
the Jabber Software Foundation in August 2001. Ever since, this nonprofit membership
organization, renamed the XMPP Standards Foundation in early 2007, has openly
documented the protocols used in the developer community, and has defined a large
number of extensions to the core protocols.

After several years of implementation and deployment experience, members of the
developer community decided to seek a wider review of the core protocols by formal-
izing them within the IETF, which has standardized most of the core technologies for
the Internet (including TCP/IP, HTTP, SMTP, POP, IMAP, and SSL/TLS). Given that
most good protocols seem to be three- or four-letter acronyms ending with the letter
“P,” the relevant IETF working group labeled its topic the Extensible Messaging and
Presence Protocol (XMPP). After less than two years of intensive work (mostly focused
on tightening communications security), the IETF published the core XMPP specifi-
cations in its Request for Comments (RFC) series as [RFC 3920] and [RFC 3921] in
October 2004.

Publication of these RFCs has resulted in widespread adoption of XMPP technologies.
In August 2005, the Google Talk IM and Voice over Internet Protocol (VoIP) service
was launched on a basis of XMPP. Thousands more services have followed. Prominent
and emerging software companies use XMPP in their products, including the likes of
Apple, Cisco, IBM, Nokia, and Sun. Countless businesses, universities, and govern-
ment agencies have deployed XMPP-based instant messaging systems for their users.
Many game developers and social networking applications are building XMPP into
their services, and a number of organizations have used XMPP as the “secret sauce”
behind some of their most innovative features.

Open Source and Open Standards
Although XMPP was originally developed in the Jabber open source community, the
protocol itself is not an open source project like Apache, but rather an open standard
like HTTP. As a result, XMPP is an open technology that is not tied to any single
software project or company. The XMPP specifications define open protocols that are
used for communication among network entities. Much as HTTP and HTML define
the protocols and data formats that power the World Wide Web, XMPP defines the
protocols and data formats that power real-time interactions over the Internet. The
protocols are as free as the air, which means they can be implemented in code that is
licensed as free software, open source software, shareware, freeware, commercial prod-
ucts, or in any other way. This open standards model is different from the open source

8 | Chapter 1: Introduction

or free-software model for software code, wherein the code is often licensed so that
modifications must be contributed back to the developers.

That said, XMPP emerged from an open source developer community, specifically the
community that formed around the open source jabberd server that Jeremie Miller
released. Thus there are many open source implementations of XMPP, which can be
downloaded for free by end users, system administrators, and developers alike. Much
of this software is focused on instant messaging, as befits a technology that started as
an open alternative to closed IM silos that did not interoperate. There are open source
clients for just about every operating system and device; as a result, millions of end
users communicate using XMPP-based services. There are open source servers that can
be deployed at companies, schools, and service providers; as a result, tens of thousands
of XMPP services inter-connect every day. There are open source libraries for all the
major programming languages, which can be used to write bots, components, and other
real-time applications; as a result, there are thousands of active developers in the XMPP
community. Much of this software is linked to from http://xmpp.org/, and we provide
an overview of some of the most popular codebases in Appendix C.

Extensibility
The original Jabber developers were focused on building an instant messaging system.
However, the extensible nature of XML has made XMPP attractive to application de-
velopers who need a reliable infrastructure for rapidly exchanging structured data, not
just IM features. As a result, XMPP has been used to build a wide range of applications,
including content syndication, alerts and notifications, lightweight middleware and
web services, whiteboarding, multimedia session negotiation, intelligent workflows,
geolocation, online gaming, social networking, and more.

Over the years, the developer community defined a large number of extensions to the
core protocols. These extensions are developed through an open, collaborative stand-
ards process and published in the XSF’s XMPP Extension Protocol (XEP) series at http:
//xmpp.org/. As you’ll discover, the core protocols and various extensions provide a
long “runway” for just about any feature you might need in developing real-time ap-
plications. But if you find that a feature is missing from the XMPP protocol stack, it is
easy enough to extend the protocol for your own purpose, and (optionally) work with
the community in standardizing these new features, as we discuss in Chapter 13.

Summary
In this chapter, we looked at the core services XMPP provides and sampled the kinds
of applications you can build with those services. Next, you’ll get acquainted with the
basic workings of XMPP, after which we’ll dive into each of the core XMPP services in
detail.

Summary | 9

http://xmpp.org/
http://xmpp.org/
http://xmpp.org/

CHAPTER 2

Basics of XMPP

This chapter outlines the fundamental features used by all XMPP-based applications.
We first describe the generic architecture of XMPP systems and then the addressing
scheme for XMPP communications, the three communication “primitives,” the model
for sharing information about availability on the network (called presence), and the
processes for session establishment.

Architecture
All good Internet technologies have an “architecture”—a way that various entities fit
together, link up, and communicate. For example, the World Wide Web consists of
millions of web servers running software like Apache, and many more millions of web
clients (browsers) running software like Firefox, all using standard protocols and data
formats like HTTP and HTML. As another example, the email infrastructure consists
of millions of email servers running software like Postfix, and many more millions of
email clients running software like Thunderbird, all using standard protocols like
SMTP, POP, and IMAP.

Similarly, the Internet’s infrastructure for instant messaging, presence, and other forms
of real-time communication increasingly consists of hundreds of thousands of Jabber
servers running software like ejabberd and Openfire, and millions of Jabber clients
running software like Adium, Gajim, Pidgin, and Psi, all using the standard protocol
we call XMPP.

XMPP technologies use a decentralized client-server architecture similar to the archi-
tectures used for the World Wide Web and the email network. The diagram in Fig-
ure 2-1 is a simplified representation showing three servers, each with three clients.

The beauty of using a decentralized client-server architecture is that it enables an in-
telligent separation of concerns (client developers can focus on user experience, and
server developers can focus on reliability and scalability), it is much easier for organi-
zations to manage than a purely peer-to-peer technology, it is quite robust because the
full system does not have a single point of failure (anyone can run their own XMPP

11

www.allitebooks.com

http://www.allitebooks.org

server and thereby join the network), and the servers can enforce important security
policies such as user authentication, channel encryption, and prevention of address
spoofing. Finally, the XMPP community has always worked to keep clients simple and
to push as much complexity as possible onto the servers, further enabling widespread
adoption of the technology. (We discuss the core XMPP design principles more fully
in Chapter 13.)

However, there are some important architectural differences between the Web, email,
and Jabber.

When you visit a website, your browser connects to a web server, but web servers
typically do not connect to each other in order to complete a transaction (see Fig-
ure 2-2). Instead, the HTML of the web page may refer to other web servers (e.g., to
load images or scripts), and your browser opens sessions with those web servers to load
the full page. Thus, the Web typically does not involve inter-domain connections (often
called federation, and shown in Figure 2-1 by the double line).

When you send an email to one of your contacts at a different domain, your email client
connects to your “home” email server, which then seeks to route the message to your
contact. Thus, unlike the Web, the email system consists of a federated network of
servers. However, your message might be routed through multiple intermediate email

Figure 2-1. XMPP uses a client-server architecture similar to email and the World Wide Web

12 | Chapter 2: Basics of XMPP

servers before it reaches its final destination (see Figure 2-3). Thus, the email network
uses multiple hops between servers to deliver messages.

Figure 2-3. The email network has many servers and clients, plus the servers are interconnected in a
multi-hop network

Like email, but unlike the Web, XMPP systems involve a great deal of inter-domain
connections. However, when you send an XMPP message to one of your contacts at a
different domain, your client connects to your “home” server, which then connects
directly to your contact’s server without intermediate hops (see Figure 2-4). This direct
federation model has important differences from the indirect federation model used in
email (in particular, it helps to prevent address spoofing and certain forms of spam).

Figure 2-2. The World Wide Web has many servers and clients, but very few server-to-server
connections

Architecture | 13

Table 2-1 summarizes these differences.

Table 2-1. Client-server architectures

Feature Web Email Jabber

Interdomain Connections No Yes Yes

Multiple Hops N/A Yes No

Although clients and servers are the fundamental entities on an XMPP network, other
entities play a part, too. Automated clients called bots provide a wide range of com-
munication services, including assistance in chat rooms and human-friendly interfaces
to non-XMPP services such as social networking applications. Furthermore, most
XMPP servers are written in a modular way that enables administrators to add speci-
alized services or server components, such as multi-user chat rooms, publish-
subscribe topics, gaming arbiters, and the like. We discuss bots and components later
in this book, especially in Part III.

Addresses
Because XMPP communications happen on a network, every XMPP entity needs an
address, called a JabberID (JID). XMPP typically relies on the Domain Name System
(DNS) to provide the underlying structure for addressing, instead of using raw Internet
Protocol (IP) addresses. After all, it’s much easier to remember that there is an XMPP
service running at jabber.org than to remember 208.68.163.220. Similarly, JabberIDs
for users look like email addresses (e.g., stpeter@jabber.org) because the format

Figure 2-4. The XMPP network has many servers and clients, plus the servers are interconnected in
a single-hop network

14 | Chapter 2: Basics of XMPP

user@domain.tld is already familiar to people; furthermore, this format uses the com-
plete DNS infrastructure as its address space, unlike older IM systems that used num-
bers or names without any domain identifier.

Domains
Every JabberID contains a domain portion, which typically maps to a fully qualified
domain name (FQDN). When you install your favorite XMPP server software, you
choose a domain name for the deployment, such as jabber.org or gmail.com. Using
DNS service label records, your domain name maps to one or more particular machines,
such as hermes.jabber.org or talk1.l.google.com. Those machine names in turn map
to particular IP addresses, such as 208.68.163.220 or 72.14.253.125. (We discuss de-
ployment scenarios further in the appendixes.) However, for the purposes of addressing
on the network, all we need to care about is the domain name itself (e.g., jabber.org
or gmail.com), rather than the lower-level machine names and IP addresses. Finally, for
ASCII characters, the domain portion of a JID is case-insensitive (so that JABBER.ORG is
the same as jabber.org); as we explain later, the rules for non-ASCII characters are a
bit more complex.

Users
When you create an account at an XMPP service such as jabber.org, you choose a
JabberID that functions as your virtual identity on the network. Alternatively, your
JabberID might be assigned to you automatically. Your JabberID looks much like an
email address (e.g., stpeter@jabber.org). Depending on deployment policies, it might
even be the same as your email address at a service or company (e.g., your Google Talk
address on the XMPP network looks the same as your Gmail address on the email
network). As for the domain portion of the JabberID, the username portion of a JID is
case-insensitive for ASCII characters (so that StPeter@jabber.org is the same as
stpeter@jabber.org). XMPP developers usually call an address of the form
user@domain.tld a bare JID.

Resources
When you connect your client to an XMPP server, you choose (or the server assigns to
you) a resource identifier for that particular connection. This resource is used for routing
traffic to that connection instead of any other connections you might have open at the
moment. The resource is added to the end of your account address, such as
stpeter@jabber.org/roundabout or remko@el-tramo.be/home. This enables someone to
query or exchange messages with a particular device that is associated with your ac-
count; it also means that each device is a separate “point of presence,” with different
availability states, capabilities, etc. The resource is often the name of your computer,
your location, or the client software you are using, but can be any string (including

Addresses | 15

spaces and other special characters). Contrary to the other parts of a JID, the resource
portion is case-sensitive (e.g., remko@el-tramo.be/home is different from remko@el-
tramo.be/Home). XMPP developers usually call an address of the form user@domain.tld/
resource a full JID.

Internationalization
A major difference between JabberIDs and email addresses is that XMPP is fully inter-
nationalized. This means that XMPP domain names and user names are not limited to
the boring old ASCII character range, but can include virtually any Unicode character.
If you live in the Czech Republic, you could run a Jabber server at a domain such as
čechy.cz, and you could have an address such as jiři@čechy.cz. Or, if you enjoy math-
ematics and happen to own the domain math.it, your JabberID could be something
fun like ∞@math.it (try that with email!). For non-ASCII characters (i.e., most of the
characters in the world), we don’t talk about case-sensitivity, but instead about case-
folding. Although some rather complicated rules for character comparison and decom-
position can come into play when using Unicode characters, these case-folding rules
(defined by a technology called stringprep, as specified in [RFC 3454]) are typically
enforced by a lower-level library, and so most developers don’t need to deal with this
directly.

XMPP URIs
On the XMPP network itself, JabberIDs are provided as raw addresses without a Uni-
form Resource Identifier (URI) scheme. This is similar to the convention of telling
someone to visit www.oreilly.com (instead of http://www.oreilly.com/), or sending an
email to the standards@xmpp.org list (instead of mailto:standards@xmpp.org). However,
there is an XMPP URI scheme that can be used to identify JabberIDs as URIs, such as
xmpp:jabber.org or xmpp:stpeter@jabber.org (note the lack of a “//”—think mailto,
not http). This URI scheme is defined in [RFC 5122]. The XMPP community has also
defined ways to include various “commands” in XMPP URIs, such as
xmpp:user@domain.tld?message to send a message (see [XEP-0147] for details).

Streaming XML
XMPP is, in essence, a technology for streaming XML. When you want to start a session
with an XMPP server, you open a long-lived TCP connection and then negotiate an
XML stream to the server (the server also opens a stream in return, i.e., there is one
stream in each direction). We discuss the details of XML streams in Chapter 12, but
for now you can think of a stream as an XML document that is built up incrementally
over time between your client and your server.

Once you have negotiated an XML stream with your server, you and your server can
exchange three special XML snippets over the stream: <message/>, <presence/>, and

16 | Chapter 2: Basics of XMPP

<iq/>. These snippets, called XML stanzas, are the basic units of meaning in XMPP,
and once you have negotiated an XML stream you can send an unlimited number of
stanzas over the stream. Example 2-1 illustrates a simplified XMPP session, including
the interaction between streams and stanzas, as well as the outbound stanzas sent from
the client (prefaced with “C:”) and the inbound stanzas delivered from the server (pref-
aced with “S:”).

Example 2-1. In an XMPP session, the stream element acts as a wrapper for an unlimited number of
outbound and inbound XML stanzas; outbound stanzas sent from the client are prefaced with C:, and
inbound stanzas delivered from the server are prefaced with S:

C: <stream:stream>

C: <presence/>

C: <iq type="get">
 <query xmlns="jabber:iq:roster"/>
 </iq>

S: <iq type="result">
 <query xmlns="jabber:iq:roster">
 <item jid="alice@wonderland.lit"/>
 <item jid="madhatter@wonderland.lit"/>
 <item jid="whiterabbit@wonderland.lit"/>
 </query>
 </iq>

C: <message from="queen@wonderland.lit"
 to="madhatter@wonderland.lit">
 <body>Off with his head!</body>
 </message>

S: <message from="king@wonderland.lit"
 to="party@conference.wonderland.lit">
 <body>You are all pardoned.</body>
 </message>

C: <presence type="unavailable"/>

C: </stream:stream>

The XMPP approach of opening a long-lived TCP connection and then asynchronously
exchanging an unlimited number of XML snippets differs radically from the traditional
approach used in web and email technologies, where you open a TCP connection,
complete a transaction (say, retrieving a web page or downloading some email), then
close the connection again. These transactional connections do not lend themselves to
real-time communication, because the server does not have an “always-on” channel
available to push information down to the client. As a result, constant polling for new
information is the order of the day (this is true even in recent HTTP techniques such
as Ajax and Comet, although the polling has gotten smarter over time). By contrast, in
XMPP, the client can send out multiple requests without “blocking” while it waits for

Streaming XML | 17

replies, and the server will return those replies dynamically as soon as they are
answered. These design decisions have important implications for the XMPP user ex-
perience and for the kinds of applications you can build with XMPP. But they also
introduce new challenges for developers, who are not necessarily accustomed to think-
ing in terms of asynchronous information flows and streaming XML snippets. As you
explore XMPP, remember that you may need new tools and a new mindset to see the
possibilities.

The Layered Look
Although XMPP is defined in a number of exhaustive (not to say boring!)
specifications, in most cases, you won’t need to worry about lower lev-
els, such as XML streams. Instead, existing code libraries typically ab-
stract away from the raw XML layer so that you can focus on adding
real-time features to your application.

Communication Primitives
These XML “stanzas” sound rather poetic, but what do they mean in practice? In XMPP,
a stanza can be thought of as the basic unit of communication, similar to a packet or
message in other network protocols (the term was suggested by Lisa Dusseault, who
cochaired the IETF’s XMPP Working Group along with Pete Resnick).

Several factors determine the meaning of a stanza:

• The stanza element name, which is message, presence, or iq. Each kind of stanza
is routed differently by servers and handled differently by clients.

• The value of the type attribute, which varies depending on the kind of stanza in
question. This value further differentiates how each kind of stanza is processed by
the recipient.

• The child element(s), which define the payload of the stanza. The payload might
be presented to a user or processed in some automated fashion as determined by
the specification that defines the namespace of the payload.

The following sections provide a brief introduction to these factors, and we will explore
them throughout this book as we unfold the meaning of various stanza kinds, type
attribute values, and payload definitions.

Message
The XMPP <message/> stanza is the basic “push” method for getting information from
one place to another. Because messages are typically not acknowledged, they are a kind
of “fire-and-forget” mechanism for quickly getting information from one place to an-
other. Messages are used for IM, groupchat, alerts and notifications, and other such
applications.

18 | Chapter 2: Basics of XMPP

Message stanzas come in five flavors, differentiated by the type attribute:

normal
Messages of type normal are most similar to email messages, since they are single
messages to which a response may or may not be forthcoming.

chat
Messages of type chat are exchanged in a real-time “session” between two entities,
such as an instant messaging chat between two friends.

groupchat
Messages of type groupchat are exchanged in a multi-user chat room, similar to
Internet Relay Chat (we discuss groupchat messages in Chapter 7).

headline
Messages of type headline are used to send alerts and notifications, and a response
is not expected at all (a client that receives a headline should not enable a user to
reply).

error
If an error occurs in relation to a previously sent message, the entity that detects
the problem will return a message of type error.

In addition to the type attribute, message stanzas contain a to and from address, and
can contain an id attribute for tracking purposes (we discuss IDs in more detail in
relation to IQ stanzas, where they are used more widely). Naturally enough, the to
address is the JabberID of the intended recipient, and the from address is the JabberID
of the sender. The from address is not provided by the sending client, but instead is
stamped by the sender’s server to avoid address spoofing.

Messages also contain payload elements. The core XMPP specifications define some
very basic payloads, such as <body/> and <subject/>, which are used for person-to-
person chat messages. For example, a simple message could look like this:

<message from="madhatter@wonderland.lit/foo"
 to="alice@wonderland.lit"
 type="chat">
 <body>Who are you?</body>
 <subject>Query</subject>
</message>

The order of attributes is insignificant (we usually show the attributes in alphabetical
order, but they can appear in any order).

Messages (and other kinds of stanzas) can also contain payloads that are not defined
in the core XMPP specifications, as we explore throughout this book.

Presence
One of the distinctive features of real-time communication systems is presence, which
we discuss in Chapter 3. Presence advertises the network availability of other entities,

Communication Primitives | 19

and thus enables you to know whether other entities are online and available for com-
munication. Many people liken presence to a “dial tone” for the real-time Internet. But
this analogy implies that, by itself, presence is fairly boring: who picks up the phone to
listen to the dial tone? The exciting thing about presence is that it is a catalyst for
communication and collaboration over the Internet, because people are more likely to
interact with you if they know you are online.

But don’t worry: people can’t see that you’re online unless you authorize them. This
authorization is called a presence subscription. In order for someone to see your pres-
ence, that person needs to send you a subscription request, which you need to approve.
Once you have approved the subscription, that user will automatically receive regular
notifications about your network availability. This subscription model implies that the
XMPP <presence/> stanza is in essence a simple, specialized publish-subscribe method,
wherein people who subscribe to your presence receive updated presence information
when you come online, change your status to “in a meeting” or “at lunch,” and then
go offline.

At its most basic, presence is an on-off indication that an entity is either online or offline.
However, core XMPP presence is often extended by some common states such as
“away” and “do not disturb.” These states can be personalized using status messages
such as “on a train” or “I’m writing, don’t bother me right now” (a state we have used
quite a bit recently). For example:

<presence from="alice@wonderland.lit/pda">
 <show>xa</show>
 <status>down the rabbit hole!</status>
</presence>

In IM applications of XMPP, presence is typically displayed in your roster, which is a
kind of presence-enabled contact list. Your roster contains a list of JabberIDs and the
state of your presence subscriptions with those entities. When you come online, you
announce your presence to your server and it handles the rest—both notifying your
contacts that you are online and fetching their current presence for display in your client
interface. We delve into these details in Chapter 3.

IQ
The Info/Query (or IQ) stanza provides a structure for request-response interactions
and simple workflows, similar to the GET, POST, and PUT methods that you may be
familiar with from HTTP. Unlike the <message/> stanza, an IQ stanza can include only
one payload, which defines the request to be processed or action to be taken by the
recipient. In addition, the entity that sends an IQ stanza must always receive a reply
(usually generated by the intended recipient or the recipient’s server). Requests and
responses are tracked using the id attribute, which is generated by the requesting entity
and then included by the responding entity. Finally, the type attribute has special values
for IQ stanzas:

20 | Chapter 2: Basics of XMPP

get
The requesting entity asks for information, such as requirements for registering an
account (similar to HTTP GET).

set
The requesting entity provides some information or makes a request (similar to
HTTP POST or PUT).

result
The responding entity returns the result of a get operation (such as the information
that an entity must provide to register an account), or acknowledges a set request
(similar to an HTTP 200 status code).

error
The responding entity or an intermediate entity, such as an XMPP server, notifies
the requesting entity that it was unable to process the get or set request (e.g., item
because the request is malformed, the requesting entity does not have permission
to perform the operation, etc.). The early use of HTTP-style numeric error codes
has been superseded by XML elements for extensible error conditions.

IQ or Message?
XMPP message stanzas provide a “fire-and-forget” transport that is best
used for human-readable text, alerts, notifications, and whenever you
don’t need assurance that the content was truly delivered. IQ stanzas
provide a more reliable transport that is optimized for a structured ex-
change of data, typically non-human-readable data. (Although the Ad-
vanced Message Processing extension defined in [XEP-0079] provides
mechanisms that can make message stanzas a more reliable transport,
it is not yet widely implemented or deployed.)

Using the values of the IQ stanza’s type, we can generate a fairly structured IQ inter-
action between two entities, as shown in Figure 2-5. To illustrate this kind of interaction
in more detail, consider the process for getting your roster and then updating it:

<iq from="alice@wonderland.lit/pda"
 id="rr82a1z7"
 to="alice@wonderland.lit"
 type="get">
 <query xmlns="jabber:iq:roster"/>
</iq>

Communication Primitives | 21

www.allitebooks.com

http://www.allitebooks.org

Figure 2-5. The IQ stanza provides structured interactions between entities

Here Alice has asked her server (wonderland.lit) to give her the contact list she stores
on the server by sending an IQ-get containing an empty payload qualified by the
jabber:iq:roster namespace. The server then replies with a non-empty payload quali-
fied by that namespace, in this case, containing a single <item/> element for each contact
in her roster. (The client knows that this roster result relates to its initial request because
the server includes an id attribute with a value of rr82a1z7.)

<iq from="alice@wonderland.lit"
 id="rr82a1z7"
 to="alice@wonderland.lit/pda"
 type="result">
 <query xmlns="jabber:iq:roster">
 <item jid="whiterabbit@wonderland.lit"/>
 <item jid="lory@wonderland.lit"/>
 <item jid="mouse@wonderland.lit"/>
 <item jid="sister@realworld.lit"/>
 </query>
</iq>

Alice can also use an IQ-set to add a new contact to her roster:

<iq from="alice@wonderland.lit/pda"
 id="ru761vd7"
 to="alice@wonderland.lit"
 type="set">
 <query xmlns="jabber:iq:roster">
 <item jid="madhatter@wonderland.lit"/>
 </query>
</iq>

Her server then simply acknowledges the roster update by returning an empty IQ-result:

22 | Chapter 2: Basics of XMPP

<iq from="alice@wonderland.lit"
 id="ru761vd7"
 to="alice@wonderland.lit/pda"
 type="result"/>

As you can see from these roster examples, the payload of an IQ-get or IQ-set is always
defined by its own format qualified by a particular XML namespace, as specified in one
of the many XMPP protocol documents. You can think of each payload format as a
command to be processed by the recipient. An IQ-get requests a particular kind of
information, such as a registration form, configuration data, service discovery infor-
mation, or a contact list. An IQ-set creates, updates, or deletes a particular kind of
information, such as a completed form, updated configuration data, or an addition to
a contact list. Throughout the following chapters, we explore these IQ interactions in
great detail as we describe how particular XMPP protocol extensions work.

Extensibility
An XML stanza can contain any number of other child elements, including XHTML-
formatted message bodies, pointers to URLs, RSS or Atom notifications, forms to be
filled out (or submitted forms), XML-RPC or SOAP data for web services, geographical
locations, and a wide range of other payloads. (The “X” in XML and XMPP stands for
“extensible,” so payload types are limited only by your imagination!)

Because XMPP is a pure XML technology, it makes extensive use of XML namespaces
as a way to “scope” stanza payloads. You can think of these namespaces as the XML
equivalent of packages and namespaces in programming. So far, the XMPP developer
community has defined dozens of extensions to the core XMPP stanza layer. Most often
these extensions are published by the XMPP Standards Foundation at http://xmpp
.org/, but you can also define your own private extensions for custom features.

Extensions are matched on both the element name and the namespace. In the early
days of the Jabber open source projects, developers used an <x/> element for extensions
that would be placed in message or presence stanzas and a <query/> element for
extensions that would be placed in IQ stanzas. You will see examples of these early
extensions in this book (e.g., <query xmlns="jabber:iq:roster"/>), but it is important
to realize that this usage was merely conventional; extensions developed later do not
follow the same practice.

What’s in a Name?
You’ll notice many different types of XML namespaces. In general, the
earliest namespaces were things like jabber:iq:roster, namespaces de-
fined from 2001 to 2005 were like http://jabber.org/protocol/muc, and
more recent namespaces are things like urn:xmpp:jingle. Don’t worry
about the differences; they are all just namespace names.

Communication Primitives | 23

http://xmpp.org/
http://xmpp.org/

Asynchronicity
In XMPP, you exchange stanzas asynchronously with other entities on the network.
This model is different from HTTP, where your client sends a request to a server and
then waits for a reply before it makes another request. By contrast, in XMPP your client
can “pipeline” requests to your server or to other entities and then receive replies as
they come back. Certain events can also trigger information that is pushed to your client
(e.g., when one of your devices adds an item to your roster, the item is pushed out to
all of your devices so that they stay in sync). This rapid-fire, event-driven approach can
be confusing at first to developers who are more accustomed to traditional web devel-
opment, but it has a number of advantages, such as real-time notifications and the
ability to work around the need to continually poll for updated information.

Error Handling
Unlike some communication technologies, XMPP does not acknowledge every packet
or message that is sent over the wire. Typically, you assume that a message or presence
stanza has been delivered if you don’t receive an error. IQ stanzas are more structured:
you must always receive either an IQ-result or an IQ-error in response to an IQ-get or
an IQ-set. Errors are reported by setting the stanza’s type attribute to a value of
error, along with an <error/> child element that is qualified by the
urn:ietf:params:xml:ns:xmpp-stanzas namespace. Here is an example:

<message from="sister@realworld.lit"
 to="alice@wonderland.lit"
 type="error">
 <error type="cancel">
 <service-unavailable xmlns="urn:ietf:params:xml:ns:xmpp-stanzas"/>
 </error>
</message>

The type attribute of the <error/> element is one of auth, cancel, continue, modify, or
wait (the values hint at how to handle the error). However, the primary meaning of the
error is specified by the native child element, for example, <item-not-found/> or
<forbidden/>. XMPP error conditions generally follow the model of errors from HTTP
and SMTP, except that they are structured not as numeric codes, such as 404, but as
(you guessed it!) XML elements. A full list of stanza error conditions can be found in
[RFC 3920].

Know the Code
In the early days of the Jabber community, errors were specified with
HTTP-style error codes, such as 404 and 501. When the Jabber proto-
cols were standardized at the IETF, the error syntax was expanded to
provide a more flexible data format. However, you may still see the
HTTP-style error codes on the wire. For a full mapping between the
older codes and newer conditions, refer to [XEP-0086].

24 | Chapter 2: Basics of XMPP

The <error/> element can also include application-specific child elements that specify
further details about the error condition. For example, the following error stanza in-
dicates that a pubsub subscription request (which we discuss in Chapter 8) has failed
because the pubsub node is closed to new subscriptions:

<iq from="notify.wonderland.lit"
 id="t2w4qax3"
 to="alice@wonderland.lit/rabbithole"
 type="error">
 <error type="cancel">
 <not-allowed xmlns="urn:ietf:params:xml:ns:xmpp-stanzas"/>
 <closed-node xmlns="http://jabber.org/protocol/pubsub#errors"/>
 </error>
</iq>

In addition to the stanza error conditions described here, [RFC 3920] also defines
stream error conditions as well as errors related to SASL authentication. The main
difference is that stream errors are unrecoverable and result in closing the XML stream,
whereas stanza errors are recoverable and therefore are used for reporting problems
with particular stanzas (without termination of the underlying stream).

We don’t show a lot of error flows in this book, because it would make the text twice
as long. If you want all the details about errors that can result in a particular use case,
refer to the relevant XMPP specification, which usually will show all the error cases in
addition to the “happy path.”

Hello Hello World World: Building a Basic XMPP Application
Believe it or not, at this point you have enough technical baggage to go off and start
implementing your own XMPP application. In fact, we’ll prove it to you: in this section,
we will implement a simple XMPP service, using only the basic building blocks of XMPP
introduced in this chapter. The task of our service is simple: reply to every incoming
message with an identical message. You can see our service in action in Figure 2-6. Our
service acts as a regular contact for its users, but automatically echoes back every mes-
sage that it receives. Unmanned contacts like this service are typically called bots.

Hello Hello World World: Building a Basic XMPP Application | 25

Figure 2-6. The “echo” service in action; “echo bot” acts as an ordinary IM contact, but automatically
echoes back every message you send it

To implement the bot we just described, we chose Python as our implementation lan-
guage, and delegate the actual XMPP protocol details to SleekXMPP, one of the many
available XMPP libraries (a few of which are listed in Appendix B). We now walk
through the steps that lead to the implementation of this “echo” service, displayed in
Example 2-2.

Example 2-2. Implementation of a basic bot that echoes all incoming messages back to its sender

def main() :
 bot = EchoBot("echobot@wonderland.lit/HelloWorld", "mypass")
 bot.run()

class EchoBot :
 def __init__(self, jid, password) :
 self.xmpp = sleekxmpp.ClientXMPP(jid, password)
 self.xmpp.add_event_handler("session_start", self.handleXMPPConnected)
 self.xmpp.add_event_handler("message", self.handleIncomingMessage)

 def run(self) :
 self.xmpp.connect()
 self.xmpp.process(threaded=False)

 def handleXMPPConnected(self, event):
 self.xmpp.sendPresence(pstatus = "Send me a message")

 def handleIncomingMessage(self, message) :
 self.xmpp.sendMessage(message["jid"], message["message"])

26 | Chapter 2: Basics of XMPP

The first step in the implementation of our service is to make sure that the echo bot is
available on the XMPP network. In order to do this, the service connects to an XMPP
server under a given username, just like one would connect with an ordinary IM client.
Our bot happens to be registered as echobot with the wonderland.lit server. Since there
will be only one instance of our bot running, we pick HelloWorld as an arbitrary resource
name to identify the instance of the bot. Putting all these pieces together, we get
echobot@wonderland.lit/HelloWorld as the JID with which our bot connects to the
server (and through which our service will be reachable).

Connecting to the server is done by initializing a ClientXMPP object from the SleekXMPP
library, and calling connect() to set up the connection to the server. The subsequent
call to process() starts the event loop of the bot. The event loop is a seemingly infinite
loop that waits for XMPP events to occur (incoming messages, notifications about
connection errors, etc.); whenever an event occurs, the event loop calls the event han-
dler method that is associated with the event. For reasons explained in the following
paragraphs, our bot registers event handlers for two types of events: session_start and
message.

Once the bot is connected to the server, it needs to announce that it’s available for
service. This is why the bot registers with the XMPP library to receive notification of
the session_start event, which will fire when the bot is connected and the XMPP ses-
sion has started. Upon the beginning of a session, the bot sends out basic availability
presence by calling sendPresence(). As a result, every user that is subscribed to the bot’s
presence will see the bot appear in his roster.

The core functionality of our bot is triggered whenever a message is received. The
handler of the message event extracts the sender and the body of the incoming message,
and sends it back to the originator using sendMessage().

That’s all there is to it! With only a handful of lines of code, we created a fully functional
XMPP service. We showed that XMPP applications are typically event-driven, imple-
menting their functionality in terms of asynchronous events that occur. Of course, this
book wouldn’t be over 250 pages long if all you could do with XMPP was read back
simple messages to users. That’s why we develop a larger XMPP application in Chap-
ter 14, showing more aspects of implementing XMPP applications.

Summary
In this chapter, we outlined the architecture, addressing, underlying data transport,
and communication primitives of XMPP. As a result, you might already have some
ideas about how to XMPP-enable an existing application (for example, you might send
an XMPP <message/> stanza when someone checks a file into a source control system,
or you might add presence indicators to a website directory).

Summary | 27

However, we have only begun to scratch the surface of what XMPP can do. In the
remainder of this book, our explorations will proceed in two directions:

• We will move “up the stack” by describing many of the core XMPP extensions that
enable more specific functionality, such as the extensions for service discovery
(Chapter 5), multi-party messaging (Chapter 7), publish-subscribe (Chapter 8),
and multimedia session management (Chapter 9).

• We will move “down the stack” by describing some of the ins and outs of session
establishment (including authentication, channel encryption, the HTTP binding,
and serverless messaging over a local network). You may not need to know about
these details to build your application, because typical XMPP libraries provide a
“login” or “connect” function. However, these lower-level options give you addi-
tional tools that can prove extremely useful in more advanced XMPP applications,
so we discuss them in Chapter 12.

Now let’s look at the key tools in the XMPP toolkit.

28 | Chapter 2: Basics of XMPP

PART II

The XMPP Toolkit

CHAPTER 3

Presence

Is Anybody Home?
Imagine that you want to contact a friend or colleague. In the old days, you might have
sent the person a letter (you know, one of those pieces of paper that is delivered to your
home or office), and then waited for a reply. Or you might have phoned the person and
hoped she was around (if not, you would have left a message with a person or an
automated system, perhaps playing “phone tag” for a few days). Or, more recently, you
might have sent an email, perhaps receiving a reply in 10 minutes or so, but perhaps
days later.

In XMPP, you can know when a contact of yours is online and available for commu-
nication, using a technology called presence. So instead of waiting and wondering, or
just getting lucky, your Jabber client will show you the network availability of your
contacts, usually with an indicator such as a light bulb icon (on the theory that if some-
one is home, the lights will be on). Figure 3-1 shows an example of such a presence-
enabled contact list in an IM client.

However, presence is not limited to pretty little icons; it enables you to get real work
done. In this chapter, we delve more deeply into presence, and explore how you can
use it to build smarter, more interactive applications.

Authorization Required: The Subscription Handshake
One of the reasons why presence provides a key tool for application development is
that it’s voluntary. No one is forcing you to share information about your network
availability with anyone else. But if you do choose to share that information, you have
made a trust decision, which separates someone who can see your presence from
everyone else on the network. As we shall see, this distinction provides important ben-
efits to XMPP-based systems.

31

www.allitebooks.com

http://www.allitebooks.org

The trust or access decision behind presence happens naturally in IM systems, because
people you approve are automatically added to your contact list (called a roster in
XMPP), which is typically the “home base” for any instant messaging or real-time
communications application.

In addition, presence access is usually bidirectional: you allow a contact to see your
presence, and your contact allows you to see his presence. This happens through a
subscription “handshake,” as shown in Figure 3-2. If the handshake is completed suc-
cessfully, the result is a bidirectional presence subscription between the two parties.
(XMPP servers also add the contact to the user’s roster and add the user to the contact’s
roster during this process, plus manage a state machine of subscription states, but we
don’t need to worry about those details here; refer to [RFC 3921] for a full description.)

Let’s see how the subscription handshake works in practice.

To request someone’s presence, you send him a subscription request, which is a
<presence/> stanza of type subscribe:

<presence from="alice@wonderland.lit" to="sister@realworld.lit" type="subscribe"/>

When the intended recipient receives your presence subscription request, he can either
approve it (via a <presence/> stanza of type subscribed) or deny it (via a <presence/>
stanza of type unsubscribed):

<presence from="sister@realworld.lit" to="alice@wonderland.lit" type="subscribed"/>

As you might imagine, to create a bidirectional presence subscription, the person who
approved the original subscription request needs to send a subscription request of his
own:

<presence from="sister@realworld.lit" to="alice@wonderland.lit" type="subscribe"/>

Figure 3-1. Your roster provides a visual representation of the people you know and trust on the
network, including information about their network availability or “presence”

32 | Chapter 3: Presence

Typically, your client will auto-reply at this point, rather than asking you to manually
approve the reverse request:

<presence from="alice@wonderland.lit" to="sister@realworld.lit" type="subscribed"/>

Once you are subscribed to another person’s presence, you will automatically be no-
tified when the other party’s network or communications availability changes. This
presence notification takes the form of a <presence/> stanza with no type attribute (i.e.,
implicitly indicating availability):

<presence from="alice@wonderland.lit/rabbithole" to="sister@realworld.lit">
 <show>xa</show>
 <status>down the rabbit hole!</status>
</presence>

The next section describes how that happens.

How Presence Is Propagated
Now that you and your contact are subscribed to each other, how does presence in-
formation flow between the two of you? Here is a brief overview:

1. You negotiate an XML stream with your server (see Chapter 12).

2. You send an initial presence stanza to your server:

Figure 3-2. A bidirectional subscription handshake: after the contact subscribed to the user’s presence,
the user in turn subscribes to the contact’s presence

How Presence Is Propagated | 33

<presence/>

Yes, this is the smallest XMPP stanza you will ever see! Initial presence can also
include more detailed availability status information, as described next.

3. Your server checks your roster and sends a presence notification to each person
who is subscribed to you, making sure to add the full JabberID of your connected
resource as the from address:

<presence from="alice@wonderland.lit/rabbithole"
 to="sister@realworld.lit"/>

<presence from="alice@wonderland.lit/rabbithole"
 to="madhatter@wonderland.lit"/>

[etc.]

4. Now, everyone who is subscribed to your presence knows that you are online and
available for communication. But how do you know if they are online?

Here, your server once again comes to the rescue, because it sends a presence
probe to everyone you’re subscribed to:

<presence from="alice@wonderland.lit/rabbithole"
 to="sister@realworld.lit"
 type="probe"/>

<presence from="alice@wonderland.lit/rabbithole"
 to="madhatter@wonderland.lit"
 type="probe"/>

[etc.]

5. Once your contacts’ servers receive the probes, they check permissions according
to their records. If you are allowed to see your contacts’ presence, you will receive
at least one presence notification from each of your contacts who is online, and
often a notification if your contact is offline, including information about when
her last presence notification was sent:

<presence from="sister@realworld.lit/home"
 to="alice@wonderland.lit/rabbithole"
 type="unavailable">
 <delay xmlns="urn:xmpp:delay"
 stamp="2008-11-26T15:59:09Z"/>
</presence>

<presence from="madhatter@wonderland.lit/foo"
 to="alice@wonderland.lit/rabbithole"/>

<presence from="madhatter@wonderland.lit/bar"
 to="alice@wonderland.lit/rabbithole"/>

[etc.]

34 | Chapter 3: Presence

The <delay/> element is added by the contact’s server, and the UTC timestamp
is the time when the presence stanza was sent by the contact (in this case, when
the contact went offline).

Note that you might receive more than one presence stanza, because any given
contact might have multiple connected resources. (Look closely at the presence
notifications received from the Mad Hatter in the previous example.)

Do You Always Receive Unavailable Presence?
Some server implementations do not return an unavailable presence
notification in response to a presence probe; instead, they simply ignore
the presence probe, on the theory that if the probing entity does not
receive any presence notification, it will assume that the probed entity
is not online.

Availability Status
So far, our examples of presence notification stanzas have been extremely simple (either
available or unavailable). But a presence stanza can contain more information than
basic on-off network availability. There are two primary presence elements that express
more detailed information: the <show/> element and the <status/> element.

The <show/> element is limited to four predefined values, which provide insights into
a human user’s availability for and interest in communication (these are not shown
directly to end users but are used to provide availability hints in a user interface):

chat
Announces that you are available for, and actively seeking, conversation (perhaps
you’re feeling especially sociable).

away
Indicates that you are gone from your IM client, computer, or device for a short
period of time; this state is often triggered without human intervention through a
feature known as auto-away, commonly found in many IM clients.

xa
Indicates that you are gone for a longer period of time (xa is shorthand for “eX-
tended Away”); your IM client can also automatically generate this state.

dnd
Announces that you are busy and don’t want to be interrupted right now (dnd is
shorthand for “do not disturb”).

Furthermore, the <status/> element enables a user to specify some free-form, human-
readable text that describes the user’s availability in more detail. For example, a user
might combine a <show/> value of away with a <status/> value of “Having tea with the
White Rabbit,” or a <show/> value of dnd with a <status/> value of “On a deadline.”

Availability Status | 35

The <show/> and <status/> elements are not limited to human users. They could also
be used by automated processes; for example, a particular unit in a computing farm
could be dnd if it cannot accept any new jobs at the moment. However, for more so-
phisticated handling of presence from automated entities, it would probably be pref-
erable to define a custom presence extension rather than overloading existing text
values.

Typically, these elements are used to send updated availability information during the
life of a user’s presence session, as in the following example:

<presence>
 <show>away</show>
 <status>Having a spot of tea</status>
</presence>

Just as with the initial presence notification, subsequent presence updates are also
broadcast by the sender’s server to everyone who is subscribed to the user’s presence.
If the presence subscription is bidirectional, the user’s server will often send the sub-
sequent notifications only to contacts who are online. This optimization helps to reduce
traffic, since presence uses a great deal of bandwidth in a real-time communications
system.

Presence Priorities
The presence stanza can include one more optional element: <priority/>. Unlike many
other IM systems, XMPP allows you to connect multiple devices or clients to the same
account at the same time. This introduces interesting possibilities for inter-device com-
munication (e.g., you could control a set-top box at home from your computer at the
office). However, it also introduces the need to differentiate between those devices. For
addressing purposes, this is done through the resource portion of a JabberID, such as
me@myserver.tld/TV as opposed to me@myserver.tld/office. (XMPP developers usually
refer to a JID of the form user@domain.tld as a bare JID and a JID of the form
user@domain.tld/resource as a full JID.) For presence purposes, each connected re-
source can specify a priority, in the range from –127 to +128. A higher-priority resource
is more likely to receive a message sent to the account’s bare JID. A resource with a
negative priority will never receive such a message (although it will receive a message
sent directly to that resource). The latter is useful for network-enabling a device that
doesn’t intercept human-oriented chat messages.

<presence from="me@myserver.tld/office">
 <priority>7</priority>
</presence>

<presence from="me@myserver.tld/TV">
 <priority>-1</priority>
</presence>

36 | Chapter 3: Presence

Directed Presence
The presence notifications we’ve looked at so far have been broadcast—that is, they
are sent to everyone in your roster (you indicate that you want a presence notification
to be broadcast by leaving off the to address). But what if you want to send presence
to someone who is not in your roster? Perhaps you want to chat with someone for a
little while but don’t want to add that person to your roster and therefore share presence
on a permanent basis. In this case, you can send directed presence to the other person,
i.e., presence that has a to address.

Consider what happens when Alice goes down the rabbit hole and meets the White
Rabbit. Because the rabbit isn’t in her roster, she sends a message but also sends directed
presence:

<message from="alice@wonderland.lit/rabbithole"
 to="whiterabbit@wonderland.lit"
 type="chat">
 <body>If you please, sir--</body>
</message>

<presence from="alice@wonderland.lit/rabbithole"
 to="whiterabbit@wonderland.lit"/>

The White Rabbit is too frightened to reply, but his IM client at least sends directed
presence back to Alice:

<presence from="whiterabbit@wonderland.lit/mobile"
 to="alice@wonderland.lit/rabbithole"
 type="unavailable"/>

This kind of temporary presence sharing without a long-term subscription is a best
practice for brief interactions over the network. And as we’ll see in Chapter 4, directed
presence is also used to join and leave multi-user chat rooms (another form of tempo-
rary interaction).

Going Offline
When you’re tired of real-time interactions or just need to disconnect from the network,
you can easily go offline by telling your server that you are now unavailable:

<presence type="unavailable"/>

There is no presence type of available, because presence implicitly describes net-
work availability (i.e., if there is no type attribute, then the entity is assumed to be
available).

Going offline has several implications:

• Your server broadcasts your unavailable notification to everyone in your roster.

Going Offline | 37

• Your server also broadcasts your unavailable notification to all the entities to which
you’ve sent directed presence (see the earlier example of the White Rabbit).

• If you have no other online resources, when your contacts’ servers receive the un-
available notification, they will probably stop sending presence notifications to
you.

• If you have no other online resources, your server will stop sending presence sub-
scription requests to you, instead storing them up for delivery the next time you
are online.

• If you have no other online resources, your server will stop sending messages to
you, instead storing them up for delivery the next time you are online (we describe
these “offline messages” more fully in Chapter 4).

Naturally, if you have other online resources, your server will continue to send messages
and presence subscription requests to you, but the presence session for your newly
offline resource is now over.

Rich Presence
The presence stanza provides a convenient and relatively efficient method for publish-
ing information about a user to interested others. In the past, enterprising developers
of XMPP clients have used this presence “transport” to push out information about
much more than network availability. For example, why not use presence stanzas to
advertise what music you’re listening to?

<presence>
 <status>Pink Floyd - Dogs</status>
</presence>

This kind of information is typically called rich presence or extended presence, and can
include a very wide range of transient data: your current mood or activity, the music
you listen to, the videos you watch, the chat rooms or web pages you visit, the games
you play, your physical location, etc.

There are several problems with putting all these payloads inside presence stanzas:

• It’s not very XML-friendly to put all of this information into the <status/> element
as an unstructured text string.

• Sending all of this information in presence will result in a lot more presence stanzas,
and those stanzas will probably be bigger (perhaps much bigger) than existing
presence stanzas. Given that presence already uses far more bandwidth in XMPP
than messaging does, piling on more and bigger presence stanzas could seriously
degrade network performance.

• Not everyone in your roster will be interested in things like the music you listen
to, so why send them that information?

38 | Chapter 3: Presence

• You might want to restrict who can know your physical location or other sensitive
information to a special sub-group of those who can know your network availa-
bility. Publish-Subscribe [XEP-0060] and the Personal Eventing Protocol
[XEP-0163] provide this kind of access control, but basic presence is broadcast to
everyone in your roster.

Because of considerations like these, rich presence is typically not sent via the presence
transport, but instead uses a specialized publish-subscribe method that we describe in
Chapter 8.

Presence and Rosters
Figure 3-1 shows that presence information is usually displayed as one aspect of a user’s
roster. By retrieving the user’s roster when the user logs in, an IM client is able to
integrate the presence data it receives into a useful, familiar interface.

Your roster is managed by your client, but it is stored on your “home” server. This
enables you to connect from anywhere and still retrieve your contact list, which your
client typically does when you start your session by sending an IQ-get to the server:

<iq from="alice@wonderland.lit/rabbithole"
 id="jh2gs675"
 to="alice@wonderland.lit"
 type="get">
 <query xmlns="jabber:iq:roster"/>
</iq>

The server ignores the from address on the roster request, because it always delivers
the roster to the entity that requested it (for security reasons, you can’t request
someone else’s roster).

The to address on the roster request is the bare JID of the user. This means that the
server handles the request on behalf of the user’s account. Equivalently, the sender
could include no to address at all, since no to address is treated the same as a to
address of the sending user. ([RFC 3921] recommends including no to address, and
[rfc3921bis] recommends including it, but the result is the same.)

The user’s server then retrieves the user’s roster from a server-side data storage mech-
anism and returns it to the resource that made the request:

<iq from="alice@wonderland.lit"
 id="jh2gs675"
 to="alice@wonderland.lit/rabbithole"
 type="result">
 <query xmlns="jabber:iq:roster">
 <item jid="whiterabbit@wonderland.lit"/>
 <item jid="lory@wonderland.lit"/>
 <item jid="mouse@wonderland.lit"/>
 <item jid="queen@wonderland.lit"/>
 <item jid="sister@realworld.lit"/>

Presence and Rosters | 39

 </query>
</iq>

Each item in your roster has a JabberID associated with it, which acts as the “key” to
storing and identifying the item. Each item has a particular presence subscription state
that reflects the presence authorizations we’ve already looked at, and can also specify
a user-friendly name. Therefore, the data returned by the server will in fact be a little
more complete:

<iq from="alice@wonderland.lit"
 id="jh2gs675"
 to="alice@wonderland.lit/rabbithole"
 type="result">
 <query xmlns="jabber:iq:roster">
 <item jid="whiterabbit@wonderland.lit"
 name="The White Rabbit"
 subscription="none"/>
 <item jid="lory@wonderland.lit"
 name="The Lory"
 subscription="to"/>
 <item jid="mouse@wonderland.lit"
 name="The Mouse"
 subscription="both"/>
 <item jid="queen@wonderland.lit"
 name="Her Royal Highness"
 subscription="from"/>
 <item jid="sister@realworld.lit"
 name="Sis"
 subscription="both"/>
 </query>
</iq>

The roster can be used not only to store a flat list of contacts, but also to group into
various categories. Because these roster groups are not exclusive (a bot could also be a
friend—though that would be rather sad), it’s better to think of them as flexible tags
instead of exclusive buckets. Roster groups become increasingly important in organ-
izing your contact list as you befriend more and more people on the XMPP network
(the average roster size for us is 800 and rising!). Therefore, the data returned by the
server will in fact be even more complete:

<iq from="alice@wonderland.lit"
 id="jh2gs675"
 to="alice@wonderland.lit/rabbithole"
 type="result">
 <query xmlns="jabber:iq:roster">
 <item jid="whiterabbit@wonderland.lit"
 name="The White Rabbit"
 subscription="none">
 <group>Wonderlanders</group>
 </item>
 <item jid="lory@wonderland.lit"
 name="The Lory"
 subscription="to">
 <group>Wonderlanders</group>

40 | Chapter 3: Presence

 </item>
 <item jid="mouse@wonderland.lit"
 name="The Mouse"
 subscription="both">
 <group>Wonderlanders</group>
 </item>
 <item jid="queen@wonderland.lit"
 name="Her Royal Highness"
 subscription="from">
 <group>Nobility</group>
 </item>
 <item jid="sister@realworld.lit"
 name="Sis"
 subscription="both">
 <group>Family</group>
 </item>
 </query>
</iq>

Roster groups can be edited through the roster management protocol, via the
<group/> element:

<iq id="u4tsf153" type="set">
 <query xmlns="jabber:iq:roster">
 <item jid="mapbot@wonderland.lit">
 <group>Bots</group>
 </item>
 </query>
</iq>

When one of your connected clients modifies the roster (e.g., by adding a new contact
or changing the group for a particular item), the server then pushes that change to all
of your connected clients by sending an IQ-set containing only that item to each re-
source. This IQ-set, called a roster push, enables all of the resources to remain
synchronized:

<iq from="alice@wonderland.lit"
 id="vzx274k7"
 to="alice@wonderland.lit/rabbithole"
 type="set">
 <query xmlns="jabber:iq:roster">
 <item jid="mapbot@wonderland.lit">
 <group>Bots</group>
 </item>
 </query>
</iq>

Presence and Rosters | 41

www.allitebooks.com

http://www.allitebooks.org

Getting Pushy
Because the server always pushes a roster change to a connected client,
the client can simply wait for and process roster pushes. This is easier
than closely monitoring incoming presence stanzas of type subscribed,
unsubscribe, and unsubscribed. It also removes the need to perform a
roster set before sending the presence subscription request (if the con-
tact doesn’t exist or denies the request, then you would need to remove
the roster item, whereas the server will automatically perform this
cleanup). Thus the use of roster pushes helps to simplify the task of
writing an XMPP client; this is consistent with the early Jabber philos-
ophy of “simple clients, complex servers,” as defined in the Protocol
Design Guidelines [XEP-0134] and described further in Chapter 12.

Finally, in enterprise and school settings, it’s not uncommon for parts of your contact
list to be centrally managed by appropriate IT staff, in which case, they might be pulled
straight out of an LDAP database or other backend storage location (e.g., when Bob in
the QA department is fired or when Alice drops the symbolic logic course, they will
automatically disappear from the relevant contact list group). However, methods for
doing so are not yet part of the standard roster functionality and tend to be specific to
particular XMPP server implementations, so talk with the developers of your favorite
open source project or commercial product.

Using Presence
In this chapter, we looked at several core features of XMPP: presence subscriptions
(which are typically bidirectional); presence notifications, such as available, away, and
unavailable; and rosters, including roster groups.

These features provide a few building blocks for XMPP applications, so let’s look at
how they are used higher up in the XMPP protocol stack, and how you might be able
to use them, too.

Presence-Based Routing
Once you know that someone or something is online, and perhaps know the priori-
ties of its resources, you can make some decisions about whether and how to deliver
information to that entity.

Some of these decisions are made by the server that handles traffic on behalf of an
account. So, to use our example of a set-top box and an office computer, a message
sent to me@myserver.tld typically would be delivered to the office resource but not the
TV resource (although some XMPP servers can be configured to deliver the message to
all resources, or at least to all resources with non-negative priority).

42 | Chapter 3: Presence

However, the sender can also make messaging decisions based on presence data. Con-
sider a workflow application, in which five different people have authority to approve
a given purchase order. If two of them are offline, one of them has only a resource with
negative priority, one of them has a resource with positive priority that is dnd, and the
last one has a resource with positive priority and no <show/> value, it might make sense
to send the approval form to both of the positive resources but not to the others. Such
presence-based messaging determinations can expedite decision-making and applica-
tion processing. (Often such addressing choices will also incorporate information about
the capabilities of each resource, as we discuss in Chapter 5.)

Access Control
In our discussion of rich presence, we observed that basic presence is an all-or-nothing
affair (either someone receives your presence information or they don’t). However,
sometimes you want more granular control over who can chat with you or who can
receive certain kinds of information (e.g., your geolocation). All of these matters es-
sentially boil down to access control. Although basic presence publishing and roster
data do not by themselves provide such access control methods, they can be used to
build such methods. In particular, the communications-blocking techniques discussed
in Chapter 4 makes use of information about both presence subscriptions and roster
groups to make access control decisions. The same is true of the Personal Eventing
Protocol, or PEP [XEP-0163], which is used to publish rich presence data, as described
in Chapter 8.

Presence As a Transport
XMPP developers try to resist the temptation to push out arbitrary information in
presence stanzas. As mentioned earlier, even though presence stanzas tend to be small,
there are a lot of them, and so presence tends to be the most bandwidth-intensive aspect
of XMPP (much more so than messaging). Therefore, it is best to keep presence stanzas
small and send them only when the client generates information that is relevant to
communication.

Terms like “small” and “relevant” are, unfortunately, vague. Couldn’t the tune I’m
listening to be relevant to communication (e.g., in an online music service)? Maybe.
But XMPP developers tend to be conservative about the payloads they include in a
presence stanza.

One exception is capabilities information—data about what XMPP features and ex-
tensions a device supports. Because there are a lot of XMPP features and extensions,
and because users want to know when, for example, a friend has plugged in a video
camera and can now engage in a video chat, it’s helpful to dynamically publish capa-
bilities data in presence. We discuss this usage in depth in Chapter 5.

Using Presence | 43

Summary
Presence lies at the core of many uses of XMPP. Indeed, the fact that your XMPP server
knows when you are online (and with which devices) is what makes real-time com-
munication possible, whether it is instant messaging, multi-user chat, just-in-time no-
tifications, or voice and video chat. As we’ve seen, your presence is broadcast only to
other people or entities you have authorized through subscription requests that you
approve. These subscription states are stored on the server in your roster, a presence-
enabled contact list that is the central focus of instant messaging applications. This
chapter also provided an overview of specific availability states, presence priorities,
directed presence, and how presence is propagated on the network. In upcoming chap-
ters, we will see how presence is used to interact with XMPP chat rooms; dynamically
advertise device capabilities; and enable advanced personal eventing and “lifestream-
ing” applications, such as microblogging, location sharing, and social music services.

44 | Chapter 3: Presence

CHAPTER 4

Instant Messaging

I Think, Therefore IM
The initial goal of the early Jabber project, well before the protocol was named XMPP,
was to create an open Instant Messaging (IM) platform. Although IM is often thought
of as person-to-person chat, at its core it really provides the ability to quickly route
messages from one place to another over the network (no matter who or what the
intended recipient is). For this reason, XMPP servers are optimized for handling large
numbers of relatively small messages with very little latency. When you are exchanging
instant messages, you don’t want to experience any delivery delays (which can be al-
most as annoying in IM as they are on the phone).

In XMPP, messages are delivered as fast as possible over the network. Let’s say that
Alice sends a message from her new account on the wonderland.lit server to her sister
on the realworld.lit server. Her client effectively “uploads” the message to
wonderland.lit by pushing a message stanza over a client-to-server XML stream. The
wonderland.lit server then stamps a from address on the stanza and checks the to ad-
dress in order to see how the stanza needs to be handled (without performing any deep
packet inspection or XML parsing, since that would eat into the delivery time). Seeing
that the message stanza is bound for the realworld.lit server, the wonderland.lit server
then immediately routes the message to realworld.lit over a server-to-server XML
stream (with no intermediate hops). Upon receiving the message stanza, the
realworld.lit server checks to see whether Alice’s sister is online; if so, the server
immediately delivers the message to one or more of her online devices over a server-to-
client XML stream (without storing it or otherwise performing much processing on it).
As a result, the message is delivered very quickly from Alice to her sister.

These design decisions have important implications. First and foremost, the clients and
servers need to be event-driven and ready to take appropriate action whenever they
receive an incoming stanza. XMPP servers don’t have the luxury of storing a message
and waiting for a client to poll for it; instead, they deliver the message as soon as they
receive it. Second, all entities (but especially the servers) need to be presence-aware,
since it is the concept of being online that makes rapid delivery possible in the crucial

45

“last mile” between the recipient’s server and the recipient’s device(s). Third, fast and
accurate handling of DNS lookups, domain name resolution, long-lived TCP connec-
tions, connectivity outages, and network congestion is critical to the success of the
overall system.

Several types of XMPP messages exist, fundamentally differentiated by the value of the
type attribute:

normal
This message type is delivered immediately or stored offline by the server, and
handled by the client as a “standalone” message outside of any chat or groupchat
session. This is the default message type.

chat
Messages of type chat are sent within a burst of messages called a “chat session,”
usually over a relatively short period of time. Instant messaging clients show such
messages in a one-to-one conversation interface for the two parties.

groupchat
XMPP servers usually route messages of type groupchat to a specialized component
or module that hosts multi-user chat rooms, and this component then generates
one outbound message for each of the room occupants. (We discuss groupchat
messages in Chapter 7.)

headline
Headline messages usually are not stored offline, because they are temporal in
nature. In addition, XMPP servers often send a message of type headline to all of
the online devices associated with an account (at least those with non-negative
<priority/> values).

error
A message of type error is sent in response to a previously sent message, to indicate
that a problem occurred in relation to the earlier message (the recipient does not
exist, message delivery is not possible at the moment, etc.).

Both chat and normal messages are usually handled by the recipient’s server in a par-
ticular way: if the message is addressed to the bare JID (user@domain.tld) of the account,
the server immediately delivers the message to the highest-priority resource currently
associated with the account. If there is only one online resource, this decision is easy,
but if there are multiple online resources, the recipient’s server delivers the message to
the resource with the largest value for its presence priority. For example, a resource
with a presence priority of 7 will receive messages addressed to the bare JID, but another
resource with a presence priority of 3 will not. (Resources with negative priority will
never receive a message sent to the bare JID, but all resources will receive a message
addressed to the full JID of that resource.)

Finally, although XMPP technologies put a premium on near real-time data delivery,
almost all XMPP servers include support for “offline messages” if the intended recipient
is not online when the server receives a normal or chat message addressed to that

46 | Chapter 4: Instant Messaging

JabberID. These messages are automatically pushed to the recipient’s client when the
user next logs in. When the recipient’s server pushes out the offline message, it also
adds a small extension noting when the message was originally received, using the
protocol extension defined in Delayed Delivery [XEP-0203]. This enables the recipient’s
client to properly order the messages it receives in a user interface.

Chat Sessions
When two people “IM” with each other, the conversation usually happens in a burst
of messages over a short period of time. This pattern mimics real life, where you might
chat with someone for 5 or 10 minutes when you meet them on the street or talk on
the phone, but not chat with them again for a week or two. In XMPP, we call this kind
of burst a chat session, and you can see an example of such a session in Figure 4-1.

Figure 4-1. A chat session consists of a “burst” of messages sent over a short period of time

XMPP chat sessions are not formally negotiated but proceed naturally. The entity that
initiates the conversation sends a message to the bare JID of the responder, and this
message is stamped by the initiator’s server with the full JID of the initiator. When the
responder sends a reply, it too is stamped by the recipient’s server with the full JID of
the responder. At this point, the initiator knows the responder’s full JID and the res-
ponder knows the initiator’s full JID, so the parties have “locked in” to each other’s
XMPP resource identifiers. Each party now addresses stanzas to the full JID of the other

Chat Sessions | 47

party when sending subsequent messages, until and unless receiving a presence change
from the other party (which might trigger resending a message to the bare JID).

The features we discuss in the following sections all relate in one way or another to
instant messaging, and to chat sessions in particular: chat state notifications tell you
whether your conversation partner is actively engaged; XHTML lets you add a bit of
dash and style to your messages; vCards enable you to learn something about the people
you chat with; and blocking and filtering help you avoid unpleasant conversations with
some of the unsavory characters you might meet online.

Are You There? Chat State Notifications
Consider the following IM conversation between you and your nine-year-old daughter:

You: Hi honey!

She: Hi

You: How was school today?

She: Great

This is the moment where she starts typing about all the great and exciting things she
learned about. Unfortunately, her typing skills aren’t at the 80 words per minute you’re
hitting. While she’s composing her answer, you assume that she’s not in the mood to
talk about school right now, so you continue the conversation:

You: Did you visit grandma this afternoon? What did she tell you?

Now you’re waiting for an answer. In the meantime, your daughter has been typing
away about her day at school. After a while, she decides to pause composing her answer
to your first question, and looks up from the keyboard she’d been concentrating on for
the past few minutes. She now sees that you have already moved on from the previous
question, so she’s left with the choice to delete everything she wrote so far, send half
of the answer she wanted to send and move on, or just continue typing (thus slowing
the conversation down even further). She bites the bullet, deletes everything she wrote
so far, and moves on:

She: Yes, I did

Now, you’re waiting for the second part of the answer as to what grandma told her.
After waiting for two minutes, you wonder whether she’s just typing slowly, or she just
missed the fact that you asked a second question. So, just to be sure, you repeat the
question:

You: And?

It turns out that she started writing the answer, but suddenly had to go downstairs to
answer the phone. So, she comes back, and finishes the answer:

She: Everything was fine. I have to go do my homework now.

48 | Chapter 4: Instant Messaging

Since the answer wasn’t coming immediately, you decided to do something else while
waiting for it. When switching back, you notice that your daughter wants to finish the
conversation, so you’ll have to say goodbye. Or, wait, maybe she finished it already,
and started doing her homework, in which case you don’t really want to distract her.

The problem with this (fairly common) scenario is that neither of you know anything
about the other person’s activity level with regard to the conversation. The exact same
conversation over the phone would have been a lot less awkward: it would have been
easy to tell whether the other person was answering your question or not, and the sound
of a dial tone would leave no doubt that the conversation was actually finished. In order
to avoid the inconvenient situations like the preceding conversation, you need the no-
tion of chat states in your IM system, as defined in Chat State Notifications [XEP-0085].

Chat states describe your involvement with a conversation, which can be one of the
following:

Starting
Someone started a conversation, but you haven’t joined in yet.

Active
You are actively involved in the conversation. You’re currently not composing any
message, but you are paying close attention.

Composing
You are actively composing a message.

Paused
You started composing a message, but stopped composing for some reason.

Inactive
You haven’t contributed to the conversation for some period of time.

Gone
Your involvement with the conversation has effectively ended (e.g., you have closed
the chat window).

During the conversation, your chat state will most likely change: after composing a
message while in the composing state, you will become active while waiting for a reply
to your message. However, it does not always make sense to go from one specific state
to another one. For example, from composing a message, you can’t really become in-
active for a long period without pausing for at least a short time. Figure 4-2 shows the
possible transitions between chat states.

Are You There? Chat State Notifications | 49

Changing state in a conversation is done by embedding the corresponding chat state
element into a message stanza. For example, the mother-daughter conversation would
start off like this:

<message from="you@yourdomain.tld/work"
 to="daughter@yourdomain.tld"
 type="chat">
 <body>Hi honey!</body>
 <active xmlns="http://jabber.org/protocol/chatstates"/>
</message>

By adding the <active/> element to your message, you indicate that you are actively
engaged with the conversation. Your daughter starts typing her response, so her client
sends you a chat state update by adding a <composing/> element to an empty message:

<message from="daughter@yourdomain.tld/home"
 to="you@yourdomain.tld/work"
 type="chat">
 <composing xmlns="http://jabber.org/protocol/chatstates"/>
</message>

Shortly after the notification, the actual message comes in, making her an active par-
ticipant of the conversation again:

<message from="daughter@yourdomain.tld/home"
 to="you@yourdomain.tld/work"
 type="chat">
 <body>Hi</body>
 <active xmlns="http://jabber.org/protocol/chatstates"/>
</message>

The conversation goes on for a while, up to the point where you ask her about grandma:

<message from="you@yourdomain.tld/work"
 to="daughter@yourdomain.tld/home"

Figure 4-2. The transitions between chat states are well defined

50 | Chapter 4: Instant Messaging

 type="chat">
 <body>Did you visit grandma this afternoon? What did she tell you?</body>
 <active xmlns="http://jabber.org/protocol/chatstates"/>
</message>

<message from="daughter@yourdomain.tld/home"
 to="you@yourdomain.tld/work"
 type="chat">
 <composing xmlns="http://jabber.org/protocol/chatstates"/>
</message>

This is where she suddenly stops typing to go answer the phone, and so after a few
seconds, her client notifies you of that fact by sending you a <paused/> notification:

<message from="daughter@yourdomain.tld/home"
 to="you@yourdomain.tld/work"
 type="chat">
 <paused xmlns="http://jabber.org/protocol/chatstates"/>
</message>

After a while, she resumes her answer:

<message from="daughter@yourdomain.tld/home"
 to="you@yourdomain.tld/work"
 type="chat">
 <composing xmlns="http://jabber.org/protocol/chatstates"/>
</message>

Finally, skipping to the end of the conversation, she sends her goodbye and closes
her chat window:

<message from="daughter@yourdomain.tld/home"
 to="you@yourdomain.tld/work"
 type="chat">
 <body>Everything was fine. I have to go do my homework now.</body>
 <active xmlns="http://jabber.org/protocol/chatstates"/>
</message>

<message from="daughter@yourdomain.tld/home"
 to="you@yourdomain.tld/work"
 type="chat">
 <gone xmlns="http://jabber.org/protocol/chatstates"/>
</message> s

The person you are communicating with may not always be interested in receiving
notifications about your chat state. For example, when she is using her mobile phone
for IM, she would rather save on the usage of the limited network capacity, at the price
of not being able to see when you are typing. In order to discover whether the other
party is interested in your chat state, you start the conversation as usual, by adding an
<active/> element to your message. If the reply comes back without any chat state
information, you have to assume that the other person either does not know how to
handle chat state updates, or does not want to receive them. From then on, you both
continue the conversation, without adding any chat state information to your subse-
quent messages. (Naturally, if you know that the other party does not support the chat

Are You There? Chat State Notifications | 51

www.allitebooks.com

http://www.allitebooks.org

states protocol, you would leave off the notifications entirely. We talk about ways to
discover support for various protocol extensions in Chapter 5.)

Another reason why you may not want to send chat state notifications is privacy. You
may not want other people to know when you are physically using your IM client
(information that chat state notifications would reveal). However, it does not always
have to be as drastic as disabling all types of notifications. You could configure your
client to send only basic chat state information (i.e., whether you are active or com-
posing), and not send any information about more fine-grained states, such as paused,
inactive, or gone. This basic information would only reveal whether you started
composing an answer or not, and leave out any hints to whether you physically went
away from your IM client, or reconsidered talking and closed the conversation.

So far, we have talked about chat state notifications only in the context of one-to-one
conversations. To a certain degree, chat state notifications can be useful inside multi-
party chats as well (we talk about groupchat in Chapter 7). However, note that if the
number of participants starts growing, the total number of notifications sent will in-
crease drastically as well.

Looks Matter: Formatted Messages
Some folks think plain-text messages are boring. For example, let’s say you are really
excited about a new movie that you just watched, so you send a message to your friend:

You: I love this movie I saw last night, it’s awesome!

If you said that over the phone or in person, you’d probably emphasize some of the
words:

You: I love this movie I saw last night, it’s awesome!

One way to represent that kind of emphasis is by using some special characters in the
plain text:

You: I /love/ this movie I saw last night, it’s *awesome*!

That’s a bit of a kludge, though. Thankfully, XMPP enables you to customize the look
or presentation of messages, using a subset of HTML as defined in XHTML-IM
[XEP-0071]:

<message from="you@yourdomain.tld/home"
 to="friend@theirdomain.tld"
 type="chat">
 <body>I love this movie I saw last night, it's awesome!</body>
 <html xmlns="http://jabber.org/protocol/xhtml-im">
 <body xmlns="http://www.w3.org/1999/xhtml">
 <p>
 I love, this new movie I saw last night,
 it's awesome!
 </p>
 </body>

52 | Chapter 4: Instant Messaging

 </html>
</message>

As you can see, your client sends the plain-text message body plus the marked-up ver-
sion. That way, if your friend is using a client that doesn’t understand XHTML
markup, the key content of the message still gets through.

Although we formatted the italics and bold text using the XHTML and
 elements, you can also format text using Cascading Style Sheets (CSS). This en-
ables you to include a number of popular stylistic formats, including colors, font
families, text sizes, font weights (e.g., bold) and styles (e.g., italic), margins, text align-
ment (e.g., center), and text decoration (e.g., underline).

The XHTML-IM subset also provides support for some of the core HTML presentation
features, including numbered and unordered lists, hypertext links, and images.

Missing from that list are more advanced HTML features such as tables and media
objects, as well as anything that normally goes in the <HEAD> tag of an HTML document,
such as scripts. This is intentional, because some of these features could be used to
include malicious code (yes, the designers of XMPP are always thinking hard about
security!). Instead, XHTML-IM is focused on a simple subset of HTML features that
can be used for lightweight presentation in the context of rapid-fire chat conversations.
Even so, XMPP clients should exercise caution about receiving XHTML-formatted
messages from unknown entities, since even the inclusion of image references could
introduce security vulnerabilities. One such preventive measure is to accept XHTML-
IM formatting only from people in your roster.

Who Are You? vCards
Sometimes you want to find out more information about the people you chat with.
Perhaps someone has sent you a message out of the blue or asked to subscribe to your
presence information. Before you continue the conversation or approve the subscrip-
tion request, you wonder to yourself: just who is this person?

Don’t worry, XMPP has you covered. The extension we’re interested in here is called
vCard-temp [XEP-0054], and enables you to publish a kind of electronic business card
called a vCard, and to retrieve vCards that other people have published.

The vCard standard (originally published in vCard MIME Directory Profile [RFC
2426]) defines many of the basic data fields you might want to advertise, including your
name, nickname, address, phone and fax number, company affiliation, email address,
birthday, a pointer to your website, a photo of you, and even your PGP key. You don’t
have to publish any of that information if you don’t want to, but doing so enables people
to find out more about you, which can grease the wheels of communication.

So let’s say that Alice in Wonderland sends an unsolicited message to a poor, hapless
mouse:

Who Are You? vCards | 53

<message from="alice@wonderland.lit/pda"
 to="mouse@wonderland.lit">
 <body>O Mouse, do you know the way out of this pool?</body>
</message>

Before replying, the mouse might check Alice’s vCard by sending an IQ-get to her
JabberID:

<iq from="mouse@wonderland.lit/pool"
 id="pw91nf84"
 to="alice@wonderland.lit"
 type="get">
 <vCard xmlns="vcard-temp"/>
</iq>

Because the request was sent to Alice’s bare JID, Alice’s server replies on her behalf:

<iq from="alice@wonderland.lit"
 id="pw91nf84"
 to="mouse@wonderland.lit/pool"
 type="result">
 <vCard xmlns="vcard-temp">
 <N>
 <GIVEN>Alice</GIVEN>
 </N>
 <URL>http://wonderland.lit/~alice/</URL>
 <PHOTO>
 <EXTVAL>http://www.cs.cmu.edu/~rgs/alice03a.gif</EXTVAL>
 </PHOTO>
 </vCard>
</iq>

As a result, the mouse can at least visit Alice’s website and view a picture of her before
continuing the chat. Naturally, all of the data in a vCard can be faked, so it pays to take
any given vCard result with a grain of salt. But in many situations, it’s better than
nothing!

To update your vCard, send an IQ-set to your server. Here Alice adds an email address
and uploads the entire vCard to her server (no, it’s not possible to upload only a “diff,”
as the vCard-temp specification does not provide for that feature):

<iq from="alice@wonderland.lit/pda"
 id="w0s1nd97"
 to="alice@wonderland.lit"
 type="set">
 <vCard xmlns="vcard-temp">
 <N>
 <GIVEN>Alice</GIVEN>
 </N>
 <URL>http://wonderland.lit/~alice/</URL>
 <PHOTO>
 <EXTVAL>http://www.cs.cmu.edu/~rgs/alice03a.gif</EXTVAL>
 </PHOTO>
 <EMAIL><USERID>alice@wonderland.lit</USERID></EMAIL>
 </vCard>
</iq>

54 | Chapter 4: Instant Messaging

Is vCard Really “temp”?
The vCard format used by the early Jabber developers was derived from
an experimental XML representation of the official vCard format. Re-
cently, the IETF has begun work on a more modern and stable approach
to XML vCards, and it is possible that the XMPP community will adopt
that standard instead of using vCard-temp (which has been “temp”
since 1999!).

Talk to the Hand: Blocking and Filtering Communication
Lots of people use XMPP-based IM services (probably over 50 million of them, although
we have no way of knowing, because XMPP is a distributed, decentralized technology).
But you might not want to chat with them all. In fact, you might want to actively block
a certain person from chatting with you—say, your old boss, a childhood enemy, or
that weird guy you met in a chat room last week.

Because the XMPP developers care about privacy, they have defined an extension for
communications blocking (defined in Privacy Lists [XEP-0016]), as well as a stripped-
down interface to privacy lists (defined in Simple Communications Blocking
[XEP-0191]).

First we’ll look at simple communications blocking because it’s, well, simple.

Blocking: The Simple Approach
Let’s say you want to block communications from your old boss at BigCompany.com.
It’s easy enough to do if your server supports simple communications blocking—just
send an appropriate IQ-set:

<iq from="you@yourdomain.tld/newjob"
 id="yu4er81v"
 to="you@yourdomain.tld"
 type="set">
 <block xmlns="urn:xmpp:blocking">
 <item jid="boss@bigcompany.com"/>
 </block>
</iq>

Now, what does blocking boss@bigcompany.com mean exactly?

First of all, you want to appear offline to your old boss. When you add the block rule
for that JabberID, your server sends out an unavailable presence packet, so that your
old boss sees you go offline. From then on, whenever you update your presence (e.g.,
by coming online), the associated presence stanzas will not be sent to boss@bigcom
pany.com (as far as he is concerned, it’s as if you never log in anymore).

Second, your server needs to make sure that your old boss cannot find out that you are
online in any other way. This means that your server will respond to every incoming
IQ-get or IQ-set with a <service-unavailable/> error, ignore any incoming

Talk to the Hand: Blocking and Filtering Communication | 55

<message/> message (or, again, return a <service-unavailable/> error), and drop any
incoming <presence/> stanza.

Finally, your server needs to prevent you from doing something daft, like sending a
message or IQ request to your old boss, so it will reply to any outbound stanza intended
for boss@bigcompany.com with a <not-acceptable/> error.

You can also block entire domains. Let’s say that you have started to receive unsolicited
messages from a rogue server on the XMPP network (perhaps spammers.lit). You can
block messages from any JabberID at that domain by setting another block rule:

<iq from="you@yourdomain.tld/newjob"
 id="i3s91xc3"
 to="you@yourdomain.tld"
 type="set">
 <block xmlns="urn:xmpp:blocking">
 <item jid="spammers.lit"/>
 </block>
</iq>

Now when you retrieve your “block list,” you will see two items:

<iq from="you@yourdomain.tld/newjob"
 id="92h1nv8f"
 to="you@yourdomain.tld"
 type="get">
 <blocklist xmlns="urn:xmpp:blocking"/>
</iq>

<iq from="you@yourdomain.tld"
 id="92h1nv8f"
 to="you@yourdomain.tld/newjob"
 type="result">
 <blocklist xmlns="urn:xmpp:blocking">
 <item jid="boss@bigcompany.com"/>
 <item jid="spammers.lit"/>
 </blocklist>
</iq>

In simple communications blocking, it is also straightforward to unblock someone.
Simply send an IQ-set with the JabberID contained in an <unblock/> element instead
of a <block/> element:

<iq from="you@yourdomain.tld/newjob"
 id="ng23h57w"
 to="you@yourdomain.tld"
 type="set">
 <unblock xmlns="urn:xmpp:blocking">
 <item jid="boss@bigcompany.com"/>
 </unblock>
</iq>

56 | Chapter 4: Instant Messaging

Advanced Blocking and Filtering
Sometimes you want to have more control over blocking and filtering rules than simple
communications blocking will give you. For example, when you are using your mobile
phone to log into your IM server, you don’t want to receive status updates from your
200 coworkers, as this would clog up your very limited bandwidth. On the other hand,
you do want to receive the occasional messages they send you. Moreover, you also don’t
want to block all incoming presence packets, as you want to know which members of
your family are online, so you can chat with them before leaving on an overseas trip.
Thus you need a finer-grained protocol for controlling your traffic filtering rules.

Here, again, XMPP comes to the rescue. Whereas simple communications blocking
used a basic block list, the full-featured privacy protocol uses a more advanced privacy
list. A privacy list is a list of rules that are matched against all traffic, both incoming
and outgoing. If one of the rules matches an outgoing packet, the associated action of
the rule is applied on the packet. For example, consider the following privacy list:

<list name="mylist">
 <item type="jid" value="boss@bigcompany.com" action="deny" order="1">
 <iq/>
 <message/>
 <presence-out/>
 </item>
 <item type="group" value="Work" action="deny" order="2">
 <presence-in/>
 </item>
 <item action="allow" order="3"/>
</list>

Let’s see how to parse this into plain English:

• An incoming message from boss@bigcompany.com would match the first rule. There-
fore, if your server receives an IQ or message stanza from your old boss, it will
discard the stanza or return an error.

• However, if your server receives a presence stanza from your old boss, that stanza
is not matched by the first privacy rule, so your server proceeds to the next rule.
Since you don’t work with your old boss anymore, he is not in the “Work” group
of your roster. Therefore, your server proceeds to the next (and, in this case, final
rule). Lo and behold, the inbound presence stanza matches the final rule, so your
server allows the stanza through. Now you can see when your old boss is online,
but he can’t communicate with you!

The possible combinations of particular privacy rules provide a powerful tool for
allowing and blocking communication, because your privacy list can include an un-
limited number of privacy rules in any specified order (each identified by an <item/>
element, as shown earlier). The action for any given rule is either allow or deny, and the
rule type processes stanzas based on a specific or wildcard JabberID, on a roster group
name, or on a presence subscription state. Finally, stanzas are matched based on

Talk to the Hand: Blocking and Filtering Communication | 57

whether they are messages, inbound presence notifications (i.e., not including
subscription-related presence stanzas), outbound presence notifications, IQs, or all
stanzas (including subscription-related stanzas). In practice, these more advanced
block and allow methods provide basic filtering instead of just simple blocking (al-
though at the price of greater complexity).

More Messaging Extensions
This chapter provided an overview of various messaging-related extensions in XMPP.
But not all of them! Here is a quick look at a few more. Refer to the specifications for
all the details, and make sure you check for support in your favorite client, server, or
library, because some of these are not yet widely implemented:

• Extended Stanza Addressing [XEP-0033] lets you send a single message to multiple
recipients at the same time, without using a dedicated chat room.

• Advanced Message Processing [XEP-0079] provides a way to control the delivery of
a message; examples include message expiration and preventing messages from
being stored offline for later delivery.

• Message Receipts [XEP-0184] do just what you would expect it to do based on the
title: they provide an end-to-end mechanism for determining whether the intended
recipient has indeed received a message (by contrast, Advanced Message Process-
ing notifications are generated by servers, not clients).

• Message Archiving [XEP-0136] defines a technology for storing messages on your
server instead of archiving them to your local machine. There are many scenarios
in which this is helpful: perhaps you are using a web client that does not have local
storage, the device you are using (e.g., a PDA or mobile phone) has limited storage
capacity, or you move between different devices quite a bit and you want all of
your message history in one place.

Summary
Instant messaging is not only the most visible application of the ability to quickly route
data from one point to another, but it is also the most popular (with over 50 million
XMPP users worldwide). IM interactions usually take the form of chat sessions: short
bursts of messages exchanged between two parties. The XMPP extension for chat state
notifications provides support for chat sessions by communicating up-to-date infor-
mation about the involvement of one’s conversation partner in the discussion. In
XMPP, XHTML is used to provide user-friendly formatting, such as bold, italics, and
colored text. Furthermore, vCards enable you to find out more about people you might
want to chat with, and privacy lists can prevent unwanted communication from other
entities. The XMPP developer community continues to work XMPP extensions that
will optimize the IM experience.

58 | Chapter 4: Instant Messaging

CHAPTER 5

Discovering the World

Throughout this book, we talk about many varieties of XMPP entities: servers, clients,
bots, chat rooms, pubsub nodes, etc. On the public XMPP network, all of these entities
come in multiple flavors. For instance, there are at least half a dozen popular XMPP
server implementations, and many more XMPP clients for just about every device and
operating system. Furthermore, there are hundreds of possible features that an XMPP
entity can support, including standardized protocols (to which the XMPP Standards
Foundation is always adding), user-configurable options, client plug-ins, server mod-
ules, and more. And let’s not forget that many of these software projects are quite active,
frequently releasing updated versions.

This diversity is tremendously powerful, but it raises two important questions:

1. How can you learn what entities are out there on the network?

2. Once you find them, how can you determine which XMPP features they support?

To answer these questions, you need service discovery (often called “disco” by XMPP
developers).

When might you want to use service discovery? You might be learning a foreign lan-
guage, so you want to find a chat room where you can practice; you might be interested
in using a specific publish-subscribe mechanism, so you want to discover a pubsub
service where that mechanism is supported; you might like to figure out whether one
of your friends or colleagues has video chat capabilities; you might even want to an-
nounce to all your contacts that you’re interested in finding out what music they’re
listening to. All of these tasks (and more) can be completed using the techniques dis-
cussed in this chapter.

Items and Info
The XMPP service discovery protocol defined in [XEP-0030] provides two basic dis-
covery methods. The first, known as disco#items, enables you to discover entities. The
second, known as disco#info, enables you to discover which features a given entity
supports. Let’s look at each of these in turn.

59

It does you no good to discover features unless you have first discovered some entities.
A client always knows about at least one entity: the server it connects to. And since
XMPP servers typically host additional entities such as pubsub topics and multi-user
chat rooms, clients often need to discover those additional entities. Such discovery
happens using the disco#items half of the XMPP service discovery protocol by sending
an IQ-get to the server. Here, the Mad Hatter queries the wonderland.lit server:

<iq from="hatter@wonderland.lit/home"
 id="xl391n47"
 to="wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#items"/>
</iq>

That command means “please send me all the items that are associated with
wonderland.lit; the server then replies with a list of associated entities, which the client
tracks by the value of the id attribute:

<iq from="wonderland.lit"
 id="xl391n47"
 to="hatter@wonderland.lit/home"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#items">
 <item jid="conference.wonderland.lit"/>
 <item jid="notify.wonderland.lit"/>
 </query>
</iq>

The only two associated entities in this case are conference.wonderland.lit and
notify.wonderland.lit. But what are these entities? What features do they support? To
find out, the Mad Hatter needs to query each one individually using the disco#info
method. Here the Mad Hatter queries the conference.wonderland.lit service:

<iq from="hatter@wonderland.lit/home"
 id="gq02kb71"
 to="conference.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#info"/>
</iq>

The XML element for both the items request and the info request is <query/>, but
the requests are differentiated by the XML namespace: the items request is qualified
by the http://jabber.org/protocol/disco#items namespace, whereas the info re-
quest is qualified by the http://jabber.org/protocol/disco#info namespace.

Now, the conference.wonderland.lit service returns some information about itself.
(Web developers can think of this as similar to the results returned in the HTTP Accept,
Accept-Charset, Accept-Encoding, Accept-Language, and Accept-Ranges response head-
ers, except that the disco#info response is more extensible.)

<iq from="conference.wonderland.lit"
 id="gq02kb71"
 to="hatter@wonderland.lit/home"

60 | Chapter 5: Discovering the World

 type="result">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <identity category="conference" type="text" name="Chatrooms"/>
 <feature var="http://jabber.org/protocol/muc"/>
 <feature var="jabber:iq:register"/>
 <feature var="vcard-temp"/>
 </query>
</iq>

By interpreting the XML in the foregoing example, the Mad Hatter learns that
wonderland.lit hosts a service conference.wonderland.lit, which provides a text con-
ferencing service that supports the Multi-User Chat protocol (the http://jabber.org/
protocol/muc namespace defined in [XEP-0045]), in-band registration of usernames
(the jabber:iq:register namespace defined in [XEP-0077]), and component vCards
(the vcard-temp namespace defined in [XEP-0054]).

What’s Your Identity?
In most uses of service discovery, we’re mainly interested in the partic-
ular features that another entity supports. The <identity/> element
provides a more general clue about what kind of entity this is. The first
discovery protocol used in the XMPP community, called “Agent Infor-
mation” (see the historical [XEP-0094]), did not disclose detailed fea-
tures, but did advertise basic identities, which is why the modern service
discovery protocol includes identities as well. (In fact, an entity can ad-
vertise multiple identities at the same time, such as a groupchat serv-
ice that is simultaneously a native XMPP Multi-User Chat service and a
gateway to Internet Relay Chat.)

Using Service Discovery with Servers and Services
The disco#items and disco#info methods are typically used together to “walk the tree”
of entities. Consider a typical sequence:

1. Send a disco#items query to the wonderland.lit server, discovering (among others)
the conference.wonderland.lit service.

2. Send a disco#info query to the conference.wonderland.lit room, in order to dis-
cover that the conference.wonderland.lit service is a multi-user chat service.

3. Send a disco#items query to the conference.wonderland.lit service, discovering
(among others) the tea@conference.wonderland.lit room.

4. Send a disco#info query to the tea@conference.wonderland.lit room to find out
more information about the room (e.g., its name, natural language, and other con-
figuration options).

5. Send a disco#items query to the tea@conference.wonderland.lit service, discov-
ering the tea@conference.wonderland.lit/alice user.

Using Service Discovery with Servers and Services | 61

Clearly, quite a bit of back-and-forth is needed to generate a complete picture of an
entity hierarchy. In common usage, a client would not walk the entire tree automati-
cally. Instead, it would not go beyond the first few queries unless the user requests
detailed information about, say, a particular chat room and its users.

What follows is the full sequence just outlined.

First, query the wonderland.lit server for its associated items:

<iq from="hatter@wonderland.lit/home"
 id="ris71b37"
 to="wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#items"/>
</iq>

<iq from="wonderland.lit"
 id="ris71b37"
 to="hatter@wonderland.lit/home"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#items">
 <item jid="conference.wonderland.lit"/>
 <item jid="notify.wonderland.lit"/>
 </query>
</iq>

Second, query the conference.wonderland.lit service to see what kind of entity it is:

<iq from="hatter@wonderland.lit/home"
 id="hs82bd67"
 to="conference.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#info"/>
</iq>

<iq from="conference.wonderland.lit"
 id="hs82bd67"
 to="hatter@wonderland.lit/home"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <identity category="conference" type="text" name="Chatrooms"/>
 <feature var="http://jabber.org/protocol/muc"/>
 <feature var="jabber:iq:register"/>
 <feature var="vcard-temp"/>
 </query>
</iq>

Third, query the conference.wonderland.lit service for its associated items:

<iq from="hatter@wonderland.lit/home"
 id="skf81ga8"
 to="conference.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#items"/>
</iq>

62 | Chapter 5: Discovering the World

<iq from="conference.wonderland.lit"
 id="skf81ga8"
 to="hatter@wonderland.lit/home"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#items">
 <item jid="pool@conference.wonderland.lit"/>
 <item jid="tea@conference.wonderland.lit"/>
 </query>
</iq>

Fourth, query a particular conference room for its information:

<iq from="hatter@wonderland.lit/home"
 id="ow8x71b6"
 to="tea@conference.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#info"/>
</iq>

The room then returns a list of its configured features, such as the fact that it is public
(anyone can discover it), persistent (it won’t go away when the last person leaves), open
(anyone can join it), semi-anonymous (only the room admins can find out your real
JabberID), unmoderated (new users have voice), and unsecured (no password is re-
quired to join). Here, the room also provides additional information about itself by
including a data form of the kind we discuss in Chapter 6 (this extension mechanism
for service discovery is defined in [XEP-0128]):

<iq from="tea@conference.wonderland.lit"
 id="ow8x71b6"
 to="hatter@wonderland.lit/home"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <identity category="conference" type="text" name="The Tea Room"/>
 <feature var="http://jabber.org/protocol/muc"/>
 <feature var="muc_public"/>
 <feature var="muc_persistent"/>
 <feature var="muc_open"/>
 <feature var="muc_semianonymous"/>
 <feature var="muc_unmoderated"/>
 <x xmlns="jabber:x:data" type="result">
 <field type="hidden" var="FORM_TYPE">
 <value>http://jabber.org/protocol/muc#roominfo</value>
 </field>
 <field label="Number of occupants" var="muc#roominfo_occupants">
 <value>4</value>
 </field>
 </x>
 </query>
</iq>

Furthermore, querying a conference room with the disco#items namespace may return
a list of JIDs in the room, as shown in the following examples:

Using Service Discovery with Servers and Services | 63

<iq from="hatter@wonderland.lit/home"
 id="ac4cf"
 to="tea@conference.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#items"/>
</iq>

<iq from="tea@conference.wonderland.lit"
 id="ac4cf"
 to="hatter@wonderland.lit/home"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#items">
 <item name="Alice" jid="tea@conference.wonderland.lit/Alice"/>
 <item name="Hare" jid="tea@conference.wonderland.lit/Hare"/>
 <item name="Hatter" jid="tea@conference.wonderland.lit/Hatter"/>
 <item name="Dormouse" jid="tea@conference.wonderland.lit/Dormouse"/>
 </query>
</iq>

Using Service Discovery with Clients
When it comes to discovering the capabilities of other clients on the network, there are
two tools at your disposal: explicit service discovery of the kind we’ve already discussed,
and a kind of service discovery shorthand that is advertised in XMPP presence notifi-
cations. We’ll look at each of these in turn.

Explicit Service Discovery
In the last section, we said that a client always knows about at least one entity: its server.
Yet we’ve also seen that usually a client knows about some other entities: the items in
its roster. What can those entities do?

Presence plays an important part in helping us find out. As you may recall from Chap-
ter 3, when a client goes online, its server sends presence probes to each of the user’s
contacts. The server for each contact then returns information about the available re-
sources for that contact. This information is not a service discovery list, but a series of
presence stanzas, such as the following presence notifications that Alice’s sister receives
when she logs in:

<presence from="alice@wonderland.lit/rabbithole"
 to="sister@realworld.lit"/>

<presence from="alice@wonderland.lit/party"
 to="sister@realworld.lit"/>

<presence from="friend@school.lit/laptop"
 to="sister@realworld.lit"/>

64 | Chapter 5: Discovering the World

Disco and Presence
Presence helps here because in order to exchange IQ stanzas with an-
other user, you need to know the person’s full JID (user@domain.tld/
resource). Because presence notifications come from the full JID, they
are essentially a kind of push format for the data you would need to poll
for via the disco#items namespace for each of your contacts.

Now let’s say that Alice’s sister wants to find out what each of Alice’s devices can do
(this kind of information can be used to populate a drop-down box of possible actions,
such as “send a file” or “start voice chat”). To find out, she sends a disco#info request
to each of Alice’s resources:

<iq from="sister@realworld.lit/home"
 id="p982bs61"
 to="alice@wonderland.lit/rabbithole"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#info"/>
</iq>

<iq from="sister@realworld.lit/home"
 id="sc374g15"
 to="alice@wonderland.lit/party"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#info"/>
</iq>

For each of Alice’s resources, she receives a reply telling her what features are supported:

<iq from="alice@wonderland.lit/rabbithole"
 id="p982bs61"
 to="sister@realworld.lit/home"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <identity category="client" name="Exodus 0.9.1" type="pc"/>
 <feature var="http://jabber.org/protocol/caps"/>
 <feature var="http://jabber.org/protocol/disco#info"/>
 <feature var="http://jabber.org/protocol/disco#items"/>
 <feature var="http://jabber.org/protocol/muc"/>
 <feature var="jabber:iq:version"/>
 </query>
</iq>

<iq from="alice@wonderland.lit/party"
 id="sc374g15"
 to="sister@realworld.lit/home"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <identity category="client" name="Psi" type="pc"/>
 <feature var="http://jabber.org/protocol/bytestreams"/>
 <feature var="http://jabber.org/protocol/si"/>
 <feature var="http://jabber.org/protocol/si/profile/file-transfer"/>
 <feature var="http://jabber.org/protocol/disco#info"/>
 <feature var="http://jabber.org/protocol/commands"/>

Using Service Discovery with Clients | 65

 <feature var="http://jabber.org/protocol/rosterx"/>
 <feature var="http://jabber.org/protocol/muc"/>
 <feature var="jabber:x:data"/>
 <feature var="http://jabber.org/protocol/chatstates"/>
 <feature var="http://jabber.org/protocol/mood+notify"/>
 <feature var="http://jabber.org/protocol/tune+notify"/>
 <feature var="http://jabber.org/protocol/physloc+notify"/>
 <feature var="http://jabber.org/protocol/geoloc+notify"/>
 <feature var="http://www.xmpp.org/extensions/xep-0084.html#ns-metadata+notify"/>
 <feature var="http://jabber.org/protocol/xhtml-im"/>
 <feature var="urn:xmpp:tmp:sxe"/>
 <feature var="http://www.w3.org/2000/svg"/>
 </query>
</iq>

That’s a lot of namespaces! Imagine if you sent a disco#info request to everyone in your
roster, and you had 500 or 1,000 or 2,000 contacts. You’re probably thinking, “Isn’t
all that traffic going to get expensive? There must be a better way!” And there is. We
discuss it in the next section.

Entity Capabilities: Service Discovery Shorthand
The XMPP community has developed an optimized protocol for discovering supported
features, at least when you share presence (which you typically do with people in your
roster). This Entity Capabilities [XEP-0115] protocol uses presence as the transport for
a kind of shorthand service discovery notation. (In fact, just as presence itself is a spe-
cialized push version of disco#items data, the entity capabilities protocol uses the
XMPP presence “transport” to push out a shorthand notation for disco#info data.)

Entity Capabilities is based on the observation that many of the entities with which you
interact will be running the same software, and that this software changes relatively
infrequently (that is, if you see version 0.13 of the Psi client today, there’s a good chance
you’ll see it again tomorrow). Under this scheme, entities advertise the features they
support in their presence stanzas. However, it wouldn’t save any bandwidth to send
along the full list of features. Therefore, the features are concatenated and hashed into
a short verification code that uniquely identifies the current feature set. The first time
your client sees this code, it sends a standard disco#info request to find out which
features correspond to the code. The good thing is that whenever your client sees this
code in the future, it automatically knows exactly which features the person supports,
so no disco#info requests are needed, thus saving a lot of bandwidth (especially on
login).

How does this work in practice? When Alice logs in, her client concatenates and hashes
all of the features it supports and then attaches a <c/> child to the presence packet
containing the verification code in the ver attribute:

<presence from="alice@wonderland.lit/rabbithole">
 <c xmlns="http://jabber.org/protocol/caps"
 hash="sha-1"
 node="http://code.google.com/p/exodus"

66 | Chapter 5: Discovering the World

 ver="QgayPKawpkPSDYmwT/WM94uAlu0="/>
</presence>

The hash attribute identifies the hashing algorithm used (the default is SHA-1).

The node attribute identifies the software application in use by means of a URI that
provides further information about the codebase.

Both Alice’s sister and the White Rabbit receive Alice’s presence notification. Alice’s
sister has received this verification code before and her client has remembered the ca-
pabilities associated with it, so she doesn’t need to send a disco#info request to Alice.
However, this is the first time that the White Rabbit’s client has seen this verification
code, and so it sends a disco#info request to Alice’s client for the full capabilities:

<iq from="rabbit@wonderland.lit/pool"
 id="v584fak2"
 to="alice@wonderland.lit/rabbithole"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#info"
 node="http://code.google.com/p/exodus#QgayPKawpkPSDYmwT/WM94uAlu0="/>
</iq>

This query can be recognized as a standard service discovery query, with an extra
node attribute specified, constructed from the node and ver attributes of the <c/> ele-
ment. The reason for the node specification, rather than using a disco query without
the node attribute, is to prevent the possible race condition where the White Rabbit’s
client “discos” Alice, but Alice’s client has changed its capabilities before receiving the
disco request, replying with a set of capabilities that do not match the verification code.

Alice replies to the disco#info request in the usual way:

<iq from="alice@wonderland.lit/rabbithole"
 id="v584fak2"
 to="rabbit@wonderland.lit/pool"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#info"
 node="http://code.google.com/p/exodus#QgayPKawpkPSDYmwT/WM94uAlu0=">
 <identity category="client" name="Exodus 0.9.1" type="pc"/>
 <feature var="http://jabber.org/protocol/caps"/>
 <feature var="http://jabber.org/protocol/disco#info"/>
 <feature var="http://jabber.org/protocol/disco#items"/>
 <feature var="http://jabber.org/protocol/muc"/>
 </query>
</iq>

Upon receiving the response from Alice’s client, the White Rabbit’s client can cache
the result, remembering that future clients seen with the same <c/> element support
the features that Alice has advertised. The result: no need to send a flood of service
discovery requests when you log in. (The XMPP network thanks you!)

In Chapter 8, we’ll see how entity capabilities are used to optimize the processes of
discovering and subscribing to real-time information sources over the XMPP network.

Using Service Discovery with Clients | 67

Summary
Service discovery is a key building block of XMPP-based services because it is extremely
helpful to determine what entities are out there on the network and exactly which
XMPP features those entities implement. Using only the ability to find other entities
(disco#items) and to query their capabilities (disco#info), you can discover a wealth
of services on the network and discover how those services and the entities in your
roster can interact with you in real time.

68 | Chapter 5: Discovering the World

CHAPTER 6

Data Forms

The World Wide Web started out as a way to publish physics papers, and only later
gained transactional capabilities, such as electronic commerce. One of the key building
blocks that enabled this transition was the HTML <FORM> tag, which made it possible
for a website to offer an empty, but structured, form to the user and for the user to
submit a completed form to the website.

XMPP includes a very similar technology for lightweight workflows called Data
Forms, defined in [XEP-0004]. Because Data Forms are used throughout the technol-
ogies we’ll discuss in the following chapters, we introduce them now. In Chapter 11,
we build on these basic concepts to explore more advanced workflows.

Basic Structure
A data form is made up of several pieces, as shown in the following “stub” example:

<message from="sender@wonderland.lit/foo" to="receiver@wonderland.lit/bar">
 <x xmlns="jabber:x:data" type="form">
 <title>My Special Form</title>
 <instructions>Please fill in the following form</instructions>
 <field label="Text Input" type="text-single" var="field-1"/>
 <field label="Make a Choice" type="boolean" var="field-2"/>
 <field label="For Your Eyes Only" type="text-private" var="field-3"/>
 <field label="Pick One" type="list-single" var="field-4">
 <option label="First Option"><value>single-1</value></option>
 <option label="Second Option"><value>single-2</value></option>
 <option label="Third Option"><value>single-3</value></option>
 </field>
 <field label="Pick a Few" type="list-multi" var="field-5">
 <option label="First Option"><value>multi-1</value></option>
 <option label="Second Option"><value>multi-2</value></option>
 <option label="Third Option"><value>multi-3</value></option>
 <option label="Fourth Option"><value>multi-4</value></option>
 </field>
 </x>
</message>

Let’s walk through these pieces one by one.

69

First, the form is structured as an <x/> element qualified by the jabber:x:data name-
space. (Because of the namespace name, XMPP developers often refer to this technology
as “x:data.”)

The <x/> element includes a type attribute that specifies where this <x/> element lives
in the workflow. The overall flow of a data forms exchange is illustrated in Figure 6-1.

Figure 6-1. Data form interactions follow a simple workflow

The form can include both a human-readable title and human-readable instructions.

The bulk of the form consists of fields for which the user will provide values. As in
HTML forms, there are several kinds of fields. In x:data, these are differentiated by the
type attribute of the <field/> element, which can have any of the following values:

boolean
A true/false option, usually presented as a checkbox or a set of two mutually ex-
clusive radio buttons. This is similar to an <INPUT> tag of type checkbox or radio in
HTML forms. The lexical representation for a boolean field can be 0 or false for
the logical value FALSE and 1 or true for the logical value TRUE.

fixed
A field that’s presented to the user, but isn’t editable; these are used for labels and
instructions. This is similar to the <LABEL> tag in HTML forms.

hidden
Hidden fields aren’t presented to the user and aren’t usually edited. This is similar
to an <INPUT> tag of type hidden in HTML forms.

70 | Chapter 6: Data Forms

jid-multi
A list of JabberIDs, each provided in a separate value element. This is equivalent
to a specialized list-multi (explained later).

jid-single
A single valid JabberID. This is equivalent to a specialized list-single (explained
later).

list-multi
A field that allows multiple selections from a list. This is similar to the <SELECT> tag
in HTML forms with the multiple attribute set to TRUE.

list-single
A field allowing a single selection from a list. This is similar to the <SELECT> tag in
HTML forms with the multiple attribute set to FALSE (the default for HTML
<SELECT> tags).

text-multi
Multi-line text input. Each line is stored in a separate value element. This is similar
to the <TEXTAREA> tag in HTML forms.

text-private
Acts like text-single, except the input is masked to the user (typically used for
entering passwords). This is similar to an <INPUT> tag of type password in HTML
forms.

text-single
A single line of text input. This is similar to an <INPUT> tag of type text in HTML
forms. The text-single type is the default.

The <field/> element’s var attribute specifies the name of the field. This is similar to
the name attribute in HTML forms.

Both the <field/> element and the <option/> child element (for fields of type list-
multi and list-single) can also include a human-readable label attribute for presen-
tation to an end user.

Finally, the <value/> child of the <field/> element specifies the initial or “pre-checked”
value of a field (in empty forms of type form) or the provided value (in completed forms
of type submit).

Figure 6-2 illustrates how the form could be presented to a user.

Using Data Forms
Usually a data form is wrapped inside an application-specific element that is sent within
an IQ or message stanza. For example, let’s imagine that poor Alice has been receiving
some automated spam messages lately, and she’s not happy about it. She therefore
installs a new plug-in for her favorite XMPP client, which sends a challenge message to
unknown entities that try to send her messages, using the techniques described in

Using Data Forms | 71

CAPTCHA Forms [XEP-0158]. A CAPTCHA is a “Completely Automated Public Tu-
ring Test to Tell Computers and Humans Apart.” Typically it is a little image with
squiggly letters that you need to interpret, but it can also be purely textual, such as a
simple math question. (Researchers have questioned the effectiveness of these tests,
but they continue to be popular with website developers and, increasingly, with XMPP
developers.)

Here we assume that Alice has received a message from knave@wonderland.lit/pda, so
her client sends a challenge, which is an x:data form of type form, wrapped in a
<captcha/> element qualified by the urn:xmpp:captcha namespace:

<message from="alice@wonderland.lit/rabbithole"
 to="knave@wonderland.lit/pda"
 id="A4C7303D">
 <body>
 You will not be allowed to send messages to me
 until you complete the attached form.
 </body>
 <captcha xmlns="urn:xmpp:captcha">
 <x xmlns="jabber:x:data" type="form">
 <field type="hidden" var="FORM_TYPE">
 <value>urn:xmpp:captcha</value>
 </field>
 <field type="hidden" var="challenge">
 <value>A4C7303D</value>
 </field>
 <field label="What is 5+2?" type="text-single" var="qa">
 <required/>
 </field>
 </x>
 </captcha>
</message>

Figure 6-2. Presentation of a data form in a user interface

72 | Chapter 6: Data Forms

In real life, Alice’s client probably would not send this message, because doing so
exposes her full JID (this is called a presence leak); instead, her server would probably
send it on her behalf as described in [XEP-0158].

The required element denotes a field that must be returned in the submitted form.

Now the Knave’s client presents the message to him. He completes the puzzle and clicks
the Submit button, so his client submits the form to Alice using an x:data form of type
submit:

<message from="knave@wonderland.lit/pda"
 to="alice@wonderland.lit/rabbithole"
 id="A4C7303D">
 <captcha xmlns="urn:xmpp:captcha">
 <x xmlns="jabber:x:data" type="submit">
 <field type="hidden" var="FORM_TYPE">
 <value>urn:xmpp:captcha</value>
 </field>
 <field type="hidden" var="challenge">
 <value>A4C7303D</value>
 </field>
 <field var="qa">
 <value>7</value>
 </field>
 </x>
 </captcha>
</message>

If the text value provided by the Knave is correct, Alice’s client will then allow an
exchange of messages to occur.

Defining Your Terms: Form Types
Bynature, data forms are extremely loose. In the same way that HTML forms can con-
tain just about any data fields, so can XMPP data forms. However, XMPP forms can
be more tightly defined using the special FORM_TYPE field, which is defined in
[XEP-0068]. We saw this field in the previous example:

<field type="hidden" var="FORM_TYPE">
 <value>urn:xmpp:captcha</value>
</field>

Because this field is of type hidden, it is not shown to the recipient; instead, the
recipient’s client silently returns it to the form provider when the recipient submits
the form.

The FORM_TYPE enables application developers to define the meaning of given fields
ahead of time (e.g., to limit the allowable values), or even to register the form fields
with the XMPP Registrar. For example, in CAPTCHA forms, the qa field is predefined
to be used only for textual question-and-answer challenges. This usage scopes the fields

Defining Your Terms: Form Types | 73

so that clients and other entities can know how to present the information. You can
think of it as a little like a schema for a data form.

Including Media in Data Forms
Sometimes, it is helpful to include a small image or other piece of media data in a form.
As we mentioned, the CAPTCHAs that most people are familiar with consist of a small
image that you must identify. So far, x:data forms have not included images, so in true
XML fashion, we need to define an extension to make this possible.

In XMPP, CAPTCHA images are referenced from within a data form using a new field
type for data forms: the media field type specified in [XEP-0221]. In fact, because XMPP
is extensible, the media field type is a specially “namespaced” child of the standard
<field/> element. This media element is then used to reference the image of the
CAPTCHA.

So let’s extend the CAPTCHA example we looked at earlier by including a media
element:

<message from="alice@wonderland.lit/rabbithole"
 to="knave@wonderland.lit/pda"
 id="A4C7303D">
 <body>
 You will not be allowed to send messages to me
 until you complete the attached form.
 </body>
 <captcha xmlns="urn:xmpp:captcha">
 <x xmlns="jabber:x:data" type="form">
 <field type="hidden" var="FORM_TYPE">
 <value>urn:xmpp:captcha</value>
 </field>
 <field type="hidden" var="challenge">
 <value>A4C7303D</value>
 </field>
 <field label="Enter the text you see" var="ocr">
 <media xmlns="urn:xmpp:media-element"
 height="80"
 width="290">
 <uri type="image/jpeg">
 http://www.wonderland.lit/challenges/ocr.jpg?A4C7303D
 </uri>
 </media>
 </field>
 <field label="What is 5+2?" type="text-single" var="qa"/>
 </x>
 </captcha>
</message>

The <media/> element is qualified by the urn:xmpp:media-element namespace, which
the receiving application will ignore if it does not understand the namespace.

74 | Chapter 6: Data Forms

This form now shows two possible CAPTCHAs: the textual challenge we saw earlier,
plus an optical character recognition test. The CAPTCHA Forms specification defines
several others not shown here, such as picture recognition, speech recognition, and
video recognition. For broader coverage, the challenger would offer several methods
to the sender (e.g., one auditory test and one visual test). In any case, the sender would
be expected to answer the test by returning a completed form:

<message from="knave@wonderland.lit/pda"
 to="alice@wonderland.lit/rabbithole"
 id="A4C7303D">
 <captcha xmlns="urn:xmpp:captcha">
 <x xmlns="jabber:x:data" type="submit">
 <field type="hidden" var="FORM_TYPE">
 <value>urn:xmpp:captcha</value>
 </field>
 <field type="hidden" var="challenge">
 <value>A4C7303D</value>
 </field>
 <field var="ocr">
 <value>tongue twister</value>
 </field>
 </x>
 </captcha>
</message>

Although the ocr field in the presented form contained a media element, the response
uses the default field type, which is text-single.

Summary
In this chapter, we covered the Data Forms extension (defined in [XEP-0004]), which
provides a lightweight but powerful technology for offering and submitting information
in semi-structured workflows. As we’ll see in the next two chapters, Data Forms are
used in a wide range of tasks, such as configuration of Multi-User Chat rooms and
Publish-Subscribe nodes.

Summary | 75

CHAPTER 7

Multi-Party Interactions

Starting the Party
Instant messaging as we’ve explored it to this point is a one-to-one interaction. But
what if we want to communicate among multiple people, bots, or other entities at the
same time? It would be nice if XMPP technologies included a real-time counterpart to
email discussion lists, web forums, and other multi-party interactions. This feature
would be similar to Internet Relay Chat (IRC), providing channels or rooms where
people could exchange messages and see who else is present. Well, you’re in luck,
because XMPP includes just such a feature! The first iteration of this technology was
called groupchat, while the more modern iteration is called Multi-User Chat (MUC)
[XEP-0045].

The basic idea behind MUC is that people can join a room and send messages that are
delivered to all the other participants. Thus the room acts as a kind of message “re-
flector” or “multiplier” (one incoming message is multiplied into many outgoing mes-
sages). You can see a typical interface for such a groupchat in an IM client in Figure 7-1.

Let’s go over a few of the features:

• Messages are shared with all the participants (as we’ll see, you can also send private
messages to specific participants).

• There is a “room roster” of all the participants.

• The participants are identified by nicknames, not their real JabberIDs.

• The room shares presence information about the participants (in Figure 7-1, the
user “Dormouse” is marked as “Do Not Disturb”).

• The participants are not limited to mere humans. For example, in the room that
we used while writing this book, a bot called “bookbot” provided helpful services,
such as archiving the conversation and looking up URLs for XMPP specifications.

In the next section, we’ll see how these features are implemented in XMPP.

77

Groupchat Basics
The focus of groupchat is a particular room, which has its own JabberID. For example,
the room shown in Figure 7-1 is teaparty@conference.wonderland.lit.

Components
The room is hosted at teaparty@conference.wonderland.lit, not wonderland.lit. This
addressing is an artifact of the original jabberd server, wherein the only services handled
by the core XMPP daemon were presence, rosters, one-to-one messages, and general
stanza routing. Other services were handled by add-on modules called components.
These components were assigned different domain names, such as
conference.jabber.org for the groupchat service at jabber.org. These domain names
were then used for internal routing, so that stanzas intended for any address at
conference.jabber.org were automatically routed to the groupchat component. More
modern XMPP server projects follow the same approach, although nothing in XMPP
prevents an address such as teaparty@wonderland.lit from being a groupchat room.

Figure 7-1. A snippet of conversation from the tea party groupchat room

78 | Chapter 7: Multi-Party Interactions

To join a room, you send directed presence to the room, including your preferred nick-
name as the resource identifier (this room@domain.tld/nick combination is known as
your room JID). So, Alice would join our teaparty room as follows:

<presence from="alice@wonderland.lit/rabbithole"
 to="teaparty@conference.wonderland.lit/Alice"/>

The use of directed presence here ties in well with the more general concept of presence,
because people in the room want to know your availability state just as people in your
roster do. In addition, because you send directed presence, the room is automatically
notified if you go offline unexpectedly, thus helping to prevent “ghost” users. (Such
“ghosts” can still appear if a server-to-server link goes down.)

Several things happen when you join a room:

• The room sends a join notification (i.e., a presence stanza) from your room JID to
the other participants.

• The room sends presence to you from the room JIDs of all the other participants
so that your client can build a specialized “roster” of room occupants.

• The room will typically also send you some of the recent messages exchanged in
the room so that you have a bit of context for discussion.

Let’s see what these look like in protocol.

First, the participants of the room receive Alice’s join notification:

<presence from="teaparty@conference.wonderland.lit/Alice"
 to="hatter@wonderland.lit/underahat"/>

<presence from="teaparty@conference.wonderland.lit/Alice"
 to="hare@wonderland.lit/chair"/>

<presence from="teaparty@conference.wonderland.lit/Alice"
 to="dormouse@wonderland.lit/sleepspace"/>

Next, Alice receives the room roster:

<presence from="teaparty@conference.wonderland.lit/Mad Hatter"
 to="alice@wonderland.lit/rabbithole"/>

<presence from="teaparty@conference.wonderland.lit/March Hare"
 to="alice@wonderland.lit/rabbithole"/>

<presence from="teaparty@conference.wonderland.lit/Dormouse"
 to="alice@wonderland.lit/rabbithole"/>

Then follows the room history. How many messages the room sends depends on the
configuration. Notice these messages include a flag that they are sent with a delay—
the timestamp shows the (UTC) time when each message was originally received by
the room so that you can know how long ago the history messages were sent (and thus
how busy the room is):

Groupchat Basics | 79

<message from="teaparty@conference.wonderland.lit/March Hare"
 to="alice@wonderland.lit/rabbithole"
 type="groupchat">
 <body>Have some wine,</body>
 <delay xmlns="urn:xmpp:delay" stamp="2008-11-07T18:42:03Z"/>
</message>

<message from="teaparty@conference.wonderland.lit/Mad Hatter"
 to="alice@wonderland.lit/rabbithole"
 type="groupchat">
 <body>Two days wrong!</body>
 <delay xmlns="urn:xmpp:delay" stamp="2008-11-07T18:42:17Z"/>
</message>

<message from="teaparty@conference.wonderland.lit/Mad Hatter"
 to="alice@wonderland.lit/rabbithole"
 type="groupchat">
 <body>March Hare: I told you butter wouldn’t suit the works!</body>
 <delay xmlns="urn:xmpp:delay" stamp="2008-11-07T18:42:49Z"/>
</message>

As soon as you enter the room, you can join in the conversation by sending messages
to the room itself. Because these messages are “live,” they don’t contain a delay flag:

<message from="alice@wonderland.lit/rabbithole"
 to="teaparty@conference.wonderland.lit"
 type="groupchat">
 <body>March Hare: There’s PLENTY of room!</body>
</message>

Messages sent to the room are then reflected out to all the participants (including the
party who sent the message):

<message from="teaparty@conference.wonderland.lit/Alice"
 to="hatter@wonderland.lit/underahat"
 type="groupchat">
 <body>March Hare: There’s PLENTY of room!</body>
</message>

<message from="teaparty@conference.wonderland.lit/Alice"
 to="dormouse@wonderland.lit/sleepspace"
 type="groupchat">
 <body>March Hare: There’s PLENTY of room!</body>
</message>

<message from="teaparty@conference.wonderland.lit/Alice"
 to="hare@wonderland.lit/chair"
 type="groupchat">
 <body>March Hare: There’s PLENTY of room!</body>
</message>

<message from="teaparty@conference.wonderland.lit/Alice"
 to="alice@wonderland.lit/rabbithole"
 type="groupchat">
 <body>March Hare: There’s PLENTY of room!</body>
</message>

80 | Chapter 7: Multi-Party Interactions

The messages sent in a room are of type groupchat. Groupchat messages are specialized
messages that are used only in the context of multi-party interactions. The main reason
for the special message type is to differentiate between messages that are intended for
the entire room and private messages sent from one participant to another (which are
of type chat or normal). This enables the groupchat component to route messages ap-
propriately and also enables the receiving client to show groupchat and chat messages
separately.

To send a private message to the March Hare, Alice would send a message of type
chat to the March Hare’s room JID:

<message from="alice@wonderland.lit/rabbithole"
 to="teaparty@conference.wonderland.lit/March Hare"
 type="chat">
 <body>you silly Hare!</body>
</message>

Because the private message is sent to the March Hare’s room JID, it is handled by the
MUC service, which forwards the message from Alice to the March Hare. It does this
by rewriting the from address so that the message appears to come from Alice’s room
JID and rewriting the to address so that the message is delivered to the March Hare’s
real JID:

<message from="teaparty@conference.wonderland.lit/Alice"
 to="hare@wonderland.lit/chair"
 type="chat">
 <body>you silly Hare!</body>
</message>

Alice and the Hare can hold an entire side conversation this way if they please (though
if they wanted to invite a third person to their conversation, they would need to create
another MUC room).

If you ever want to leave the room, you send unavailable presence to your current room
JID (or your server sends it on your behalf when you go offline):

<presence from="dormouse@wonderland.lit/sleepspace"
 to="teaparty@conference.wonderland.lit/Dormouse"
 type="unavailable"/>

This presence too is broadcast to all the participants in the room so that they know you
have left.

Crowd Control
It’s an unfortunate fact of social dynamics that some people will misbehave in any given
public space on the Internet, whether it is a Usenet channel, an email list, a web forum,
or a chat room. This phenomenon always leads to social stratification, as people in
authority (typically called moderators or admins) have special powers to kick out and

Crowd Control | 81

ban those who misbehave (typically called trolls, abusers, spammers, and other such
epithets).

XMPP groupchat is no exception. The full Multi-User Chat technology contains various
tools for crowd control, including kick and ban commands, the ability to limit who can
talk in an MUC room, and ways to restrict access entirely.

Crowd control measures follow a continuum from friendly warnings on up. If someone
continues to cause trouble in a chat room after being verbally warned in the conversa-
tion, one of the room moderators might revoke the offender’s ability to speak in the
room (this works for moderated rooms but not unmoderated rooms, a distinction we
discuss later). To revoke someone’s “voice” in the room, the moderator changes the
offender’s role from participant to visitor. For example, it could be that someone with
a JabberID of knave@wonderland.lit and a nickname of “The Knave” is causing trouble
in the trial@conference.wonderland.lit chat room, so the King changes The Knave’s
role to visitor:

<iq from="king@wonderland.lit/throne"
 id="ks61f36g"
 to="trial@conference.wonderland.lit"
 type="set">
 <query xmlns="http://jabber.org/protocol/muc#admin">
 <item nick="The Knave" role="visitor"/>
 </query>
</iq>

The MUC service then informs everyone in the room (including the affected occupant)
that the offender’s status has been changed to visitor; it does this by sending updated
presence from the offender including a notation of the user’s new role:

<iq from="trial@conference.wonderland.lit"
 id="ks61f36g"
 to="king@wonderland.lit/throne"
 type="result"/>

<presence from="trial@conference.wonderland.lit/The Knave"
 to="knave@wonderland.lit/mobile">
 <x xmlns="http://jabber.org/protocol/muc#user">
 <item affiliation="none" role="visitor"/>
 </x>
</presence>

In Multi-User Chat, presence notifications sent within the room contain an exten-
sion element that reports the user’s long-term affiliation with the room and his short-
term role within the room.

The offender can now no longer send messages to the entire room; if he tries to do so,
the room will return a forbidden error:

<message from="knave@wonderland.lit/mobile"
 to="trial@conference.wonderland.lit"
 type="groupchat">
 <body>boo!</body>

82 | Chapter 7: Multi-Party Interactions

</message>

<message from="trial@conference.wonderland.lit"
 to="knave@wonderland.lit/mobile"
 type="error">
 <body>boo!</body>
 <error type="auth">
 <forbidden xmlns="urn:ietf:params:xml:ns:xmpp-stanzas"/>
 </error>
</message>

A somewhat stronger crowd control measure is to kick the offender out of the room.
When you kick someone from a room, he is temporarily removed from the room, but
he is free to join again later (sometimes this feature is used as a joke or even playfully).

In MUC, a person is kicked by changing his role in the room to none:

<iq from="king@wonderland.lit/throne"
 id="u7r61fsv"
 to="trial@conference.wonderland.lit"
 type="set">
 <query xmlns="http://jabber.org/protocol/muc#admin">
 <item nick="The Knave" role="none"/>
 </query>
</iq>

Kicks and other temporary changes to roles are made based on the room nick of the
occupant, not the real JID (primarily because room moderators cannot necessarily
see the real JIDs of room occupants).

The service then removes the person from the room by sending presence of type un-
available from his room JID to everyone in the room, with a special status code to
indicate that he is leaving involuntarily:

<presence from="trial@conference.wonderland.lit/The Knave"
 to="knave@wonderland.lit/mobile"
 type="unavailable">
 <x xmlns="http://jabber.org/protocol/muc#user">
 <item affiliation="none" role="none"/>
 <status code="307"/>
 </x>
</presence>

A status code of 307 means that the user has been temporarily kicked from the room.
A full list of status codes is provided in the Multi-User Chat specification.

As mentioned, after being kicked, the offender can return to the room and cause more
trouble. If that happens, the admins can take more drastic action and ban the offender
entirely by changing the person’s affiliation to outcast:

<iq from="king@wonderland.lit/throne"
 id="d82csl87"
 to="trial@conference.wonderland.lit"
 type="set">
 <query xmlns="http://jabber.org/protocol/muc#admin">

Crowd Control | 83

 <item jid="knave@wonderland.lit" affiliation="outcast"/>
 </query>
</iq>

Bans and other changes to stable affiliations are made based on the real JID of the
user, not the room nick.

The service then removes the person from the room by sending presence of type
unavailable from their room JID to everyone in the room, with a special status code to
indicate that he has been banned:

<presence from="trial@conference.wonderland.lit/The Knave"
 to="knave@wonderland.lit/mobile"
 type="unavailable">
 <x xmlns="http://jabber.org/protocol/muc#user">
 <item jid="knave@wonderland.lit" affiliation="outcast"/>
 <status code="301"/>
 </x>
</presence>

A status code of 301 means that the user has been permanently banned from the
room. A full list of status codes is provided in the Multi-User Chat specification.

Kicking and banning use one of the administrative features of the MUC protocol: roles
and affiliations. These are temporary or permanent associations between a JabberID
and the privileges that JID has in the room. For example, an affiliation of outcast is a
permanent association indicating that the user is not allowed to join the room.

Roles and Affiliations
Typically, roles are temporary (they last only as long as you are in the
room), whereas affiliations are permanent (they last across groupchat
sessions). However, MUC services are allowed to cache roles across
sessions, so in practice the distinction is not clear-cut. The important
point is that the pre-defined roles and affiliations provide all of the room
associations you might need to handle most multi-party scenarios.

The MUC specification defines the following roles and affiliations:

outcast
Someone who can’t even join the room.

visitor
Someone who can join the room and listen to the conversation, but who can’t
speak.

participant
Someone who can both listen and speak.

member
Someone who can listen, speak, and join the room if it is members-only.

84 | Chapter 7: Multi-Party Interactions

moderator
Someone who can listen, speak, kick participants and visitors, and toggle others’
ability to speak.

admin
Someone who can listen, speak, kick and ban participants and visitors, toggle oth-
ers’ ability to speak, see the real JIDs of occupants, name new moderators and
members, and reconfigure some room options.

owner
Someone who can listen, speak, kick and ban participants and visitors, toggle oth-
ers’ ability to speak, see the real JIDs of occupants, name new moderators and
members, reconfigure all room options, name new admins, and destroy the room.

As you can see, roles and affiliations are mostly arrayed in a hierarchy, from the all-
powerful room owners down to the lowly outcasts. These room associations enable the
room admins and owners not only to enforce decisions regarding individual
participants, but also to configure some room-wide options, in particular the following
dimensions:

• Can anyone speak in the room or can only certain restricted users join the conver-
sation (i.e., is the room unmoderated or moderated)?

• Can anyone join the room or is the room restricted to only certain individuals (i.e.,
is the room open or members-only)?

These room types make it possible to exercise even greater control over a room than
individual kicks and bans, because if only certain people can speak in the room, it is
more difficult for spammers to attack, and if only room members can join, the room is
even more strongly protected against abuse.

What’s in a Nick?
When you join an MUC room, you specify your preferred nickname. These are handled
a bit differently in MUC than in Internet Relay Chat (IRC):

• In IRC, your nick is limited to US-ASCII characters, whereas in MUC, your nick
can contain just about any Unicode character.

• In IRC, people often change their nicks to things like “Alice|away,” whereas in
MUC such changes are unnecessary, because MUC natively passes along your
XMPP presence information.

• In IRC, your nick is associated with your IP address, whereas in MUC, your nick
is associated with your JabberID (and your IP address is not revealed to the other
participants).

• In IRC, your nick applies globally to all the rooms at a service, whereas in MUC,
your nick applies locally to a particular room at a service.

What’s in a Nick? | 85

If you are a regular participant in a room, you might want to reserve your nickname so
that no one else can masquerade as you. You do so using In-Band Registration
[XEP-0077]. First, you need to find out what the registration requirements are, so you
send an IQ-get to the room containing a <query/> element qualified by the
jabber:iq:register namespace:

<iq from="hatter@wonderland.lit/home"
 id="g73hdn19"
 to="party@conference.wonderland.lit"
 type="get">
 <query xmlns="jabber:iq:register"/>
</iq>

The room then tells you what information you need to provide by returning an IQ-
result that contains a data form of the kind we looked at in Chapter 6:

<iq from="party@conference.wonderland.lit"
 id="g73hdn19"
 to="hatter@wonderland.lit/home"
 type="result">
 <query xmlns="jabber:iq:register">
 <instructions>To register on the web, visit http://wonderland.lit/</instructions>
 <x xmlns="jabber:x:data" type="form">
 <title>Register with the Party!</title>
 <instructions>Please provide the following information to register with this room.
 </instructions>
 <field type="hidden" var="FORM_TYPE">
 <value>http://jabber.org/protocol/muc#register</value>
 </field>
 <field label="First Name" type="text-single" var="muc#register_first">
 <required/>
 </field>
 <field label="Last Name" type="text-single" var="muc#register_last">
 <required/>
 </field>
 <field label="Desired Nickname" type="text-single" var="muc#register_roomnick">
 <required/>
 </field>
 <field label="Email Address" type="text-single" var="muc#register_email"/>
 </x>
 </query>
</iq>

The <instructions/> element qualified by the jabber:iq:register namespace pro-
vides human-readable text, often including an alternative registration method, such
as a website URL; these instructions are provided in case the forms-requesting entity
does not understand the jabber:x:data namespace.

The <instructions/> element qualified by the jabber:x:data namespace provides
human-readable text about how to fill out the form, which is presented in the form
interface itself.

To finish the registration process, the user submits the completed form in an IQ-set:

86 | Chapter 7: Multi-Party Interactions

<iq from="hatter@wonderland.lit/home"
 id="nb20aj39"
 to="party@conference.wonderland.lit"
 type="set">
 <query xmlns="jabber:iq:register">
 <x xmlns="jabber:x:data" type="form">
 <field type="hidden" var="FORM_TYPE">
 <value>http://jabber.org/protocol/muc#register</value>
 </field>
 <field var="muc#register_first"><value>Mad</value></field>
 <field var="muc#register_last"><value>Hatter</value></field>
 <field var="muc#register_roomnick"><value>The Mad Hatter</value></field>
 </x>
 </query>
</iq>

If the nick is available, the room informs the user that the registration is successful by
returning an empty IQ-result:

<iq from="party@conference.wonderland.lit"
 id="nb20aj39"
 to="hatter@wonderland.lit/home"
 type="result"/>

Now if someone else attempts to join the room with that nick, the room will return a
conflict error.

This nick registration applies only to the room in which it was completed (in this case,
the party@conference.wonderland.lit room). To register the nick across the entire
service, the user would complete the same registration process by interacting with the
service instead of the room (in this case, with conference.wonderland.lit). However,
that registration would not apply to another service on the network, such as the
conference.realworld.lit service or any rooms at that service.

Configure This!
As discussed in Chapter 6, the Data Forms protocol defined in [XEP-0004] provides a
lightweight, generic tool for configuration-related tasks. The data forms protocol is
similar to HTML forms and is used throughout the XMPP protocol stack, including
MUC.

When you attempt to join a room that doesn’t exist yet, the MUC service will create
that room on your behalf and lock the room until you configure it (either using manual
configuration, or by automatically selecting the default room configuration). On large
public MUC services hosted on the open Internet, that default configuration is typically
a non-persistent, moderated room that anyone can join, where anyone can speak, where
people’s JabberIDs are revealed only to the room administrators, and where the con-
versations are not archived. On private MUC services behind company firewalls, the
default configuration might be quite different (e.g., conversations might be archived
by default, and participants’ JabberIDs might be exposed for tracking purposes).

Configure This! | 87

To change the default configuration, a room admin or owner requests the current
configuration:

<iq from="queen@wonderland.lit/throne"
 id="zh93hs71"
 to="trial@conference.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/muc#owner"/>
</iq>

The service then returns the configuration form to the room owner. This form can
contain a large number of options, not all of which are shown here. In this example,
the service needs to know whether the room owner wants to enable conversation log-
ging, make the room persistent, enable or disable room moderation, and restrict the
room to members only. These are all boolean fields, most of which default to false:

<iq from="trial@conference.wonderland.lit"
 id="zh93hs71"
 to="queen@wonderland.lit/throne"
 type="result">
 <query xmlns="http://jabber.org/protocol/muc#owner">
 <x xmlns="jabber:x:data" type="form">
 <field type="hidden" var="FORM_TYPE">
 <value>http://jabber.org/protocol/muc#roomconfig</value>
 </field>
 <field label="Enable Public Logging?" type="boolean"
 var="muc#roomconfig_enablelogging">
 <value>0</value>
 </field>
 <field label="Make Room Persistent?" type="boolean"
 var="muc#roomconfig_persistentroom">
 <value>0</value>
 </field>
 <field label="Make Room Moderated?" type="boolean"
 var="muc#roomconfig_moderatedroom">
 <value>1</value>
 </field>
 <field label="Make Room Members Only?" type="boolean"
 var="muc#roomconfig_membersonly">
 <value>0</value>
 </field>
 </x>
 </query>
</iq>

Assuming that the room owner wants the room to be persistent, moderated, and open,
but with no logging, she submits the following configuration to the room:

<iq from="queen@wonderland.lit/throne"
 id="rid18s76"
 to="trial@conference.wonderland.lit"
 type="set">
 <query xmlns="http://jabber.org/protocol/muc#owner">
 <x xmlns="jabber:x:data" type="submit">
 <field type="hidden" var="FORM_TYPE">

88 | Chapter 7: Multi-Party Interactions

 <value>http://jabber.org/protocol/muc#roomconfig</value>
 </field>
 <field var="muc#roomconfig_enablelogging">
 <value>false</value>
 </field>
 <field var="muc#roomconfig_persistentroom">
 <value>true</value>
 </field>
 <field var="muc#roomconfig_moderatedroom">
 <value>true</value>
 </field>
 <field var="muc#roomconfig_membersonly">
 <value>false</value>
 </field>
 </x>
 </query>
</iq>

Because the room is now moderated, people who join the room will default to visitors,
who have no voice (thus they can listen but they can’t speak). This kind of room is
easier to control, but it is clearly less user-friendly than an unmoderated room.

To exercise even more control, the room owner could change the room to members-
only, which means that only people on the special members list are even allowed to
join the room (for example, the authors chat room that we used while writing this book
was members-only, because that gave us a private place to manage the project).

The most important configuration options are described next (we deleted the muc#room
config_ “prefix” to make the list more readable). All of these options are boolean (true/
false) unless otherwise noted:

allowinvites
The allowinvites option defines whether non-admins are allowed to invite other
people to the room.

changesubject
The changesubject option defines whether non-admins are allowed to change the
room subject.

enablelogging
The enablelogging option defines whether the MUC service will store an archive
of the discussions that occur in the room, typically to an HTML file or a database.
On public MUC services, this option might be locked down so that only service-
wide administrators (not merely room admins) can enable logging.

getmemberlist
The list-multi getmemberlist option defines the roles (visitor, participant, or
moderator) that are allowed to retrieve the list of registered members; this is com-
parable to the similar setting in discussion list software (e.g., Mailman) that de-
termines whether the list of subscribers is public, available only to list members,
or available only to list admins.

Configure This! | 89

lang
The text-single lang option defines the default human language “spoken” in the
chat room.

maxusers
The text-single maxusers option defines the maximum number of occupants al-
lowed in the room (room admins and owners are excepted from this rule).

membersonly
The membersonly option defines whether only registered members are allowed to
enter the room or anyone may enter the room; this determines whether the room
type is members-only or open.

moderatedroom
The moderatedroom option defines whether only those with voice are allowed to
post messages to the room or anyone can post; this determines whether the room
type is moderated or unmoderated.

persistentroom
The persistentroom option defines whether the room remains in existence even
after the last person has left the room, or whether the room is automatically de-
stroyed when the last person leaves; this determines whether the room type is
persistent or temporary.

presencebroadcast
The list-multi presencebroadcast option defines the roles (visitor, participant,
moderator) for which presence is broadcast in the room. This is used mainly within
rooms that have a large number of occupants, so that presence is sent only about
the “important” people in the room (such as the speakers as opposed to the
audience).

publicroom
The publicroom option defines whether the room can be discovered via standard
service discovery queries; this determines whether the room type is public or
hidden.

roomadmins
The jid-multi roomadmins option specifies the JabberIDs of the room admins.

roomdesc
The text-single roomdesc option provides a natural-language description of the
room.

roomname
The text-single roomname option provides the natural-language name of the room,
which is especially helpful if the JID of the room is automatically generated by the
chat service.

roomowner
The jid-multi roomowner option specifies the JabberIDs of the room owners.

90 | Chapter 7: Multi-Party Interactions

whois
The list-single whois option defines whether only moderators or anyone is al-
lowed to discover the real JabberIDs of the room occupants; this determines
whether the room type is semi-anonymous or anonymous (no room is truly anony-
mous, because the room administrators need to be able to know who the occupants
are so that they can exercise appropriate crowd control measures).

In addition to these standard room configuration options (specified by the http://
jabber.org/protocol/muc#roomconfig FORM_TYPE, as described in Chapter 6), an MUC
configuration form can also contain custom configuration options. For example, let’s
suppose that you have written a specialized bot for the rooms hosted at your service,
which provides answers to frequently asked questions, along with other helpful
services. Using a custom configuration option of x-chatbot, you might allow room
admins to configure their rooms so that this ChatBot automatically joins their rooms:

<iq from="trial@conference.wonderland.lit"
 id="ks92h1n7"
 to="queen@wonderland.lit/throne"
 type="result">
 <query xmlns="http://jabber.org/protocol/muc#owner">
 <x xmlns="jabber:x:data" type="form">
 <field type="hidden" var="FORM_TYPE">
 <value>http://jabber.org/protocol/muc#roomconfig</value>
 </field>
 <field label="Load ChatBot by Default?" type="boolean" var="x-chatbot"/>
 </x>
 </query>
</iq>

Privacy, Security, and All That Jazz
Groupchat rooms are somewhat public spaces. When people join such rooms, they
might think that they are completely anonymous and can say anything they please
(perhaps this is why chat rooms have such a bad reputation). However, XMPP group-
chat has built-in support for features that can make rooms less than completely anon-
ymous, including:

• The room administrators can always see the real JabberIDs of users in the room;
this enables them to deploy appropriate “crowd control” measures, as described
earlier in this chapter. However, the room can also be configured so that all
participants can view real JIDs by setting the whois configuration option to a value
of “anyone” (this kind of transparency is important in certain deployment
scenarios).

• If the room configuration sets the enablelogging option to true, the service will
automatically archive all of the one-to-many conversations in the room. On public
MUC services, users who are sensitive about privacy concerns may find this to be
a breach of privacy, whereas within enterprise deployments, the lack of archiving

Privacy, Security, and All That Jazz | 91

might be considered a problem (e.g., archives might be used for incident reporting
or regulatory compliance).

• Unless the room configuration sets the publicroom option to false, the service will
enable entities to find the room using XMPP Service Discovery, as described in
Chapter 5.

• Most MUC services will allow participants to send private, one-to-one messages
to other participants in the room.

However, a user is warned about most of these features when joining the room. These
warnings are provided as special status codes in the presence the user receives after
joining, as documented in the Multi-User Chat specification:

<presence from="teaparty@conference.wonderland.lit/Alice"
 to="alice@wonderland.lit/rabbithole">
 <x xmlns="http://jabber.org/protocol/muc#user">
 <item affiliation="member" role="participant"/>
 <status code="100"/>
 <status code="110"/>
 <status code="170"/>
 </x>
</presence>

This indicates that anyone can view the occupant’s real JID.

This indicates that the presence stanza refers to the JID itself (i.e., this is your own
presence information); the room might want to include this if it rewrites the user’s
room nick on entry.

This indicates that conversation logging is enabled.

Although some of these features may seem like privacy intrusions, they can be quite
beneficial (e.g., some public meeting rooms need a record of the conversations for
archival purposes). The fact that users are warned when these features are in force
enables them to avoid such rooms if desired.

MUC As a Data Transport
Up to this point, we have focused on MUC as a way to exchange textual messages. But
as we’ve already seen, XMPP is an extensible way to send any kind of payload (as long
as the resulting messages are of some reasonable size). Here are some payload types
that might be of interest:

• Geolocation data for tracking vehicles, packages, and the like, using the format
defined in [XEP-0080].

• Atom (or RSS) data for following syndicated feeds, using the format defined in
[RFC 4287].

• Tune data for a jukebox or radio application, using the format defined in
[XEP-0118].

92 | Chapter 7: Multi-Party Interactions

• Alerting data for real-time emergency notifications, using the format defined in
[XEP-0127].

• Signaling data for setting up multi-party media sessions, using the format defined
in [XEP-0166], [XEP-0167], and related specifications (we discuss this further in
Chapter 9).

MUC rooms can also be used to transport custom application data. One popular ex-
ample of this is the Chesspark gaming service, which uses XMPP to send all of the chess
moves between two players (with an in-room bot to enforce the rules of chess so that
neither player can cheat).

In fact, nothing says that an MUC room needs to contain any people whatsoever! A
chat room might include automated processes that exchange machine-readable data
without any interaction from humans. Here the data formats used might be things like
remote procedure calls as specified in Jabber RPC [XEP-0009], SOAP over XMPP
[XEP-0072], IO Data [XEP-0244], or plain old Data Forms [XEP-0004].

Some of these uses shade over into a kind of “poor man’s pubsub” because in essence
multiuser chat follows the same “observer” or “publish-subscribe” design pattern as
the XMPP PubSub extension. Although we discuss XMPP PubSub in more detail in
Chapter 8, here we at least note that MUC is more appropriate for scenarios in which
human users are involved (since messages of type groupchat are associated with a par-
ticular kind of user interface) or in which it is expected that the entities need to com-
municate among themselves in a stable venue of the kind provided by a persistent chat
room with automatic archiving to a discussion log. By contrast, PubSub is usually more
appropriate for one-to-many communication from a single publisher (or a few pub-
lishers) to a set of passive subscribers who merely listen for events, especially when no
human subscribers are involved.

Summary
In this chapter, we provided an overview of multi-party interactions using XMPP
groupchat, including the processes for joining, participating in, and leaving a chat
room; sending and receiving messages; delayed delivery of the room history; reserving
a nickname using the In-Band Registration protocol; configuring a room using the Data
Forms extension; and enforcing appropriate security and privacy measures, such as
kicking and banning users, disabling room logging, and preventing anyone except reg-
istered room members from joining the room. We also saw how the Multi-User Chat
(MUC) protocol can be used to exchange not only human-readable messages, but any
XML payload, such as syndicated data feeds, geolocation information, multimedia sig-
naling messages, and even custom data for application, such as multiplayer games.
Refer to Multi-User Chat [XEP-0045] for details about even more features, including
changing your in-room nickname, modifying the room subject, inviting users, and
adding or removing moderators and admins.

Summary | 93

CHAPTER 8

Publish/Subscribe

Why It Matters
“Are we there yet?” asks a small boy in the back seat of a car. “No, not yet,” answers
the adult. Some minutes later, the child asks, “Are we there now?” This short but fre-
quently repeated exchange is a real-world example of a polling system: the child won’t
know when the vehicle is approaching its destination, so he frequently checks with the
adult driving the car. That is, the child is polling for information.

Usually it doesn’t take long for the adult to reply, “I’ll tell you when we’re there.” This
is an example of a publish/subscribe system: here, the boy has expressed an interest in
(subscribed to) a piece of information, and the adult will tell the child once the infor-
mation changes (i.e., once updated information is published). Publish/subscribe sys-
tems avoid the need to frequently poll for updates. In this example, this helps the adult
traveling with a young boy to stay sane; on the Internet, it serves the dual purpose of
saving bandwidth and server resources (there are no more “has it changed?”, “no, it
hasn’t” exchanges), and ensuring that the subscriber receives updates as quickly as the
network can deliver them, rather than only the next time the subscriber polls the source.

As in real life, polling over the Internet is painful, especially for the server. Imagine that
you have 100 “followers” on a microblogging service, each of whom polls the server
every 10 minutes on the off chance that you have said something interesting (indeed,
they would poll even more frequently if the server allowed them to). The server will
receive 600 polls for information every hour, which works out to 10 polls per minute
or one poll every 6 seconds for just one microblogging publisher! And the shame of it
is that the vast majority of the polling requests result in the same answer: “Sorry to
disappoint you, but there’s nothing new to report.” Multiply this scenario by 10,000
or 100,000 publishers, and it quickly becomes apparent that a polling architecture
simply won’t scale up as needed to deploy the kind of responsive social networking or
“lifestreaming” services that end users demand on today’s real-time Internet.

95

The pain of polling can be removed by a shift in mental models: a lifestreaming service
such as microblogging or geolocation or social music is not a set of mini-websites (one
for each publisher) that followers must poll for changes, but instead is a kind of micro-
messaging service where each publisher is a node or channel for real-time notifications
that are automatically sent to subscribers. Figure 8-1 illustrates the vast difference in
traffic between a polling system and a pubsub system.

Figure 8-1. If a web client polls once every 10 minutes for a notification that occurs once an hour, the
difference between polling and pubsub is significant

This publish/subscribe model is already familiar to you in the XMPP world because
presence (described in Chapter 3) is a specialized form of publish/subscribe. A more
generalized form of the publish/subscribe model is provided by a dedicated XMPP
extension known as PubSub and defined in [XEP-0060]. As you will see throughout
this chapter, PubSub enables you to build many dynamic applications that are difficult
to build in a scalable manner with existing polling-based technologies.

After walking through a simple example to outline the flow of PubSub services, we
delve into the details of XMPP PubSub before discussing some of the more advanced
uses. Finally, we discuss the use of PubSub for extending the presence mechanisms of
XMPP with “rich presence” constructs.

96 | Chapter 8: Publish/Subscribe

Quickstart
Although PubSub has many options and nuances that make it powerful enough for
almost anything you’ll want to do with it, the premises are simple enough that we can
jump straight in. If the adult in the earlier example is publishing to the are-we-there-
yet node on the pubsub.holiday.lit service, the child can simply subscribe to that node
with the following stanza:

<iq from="child@holiday.lit/car"
 id="bnx2hd03"
 to="pubsub.holiday.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <subscribe node="are-we-there-yet" jid="child@holiday.lit"/>
 </pubsub>
</iq>

After a successful IQ reply from the server, the child is now subscribed to the PubSub
node, and will be notified when any new items are published to it. Finally, the car will
arrive at the destination and the adult can publish their arrival with:

<iq from="adult@holiday.lit/car"
 id="wpd7x937"
 to="pubsub.holiday.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <publish node="are-we-there-yet">
 <item>
 <there xmlns="http://holiday.lit/there-yet" status="true"/>
 </item>
 </publish>
 </pubsub>
</iq>

And the child receives a notification:

<message from="pubsub.holiday.lit" to="child@holiday.lit">
 <event xmlns="http://jabber.org/protocol/pubsub#event">
 <items node="are-we-there-yet">
 <item id="bc42su0a93">
 <there xmlns="http://holiday.lit/there-yet" status="true"/>
 </item>
 </items>
 </event>
</message>

This simple example of PubSub is a bit contrived, but it illustrates the three main aspects
of PubSub: subscribing to a node, publishing to a node, and receiving notifications from
a node. We build on these concepts through the remainder of this chapter.

Quickstart | 97

Is Everything PubSub?
You may notice that the publish-subscribe pattern is used implicitly
elsewhere in XMPP. As we’ve noted, in XMPP presence entities sub-
scribe to each other’s presence and receive publish notifications. A
multi-user chat room can be seen as a channel where all the participants
are publishers. And so on. In fact, it has been joked that all of XMPP
could be modeled on top of [XEP-0060]. There even exists a (humorous)
“XMPP Eventing via Pubsub” specification [XEP-0207] defining just
that, written for the XSF’s annual “April Fool” XEP.

Subscriptions
We now look at some of the common operations you will use while working with
PubSub systems. The examples that follow were built around weblogs published by
the Queen and by Alice. Notifications of new entries at these weblogs are posted to
XMPP PubSub nodes at the notify.wonderland.lit service. Let’s start with Alice trying
to subscribe to the Queen’s blog, queenly_proclamations:

<iq from="alice@wonderland.lit/rabbithole"
 id="gh921nx3"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <subscribe node="queenly_proclamations" jid="alice@wonderland.lit"/>
 </pubsub>
</iq>

Including the JID in the <subscribe/> enables the subscriber to register a subscrip-
tion either from her bare JID (so that all her resources can receive notifications) or
from a specific full JID (to limit notifications to only that resource).

In this stanza, you can see that Alice is trying to subscribe from her alice@wonder
land.lit JID to the queenly_proclamations node on the notify.wonderland.lit PubSub
service, which is where the Queen announces updates to her blog. The <subscribe/>
element specifies both the node to subscribe to, and Alice’s own JID for the
subscription.

PubSub Addressing
Although the examples in this chapter use the node attribute to select a
specific node of a PubSub service, it is also possible to address nodes by
using the name of the node as the resource identifier of the service (e.g.,
notify.wonderland.lit/alices_blog). However, this form is often avoi-
ded, perhaps because JabberIDs of the form domain.tld/resource some-
how look unnatural.

98 | Chapter 8: Publish/Subscribe

We don’t want our story to have an unhappy ending before it’s begun, so the sub-
scription succeeds:

<iq from="notify.wonderland.lit"
 id="gh921nx3"
 to="alice@wonderland.lit/rabbithole"
 type="result">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <subscription node="queenly_proclamations" jid="alice@wonderland.lit"
 subscription="subscribed"/>
 </pubsub>
</iq>

This stanza mostly mirrors the original request in content, with the addition of a
subscription attribute whose value here is subscribed to signal that the subscription
request succeeded. It is also possible that the server will include an optional subid
attribute, which is used to differentiate between multiple subscriptions to the same
node from the same JID.

Usually, a subscription request will succeed without any errors or further action re-
quired. At that point, the subscriber will begin to receive notifications from the node,
as explained in the next section of this chapter. However, as with any other type of IQ
request, a request can fail. Besides standard errors (such as permission errors or non-
existent nodes), it is also possible that the node may require the subscriber to configure
the subscription before notifications can be delivered. This alternate flow is signaled
by the following reply:

<iq from="notify.wonderland.lit"
 id="gh921nx3"
 to="alice@wonderland.lit/rabbithole"
 type="result">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <subscription node="queenly_proclamations" jid="alice@wonderland.lit"
 subscription="unconfigured">
 <subscribe-options>
 <required/>
 </subscribe-options>
 </subscription>
 </pubsub>
</iq>

The <required/> element signals, reasonably enough, that the subscriber must con-
figure their subscription options before the request will be applied.

In this case, the subscription state remains unconfigured until the subscriber completes
the subscription configuration form. Therefore, Alice would request the configuration
options:

<iq from="alice@wonderland.lit/rabbithole"
 id="hu48s01m"
 to="notify.wonderland.lit"
 type="get">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">

Subscriptions | 99

 <options node="queenly_proclamations" jid="alice@wonderland.lit" />
 </pubsub>
</iq>

The PubSub service would then return the configuration form (here a very simple single-
option reply). The configuration form is another example of the data forms that we
discussed in Chapter 6:

<iq from="notify.wonderland.lit"
 id="hu48s01m"
 to="alice@wonderland.lit/rabbithole"
 type="result">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <options node="queenly_proclamations" jid="alice@wonderland.lit" >
 <x xmlns="jabber:x:data" type="form">
 <field var="FORM_TYPE" type="hidden">
 <value>http://jabber.org/protocol/pubsub#subscribe_options</value>
 </field>
 <field var="pubsub#digest" type="boolean"
 label="Receive digest notifications (approx. one per day)?">
 <value>0</value>
 </field>
 </x>
 </options>
 </pubsub>
</iq>

Of course, it does you no good to subscribe if you can’t also unsubscribe. So let us
imagine that Alice has been subscribed to the Queen’s blog for a few days and has
grown quite tired of hearing “Off with his/her head!” in one way or another. She there-
fore unsubscribes from the node by sending a simple <unsubscribe/> request:

<iq from="alice@wonderland.lit/rabbithole"
 id="vd923k66"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <unsubscribe node="queenly_proclamations" jid="alice@wonderland.lit"/>
 </pubsub>
</iq>

In return, the server acknowledges the unsubscription:

<iq from="notify.wonderland.lit"
 id="vd923k66"
 to="alice@wonderland.lit/rabbithole"
 type="result"/>

Publishing and Receiving Notifications
By now, you’re fully conversant with subscribing to and unsubscribing from nodes, so
all that remains is to do something interesting with them. Let’s start with the Queen
publishing some proclamations to her blog:

100 | Chapter 8: Publish/Subscribe

<iq from="queen@wonderland.lit/croquetlawn"
 id="ma019r58"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <publish node="queenly_proclamations">
 <item>
 <entry xmlns="http://www.w3.org/2005/Atom">
 <title>A new thought</title>
 <summary>Off with their heads!</summary>
 <link rel="alternate" type="text/html" href="http://wonderland.lit/1865/"/>
 <id>tag:wonderland.lit,1865:entry-42</id>
 <published>1865-12-13T18:30:02Z</published>
 <updated>1865-12-13T18:30:02Z</updated>
 </entry>
 </item>
 </publish>
 </pubsub>
</iq>

The <publish/> element indicates that the Queen wants to publish an item.

The <item/> element surrounds the payload that the Queen is publishing.

The <entry/> element here is the payload of the publication—the thing getting pub-
lished. This particular payload is a standard Atom notification, as described in [RFC
4287]. However, PubSub isn’t concerned about the nature of the payload, since it’s
simply a routing mechanism. This is why any (custom “namespaced”) XML element
can be a payload.

Now that the Queen has published this item to the node, the service sends Alice a
notification (if she’s not gotten bored and unsubscribed yet):

<message from="notify.wonderland.lit" to="alice@wonderland.lit">
 <body>A new thought: off with their heads!</body>
 <event xmlns="http://jabber.org/protocol/pubsub#event">
 <items node="queenly_proclamations" id="bl38pahu98h">
 <item id="zi2ba967">
 <entry xmlns="http://www.w3.org/2005/Atom">
 <title>A new thought</title>
 <summary>Off with their heads!</summary>
 <link rel="alternate" type="text/html" href="http://wonderland.lit/1865/"/>
 <id>tag:wonderland.lit,1865:entry-42</id>
 <published>1865-12-13T18:30:02Z</published>
 <updated>1865-12-13T18:30:02Z</updated>
 </entry>
 </item>
 </items>
 </event>
</message>

PubSub notifications are sent via the XMPP <message/> stanza, just like normal IM
messages, mainly because the PubSub service doesn’t necessarily know whether the
subscriber is online and which of the subscriber’s resources might be best for

Publishing and Receiving Notifications | 101

sending; it’s best to leave those delivery details up to the subscriber’s XMPP server
and not try to second-guess the delivery logic at the PubSub service. However, if the
PubSub service does have presence information, it can optimize delivery according
to the presence_based_delivery configuration option (see “Creating and Deleting
Nodes” on page 107).

The <event/> element sent to Alice almost mirrors the <publish/> element from the
Queen’s submission, with a slightly modified namespace.

The entry payload will be quite familiar, as it’s the same payload the Queen sub-
mitted in the previous stanza.

Payloads: To Send or Not to Send?
When configuring a PubSub node, you face two fundamental choices:

• Whether notifications sent from the node will include the payload

• Whether items published at the node will be stored for later retrieval

PubSub nodes can be configured in any combination of these facets. In this section, we
discuss whether to include the payload, and in the next section, we discuss whether to
store the items.

It may seem odd not to include the payload. Surely everyone wants to receive the com-
plete notification, such as the Atom data that defines the blog post!

Not always. Sometimes the items published to a PubSub node don’t even contain a
payload. Consider the example of a doorbell node: all you want to know is that someone
is ringing the doorbell so that you can answer the door. When your client receives this
event, it can play an appropriate sound, so no payload is necessary.

Another example is the “metadata” node for user avatars, as defined in [XEP-0084].
Here, the notifications do not include a payload, because the image data itself (which
might be quite large) is hosted at a different node (the “data” node).

Whether payloads are sent or not sent is controlled by the deliver_payloads configu-
ration option; the resulting node types are called payload-included nodes and
notification-only nodes, respectively. (We discuss node configuration a bit later in this
chapter.)

If the queenly_proclamations node we’ve been considering were configured to not in-
clude payloads, the notification would have looked like this:

<message from="notify.wonderland.lit" to="alice@wonderland.lit">
 <event xmlns="http://jabber.org/protocol/pubsub#event">
 <items node="queenly_proclamations">
 <item id="zi2ba967"/>
 </items>
 </event>
</message>

102 | Chapter 8: Publish/Subscribe

The <item/> element has an id attribute in this example, providing a key for fetching
the payload if needed.

Items: To Store or Not to Store?
The other primary configurable facet defines whether to store the items or not (this is
controlled by the persist_items configuration option). When the XMPP community
originally discussed publish-subscribe technologies, some developers insisted that it
might be valuable to keep a history of published items (e.g., for traceability), whereas
other developers just as strongly argued that the publish-subscribe design pattern is a
pure eventing system with no history required. To satisfy both groups, it was decided
to make this a configuration option. The resulting node types are called persistent nodes
and transient nodes, respectively.

To use the example of the doorbell node, it is quite possible that you don’t need an
archive of when the doorbell rang—you just want to subscribe to the stream of people
who arrive at your front door. In this case, the notifications would not even include an
ItemID, because there is nothing to track or retrieve later.

For something more significant, such as notifications related to the queenly_proclama
tions blog, there is value in keeping a history—for example, so that new subscribers
can request some past notifications to gain some context for current postings.

If Alice subscribed to the queenly_proclamations node with a notifications-only con-
figuration, she might want to retrieve the payload corresponding to a particular item.
She would do so using the retrieve-items feature:

<iq from="alice@wonderland.lit/rabbithole"
 id="ka03p485"
 to="notify.wonderland.lit"
 type="get">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <items node="queenly_proclamations">
 <item id="zi2ba967"/>
 </items>
 </pubsub>
</iq>

The items are fetched using an IQ-get, to which the service replies with an error or
an IQ-result. If the fetch is successful, the service will send one message for each
notification (or, optionally, multiple notifications per message).

Each <item/> element requests an item with a specified ItemID (you can request
multiple items at once).

Or, if she was feeling particularly heavy-handed (or forgetful), she could ask for all the
items:

<iq from="alice@wonderland.lit/rabbithole"
 to="notify.wonderland.lit"

Items: To Store or Not to Store? | 103

 id="vru42mn"
 type="get">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <items node="queenly_proclamations" />
 </pubsub>
</iq>

The empty <items/> element requests all available items.

However, the service might not return the complete history (too many items!), or it
might have kept only a certain number of items in storage (as set by the max_items
configuration option discussed in “Node Configuration” on page 108).

Discovering Nodes
Suppose you have heard that the Queen has built up a collection of blog posts, and you
would like to discover more about this service. First, you could verify that you have the
address of the PubSub service correct, as the Knave does in the following disco#info
exchange (we discussed service discovery in Chapter 5):

<iq from="knave@wonderland.lit/croquetlawn"
 to="notify.wonderland.lit"
 id="d1nfg39e"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#info"/>
</iq>

<iq from="notify.wonderland.lit"
 id="d1nfg39e"
 to="knave@wonderland.lit/croquetlawn"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <identity category="pubsub" type="service"/>
 <feature var="http://jabber.org/protocol/pubsub"/>
 </query>
</iq>

You’ve discovered that notify.wonderland.lit is, indeed, a PubSub service—a good
start. Now, to discover the (top-level) nodes available at this service, you can send a
disco#items query to the service, as the Knave does here:

<iq from="knave@wonderland.lit/croquetlawn"
 id="nb74fg13"
 to="notify.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#items"/>
</iq>

<iq from="notify.wonderland.lit"
 id="nb74fg13"
 to="knave@wonderland.lit/croquetlawn"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#items">

104 | Chapter 8: Publish/Subscribe

 <item jid="notify.wonderland.lit"
 node="blogregator"
 name="Weblogs"/>
 <item jid="notify.wonderland.lit"
 node="croquet_results"
 name="Results from croquet games"/>
 </query>
</iq>

The blog entries we were looking for.

You may find other nodes as well, such as this one.

With these service discovery requests, you’ve identified the weblogs node you’re in-
terested in. The next step of interest is to discover information about the node, which
you can do in the same way as for the service—that is, by sending a disco#info query
to the service, but this time specifying the particular node you’re interested in:

<iq from="knave@wonderland.lit/croquetlawn"
 id="hl43fy32"
 to="notify.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#info" node="blogregator" />
</iq>

<iq from="notify.wonderland.lit"
 id="hl43fy32"
 to="knave@wonderland.lit/croquetlawn"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#info" node="blogregator">
 <identity category="pubsub" type="collection" />
 </query>
</iq>

Adding the node attribute gets you results about a specific node, rather than the root
node of the service.

The type attribute tells you what kind of node this is. In this case, the node is a
collection, as described in [XEP-0248].

There are two kinds of pubsub nodes: leaf nodes and collection nodes. A leaf node
is a node to which items are published, whereas a collection node is a kind of aggregator
for leaf nodes. (We discuss collection nodes more fully when we address item aggre-
gation later in this chapter.) Because the blogregator node is a collection node, you can
ask it about its associated nodes in the same manner as querying the service:

<iq from="knave@wonderland.lit/croquetlawn"
 id="xvp29fh7"
 to="notify.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#items" node="blogregator"/>
</iq>

<iq from="notify.wonderland.lit"
 id="xvp29fh7"

Discovering Nodes | 105

 to="knave@wonderland.lit/croquetlawn"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#items" node="blogregator">
 <item jid="notify.wonderland.lit" node="queenly_proclamations"/>
 <item jid="notify.wonderland.lit" node="alices_blog" />
 </query>
</iq>

Here, the reply to your query shows two available weblogs in the collection node: Alice’s
blog and the Queenly Proclamations blog that you’ve seen throughout the chapter.
Since you’re interested in hearing what the Queen has to say, let’s perform a final query
for information about this blog (which happens to be a leaf node):

<iq from="knave@wonderland.lit/croquetlawn"
 id="dge834wi"
 to="notify.wonderland.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#items" node="queenly_proclamations"/>
</iq>

<iq from="notify.wonderland.lit"
 id="dge834wi"
 to="knave@wonderland.lit/croquetlawn"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#items" node="queenly_proclamations">
 <identity category="pubsub" type="leaf"/>
 <feature var="http://jabber.org/protocol/pubsub"/>
 <x xmlns="jabber:x:data" type="result">
 <field var="FORM_TYPE" type="hidden">
 <value>http://jabber.org/protocol/pubsub#meta-data</value>
 </field>
 <field var="pubsub#type" label="Payload type">
 <value>http://www.w3.org/2005/Atom</value>
 </field>
 <field var="pubsub#creator" label="Node creator">
 <value>queen@wonderland.lit</value>
 </field>
 <field var="pubsub#creation_date" label="Creation date">
 <value>1865-05-04T10:00Z</value>
 </field>
 <field var="pubsub#title" label="A short name for the node">
 <value>Queenly Proclamations (A Blog)</value>
 </field>
 <field var="pubsub#description" label="A description of the node">
 <value>The Queen's blog, home of beheadings.</value>
 </field>
 <field var="pubsub#language" label="Default language">
 <value>en</value>
 </field>
 <field var="pubsub#owner" label="Node owners">
 <value>queen@wonderland.lit</value>
 </field>
 <field var="pubsub#publisher" label="Publishers to this node">
 <value>queen@wonderland.lit</value>
 </field>

106 | Chapter 8: Publish/Subscribe

 <field var="pubsub#num_subscribers"
 label="Number of subscribers to this node">
 <value>42</value>
 </field>
 </x>
 </query>
</iq>

As we’ve already seen for Multi-User Chat rooms, here again a data form is used to
include extended information in the service discovery result. In particular, this form
provides some interesting statistics (such as the creation date and the number of sub-
scribers). It also discloses node management details, such as the list of publishing JIDs
and the node owners. You can also find out what kind of payload is published here—
in this case, your old data syndication friend http://www.w3.org/2005/Atom for the Atom
format. Now that you’re armed with all this information, you can decide whether you
want to subscribe to this node, tell your friends about it, and so on.

Node Management
So far you’ve seen how to both Publish and Subscribe to nodes, and also how to discover
nodes. Now we’ll cover the node management features available in PubSub: creating
nodes, deleting nodes, configuring nodes, and managing relationships with the node
(subscriptions and affiliations).

Creating and Deleting Nodes
Although many PubSub services will automatically create a node the first time you
publish to it, some services will require you to explicitly create the node first (and
sometimes you may want to, regardless). The auto-creation feature can be detected by
the inclusion or exclusion of the http://jabber.org/protocol/pubsub#auto-create en-
try in the disco#info results you receive from the service.

If the Queen wants to create her “Queenly Proclamations” node, she can do it with the
following stanza:

<iq from="queen@wonderland.lit/throne"
 id="cr561nd0"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <create node="queenly_proclamations"/>
 </pubsub>
</iq>

Node Management | 107

PubSub Takes a REST
When a PubSub node is associated with a resource that is also available
on the World Wide Web, it makes sense for the XMPP NodeID to be
the same as the HTTP URL of the web resource. This simple practice is
consistent with the representational state transfer (REST) architectural
style and helps to ensure information coherence because the same data
will appear via the Web and via XMPP. For instance, if the Queen’s
weblog is hosted at http://blogs.wonderland.lit/queenly_proclama
tions/, then it would be appropriate to use that string as the ID of the
node where her blog posts appear on the XMPP network.

If the pressures of public disclosure become too much for the Queen, she can delete
her node entirely:

<iq from="queen@wonderland.lit/throne"
 id="d3l3t41t"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub#owner">
 <delete node="queenly_proclamations"/>
 </pubsub>
</iq>

Because the Knave earlier subscribed to this node, he then receives a notification upon
its deletion:

<message from="notify.wonderland.lit" to="knave@wonderland.lit">
 <event xmlns="http://jabber.org/protocol/pubsub#event">
 <delete node="queenly_proclamations"/>
 </event>
</message>

Node Configuration
Just as there are configuration options for subscriptions, there are also configuration
options for nodes. Configuration options can be included at node creation time if the
PubSub service supports the create-and-configure feature (which can be determined
via the disco#info result you receive from the service). For example, the following
stanza simultaneously creates the Queenly Proclamations node and sets two configu-
ration options, the title of the node and the payload type:

<iq from="queen@wonderland.lit/throne"
 id="cr34t32o"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <create node="queenly_proclamations"/>
 <configure>
 <x xmlns="jabber:x:data" type="submit">
 <field var="FORM_TYPE">
 <value>http://jabber.org/protocol/pubsub#node_config</value>

108 | Chapter 8: Publish/Subscribe

 </field>
 <field var="pubsub#title">
 <value>Queenly Proclamations - A Blog.</value>
 </field>
 <field var="pubsub#type">
 <value>http://www.w3.org/2005/Atom</value>
 </field>
 </x>
 </configure>
 </pubsub>
</iq>

As we discussed in Chapter 6, the FORM_TYPE scopes the data for the node configu-
ration form, which means that the client creating the node can know ahead of time
which fields are supported.

To reconfigure the node after initial creation, the Queen queries the node for the full
list of configuration options by sending an IQ-get to the server:

<iq from="queen@wonderland.lit/throne"
 id="kj2gs891"
 to="notify.wonderland.lit"
 type="get">
 <pubsub xmlns="http://jabber.org/protocol/pubsub#owner">
 <configure node="queenly_proclamations"/>
 </pubsub>
</iq>

Here, the namespace is http://jabber.org/protocol/pubsub#owner because the ac-
tion is related to actions taken by node owners.

The server then returns a complete node configuration form to the Queen, with the
current node configuration choices set as the default values. The complete form is quite
long because there are so many node configuration options, so here we show a trun-
cated version:

<iq from="notify.wonderland.lit"
 id="kj2gs891"
 to="queen@wonderland.lit/throne"
 type="result">
 <pubsub xmlns="http://jabber.org/protocol/pubsub#owner">
 <configure node="queenly_proclamations">
 <x xmlns="jabber:x:data" type="form">
 <field var="FORM_TYPE" type="hidden">
 <value>http://jabber.org/protocol/pubsub#node_config</value>
 </field>
 <field var="pubsub#title" type="text-single"
 label="A friendly name for the node">
 <value>Queenly Proclamations - A Blog.</value>
 </field>
 <field var="pubsub#deliver_payloads" type="boolean"
 label="Whether to deliver payloads with event notifications">
 <value>true</value>
 </field>
 <field var="pubsub#persist_items" type="boolean"

Node Management | 109

 label="Persist items to storage">
 <value>1</value>
 </field>
 <field var="pubsub#max_items" type="text-single"
 label="Max # of items to persist">
 <value>10</value>
 </field>
 <field var="pubsub#access_model" type="list-single"
 label="Specify the subscriber model">
 <option><value>authorize</value></option>
 <option><value>open</value></option>
 <option><value>presence</value></option>
 <option><value>roster</value></option>
 <option><value>whitelist</value></option>
 <value>open</value>
 </field>
 <field var="pubsub#roster_groups_allowed" type="list-multi"
 label="Roster groups allowed to subscribe">
 <option><value>friends</value></option>
 <option><value>courtiers</value></option>
 <option><value>servants</value></option>
 <option><value>enemies</value></option>
 </field>
 <field var="pubsub#send_last_published_item" type="list-single"
 label="When to send the last published item">
 <option label="Never"><value>never</value></option>
 <option label="When a new subscription is processed"><value>on_sub</value>
 </option>
 <option label="When a new subscription is processed and
 whenever a subscriber comes online">
 <value>on_sub_and_presence</value>
 </option>
 <value>never</value>
 </field>
 <field var="pubsub#type" type="text-single"
 label="Specify the type of payload data to be provided at this node">
 <value>http://www.w3.org/2005/Atom</value>
 </field>
 </x>
 </configure>
 </pubsub>
</iq>

The Queen then completes the node configuration form, and submits it to the server
by sending an IQ-set with a data form of type submit.

Fire and Forget
It is also possible to include the configuration element when publishing
an item, in which case the service will either reconfigure the node with
the new settings, or treat them as a precondition to publishing and thus
reject the publish request if the options don’t match those currently in
force at the node. Support for this publish-options feature can be de-
termined via the disco#info result you receive from the service.

110 | Chapter 8: Publish/Subscribe

As you can see, there are many node configuration options. The most important con-
figuration options are described next (we have deleted the pubsub# “prefix” to make
the list more readable). See [XEP-0060] for a complete list of node configuration
options.

• The list-single access_model option defines whether subscriptions are open to
anyone, restricted to a whitelist controlled by the node owner, limited to those
who have a presence subscription to the node owner or who are in a particular
group in the owner’s roster, or whether the node owner must explicitly author
ize all subscription requests. We discuss this setting in the next section.

• The list-multi collection option defines which collection node(s) another node
is affiliated with.

• The boolean deliver_notifications option defines whether notifications are sent
at all (setting this to false results in a “quiet” node from which entities must ex-
plicitly pull information, which goes against the PubSub philosophy, but is useful
in some scenarios; naturally, it defaults to true).

• The boolean deliver_payloads option defines whether payloads are included in
notifications. We discussed this setting earlier in the chapter.

• The text-single max_items option defines the maximum number of published
items that the service will store in the “history” of the node; typically, publication
of a new item will result in deletion of the oldest item (consistent with the policy
of “first in, first out”).

• The text-single max_payload_size option defines the largest allowable payload (in
bytes).

• The list-single node_type option defines whether the node is a leaf or a
collection.

• The boolean notify_config, notify_delete, and notify_retract options define
whether subscribers receive a notification when the node configuration is changed,
when an item is deleted, or when an item is retracted.

• The boolean notify_sub option defines whether the node owner receives a notifi-
cation when new entities subscribe to the node.

• The boolean persist_items option defines whether items published to the node
are kept in persistent storage (up to the max_items number) or the node does not
persist items and therefore is transient. We discussed this setting earlier in this
chapter.

• The boolean presence_based_delivery option defines whether the service will send
notifications if it has presence information about the subscriber. For a standalone
pubsub service, this will require the subscriber to register with the service, but if
the pubsub service is associated with an IM user’s JID in the Personal Eventing
Protocol, then the service might already have this information, thus enabling it to
optimize the delivery of notifications.

Node Management | 111

• The list-single publish_model option defines who is allowed to publish to the
node: publishers only, subscribers, or anyone (an open publication model).

• The list-multi roster_groups_allowed option specifies exactly which roster group
or groups can subscribe to and retrieve items from the node. It is used together
with an access_model setting of roster.

• The list-single send_last_published_item option defines when the node will au-
tomatically send at least the last published item to a subscriber: never, when the
subscriber is newly subscribed (the on_sub value), or when the entity is newly sub-
scribed or sends presence to the node or service (the on_sub_and_presence value).

• The boolean subscribe option defines whether subscriptions are allowed.

• The title option defines a human-readable name for the node.

• The type option defines the XML namespace of the payloads that are generated at
the node.

Managing Node Access
All that remains before you have the full PubSub arsenal at your disposal is a quick look
at managing the way a node is accessed.

You can choose from several access schemes for PubSub nodes in [XEP-0060]:

• The Open access model allows anyone to subscribe.

• The Whitelist access model allows only preselected JIDs to subscribe or to retrieve
the node.

• The Authorize access model requires the node owner to approve any subscription
requests.

• The Presence access model allows subscriptions only from JIDs that already have
a presence subscription to the node owner.

• The Roster access model enables you to limit subscriptions to JIDs that are in
specific roster groups (e.g., you might specify that only people in your Friends
group can access information about your physical location).

Alice and the Queen have decided that they want to limit access to their weblogs using
these node access models. Alice wants to whitelist only her friends, whereas the Queen
wants to vet each subscription with the Authorize model (she is a bit of a control freak).
Alice first checks the JIDs currently affiliated with her blog:

<iq from="alice@wonderland.lit/rabbithole"
 id="wl62hf87"
 to="notify.wonderland.lit"
 type="get">
 <pubsub xmlns="http://jabber.org/protocol/pubsub#owner">
 <affiliations node="alices_blog"/>
 </pubsub>
</iq>

112 | Chapter 8: Publish/Subscribe

<iq from="notify.wonderland.lit"
 id="wl62hf87"
 to="alice@wonderland.lit/rabbithole"
 type="result">
 <pubsub xmlns="http://jabber.org/protocol/pubsub#owner">
 <affiliations node="alices_blog">
 <affiliation jid="alice@wonderland.lit" affiliation="owner"/>
 <affiliation jid="rabbit@wonderland.lit" affiliation="member"/>
 </affiliations>
 </pubsub>
</iq>

Currently Alice owns the blog node, and the White Rabbit is whitelisted for access (an
affiliation of member). She can add more JIDs to the whitelist at any time, as she now
does with the Mad Hatter:

<iq from="alice@wonderland.lit/rabbithole"
 id="ad4ui81nk"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub#owner">
 <affiliations node="alices_blog">
 <affiliation jid="hatter@wonderland.lit" affiliation="member"/>
 </affiliations>
 </pubsub>
</iq>

The Queen, with her Authorized access model, might receive notice that the Duchess
wants to subscribe to her blog (here we see yet another use of data forms):

<message from="notify.wonderland.lit" to="queen@wonderland.lit">
 <x xmlns="jabber:x:data" type="form">
 <title>PubSub subscriber request</title>
 <instructions>
 To approve this entity's subscription request,
 set the "Allow this JID..." field to true.
 </instructions>
 <field var="FORM_TYPE" type="hidden">
 <value>http://jabber.org/protocol/pubsub#subscribe_authorization</value>
 </field>
 <field var="pubsub#subid" type="hidden"><value>subscription-001</value></field>
 <field var="pubsub#node" type="text-single" label="Node ID">
 <value>queenly_proclamations</value>
 </field>
 <field var="pusub#subscriber_jid" type="jid-single" label="Subscriber Address">
 <value>duchess@wonderland.lit</value>
 </field>
 <field var="pubsub#allow" type="boolean"
 label="Allow this JID to subscribe to this pubsub node?">
 <value>false</value>
 </field>
 </x>
</message>

Node Management | 113

At this point, the Duchess has a subscription state of pending. The Queen denies the
request, as she’s about to have the Duchess beheaded:

<message from="queen@wonderland.lit/croquetlawn" to="notify.wonderland.lit">
 <x xmlns="jabber:x:data" type="submit">
 <field var="FORM_TYPE">
 <value>http://jabber.org/protocol/pubsub#subscribe_authorization</value>
 </field>
 <field var="pubsub#subid">
 <value>subscription-001</value>
 </field>
 <field var="pubsub#node">
 <value>queenly_proclamations</value>
 </field>
 <field var="pubsub#subscriber_jid">
 <value>duchess@wonderland.lit</value>
 </field>
 <field var="pubsub#allow">
 <value>false</value>
 </field>
 </x>
</message>

The Duchess is then notified of the fact that her subscription request has been denied:

<message from="notify.wonderland.lit" to="duchess@wonderland.lit">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <subscription jid="duchess@wonderland.lit"
 node="queenly_proclamations"
 subscription="none"/>
 </pubsub>
</message>

In addition to the subscriber affiliation, a JID can be affiliated with a PubSub node in
several ways (these affiliations might look familiar, since they are quite similar to the
multiuser chat affiliations we described in Chapter 7). While [XEP-0060] defines these,
and the possible transitions between them, in some detail, they can be quickly sum-
marized: An owner has full control over a node, whereas an outcast is banned from
access to a node, and an affiliation of none means there is no connection between a JID
and a node. Between these, there are also publishers, who can publish to the node but
not control it, and members, who can subscribe to the node and fetch data from it. You
can set these in the same way as Alice set the Mad Hatter to be a member.

Item Aggregation via Collection Nodes
You’ve already met collection nodes, such as the one containing the Queen’s and Alice’s
weblogs, but we didn’t say much about them. A collection node is like a folder on a file
system: it can contain files (leaf nodes) and other folders (collection nodes), but not
the text that goes into a file (items). In XMPP PubSub, when a leaf node is associated
with a collection node, the items that are published to the leaf node are also pushed to

114 | Chapter 8: Publish/Subscribe

entities that have subscribed to the collection node. Thus collection nodes are a
powerful mechanism for aggregation of notifications.

Subscribing to a collection node is no different from subscribing to a leaf node, so the
examples we’ve already looked at still apply. And creating a collection node is as simple
as sending a create request while specifying a node_type of collection:

<iq from="queen@wonderland.lit/croquetlawn"
 id="kip71j8r"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <create node="blogregator"/>
 <configure>
 <x xmlns="jabber:x:data" type="submit">
 <field var="FORM_TYPE">
 <value>http://jabber.org/protocol/pubsub#node_config</value>
 </field>
 <field var="pubsub#node_type"><value>collection</value></field>
 </x>
 </configure>
 </pubsub>
</iq>

There are two ways to associate a leaf with a collection node: the owner of the leaf node
can modify the pubsub#collection configuration option, or the owner of the collection
node can modify the pubsub#children configuration option. Because the same rules
apply to associating one collection node with another collection node, XMPP devel-
opers tend to call the associated leaf (or collection) node a child node and the collection
node to which the leaf (or collection) node has been associated a parent node.

For example, Alice can associate her blog with the blogregator node, as shown in the
following example, thus making her alices_blog node a child of the blogregator col-
lection node:

<iq from="alice@wonderland.lit/rabbithole"
 id="buq73bn9"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <create node="alices_blog"/>
 <configure>
 <x xmlns="jabber:x:data" type="submit">
 <field var="FORM_TYPE">
 <value>http://jabber.org/protocol/pubsub#node_config</value>
 </field>
 <field var="pubsub#collection"><value>blogregator</value></field>
 </x>
 </configure>
 </pubsub>
</iq>

Node Management | 115

Because the Queen created the blogregator collection node, she can make her
queenly_proclamations node a child of the blogregator node by modifying the config-
uration of the collection node:

<iq from="queen@wonderland.lit/croquetlawn"
 id="vc91hs63"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub#owner">
 <configure node="blogregator">
 <x xmlns="jabber:x:data" type="submit">
 <field var="FORM_TYPE">
 <value>http://jabber.org/protocol/pubsub#node_config</value>
 </field>
 <field var="pubsub#children">
 <value>alices_blog</value>
 <value>queenly_proclamations</value>
 </field>
 </x>
 </configure>
 </pubsub>
</iq>

Once a node has been associated with a collection, the owner of the parent node can
disassociate the child node by again modifying the pubsub#children configuration op-
tion of the parent node. Here, the Queen removes her own blog from the
blogregator collection node:

<iq from="queen@wonderland.lit/croquetlawn"
 id="sl8eo3i8"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub#owner">
 <configure node="blogregator">
 <x xmlns="jabber:x:data" type="submit">
 <field var="FORM_TYPE">
 <value>http://jabber.org/protocol/pubsub#node_config</value>
 </field>
 <field var="pubsub#children">
 <value>alices_blog</value>
 </field>
 </x>
 </configure>
 </pubsub>
</iq>

The owner of the child node can terminate the association by again modifying the
pubsub#collection configuration option for the child node:

<iq from="alice@wonderland.lit/rabbithole"
 id="kqid71n7"
 to="notify.wonderland.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <configure node="alices_blog">

116 | Chapter 8: Publish/Subscribe

 <x xmlns="jabber:x:data" type="submit">
 <field var="FORM_TYPE">
 <value>http://jabber.org/protocol/pubsub#node_config</value>
 </field>
 <field var="pubsub#collection"/>
 </x>
 </configure>
 </pubsub>
</iq>

Because Alice is removing all associations, she sends an empty <field/> element.

Collection nodes can be arranged and associated in a wide variety of ways that have
not yet been widely explored within the XMPP developer community. [XEP-0248] de-
scribes some of these possibilities, but in many ways, collection nodes are on the cutting
edge of XMPP technologies, so expect to see more development in this area after this
book has been published.

Personal Eventing: PubSub Simplified
Although the XMPP PubSub extension has many advanced features, the basic idea is
really quite simple: if you subscribe to a node, you will receive a notification whenever
a publisher posts an item to the node. However, this presupposes that you have found
a node you’re interested in. When XMPP developers started working on publish-
subscribe technologies in 2002, they thought in terms of the component model we’ve
seen in Multi-User Chat: nodes would be hosted at a specialized component such as
notify.wonderland.lit, and users would explore such a component to find nodes of
interest.

Unfortunately, this model is not very user-friendly nor very personal. What if a typical
IM user wants to publish information about her mood or the tunes she listens to, or
perhaps some other form of rich presence? Does she really need to create multiple nodes
at a large service? And how do her friends discover these nodes? Do they need to explore
that service to find them, or wait for her to tell them explicitly? That seems like a
roundabout way of creating and discovering personal information sources.

However, some clever XMPP developers realized that this model could be simplified
quite a bit if the IM user’s own JabberID could be a virtual PubSub service. Instead of
forcing Alice to create nodes at notify.wonderland.lit and forcing her friends to find
those nodes, the JID alice@wonderland.lit could function as a collection node for all
sorts of information about Alice. And the model could be simplified even further if
Alice’s friends could advertise their interests in the presence information they are al-
ready sharing with Alice.

The result of these simplifications is a profile of PubSub called Personal Eventing Pro-
tocol, or PEP [XEP-0163]. In essence, PEP assumes that potential subscribers have two
kinds of interests:

Personal Eventing: PubSub Simplified | 117

• If you use an IM system, then you’re interested in certain people, namely the people
in your roster.

• If you’re interested in certain people, then you’re probably interested in more than
just their network availability; you might also be interested in their thoughts, their
activities, their whereabouts, what music they listen to, etc.

These two assumptions underlie the explosion of “lifestreaming” services on the In-
ternet today—microblogging services, geolocation services, social music services, and
all the rest. XMPP’s PubSub technology (especially the PEP subset) provides a perfect
foundation for streaming interesting data about the people you want to know about.
Let’s explore how.

PEP leverages presence by enabling you to tell your friends what payloads you would
like to receive. It does this using a clever hack to the Entity Capabilities protocol we
look at in Chapter 5: if you are interested in receiving, say, tunes data, your client
advertises support for the http://jabber.org/protocol/tune+notify feature, where the
+notify suffix means that you want to receive notifications about the string that pre-
cedes the suffix. Your interest in that data is then encapsulated into the Entity Capa-
bilities format and advertised in the presence notifications that you send to your friends.

When your friend’s XMPP server receives your specially marked presence notification,
it sees that you are interested in receiving tunes data. It then checks to see whether you
are authorized to receive that data from your friend. If so, it automatically starts sending
you tune notifications, with no explicit discovery or subscription processes required
on your part.

So far, PEP is mainly used for rich presence. What follows is a catalog of several types
of rich presence extensions, available at the time of this writing. In the following ex-
amples, we omit the surrounding publish (or notification) elements, which are exactly
as the previous examples, and show only the actual payload:

User Tune [XEP-0118]
Enables you to publish the music you are listening to, including the track number,
the length (in seconds), a rating of the played track, and a URI to visit for extra
information about the track:

<tune xmlns="http://jabber.org/protocol/tune">
 <artist>Pink Floyd</artist>
 <title>Dogs</title>
 <source>Animals</source>
 <track>2</track>
 <length>1024</length>
 <rating>8</rating>
 <uri>http://pinkfloyd.com</uri>
</tune>

User Location [XEP-0080]
Provides information about your current location. The exact description of your
location can be given using different properties, from the exact positioning

118 | Chapter 8: Publish/Subscribe

parameters (such as latitude, longitude and altitude) to more abstract descriptions
(such as country, region, city, street, and building). On top of this, a textual de-
scription can be given to describe your current location in a more general way:

<geoloc xmlns="http://jabber.org/protocol/geoloc">
 <country>Italy</country>
 <lat>45.44</lat>
 <locality>Venice</locality>
 <lon>12.33</lon>
 <alt>2</alt>
</geoloc>

User Activity [XEP-0108]
Basic presence provides only a small set of status types: away, extended away, and
do not disturb. User Activity provides a taxonomy of extra types that further de-
scribe the actual activity, such as <eating/>, <working/>, and <relaxing/>. These
types can be further specified using sub-types and a generic description, for
example:

<activity xmlns="http://jabber.org/protocol/activity">
 <relaxing>
 <partying/>
 </relaxing>
 <text>My sister's birthday!</text>
</activity>

User Mood [XEP-0107]
Communicates information about your current mood. Besides a fixed taxonomy
of types of moods (such as happy, hungry, and proud), you can specify your mood
with a textual description. For example:

<mood xmlns="http://jabber.org/protocol/mood">
 <annoyed/>
 <text>Curse the Queen!</text>
</mood>

User Nickname [XEP-0172]
Allows you to publish your nickname. This enables your contacts to display the
nickname you chose in addition to (or instead of) the name they assigned them-
selves when adding you to their roster. A nickname specification is very simple:

<nick xmlns="http://jabber.org/protocol/nick">The Knave</nick>

Besides being used with the publish/subscribe protocol described throughout this
section, nickname information can also appear in other contexts. A nickname can
be added to the presence subscription requests from Chapter 3, in order to suggest
a nickname for adding the contact to the roster. For example:

<presence from="knave@wonderland.lit/pda"
 to="alice@wonderland.lit"
 type="subscribe">
 <nick xmlns="http://jabber.org/protocol/nick">The Knave</nick>
</presence>

Personal Eventing: PubSub Simplified | 119

Nickname information can also be added to messages. This is useful in a conver-
sation between people who don’t have presence (and therefore extended pres-
ence) information about each other (e.g., because they are not subscribed to each
other’s presence). The following is an example of such an annotated message:

<message from="alice@wonderland.lit/rabbithole"
 to="whiterabbit@wonderland.lit"
 type="chat">
 <body>If you please, sir--</body>
 <nick xmlns="http://jabber.org/protocol/nick">Alice</nick>
</message>

User Avatar [XEP-0084]
Another way of distinguishing people, besides nicknames, is by using pictures.
Such a picture or photograph is also called an “avatar.” In XMPP, you can publish
your avatar using PEP as well, by embedding the raw image data as a Base64 string:

<iq from="alice@wonderland.lit/rabbithole" id="krw7361g" type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <publish node="urn:xmpp:avatar:data">
 <item id="111f4b3c50d7b0df729d299bc6f8e9ef9066971f">
 <data xmlns="urn:xmpp:avatar:data">
 qANQR1DBwU4DX7jmYZnncm...
 </data>
 </item>
 </publish>
 </pubsub>
</iq>

However, there’s a catch here. Not only will all your interested contacts get this
chunk of image data when you change it, but your server will send it to them every
time they log onto the network, so that they will have up-to-date versions of your
avatar. Since your avatar changes infrequently, this would result in a waste of
bandwidth. To avoid this, you publish the metadata of your avatar, including a
(SHA-1) hash of the image data:

<iq from="alice@wonderland.lit/rabbithole" id="cqo82g57" type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <publish node="urn:xmpp:avatar:metadata">
 <item id="111f4b3c50d7b0df729d299bc6f8e9ef9066971f">
 <metadata xmlns="urn:xmpp:avatar:metadata">
 <info width="64" height="64" type="image/png" bytes="12345"
 id="111f4b3c50d7b0df729d299bc6f8e9ef9066971f"/>
 </metadata>
 </item>
 </publish>
 </pubsub>
</iq>

When your contacts now subscribe to your metadata node (instead of to your
actual data node), they get much more concise information about your avatar every
time they receive an update:

120 | Chapter 8: Publish/Subscribe

<message from="alice@wonderland.lit" to="sister@realworld.lit">
 <event xmlns="http://jabber.org/protocol/pubsub#event">
 <items node="urn:xmpp:avatar:metadata">
 <item id="111f4b3c50d7b0df729d299bc6f8e9ef9066971f">
 <metadata xmlns="urn:xmpp:avatar:metadata">
 <info width="64" height="64" type="image/png" bytes="12345"
 id="111f4b3c50d7b0df729d299bc6f8e9ef9066971f"/>
 </metadata>
 </item>
 </items>
 </event>
</message>

When their client receives an avatar hash it has not seen before, the client requests
the image from the data node:

<iq from="sister@realworld.lit/home"
 id="hf387ir4"
 to="juliet@capulet.lit"
 type="set">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <items node="urn:xmpp:avatar:data">
 <item id="111f4b3c50d7b0df729d299bc6f8e9ef9066971f"/>
 </items>
 </pubsub>
</iq>

As a result, your server replies with your published data:

<iq from="juliet@capulet.lit"
 to="sister@realworld.lit/home"
 id="hf387ir4"
 type="result">
 <pubsub xmlns="http://jabber.org/protocol/pubsub">
 <items node="urn:xmpp:avatar:data">
 <item id="111f4b3c50d7b0df729d299bc6f8e9ef9066971f">
 <data xmlns="urn:xmpp:avatar:data">
 qANQR1DBwU4DX7jmYZnncm...
 </data>
 </item>
 </items>
 </pubsub>
</iq>

The list of applications of extended presence goes on: publishing the chat rooms you
visit, the videos you watch, the games you play, you name it. All these applications use
the same principles as the ones mentioned in this chapter, so we do not provide detailed
descriptions here.

Personal Eventing: PubSub Simplified | 121

Summary
As we’ve seen, the model of subscribing to an information node and then receiving a
notification only when an entity publishes an item to that node provides a scalable, real-
time alternative to the pain of constant polling for updates. The XMPP PubSub exten-
sion supports these core publish and subscribe semantics, as well as a broad range of
ancillary use cases, such as node configuration, subscription configuration, several
helpful node access models, item persistence, and aggregation of items via collection
nodes. And the PubSub specification [XEP-0060] defines additional use cases we don’t
have space for in this book. Furthermore, the Personal Eventing Protocol, or PEP
[XEP-0163], specifies a slimmed-down profile of PubSub that simplifies the processes
of discovering and subscribing to nodes associated with accounts registered on an
XMPP server. PEP is mainly used for communicating “rich presence,” such as moods,
and exchanging “lifestreaming” data, such as microblogs, but is also being applied to
storing personal data, such as bookmarks and client preferences. PubSub is an exciting
addition to the XMPP toolkit that will be used for years to come in building out the
real-time Internet.

122 | Chapter 8: Publish/Subscribe

CHAPTER 9

Jingle: Jabber Does Multimedia

To Instant Messaging and Beyond
So far we’ve seen how XMPP can be used to exchange one-to-one messages, participate
in multi-user chat rooms, and send alerts and notifications. But what if text is not
enough? Sometimes there is no replacement for voice, video, and other rich media
interactions.

Enter Jingle, defined in [XEP-0166] and a number of related specifications. After several
years of experimentation, in 2005 the XMPP developer community finally got serious
about adding support for voice chat, spurred on by the launch of Google Talk, an
XMPP-based service for instant messaging and Voice over Internet Protocol (VoIP). In
fact, the Google Talk team worked with developers in the community to define Jingle
as a refinement of the Google Talk protocol (similar to the way in which XMPP is a
refinement of the original Jabber protocol or Multi-User Chat is a refinement of the
original groupchat protocol).

Jingle Versioning
The original protocol deployed at the Google Talk service has some
subtle differences from the protocol that has been formalized by the
XMPP Standards Foundation (with many contributions from members
of the Google Talk team and other developers). You can think of that
original protocol as “Jingle 0.9,” but by the time you read this book, the
version to implement will be “Jingle 1.0,” as published in the relevant
XEPs.

Jingle provides a reliable mechanism for setting up voice calls over the Internet (see
[XEP-0167] for details). Even more interesting, the same basic Jingle methods can be
used to negotiate and manage any kind of media session, including video chat, file
transfer, and screen sharing. This makes Jingle yet another powerful building block in
the XMPP toolkit.

123

Jingle provides a pluggable model for both application types and transport methods.
Typically, Jingle is used to set up sessions that are not appropriate over XMPP itself.
As we’ve discussed, XMPP is optimized for the exchange of many small snippets of
XML, not data-heavy media streams. The Internet community has defined perfectly
good technologies for the transport of voice, video, files, and other application types.
Jingle therefore simply reuses those technologies for “heavy lifting” rich media sessions.
The basic idea is that Jingle uses XMPP as the signaling channel to set up, manage, and
terminate media sessions, whereas the media data itself is sent either peer-to-peer or
mediated through a dedicated media relay.

Channels and Connections
There are two kinds of channels in Jingle, SIP, and other multimedia
technologies: the signaling channel is used to send messages for overall
session management, whereas the media channel is used to send the
media data itself. Furthermore, the media channel itself can result in a
connection that is either peer-to-peer (a direct connection between two
clients) or mediated (the data is sent through a relay server).

There are exceptions to this pattern, which we explore in upcoming chapters, but for
now you can think of Jingle as a way to set up media sessions that go outside the normal
XMPP channel. Let’s see how it works.

The Jingle Model
In a Jingle negotiation, one party (the initiator) offers to start a session, and the other
party (the responder) answers the offer by either agreeing to proceed or declining the
invitation. An offer has two parts:

Application type
States what is going to be exchanged in the session—for example, voice chat via
the Real-time Transport Protocol (RTP).

Transport method
Describes how data is going to be sent—for example, using the User Datagram
Protocol (UDP).

The offer triggers a flurry of XMPP traffic between the initiator and the responder, as
their XMPP clients negotiate various parameters related to the application type (e.g.,
audio codecs) and the transport method (e.g., IP addresses and port numbers to check
for connectivity). Once both parties agree on these parameters and the responder sends
a Jingle session-accept message, the session transitions from the pending phase to the
active phase. At this point, the XMPP signaling traffic quiets down as the parties ex-
change media data (XMPP stanzas can still be exchanged during the active phase as

124 | Chapter 9: Jingle: Jabber Does Multimedia

well, for example, to renegotiate parameters, or to add a new application type such as
video to an existing session). Thus, the overall flow of a Jingle session is as follows:

1. The initiator sends an offer to the responder.

2. The offer consists of one or more application types (voice, video, file transfer, screen
sharing, etc.) and one or more transport methods (UDP, ICE, TCP, etc.).

3. The parties negotiate parameters related to the application type(s) and work to set
up the transport(s).

4. The responder either accepts or declines the offer.

5. If the offer is accepted, the parties exchange data related to the application type(s)
over the negotiated transport method(s).

6. If needed, the parties can modify certain parameters during the life of the session
(e.g., by adding video to a voice chat or switching to a better transport candidate).

7. Eventually, the session ends and the parties go on with their lives.

This flow is illustrated in Figure 9-1.

The following simplified example illustrates the format of an offer using “stubs” for the
application type and transport method:

<iq from="alice@wonderland.lit/rabbithole"
 id="jah28fh1"
 to="sister@realworld.lit/home"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1">
 action="session-initiate"
 initiator="alice@wonderland.lit/rabbithole"
 sid="a73sjjvkla37jfea">
 <content creator="initiator" name="just-an-example">
 <description xmlns="urn:xmpp:jingle:apps:stub:0"/>
 <transport xmlns="urn:xmpp:jingle:transports:stub:0"/>
 </content>
 </jingle>
</iq>

The action attribute specifies the particular request or notification; here a request
to initiate a session.

The sid attribute specifies a unique Session ID for this Jingle session, which is gen-
erated by the initiator.

The <description/> element always defines the application type; particular appli-
cation types are differentiated by the XML namespace of the <description/> element
and, for some application types, by the media attribute (e.g., “audio” or “video”).

The <transport/> element always defines a transport method; particular transport
methods are differentiated by the XML namespace of the <transport/> element.

After the responder acknowledges receipt of the session-initiate and the parties nego-
tiate some parameters related to the application type and the transport method (we

The Jingle Model | 125

explore these processes later), the responder would eventually send a session-accept
to the initiator:

<iq from="sister@realworld.lit/home"
 id="b18dh29f"
 to="alice@wonderland.lit/rabbithole"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"
 action="session-accept"
 initiator="alice@wonderland.lit/rabbithole"
 responder="sister@realworld.lit/home"
 sid="a73sjjvkla37jfea">
 <content creator="initiator" name="just-an-example">
 <description xmlns="urn:xmpp:jingle:apps:stub:0"/>
 <transport xmlns="urn:xmpp:jingle:transports:stub:0"/>
 </content>
 </jingle>
</iq>

Figure 9-1. Jingle defines a state machine for the flow of a peer-to-peer multimedia session

126 | Chapter 9: Jingle: Jabber Does Multimedia

The session-accept action is a new IQ-set, not an IQ-result sent in response to the
session-initiate; each Jingle action is a separate IQ-set so that it can be immediately
acknowledged with an IQ-result and thus keep the negotiation moving forward as
fast as possible.

A Jingle action of session-accept is used to definitively accept the offer. The ac-
ceptance usually will include the precise application parameters and transport can-
didate that is acceptable to the responder.

The initiator acknowledges receipt of the session-accept (a simple IQ-result, not
shown here) and the parties can exchange “stub” media data over the “stub” transport.

Eventually, one of the parties (here the responder) will terminate the session:

<iq from="sister@realworld.lit/home"
 id="g91hs73n"
 to="alice@wonderland.lit/rabbithole"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"
 action="session-terminate"
 initiator="alice@wonderland.lit/rabbithole"
 responder="sister@realworld.lit/home"
 sid="a73sjjvkla37jfea">
 <reason>
 <success/>
 </reason>
 </jingle>
</iq>

A Jingle action of session-terminate is used to formally end the session.

The <reason/> element is used to specify why this particular Jingle action is being
sent; it contains a predefined condition and, optionally, a human-readable <text/>
element.

The <success/> element implies that no error has occurred, or that the session has
completed successfully.

The recipient acknowledges receipt of the session-terminate (a simple IQ-result, not
shown here), and the session is ended.

Now that we’ve looked at the overall session flow at a high level using a stub example,
let’s look at how real Jingle sessions are established to fill in the blanks for the
<description/> and <transport/> elements.

Making a Call
Jingle was first developed for one-to-one voice chat over the Internet. In this case, the
application type is a Jingle RTP session, as defined in [XEP-0167] using a datagram
transport method that is appropriate for voice data.

Making a Call | 127

Transport Types: Datagram and Streaming
There are two basic kinds of transport methods: datagram and stream-
ing. A datagram transport is suitable for applications where some packet
loss is tolerable, such as voice and video (if you lose some packets of
audio or video data, you can interpolate without seriously degrading the
quality). A streaming transport is suitable for applications where packet
loss is not tolerable, such as file transfer (if you lose some packets of file
data, you can’t correctly construct the file). The canonical examples of
datagram and streaming transports are UDP and TCP, respectively.

Here the offered transport method is the simplest one-to-one UDP association, nego-
tiated using the Jingle Raw UDP Transport [XEP-0177]:

<iq from="alice@wonderland.lit/rabbithole"
 id="v73hwcx9"
 to="sister@realworld.lit/home"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"
 action="session-initiate"
 initiator="alice@wonderland.lit/rabbithole"
 sid="a73sjjvkla37jfea">
 <content creator="initiator" name="voice">
 <description xmlns="urn:xmpp:jingle:apps:rtp:1" media="audio">
 <payload-type id="96" name="speex" clockrate="16000"/>
 <payload-type id="97" name="speex" clockrate="8000"/>
 <payload-type id="0" name="PCMU"/>
 <payload-type id="8" name="PCMA"/>
 </description>
 <transport xmlns="urn:xmpp:jingle:transports:raw-udp:1">
 <candidate candidate="1"
 generation="0"
 id="a9j3mnbtu1"
 ip="10.1.1.104"
 port="13540"/>
 </transport>
 </content>
 </jingle>
</iq>

For RTP sessions, each <payload-type/> element defines an audio or video codec
and some associated information, such as the clockrate and the number of channels
(e.g., two for stereo).

For many transport methods, each <candidate/> element defines an IP address and
port that can be attempted for direct or mediated communication of media data.

In this case, the initiator’s client wishes to establish an RTP session using any of four
audio codecs in the following preference order:

1. The open source Speex codec at a clockrate of 8,000 Hertz.

128 | Chapter 9: Jingle: Jabber Does Multimedia

2. The open source Speex codec at a clockrate of 16,000 Hertz (this is a “wideband”
codec with higher audio quality).

3. The “PCMU,” or μ-law, flavor of the ITU’s G.719 codec, which is supported in
traditional telephony systems in the U.S. and Japan.

4. The “PCMA,” or a-law, flavor of the ITU’s G.719 codec, which is supported in
telephony systems in the rest of the world.

The initiator’s client also wishes to use the Raw UDP transport, which is defined in
[XEP-0177], with an IP address of 10.1.1.104 and a port of 13540. (We don’t need to
concern ourselves here with each and every parameter communicated in the Jingle
stanzas, such as the candidate numbers and IDs or the generation numbers; refer to the
Jingle specifications for all the details.)

Because the response to an XMPP IQ stanza must be either an IQ-result or an IQ-error,
the responder’s client immediately acknowledges receipt (but not yet acceptance) of
the offer:

<iq from="sister@realworld.lit/home"
 id="v73hwcx9"
 to="alice@wonderland.lit/rabbithole"
 type="result"/>

As mentioned, the parties must now negotiate parameters related to the application
type and the transport method. In this case, the responder’s client performs a few
actions:

• Checks the offered codecs against the list of codecs it supports.

• Optionally sends an informational “ringing” notification to the initiator.

• When it accepts the session, optionally offers an IP address and port number of its
own as another connectivity candidate (e.g., this might be a relay server that the
responder knows about).

The following two examples show the “ringing” notification and the candidate offer:

<iq from="sister@realworld.lit/home"
 id="k3d7abv8"
 to="alice@wonderland.lit/rabbithole"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"
 action="session-info"
 initiator="alice@wonderland.lit/rabbithole"
 responder="sister@realworld.lit/home"
 sid="a73sjjvkla37jfea">
 <ringing xmlns="urn:xmpp:jingle:apps:rtp:info:1"/>
 </jingle>
</iq>

Here the Jingle action is session-info, which is used to send informational messages
throughout the life of the session.

Making a Call | 129

This informational message is a simple notification that the other party’s device is
ringing.

And, of course, the responder’s client asks the human user controlling the client if she
wants to accept a voice call from the initiator!

If the responding user wants to talk, the responding client accepts the session by sending
the codecs it supports (here only Speex at a clockrate of 8,000 Hertz) along with an IP
address and port that the responder offers for connectivity checking:

<iq from="sister@realworld.lit/home"
 id="ikw71b54"
 to="alice@wonderland.lit/rabbithole"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"
 action="session-accept"
 initiator="alice@wonderland.lit/rabbithole"
 responder="sister@realworld.lit/home"
 sid="a73sjjvkla37jfea">
 <content creator="initiator" name="voice">
 <description xmlns="urn:xmpp:jingle:apps:rtp:1" media="audio">
 <payload-type id="97" name="speex" clockrate="8000"/>
 </description>
 <transport xmlns="urn:xmpp:jingle:transports:raw-udp:1">
 <candidate candidate="1"
 generation="0"
 id="z7sdjb01hf"
 ip="208.68.163.214"
 port="9876"/>
 </transport>
 </content>
 </jingle>
</iq>

The only payload-type that this responder supports (from among those offered by
the initiator) is the open source Speex codec at a clockrate of 8,000 Hertz.

Now the parties can begin to chat over the negotiated voice channel, using the Speex
codec in RTP over a raw UDP connection. Here we leave the world of XMPP behind,
because the media data is sent peer-to-peer or through a media relay, not through the
XMPP servers used by the initiator and responder for call setup. This is the beauty of
Jingle: it uses XMPP for call management but more appropriate transport methods for
voice, video, files, and other binary data.

Eventually, one of the parties will want to end the call. Since this is a call management
action, it is completed over the XMPP signaling channel using a Jingle action of session-
terminate:

<iq from="sister@realworld.lit/home"
 id="ip71v3fz"
 to="alice@wonderland.lit/rabbithole"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"

130 | Chapter 9: Jingle: Jabber Does Multimedia

 action="session-terminate"
 initiator="alice@wonderland.lit/rabbithole"
 responder="sister@realworld.lit/home"
 sid="a73sjjvkla37jfea">
 <reason><success/></reason>
 </jingle>
</iq>

A Swarm of NATs
That was rather painless, wasn’t it? Well, not so fast! Life on the Internet is never quite
as easy as it seems. The problem arises from that little part about the initiator and
responder exchanging IP addresses where they could be contacted. In today’s world,
you need to be extremely careful about allowing connections to your computer on
random ports. As a result, your computer probably lives behind a firewall to protect
itself from the big, bad Internet. Furthermore, your firewall probably includes some-
thing called a Network Address Translator, or NAT. This means that devices inside the
firewall (including your Jabber client) think they have one IP address, whereas devices
outside the network see a different IP address.

As you can see in Figure 9-2, Party 1 thinks his IP address is “1.2.3.4”. However, the
NAT has translated that IP address to “10.0.0.1” for use by outside entities such as
Party 2. If Party 1 tells Party 2 that his IP address is “1.2.3.4” and Party 2 then tries to
contact him at “1.2.3.4” instead of “10.0.0.1”, her communication attempt might fail.

Figure 9-2. Network Address Translators (NATs) make it difficult to establish peer-to-peer media
sessions

Even this description simplifies the problem quite a bit, because there are many different
kinds of NATs. Although we need not worry about all the details here, we do need a
solution to the problem of NAT traversal in order for media to flow reliably. And when
it comes to features like voice chat, reliability matters (if your phone worked only 90%
of the time, you might not use it!).

A Swarm of NATs | 131

Thankfully, the smart people at the IETF have defined several technologies for NAT
traversal, with catchy names like STUN, TURN, and ICE. XMPP reuses these technol-
ogies so that Jingle clients can seamlessly interact with devices that implement the
Session Initiation Protocol (SIP). Here’s a brief overview of these three technologies:

• STUN (“Session Traversal Utilities for NAT”) provides a way for you to find out
what your IP address and port look like from outside your firewall (if, that is, you
are able to contact a STUN server for address lookups).

• TURN (“Traversal Using Relays around NAT”) provides a way for you to relay
media data in case you can’t set up a direct, peer-to-peer connection with the other
party (if, that is, you are able to find a TURN server for media relaying).

• ICE (“Interactive Connectivity Establishment”) provides a consistent way for two
endpoints to rank, communicate, and negotiate all the possible combinations of
direct and mediated connections between them.

These technologies come together in the Jingle ICE-UDP Transport [XEP-0176]. This
transport method results in a lot more XMPP traffic than the Raw UDP method we
looked at in the last section, mainly because there are many more “candidates” (IP
addresses and ports) to be checked. However, the result is greater reliability.

You’ll also notice that STUN and TURN both require additional infrastructure. So far,
Jingle hasn’t even required special XMPP server modules, because the clients have done
all the work. (It may seem that this goes against the original Jabber philosophy of
“simple clients, complex servers,” but the story here is that clients really do know best
when it comes to the codecs they support and the exchange of IP+port candidates.)
However, we now need some server-side help, which is provided not by the XMPP
server itself but by specialized STUN servers and TURN relays.

The next section explains the ICE methodology in greater detail.

Jingle on ICE
Interactive Connectivity Establishment is a powerful methodology for figuring out how
to set up media sessions (such as voice and video calls) over the Internet while still
respecting the NATs and firewalls that may exist in a given network. Some NAT tra-
versal methods try to “fake out” firewalls, and therefore are frowned upon by system
administrators, but in contrast, ICE tries to work with NATs.

This “kindler, gentler” approach to NAT traversal requires quite a bit of up-front ne-
gotiation between the parties, as they exchange IP+port pairs for UDP.

But before the parties can communicate that information, they need to create their
preferred list of candidates. There are four candidate types (see the ICE specification
for complete details):

132 | Chapter 9: Jingle: Jabber Does Multimedia

Host
This is an IP+port hosted on the device itself (e.g., as obtained via Ethernet, a Wi-
Fi hotspot, or a VPN).

Server reflexive
This is an IP+port for a party’s device, but translated into a public IP address by a
NAT when the party sends a packet through the NAT to a STUN server or a TURN
server. The party then discovers the server reflexive address for a specific candidate
by contacting the STUN server or TURN server.

Peer reflexive
A peer reflexive candidate is similar to a server reflexive candidate, except that the
mapping of addresses happens in the NAT when the party sends a STUN binding
request to a peer instead of directly to a STUN or TURN server. The party discovers
the peer reflexive address as a result of connectivity checks later in the negotiation
process.

Relayed
This is the IP+port of a relay server (e.g., as hosted by an ISP). Typically, such a
relay implements TURN, but it could implement some other data-relaying
technology.

Once a Jingle client gathers these candidates, it prioritizes them according to the ICE
rules, and then includes its highest-priority candidates in the session offer it sends to
the responder. The session offer is rather large because it specifies both the payload
types and transport candidates, but for our purposes here, the key aspect of the offer
is the IP address and port of each candidate, along with its priority (candidates with
higher numbers are more highly preferred):

 <iq from="alice@wonderland.lit/rabbithole"
 id="xle82n56"
 to="sister@realworld.lit/home"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1">
 action="session-initiate"
 initiator="alice@wonderland.lit/rabbithole"
 sid="a73sjjvkla37jfea">
 <content creator="initiator" name="voice">
 <description xmlns="urn:xmpp:jingle:apps:rtp:1" media="audio">
 <payload-type id="96" name="speex" clockrate="16000"/>
 <payload-type id="97" name="speex" clockrate="8000"/>
 <payload-type id="0" name="PCMU"/>
 <payload-type id="8" name="PCMA"/>
 </description>
 <transport xmlns="urn:xmpp:jingle:transports:ice-udp:1"
 pwd="asd88fgpdd777uzjYhagZg"
 ufrag="8hhy">
 <candidate component="1"
 foundation="1"
 generation="0"
 ip="10.0.1.1"
 network="1"

Jingle on ICE | 133

 port="8998"
 priority="2130706431"
 protocol="udp"
 type="host"/>
 <candidate component="1"
 foundation="2"
 generation="0"
 ip="192.0.2.3"
 network="1"
 port="45664"
 priority="1694498815"
 protocol="udp"
 rel-addr="10.0.1.1"
 rel-port="8998"
 type="srflx"/>
 </content>
 </jingle>
</iq>

Don’t worry about how these big numbers are generated! All you need to know is
that a candidate with a larger value for the priority element is preferred in relation
to a candidate with a small value for the priority attribute.

The only protocol supported by ICE is UDP. However, work on an ICE profile for
TCP is ongoing, so the protocol attribute might accept other values in the future.

For server reflexive and peer reflexive candidates, the IP address and port describe
the network address of the party outside the local network the party is on (i.e., as
discovered via STUN). For a relayed candidate, the IP address and port describe the
address of the relay server.

The rel-addr and rel-port are used for diagnostic purposes; they specify the IP
address and port of the host candidate from which the server reflexive, peer reflexive,
or relayed candidate was derived.

When the responder sends its session-accept to the initiator, it also sends a set of
possible candidates from its perspective (e.g., it may know about different relay servers).
The parties then send connectivity checks over each pair of possible IP addresses and
ports. More specifically, the responder sends one check from each of its IP+port can-
didates to each of the IP+port candidates sent by the initiator, and vice versa. This
results in even more traffic between the parties, but this time outside the XMPP channel
because the XMPP channel uses TCP, whereas ICE uses UDP. (After the parties
exchange their highest-priority candidates in the session-initiate and session-
accept messages, they can also send lower-priority candidates using Jingle transport-
info messages.)

For example, the initiator offered the candidates 10.0.1.1:8998 and 192.0.2.3:45664.
If the responder offered the candidates 192.0.2.1:3478 and 10.0.1.2:15999, the parties
would try the following connectivity checks over UDP:

134 | Chapter 9: Jingle: Jabber Does Multimedia

• The initiator sends connectivity checks from 10.0.1.1:8998 to 192.0.2.1:3478,
from 10.0.1.1:8998 to 10.0.1.2:15999, from 192.0.2.3:45664 to 192.0.2.1:3478,
and from 192.0.2.3:45664 to 10.0.1.2:15999.

• The responder sends connectivity checks from 192.0.2.1:3478 to 10.0.1.1:8998,
from 192.0.2.1:3478 to 192.0.2.3:45664, from 10.0.1.2:15999 to 10.0.1.1:8998,
and from 10.0.1.2:15999 to 192.0.2.3:45664.

Eventually, these connectivity checks will yield results, because connectivity checks
will reveal the candidate pairs that succeed. And given the large number of candidates
exchanged, the parties are almost guaranteed that at least one of the candidates pairs
will succeed, thus leading to reliable call setup.

Additional Jingle Actions
So far, we’ve looked at the core Jingle actions: session-initiate, session-accept,
session-info, transport-info, and session-terminate. However, several other Jingle
actions enable you to modify a session while it is in progress:

content-add
The content-add action enables you to add an entire content-type to a session (e.g.,
to add video to a voice call); this action is accepted or rejected using the content-
accept action or the content-reject action.

content-remove
The content-remove action enables you to delete an entire content-type from a
session (e.g., to remove video from a combined voice-and-video session); the
content-replace action is silently accepted.

content-modify
The rarely used content-modify action changes the directionality of media ex-
change (from sender-only to both, receiver-only to both, etc.).

description-info
The description-info action enables you to send hints about application param-
eters within a session (e.g., to provide suggestions about the height and width of
a video feed).

transport-replace
The transport-replace action enables you to redefine a transport method while it
is in use (e.g., to change an IP address or port); this action is accepted or rejected
using the transport-accept action or the transport-reject action.

We show how some of these are used in Chapter 10.

Additional Jingle Actions | 135

Summary
Jingle is a relatively recent addition to the XMPP toolkit. Although it provides a flexible
framework for the negotiation and management of peer-to-peer media sessions, to date
it has mostly been used for one-to-one voice chat. At the time of this writing, the Google
Talk service and several open source XMPP clients have also added video support.
Moreover, the same basic session-management pattern can be applied to many different
kinds of negotiation (for example, Chapter 10 explains how to use Jingle for file
transfer).

You probably noticed that Jingle uses IQ stanzas between two parties in order to ne-
gotiate a one-to-one session. But what if you want to set up a multi-party session, such
as a conference call? In fact, a number of Jingle developers are exploring the potential
of sending Jingle signaling through the Multi-User Chat (MUC) rooms we discussed
in Chapter 7, resulting in a hybrid of Jingle and MUC. You’ll need to check out http://
xmpp.org for all the details, because they are being defined as we go to press.

The potential of Jingle is just starting to be explored, and the next few years promise
to bring new Jingle applications for features, such as torrents, screen sharing, and virtual
private networks (VPNs).

136 | Chapter 9: Jingle: Jabber Does Multimedia

http://xmpp.org
http://xmpp.org

CHAPTER 10

Sending Binary Data

So far, we have mainly considered the exchange of small pieces of structured informa-
tion: sending and receiving of messages (with or without markup, to one or more par-
ties), broadcasting information about various forms of presence, sending alerts using
PubSub, and the like. In Chapter 9, we delved into the Jingle framework for session
negotiation, but we focused on the structured signaling messages rather than binary
media data such as voice and video chats. In this chapter, we look at sending other
kinds of binary data, especially files. We’ll proceed in ascending order from small pieces
of binary data up to large files.

Starting Small: Bits of Binary
As we have noted, XMPP is not optimized for sending binary data. But sometimes the
data you want to send is so small and seemingly insignificant that you figure there must
be a way to send it in-band. Why should those XML zealots prevent you from sharing,
say, a small image file? Such images can be quite useful when you want to send an
emoticon (those “smiley” and “frowny” faces that kids of all ages exchange over IM
systems), a CAPTCHA (“Completely Automated Public Turing Test to Tell Computers
and Humans Apart”) to prevent malicious bots from overwhelming your XMPP server
with new account registrations, and so on.

The XMPP developer community lacked such a method for a long time, so in 2008 they
finally defined one, called Bits of Binary [XEP-0231], or BOB for short. The approach
is simple: include a unique reference to the data in a message or other stanza, and enable
the recipient to retrieve the data from the sender if the recipient has not already cached
it.

One way to reference the data is by including an XHTML element in a message.
The src attribute of the element contains a “cid:” URL, as defined in [RFC
2111] and illustrated in the following example:

<message from="mouse@wonderland.lit/foo"
 to="lory@wonderland.lit/bar"
 type="chat">

137

 <body>I beg your pardon! :(Did you speak?</body>
 <html xmlns="http://jabber.org/protocol/xhtml-im">
 <body xmlns="http://www.w3.org/1999/xhtml">
 <p>I beg your pardon!

 Did you speak?
 </p>
 </body>
 </html>
</message>

A “cid:” URL has a special format when included in the Bits of Binary protocol: it
consists of the hashing algorithm used (here sha1), a hash of the binary data itself,
the at-sign, and the domain bob.xmpp.org (which might be used in the future for
archiving and publishing common data files).

Here we assume that the recipient does not have the data cached, so it requests the data
from the sender. This is done by sending an IQ-get that specifies the referenced cid:

<iq from="lory@wonderland.lit/bar"
 id="vh39akj2"
 to="mouse@wonderland.lit/foo"
 type="get">
 <data xmlns="urn:xmpp:bob"
 cid="sha1+5fb0482ba7f9a01b54a1af25060f7c783fd390af@bob.xmpp.org"/>
</iq>

The sender then returns the Base64-encoded data in the IQ-result (to improve reada-
bility, the data includes line breaks, but these would not occur in the stanza sent over
the wire):

<iq from="mouse@wonderland.lit/foo"
 to="lory@wonderland.lit/bar"
 id="vh39akj2"
 type="result">
 <data xmlns="urn:xmpp:bob"
 cid="sha1+5fb0482ba7f9a01b54a1af25060f7c783fd390af@bob.xmpp.org"
 type="image/png">
 iVBORw0KGgoAAAANSUhEUgAAADIAAAAyCAYAAAAeP4ixAAAABmJLR0QA/wD/AP+g
 ...
 mOjs3AAAAABJRU5ErkJggg==
 </data>
</iq>

Now the recipient has the referenced data and can render the image in the original
message (this is not unlike fetching an image to display in a web page).

The Bits of Binary approach is appropriate only for very small pieces of binary data
(typically limited to 8 kilobytes). If you have more data to send, you need to use different
methods, as we discuss next.

138 | Chapter 10: Sending Binary Data

Moving On Up: Transferring Midsize Files In-Band
Let’s say that Alice has a small camera with her when she takes her trip down the rabbit
hole. She feels compelled to share some pictures with her sister, who otherwise simply
wouldn’t believe her story. So she picks the best picture and her XMPP client prepares
to send all 400 KB of the file to her sister. There are three steps involved in this
preparation:

1. Because XMPP has strict rules about what types of data it can carry, the first step
of sending binary data is Base64-encoding it, such that it consists only of alpha-
numeric characters.

2. Alice’s XMPP server doesn’t allow her to send stanzas that are larger than 64k, and
her sister’s server might be even more restrictive (there are good security and per-
formance reasons for these restrictions, so Alice and her sister will have to live with
them). Because the smallest allowable number of bytes for a server-enforced max-
imum stanza size is only 10,000 (i.e., 10 kilobytes), Alice’s XMPP client needs to
break the 400 KB picture into smaller chunks. That is, it will chop up the data
stream that it reads from the file into a number of smaller pieces, called blocks.

3. Because her sister’s client will reconstruct the file from these data blocks, Alice’s
client needs to indicate that these blocks belong together, and that together they
form one piece of data. Her client therefore announces to her sister that she is going
to send a stream of data that is chunked into blocks of a certain size (here 4,096
bytes per block).

Let’s see how this translates into XMPP, specifically In-Band Bytestreams, or IBB
[XEP-0047]. First, Alice sends a request to initiate an in-band bytestream:

<iq from="alice@wonderland.lit/rabbithole"
 id="iy2s986q"
 to="sister@realworld.lit/home"
 type="set">
 <open sid="dv917fb4"
 block-size="4096"
 xmlns="http://jabber.org/protocol/ibb"/>
</iq>

The sid attribute specifies a unique identifier for this bytestream.

After Alice sends her initiation request, her sister accepts the request:

<iq from="sister@realworld.lit/home"
 id="iy2s986q"
 to="alice@wonderland.lit/rabbithole"
 type="result"/>

Alice’s client can now start sending packets. In order to do so, it chops up the Base64-
encoded stream into 4,096-byte blocks (as it promised when opening the bytestream)
and puts them inside a series of message stanzas (here again the line breaks are included
only for readability):

Moving On Up: Transferring Midsize Files In-Band | 139

<message from="alice@wonderland.lit/rabbithole"
 to="sister@realworld.lit/home"
 id="ck39fg47">
 <data xmlns="http://jabber.org/protocol/ibb"
 sid="dv917fb4"
 seq="0">
 qANQR1DBwU4DX7jmYZnncmUQB/9KuKBddzQH+tZ1ZywKK0yHKnq57kWq+RFtQdCJ
 WpdWpR0uQsuJe7+vh3NWn59/gTc5MDlX8dS9p0ovStmNcyLhxVgmqS8ZKhsblVeu
 IpQ0JgavABqibJolc3BKrVtVV1igKiX/N7Pi8RtY1K18toaMDhdEfhBRzO/XB0+P
 AQhYlRjNacGcslkhXqNjK5Va4tuOAPy2n1Q8UUrHbUd0g+xJ9Bm0G0LZXyvCWyKH
 kuNEHFQiLuCY6Iv0myq6iX6tjuHehZlFSh80b5BVV9tNLwNR5Eqz1klxMhoghJOA
 </data>
</message>

For every block Alice sends, she adds a sequence number such that her sister can
detect missing blocks. The sequence starts at zero, and increments by one with each
block.

After sending the first block, Alice’s client then continues to send message stanzas,
incrementing the seq attribute by one each time:

<message from="alice@wonderland.lit/rabbithole"
 to="sister@realworld.lit/home"
 id="fh91f36s">
 <data xmlns="http://jabber.org/protocol/ibb"
 sid="dv917fb4"
 seq="1">
 dNADE1QOjH4QK7wzLMaapzHDO/9XhXOqqmDU+gM1MljXX0lUXad57xJd+ESgDqPW
 JcqJcE0hDfhWr7+iu3AJa59/tGp5ZQyK8qF9c0biFgzAplYukItzdF8MXufoyIrh
 VcD0WtniNOdvoWbyp3OXeIgII1vtXvK/A7Cv8EgL1X18gbnZQuqRsuOEmB/KO0+C
 NDuLyEwAnpTpfyxuKdAwX5In4ghBNCl2a1D8HHeUoHq0t+kW9Oz0T0YMKliPJlXU
 xhARUSDvYhPL6Vi0zld6vK6gwhUruMySFu80o5OII9gAYjAE5Rdm1xykZubtuWBN
 </data>
</message>

And so on until reaching the end of the file. After sending the last packet, Alice’s client
closes the in-band bytestream:

<iq from="alice@wonderland.lit/rabbithole"
 id="fr61g835"
 to="sister@realworld.lit/home"
 type="set">
 <close xmlns="http://jabber.org/protocol/ibb" sid="dv917fb4"/>
</iq>

Because a reply must be sent to all IQ-sets and IQ-gets, her sister’s client sends an IQ-
result indicating receipt:

<iq from="sister@realworld.lit/home"
 id="fr61g835"
 to="alice@wonderland.lit/rabbithole"
 type="result"/>

The picture was sent successfully.

140 | Chapter 10: Sending Binary Data

There’s one caveat with this approach: we assume that every packet we send will be
immediately received and processed by the other side. However, there are several sit-
uations where this assumption is not true: both XMPP servers could be under heavy
load, there might be a lot of traffic on your contact’s connection, or your contact might
be using a device that has minimal computing power. In this case, firing all these mes-
sages one after the other could cause you to “flood” one of the servers or your contact’s
client, as they would not be able to process all this data. To solve this problem, we can
wait until the other party has acknowledged receipt of the current packet before sending
the next one. This gives your contact as well as the intermediate servers the chance to
control the rate at which it receives the packets. To get feedback about when to send
new packets, we embed our blocks not in message stanzas but in IQ stanzas:

<iq from="alice@wonderland.lit/rabbithole"
 id="u46sf1b9"
 to="sister@realworld.lit/home"
 type="set">
 <data xmlns="http://jabber.org/protocol/ibb" sid="dv917fb4" seq="0">
 qANQR1DBwU4DX7jmYZnncmUQB/9KuKBddzQH+tZ1ZywKK0yHKnq57kWq+RFtQdCJ
 WpdWpR0uQsuJe7+vh3NWn59/gTc5MDlX8dS9p0ovStmNcyLhxVgmqS8ZKhsblVeu
 IpQ0JgavABqibJolc3BKrVtVV1igKiX/N7Pi8RtY1K18toaMDhdEfhBRzO/XB0+P
 AQhYlRjNacGcslkhXqNjK5Va4tuOAPy2n1Q8UUrHbUd0g+xJ9Bm0G0LZXyvCWyKH
 kuNEHFQiLuCY6Iv0myq6iX6tjuHehZlFSh80b5BVV9tNLwNR5Eqz1klxMhoghJOA
 </data>
</iq>

After a while, the response packet filters through:

<iq from="sister@realworld.lit/home"
 id="u46sf1b9"
 to="alice@wonderland.lit/rabbithole"
 type="result"/>

We can now send our next packet:

<iq from="alice@wonderland.lit/rabbithole"
 id="y71fskn7"
 to="sister@realworld.lit/home"
 type="set">
 <data xmlns="http://jabber.org/protocol/ibb" sid="dv917fb4" seq="1">
 dNADE1QOjH4QK7wzLMaapzHDO/9XhXOqqmDU+gM1MljXX0lUXad57xJd+ESgDqPW
 JcqJcE0hDfhWr7+iu3AJa59/tGp5ZQyK8qF9c0biFgzAplYukItzdF8MXufoyIrh
 VcD0WtniNOdvoWbyp3OXeIgII1vtXvK/A7Cv8EgL1X18gbnZQuqRsuOEmB/KO0+C
 NDuLyEwAnpTpfyxuKdAwX5In4ghBNCl2a1D8HHeUoHq0t+kW9Oz0T0YMKliPJlXU
 xhARUSDvYhPL6Vi0zld6vK6gwhUruMySFu80o5OII9gAYjAE5Rdm1xykZubtuWBN
 </data>
</iq>

And so on, until the entire file has been transferred.

Unfortunately, sending binary files over XMPP using the in-band bytestreams method
has some severe drawbacks. First, all binary data needs to be encoded and put inside
a message or IQ stanza. This introduces some overhead, both in speed and in generated

Moving On Up: Transferring Midsize Files In-Band | 141

traffic: besides the increased size of the encoded data, both sides need to encode and
decode the data and process the XMPP stanzas for all blocks.

However, there’s an even more severe problem than mere speed and size overhead.
Imagine someone in Europe sending a file to his friend, who happens to be sitting at a
desk right next to him. The file’s data needs to travel all the way to the sender’s server
in the U.S., over to the recipient’s server in Japan, back to the desk in Europe. Not only
does this slow down the transfer quite a bit, it also generates excessive traffic and a high
processing load on both servers. Especially when servers have many users, this quickly
becomes problematic. In practice, servers typically put a limit on the amount of data a
user can send; this practice (called “rate limiting” or “karma”) can make in-band trans-
fers fail for larger files. Therefore, files are usually sent out-of-band, which we describe
in the next section.

In-Band and Out-of-Band
XMPP developers typically use the phrase in-band to refer to data sent
within the XMPP streams negotiated between a server and a client. By
contrast, the phrase out-of-band (or OOB) indicates that we are sending
data using a non-XMPP method, such as a peer-to-peer connection or
a channel established through a media relay.

Thinking Big: Sending Large Files Out-of-Band
When sending data out-of-band, there are two options: sending the data directly from
one entity to another over a connection that has no intermediaries or sending the data
through a third-party proxy or relay. We discuss each of these methods in turn.

Sending Data Directly
Alice’s trip down the rabbit hole results in more than just one picture. Indeed, she
comes home with a gazillion photos, all taken at the highest resolution (it’s good that
she always carries a few extra memory sticks with her). Since Alice’s best friend at school
is also curious, she decides to make a decent selection of her pictures, package them
up, and send them to her friend directly. Given the size of her selection, she doesn’t
want to send this data through a series of servers, as we discussed in the previous
section. Instead, Alice is going to tell her friend’s client to connect to her computer
directly, and she will send the raw data through the direct connection. This approach
re-uses the SOCKS5 protocol originally defined in [RFC 1928], in particular a special
profile that is specified in SOCKS5 Bytestreams [XEP-0065].

To begin transferring her package of photos, Alice’s client first informs her friend’s
client of the network address (192.168.4.1) and port (5086) on which it can connect,
and on which she will serve the stream of data:

142 | Chapter 10: Sending Binary Data

<iq from="alice@realworld.lit/home-at-last"
 id="p9735fg1"
 to="bestfriend@school.lit/laptop"
 type="set">
 <query xmlns="http://jabber.org/protocol/bytestreams"
 sid="dv917fb4"
 mode="tcp">
 <streamhost
 jid="alice@realworld.lit/home-at-last"
 host="192.168.4.1"
 port="5086"/>
 </query>
</iq>

Although this protocol namespace is http://jabber.org/protocol/bytestreams,
these are no longer in-band bytestreams, but instead SOCKS5 bytestreams.

After her friend’s client successfully connects on the given address and port, it ac-
knowledges Alice’s request:

<iq from="bestfriend@school.lit/laptop"
 id="p9735fg1"
 to="alice@realworld.lit/home-at-last"
 type="result">
 <query xmlns="http://jabber.org/protocol/bytestreams">
 <streamhost-used jid="alice@realworld.lit/home-at-last"/>
 </query>
</iq>

After Alice receives the acknowledgment, her client starts sending the data. This hap-
pens directly over a raw bytestream at the IP address and port that Alice advertised
(192.168.4.1:5086), so there is no need to chunk the stream into blocks as we did for
in-band bytestreams.

Sending Data Through a Proxy
Alice’s tech-savvy sister has installed some new security software, and now all the ma-
chines at their house are firewalled. As a result, nobody outside the house is able to
connect directly to Alice’s PC, which means that she can’t send her pictures through a
direct connection to her best friend anymore. This is where a proxy comes into play:
instead of having her friend connect directly to her machine, Alice and her friend both
connect to a third host, which transfers the data she sends to her friend.

Therefore, when Alice’s client sends the SOCKS5 Bytestreams offer, it includes the IP
address (24.24.24.1) and port (5999) of a bytestreams proxy service, in addition to
Alice’s home computer:

<iq from="alice@realworld.lit/home-at-last"
 id="uy461vfw"
 to="bestfriend@school.lit/laptop"
 type="set">
 <query xmlns="http://jabber.org/protocol/bytestreams"

Thinking Big: Sending Large Files Out-of-Band | 143

 sid="dv917fb4"
 mode="tcp">
 <streamhost
 jid="alice@realworld.lit/home-at-last"
 host="192.168.4.1"
 port="5086"/>
 <streamhost
 jid="streamhostproxy.realworld.lit"
 host="24.24.24.1"
 port="5999"/>
 </query>
</iq>

Her friend’s client now tries to connect to both hosts. When it discovers that Alice’s
host (the first entry) is unreachable, it tries the proxy and finds it can connect to that.
Her friend’s client therefore informs Alice’s client that it has connected to the proxy
and is waiting for data there:

<iq from="bestfriend@school.lit/laptop"
 id="uy461vfw"
 to="alice@realworld.lit/home-at-last"
 type="result">
 <query xmlns="http://jabber.org/protocol/bytestreams">
 <streamhost-used jid="streamhostproxy.realworld.lit"/>
 </query>
</iq>

At this point, Alice’s client connects to the proxy as well. Before sending the data over
this connection, Alice’s client first needs to activate the stream, allowing the proxy to
identify her:

<iq from="alice@realworld.lit/home-at-last"
 id="dl4wr217"
 to="streamhostproxy.realworld.lit"
 type="set">
 <query xmlns="http://jabber.org/protocol/bytestreams" sid="dv917fb4">
 <activate>bestfriend@school.lit/laptop</activate>
 </query>
</iq>

After this request has been acknowledged by the proxy, Alice’s client can start sending
data over the open connection.

Note that, in the previous example, we assumed that Alice specified the proxy herself.
However, it is possible for a client to automatically detect whether a proxy is available
on her server. This is done using service discovery, which we discussed in Chapter 5.
Here we look for an item in the proxy category that advertises support for the byte-
streams protocol:

<iq from="alice@realworld.lit/home-at-last"
 id="o6y1g48s"
 to="example.com"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#items"/>
</iq>

144 | Chapter 10: Sending Binary Data

<iq from="example.com"
 id="o6y1g48s"
 to="alice@realworld.lit/home-at-last"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#items">
 <item jid="streamhostproxy.realworld.lit" name="Bytestreams Proxy"/>
 </query>
</iq>

Alice’s client continues to “walk the tree” of entities, so it queries streamhostproxy.real
world.lit:

<iq from="alice@realworld.lit/home-at-last"
 id="r81g33fv"
 to="streamhostproxy.realworld.lit"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#info"/>
</iq>

<iq from="streamhostproxy.realworld.lit"
 id="r81g33fv"
 to="alice@realworld.lit/home-at-last"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#info">
 <identity category="proxy"
 type="bytestreams"
 name="SOCKS5 Bytestreams Service"/>
 <feature var="http://jabber.org/protocol/bytestreams"/>
 </query>
</iq>

Voilà, a SOCKS5 Bytestreams proxy!

Unfortunately, not every server on the XMPP network deploys a bytestreams proxy.
For one thing, such proxies have the potential to use a lot of bandwidth. Thankfully,
IM users don’t send files all that often, so in practice, the bandwidth requirements are
quite reasonable. And sending data through a dedicated bytestreams proxy is much
more efficient than sending it in-band, as the proxy can be hosted on a separate ma-
chine, thus lightening the load on the XMPP daemon.

Negotiating File Transfer
Let’s take another look at the foregoing scenario. Alice starts her conversation by an-
nouncing that she is going to send some pictures:

Alice: Hey, I just finished processing those pictures from my trip down the rabbit hole!

Friend: Wow, cool! How do you want to send them?

Alice: Well, I have quite a few, so let’s send them out-of-band.

Friend: OK, works for me!

Negotiating File Transfer | 145

Then, Alice instructs her client to start sending the files out-of-band using SOCKS5
Bytestreams. Unfortunately, her attempt fails: it seems that both Alice and her friend
are firewalled, and Alice doesn’t have access to a SOCKS5 Bytestreams proxy. Time to
revisit the plan:

Friend: Hmm, it seems we’re both firewalled. Can you send them in-band instead?

Alice: Sure, let’s try that!

Alice then instructs her client to send the files in-band, which does succeed.

What just happened is that Alice negotiated with her friend that she was going to send
a file, and told her how she wanted to send it. When finding out that the negotiated
way of sending the file didn’t work out, Alice and her friend re-negotiated how to send
the file.

However, we want to automate these negotiations in our XMPP clients, instead of
having to do this through a natural-language conversation between error-prone and
easily confused humans. In XMPP, there are two ways to do this: the older way using
the Stream Initiation protocol defined in [XEP-0095] and [XEP-0096], and the newer
way using the Jingle negotiation framework, as discussed in Chapter 9. We will explore
each in turn.

File Transfer Using Stream Initiation
The Stream Initiation (SI) protocol was the XMPP community’s first attempt at defining
a generalized media negotiation technology. Although it was never used for anything
other than file transfer, many clients support it for just that function. Over time, it is
likely that clients will transition to using Jingle for file transfer, as described in the next
section. However, we include coverage of the older method because it will probably be
in use for some time to come.

Stream initiation begins when the person who wants to transfer the file sends an offer
to the other person. This offer consists of two things: a definition of the data to be
exchanged (via the <file/> element), and some possible transport methods (here
SOCKS5 Bytestreams and In-Band Bytestreams), encapsulated via a Data Form inside
a feature negotiation wrapper element, as described in [XEP-0050]. The entire offer is
then wrapped in an <si/> element. (Yes, that’s a good example of XML namespaces
and XMPP extensibility in action!)

<iq from="alice@realworld.lit/home-at-last"
 id="pe72ndg9"
 to="bestfriend@school.lit/laptop"
 type="set">
 <si xmlns="http://jabber.org/protocol/si"
 id="a0b2n44k"
 mime-type="text/plain"
 profile="http://jabber.org/protocol/si/profile/file-transfer">
 <file xmlns="http://jabber.org/protocol/si/profile/file-transfer"
 name="test.txt"

146 | Chapter 10: Sending Binary Data

 size="1022"/>
 <feature xmlns="http://jabber.org/protocol/feature-neg">
 <x xmlns="jabber:x:data" type="form">
 <field var="stream-method" type="list-single">
 <option>
 <value>http://jabber.org/protocol/bytestreams</value>
 </option>
 <option>
 <value>http://jabber.org/protocol/ibb</value>
 </option>
 </field>
 </x>
 </feature>
 </si>
</iq>

The recipient now needs to decide which of the offered transport methods it prefers.
Typically, this preference will be configured into a client (as this is more user-friendly
than asking an end user to choose). Here, the preference is SOCKS5 Bytestreams:

<iq from="bestfriend@school.lit/laptop"
 id="pe72ndg9"
 to="alice@realworld.lit/home-at-last"
 type="result">
 <si xmlns="http://jabber.org/protocol/si" id="a0b2n44k">
 <feature xmlns="http://jabber.org/protocol/feature-neg">
 <x xmlns="jabber:x:data" type="submit">
 <field var="stream-method">
 <value>http://jabber.org/protocol/bytestreams</value>
 </field>
 </x>
 </feature>
 </si>
</iq>

Both clients now attempt to set up use of SOCKS5 bytestreams. In particular, the send-
ing client initiates the SOCKS5 negotiation process by sending a set of possible stream-
hosts to the recipient:

<iq from="alice@realworld.lit/home-at-last"
 to="bestfriend@school.lit/laptop"
 id="u7yr51v4"
 type="set">
 <query xmlns="http://jabber.org/protocol/bytestreams"
 sid="dv917fb4"
 mode="tcp">
 <streamhost
 jid="alice@realworld.lit/home-at-last"
 host="192.168.4.1"
 port="5086"/>
 <streamhost
 jid="streamhostproxy.realworld.lit"
 host="24.24.24.1"
 zeroconf="_jabber.bytestreams"/>

Negotiating File Transfer | 147

 </query>
</iq>

However, as described in the foregoing negotiation narrative, we assume that the
SOCKS5 negotiation fails, so the friend’s client returns a <remote-server-not-found/>
error to Alice in accordance with the definition of SOCKS5 Bytestreams:

<iq from="bestfriend@school.lit/laptop"
 id="u7yr51v4"
 to="alice@realworld.lit/home-at-last"
 type="error">
 <error type="cancel">
 <remote-server-not-found xmlns="urn:ietf:params:xml:ns:xmpp-stanzas"/>
 </error>
</iq>

Now that the SOCKS5 Bytestreams negotiation has failed, the clients need to negotiate
the use of in-band bytestreams instead. However, in the stream initiation protocol,
there is no way to fall back from SOCKS5 to in-band bytestreams, so the sender gen-
erates a new stream initiation request unconnected to the original request, this time
specifying only one transport method, in-band bytestreams:

<iq from="alice@realworld.lit/home-at-last"
 id="b93cvr3t"
 to="bestfriend@school.lit/laptop"
 type="set">
 <si xmlns="http://jabber.org/protocol/si"
 id="a0b2n44k"
 mime-type="text/plain"
 profile="http://jabber.org/protocol/si/profile/file-transfer">
 <file xmlns="http://jabber.org/protocol/si/profile/file-transfer"
 name="test.txt"
 size="1022"/>
 <feature xmlns="http://jabber.org/protocol/feature-neg">
 <x xmlns="jabber:x:data" type="form">
 <field var="stream-method" type="list-single">
 <option>
 <value>http://jabber.org/protocol/ibb</value>
 </option>
 </field>
 </x>
 </feature>
 </si>
</iq>

The recipient has no choice but to either accept the offer and try in-band bytestreams
or reject the offer and not receive the file. Here we assume that the recipient decides to
try in-band bytestreams:

<iq from="bestfriend@school.lit/laptop"
 id="b93cvr3t"
 to="alice@realworld.lit/home-at-last"
 type="result">
 <si xmlns="http://jabber.org/protocol/si" id="a0b2n44k">
 <feature xmlns="http://jabber.org/protocol/feature-neg">

148 | Chapter 10: Sending Binary Data

 <x xmlns="jabber:x:data" type="submit">
 <field var="stream-method">
 <value>http://jabber.org/protocol/ibb</value>
 </field>
 </x>
 </feature>
 </si>
</iq>

As you can see, in stream initiation, the only way to “fall back” to a different data
transfer method is by sending a completely new offer. This is one of the reasons why
the XMPP community is moving to the Jingle method described in the next section
(another good reason is code reuse; it’s not efficient to have two different ways to
negotiate sessions, and Jingle is the go-forward technology for negotiating voice, video,
and other session types).

Session Negotiation Using Jingle
The Jingle technology was originally defined for the setup and management of voice
(and more recently, video) sessions. However, Jingle can also be used to negotiate a file
transfer “session”; this usage is currently defined in [XEP-0234].

Give Me a Jingle?
The use of Jingle for file transfer is still a bit experimental at the time of
this writing. In particular, it is quite possible that more advanced meth-
ods will be defined, both for content description (e.g., to reference mul-
tiple files and include thumbnails for certain file types) and the data
transport (e.g., the use of BitTorrent or ICE-TCP). Check http://xmpp
.org and the discussion lists for the most up-to-date information.

Alice starts her Jingle negotiation by offering to send a file to her friend. Upon starting
a new file transfer session, Alice’s client sends a description of the file she is about to
send and the transport she wants to use (here the SOCKS5 Bytestreams protocol). Thus,
Jingle performs the same media negotiation function as the Stream Initiation protocol
we looked at in the last section, albeit in a more modern, extensible format, as defined
in [XEP-0260]:

<iq from="alice@realworld.lit/home-at-last"
 id="fi8g376r"
 to="bestfriend@school.lit/laptop"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"
 action="session-initiate"
 initiator="alice@realworld.lit/home-at-last"
 sid="851ba2g">
 <content creator="initiator" name="a-file">
 <description xmlns="urn:xmpp:jingle:apps:file-transfer:1">
 <file xmlns="http://jabber.org/protocol/si/profile/file-transfer"
 name="TripPictures.zip"

Negotiating File Transfer | 149

http://xmpp.org
http://xmpp.org

 size="400000"
 hash="552da749930852c69ae5d2141d3766b1">
 <desc>Lots of crazy photos!</desc>
 </file>
 </description>
 <transport xmlns="urn:xmpp:jingle:transports:s5b:0">
 <streamhost
 jid="alice@realworld.lit/home-at-last"
 host="192.168.4.1"
 port="5086"/>
 <streamhost
 jid="streamhostproxy.realworld.lit"
 host="24.24.24.1"
 zeroconf="_jabber.bytestreams"/>
 </transport>
 </content>
 </jingle>
</iq>

When Alice’s best friend approves the file transfer request, her client sends a session-
accept message to Alice:

<iq from="bestfriend@school.lit/laptop"
 id="krw927s0"
 to="alice@realworld.lit/home-at-last"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"
 action="session-accept"
 initiator="alice@realworld.lit/home-at-last"
 responder="bestfriend@school.lit/laptop"
 sid="851ba2g">
 <content creator="initiator" name="a-file">
 <description xmlns="urn:xmpp:jingle:apps:file-transfer:1">
 <file xmlns="http://jabber.org/protocol/si/profile/file-transfer"
 name="TripPictures.zip"
 size="400000"
 hash="552da749930852c69ae5d2141d3766b1">
 <desc>Lots of crazy photos!</desc>
 </file>
 </description>
 <transport xmlns="urn:xmpp:jingle:transports:bytestreams:0">
 <streamhost
 jid="alice@realworld.lit/home-at-last"
 host="192.168.4.1"
 port="5086"/>
 <streamhost
 jid="streamhostproxy.realworld.lit"
 host="24.24.24.1"
 zeroconf="_jabber.bytestreams"/>
 </transport>
 </content>
 </jingle>
</iq>

150 | Chapter 10: Sending Binary Data

After the initiator acknowledges the session-accept message, the parties will attempt
to set up a SOCKS5 bytestream between themselves. However, here again, we assume
that the SOCKS5 negotiation fails, so the friend’s client returns a <remote-server-not-
found/> error to Alice:

<iq from="bestfriend@school.lit/laptop"
 id="od7v46xh"
 to="alice@realworld.lit/home-at-last"
 type="error">
 <error type="cancel">
 <remote-server-not-found xmlns="urn:ietf:params:xml:ns:xmpp-stanzas"/>
 </error>
</iq>

Now that the SOCKS5 Bytestreams negotiation has failed, the clients need to negotiate
the use of in-band bytestreams instead. This is done using the Jingle transport-
replace action mentioned in Chapter 9. The transport-replace message defines the
new transport to be attempted, in this case IBB:

<iq from="bestfriend@school.lit/laptop"
 id="gu72vsl9"
 to="alice@realworld.lit/home-at-last"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"
 action="transport-replace"
 initiator="alice@realworld.lit/home-at-last"
 responder="bestfriend@school.lit/laptop"
 sid="851ba2g">
 <content creator="initiator" name="a-file">
 <transport xmlns="urn:xmpp:jingle:transports:ibb:0"/>
 </content>
 </jingle>
</iq>

Based on its supported transport methods and configured transport preferences, Alice’s
client accepts the request to try a new transport method by sending a transport-
accept message:

<iq from="alice@realworld.lit/home-at-last"
 id="yt481nf0"
 to="bestfriend@school.lit/laptop"
 type="set">
 <jingle xmlns="urn:xmpp:jingle:1"
 action="transport-accept"
 initiator="alice@realworld.lit/home-at-last"
 responder="bestfriend@school.lit/laptop"
 sid="851ba2g">
 <content creator="initiator" name="a-file">
 <description xmlns="urn:xmpp:jingle:apps:file-transfer:1">
 <file xmlns="http://jabber.org/protocol/si/profile/file-transfer"
 hash="552da749930852c69ae5d2141d3766b1"
 name="test.txt"/>
 </description>
 <transport xmlns="urn:xmpp:jingle:transports:ibb:0"
 block-size="4096"

Negotiating File Transfer | 151

 sid="dv917fb4"/>
 </content>
 </jingle>
</iq>

Now Alice sends the file to her friend over the IBB transport as previously described.

Summary
In this chapter, we covered a lot of ground. First, we looked at a lightweight method
for sending very small “bits of binary” over XMPP. This method is mainly used to send
in-line images within XHTML messages and data forms (which we discussed in Chap-
ter 6). Then we looked at in-band bytestreams, a way to break down a binary file into
smaller chunks so that it can be sent in an ordered sequence of multiple stanzas (either
messages or IQ stanzas). While IBB provides a reliable (if slow) mechanism when all
else fails, it’s not necessarily appropriate for sending larger files; in this case, the “out-
of-band” SOCKS5 bytestreams method is more network-friendly. In the future, addi-
tional methods might be defined, such as a way to initiate a BitTorrent over XMPP.

Given the existence of multiple file transfer methods, we need a good way to negotiate
which method to use, and to fall back from one method to another if necessary. The
original Stream Initiation negotiation method used in the XMPP developer community
lacks some flexibility and has never been used for anything except file transfer. Specif-
ically, it was not adapted for multimedia session management; instead, the community
has defined the Jingle technology for more modern negotiation scenarios, and is work-
ing to migrate file transfer negotiation to use Jingle as well.

152 | Chapter 10: Sending Binary Data

CHAPTER 11

Remote Commands

XMPP includes several technologies used to send commands to other entities. These
technologies enable you to remotely control servers and clients—for example, to add
users to a server, configure a multiuser chat room or a pubsub node, tell another client
of yours to go offline, or define the fields needed to register an account on a server or
other service. In Chapter 6 and subsequent chapters, we’ve seen some of these tech-
nologies in action through the use of the Data Forms extension. In this chapter, we take
that knowledge further to explore more advanced workflow applications.

Controlling Clients
Picture the situation: Alice is expecting an important message to come in through her
Jabber client, but she is running late for a very important date, so she sets off in a hurry
for the party. Once she arrives at the party, she logs in again with her mobile phone
but realizes that she left her other client logged in. Her urgent message has probably
been sent to her other client, and she needs it now! What does she do? Using a com-
bination of XMPP technologies, she can command her other client to forward the mes-
sages to her at the party and then to go offline so that no further messages will be sent
to the wrong resource.

The key piece here is the Ad-Hoc Commands protocol, defined in [XEP-0050]. This
XMPP extension provides workflow capabilities that can be used for any structured
interaction between two XMPP entities, called the requester (the entity that requests
completion of the commands) and the responder (the entity where the commands will
be performed).

The basic flow in an ad-hoc commands interaction is shown in Figure 11-1.

Typically, such a workflow uses either a single-stage, standalone command (with no
payload) or a multi-stage command that includes a data form of the kind we saw in
Chapter 6.

153

A Simple Command
In Alice’s party scenario, she wants to forward messages received by her first client (the
rabbithole resource, which is the responder here) to her second (the party resource,
which is the requester). To do this, she first queries her rabbithole client for all the
available commands by sending a service discovery query to its http://jabber.org/
protocol/commands node, as we did in Chapter 5:

<iq from="alice@wonderland.lit/party"
 id="a1266a"
 to="alice@wonderland.lit/rabbithole"
 type="get">
 <query xmlns="http://jabber.org/protocol/disco#items"
 node="http://jabber.org/protocol/commands"/>
</iq>

By including a service discovery node of http://jabber.org/protocol/commands, the
requester is saying “please send me all of the ad-hoc commands that you support.”

Her rabbithole resource then returns the following list of commands:

<iq from="alice@wonderland.lit/rabbithole"
 id="a1266a"
 to="alice@wonderland.lit/party"
 type="result">
 <query xmlns="http://jabber.org/protocol/disco#items"
 node="http://jabber.org/protocol/commands">
 <item node="http://jabber.org/protocol/rc#set-status"
 name="Set Status"

Figure 11-1. The Ad-Hoc Commands protocol provides a relatively simple workflow engine

154 | Chapter 11: Remote Commands

 jid="alice@wonderland.lit/rabbithole"/>
 <item node="http://jabber.org/protocol/rc#forward"
 name="Forward Messages"
 jid="alice@wonderland.lit/rabbithole"/>
 <item node="http://jabber.org/protocol/rc#set-options"
 name="Set Options"
 jid="alice@wonderland.lit/rabbithole"/>
 </query>
</iq>

Each command supported by the responder is specified as a particular service dis-
covery node associated with the generic http://jabber.org/protocol/commands
node.

This reveals that her rabbithole resource supports, amongst others, the set-status and
forward commands that Alice is interested in. She can now ask her first client to forward
messages to her second client by executing the forward command:

<iq from="alice@wonderland.lit/party"
 id="a126aa"
 to="alice@wonderland.lit/rabbithole"
 type="set">
 <command xmlns="http://jabber.org/protocol/commands"
 node="http://jabber.org/protocol/rc#forward"
 action="execute"/>
</iq>

The action attribute is included in IQ-set stanzas that the requester sends to the
responder. This tells the responder what to do (here, to execute the command).

In response, the rabbithole client starts sending its pending messages to Alice’s mobile
phone at the party:

<message from="alice@wonderland.lit/rabbithole"
 id="a1268a"
 to="alice@wonderland.lit/party">
 <body>I"m late, I"m late, for a very important date.</body>
 <delay xmlns="urn:xmpp:delay"
 from="alice@wonderland.lit/rabbithole"
 stamp="2008-11-12T13:05:00Z"/>
 <addresses xmlns="http://jabber.org/protocol/address">
 <address type="ofrom" jid="rabbit@wonderland.lit/transit"/>
 <address type="oto" jid="alice@wonderland.lit"/>
 </addresses>
</message>

As we’ve already seen in Chapter 7, the delay element (defined in Delayed Deliv-
ery [XEP-0203]) is used to annotate messages where delivery is delayed (such as
forwarded messages, messages stored offline by a server, or chat room history).

The addresses element (defined in Extended Stanza Addressing [XEP-0033]) stores
the original sender and destination of the forwarded message.

Controlling Clients | 155

Once all of Alice’s messages have been sent, the rabbithole client sends a response
back, saying that the command has been successfully processed (this is indicated by
setting the status attribute to a value of completed):

<iq from="alice@wonderland.lit/rabbithole"
 id="a126aa"
 to="alice@wonderland.lit/party"
 type="result">
 <command xmlns="http://jabber.org/protocol/commands"
 node="http://jabber.org/protocol/rc#forward"
 status="completed"/>
</iq>

The status attribute is included in IQ-result stanzas that the responder returns to
the requester. Here the status is completed, indicating that the single-stage command
has been processed successfully and that no further interaction is expected.

Commands and Data Forms
Now that the messages have been forwarded from her rabbithole client, Alice can ask
that client to go offline, thus preventing any other misdirected messages. She does this
by issuing a second command, this time set-status:

<iq from="alice@wonderland.lit/party"
 id="afd4a"
 to="alice@wonderland.lit/rabbithole"
 type="set">
 <command xmlns="http://jabber.org/protocol/commands"
 node="http://jabber.org/protocol/rc#set-status"
 action="execute"/>
</iq>

However, in order to change status, the rabbithole client needs to have a bit more
information. It should at least know what status needs to be set (e.g., a <show/> value
of away or dnd), the presence priority, and the resulting status message. Therefore, the
rabbithole client responds with a Data Form containing all the fields that Alice needs
to fill in to provide the missing information:

<iq from="alice@wonderland.lit/rabbithole"
 id="afd4a"
 to="alice@wonderland.lit/party"
 type="result">
 <command xmlns="http://jabber.org/protocol/commands"
 node="http://jabber.org/protocol/rc#set-status">
 sessionid="b82nsd82nfdos51vs9"
 status="executing">
 <x xmlns="jabber:x:data" type="form">
 <title>Set Status</title>
 <instructions>Choose the status and status message</instructions>
 <field type="hidden" var="FORM_TYPE">
 <value>http://jabber.org/protocol/rc</value>
 </field>
 <field type="list-single" label="Status" var="status">

156 | Chapter 11: Remote Commands

 <required/>
 <option label="Online">
 <value>online</value>
 </option>
 <option label="Away">
 <value>away</value>
 </option>
 <option label="Extended Away">
 <value>xa</value>
 </option>
 <option label="Offline">
 <value>offline</value>
 </option>
 <value>online</value>
 </field>
 <field type="text-single" label="Priority" var="status-priority">
 <value>5</value>
 </field>
 <field type="text-multi" label="Message" var="status-message">
 <value/>
 </field>
 </x>
 </command>
</iq>

The session ID is generated by the responder for tracking commands and results
sent in the context of an ad-hoc commands session. The responder didn’t include a
session ID in the simple command we discussed earlier, because it did not require
further input from the requester. However, in the set-status scenario, the responder
does include the session ID because additional steps are required. Furthermore, the
use of session IDs makes it possible to execute several instances of the same com-
mand among the same parties at the same time.

The executing status indicates that the command is in the middle of execution.

This value element provides the current value of the field (that is, the remote client
currently has a state of online).

Th status-priority field specifiesproxies the <priority/> element of the new pres-
ence stanza; because the value must be between –127 and +128, the client or server
will enforce this range of values.

The status-message field specifies the value of the <status/> element within the
presence stanza.

Alice’s mobile client will now render the form (e.g., as in Figure 11-2) so that she can
complete the required fields.

Controlling Clients | 157

Once Alice fills out the form, the client on her mobile phone submits the form to the
remote client. This form mirrors that requested in the previous stanza, with the values
included:

<iq from="alice@wonderland.lit/party"
 id="afd5a"
 to="alice@wonderland.lit/rabbithole"
 type="set">
 <command xmlns="http://jabber.org/protocol/commands"
 action="complete"
 sessionid="b82nsd82nfdos51vs9"
 node="http://jabber.org/protocol/rc#set-status">
 <x xmlns="jabber:x:data" type="submit">
 <field type="hidden" var="FORM_TYPE">
 <value>http://jabber.org/protocol/rc</value>
 </field>
 <field var="status">
 <value>offline</value>
 </field>
 <field var="status-priority">
 <value>5</value>
 </field>
 <field var="status-message">
 <value>I'm at the party, talk to me there.</value>
 </field>
 </x>
 </command>
</iq>

Figure 11-2. The status change command form, as rendered by the Psi client

158 | Chapter 11: Remote Commands

The requester specifies an action of complete because it has provided all required
information and therefore is asking the responder to complete the command session
if possible.

The requester copies back the sessionid generated by the responder so that the
responder can maintain state regarding the interaction.

Stating the Obvious
In a multi-stage interaction, the responder might need to maintain some
state regarding command processing. Typically, it does this using the
sessionid attribute. However, the responder can avoid the need to
maintain state by including data form fields of type hidden, which the
requester must return without modification. (This is similar to an
<INPUT> tag of type hidden in HTML forms.)

As previously, Alice’s remote client now confirms that the command has been suc-
cessfully processed:

<iq from="alice@wonderland.lit/rabbithole"
 id="afd5a"
 to="alice@wonderland.lit/party"
 type="result">
 <command xmlns="http://jabber.org/protocol/commands"
 node="http://jabber.org/protocol/rc#set-status"
 sessionid="b82nsd82nfdos51vs9"
 status="completed"/>
</iq>

Finally, because the remote client was asked to go offline, the rabbithole resource now
goes offline and Alice’s party resource receives the unavailable presence stanza:

<presence from="alice@wonderland.lit/rabbithole"
 to="alice@wonderland.lit/party"
 type="unavailable">
 <status>I'm at the party, talk to me there.</status>
</presence>

You just saw two of the commands described in Remote Controlling Clients
[XEP-0146]. Other commands include accepting file transfer requests, leaving group-
chats, and changing run-time options remotely using the same techniques. Service
Administration [XEP-0133] is another XEP that uses ad-hoc commands for entity con-
trol, and can be thought of as the server counterpart of the client remote controlling
commands we’ve just seen; it basically follows the same flow, which is common to all
ad-hoc commands. In the next section, we explore how to define custom commands
that use the same workflow engine.

Controlling Clients | 159

Providing Custom Commands
Suppose that Alice has just stumbled across the bookstore.wonderland.lit service,
which sells books through an Ad-Hoc Commands interface. Having already registered
with the service and given it her payment details (Alice is very trusting, and Wonderland
suffers a very low fraud rate), she is now ready to begin her book-buying adventures.

Having found the command she wants to execute, Alice can now begin buying books
by sending a command element with an action of execute to the node she has
discovered:

<iq from="alice@wonderland.lit/party"
 id="bs3m20oa"
 to="bookstore.wonderland.lit"
 type="set">
 <command xmlns="http://jabber.org/protocol/commands"
 action="execute"
 node="http://wonderland.lit/books/buy"/>
</iq>

The service then returns a data form to fill in (including, as before, a session ID because
a multistage process is required to complete the transaction):

<iq from="bookstore.wonderland.lit"
 id="bs3m20oa"
 to="alice@wonderland.lit/party"
 type="result">
<command xmlns="http://jabber.org/protocol/commands"
 node="http://wonderland.lit/books/buy"
 sessionid="uaroeb3eub3920ubon"
 status="executing">
 <actions execute="next">
 <next/>
 </actions>
 <x xmlns="jabber:x:data" type="form">
 <title>Choosing your author</title>
 <instructions>
 Please choose an author from the list.
 </instructions>
 <field label="Authors" type="list-single" var="author">
 <option label="Jane Austen"><value>Jane Austen</value></option>
 <option label="Lewis Carroll"><value>Lewis Carroll</value></option>
 <option label="William Shakespeare"><value>William Shakespeare</value></option>
 </field>
 </x>
</command>
</iq>

Then, just as for the remote control commands earlier, Alice can submit the form:

<iq from="alice@wonderland.lit/party"
 id="laulm029"
 to="bookstore.wonderland.lit"
 type="set">
 <command xmlns="http://jabber.org/protocol/commands"

160 | Chapter 11: Remote Commands

 action="complete"
 node="http://wonderland.lit/books/buy"
 sessionid="uaroeb3eub3920ubon">
 <x xmlns="jabber:x:data" type="submit">
 <field var="author">
 <value>William Shakespeare</value>
 </field>
 </x>
 </command>
</iq>

However, because this is a multistage command, the responder returns not a
completed result but the next stage of the command:

<iq from="bookstore.wonderland.lit"
 id="laulm029"
 to="alice@wonderland.lit/party"
 type="result">
 <command xmlns="http://jabber.org/protocol/commands"
 node="http://wonderland.lit/books/buy"
 sessionid="uaroeb3eub3920ubon"
 status="executing">
 <actions execute="next">
 <next/>
 <prev/>
 </actions>
 <x xmlns="jabber:x:data" type="form">
 <title>Choosing your book</title>
 <instructions>
 Please choose a book by William Shakespeare from the list.
 </instructions>
 <field label="Titles" type="list-single" var="author">
 <option label="The Complete Works"><value>The Complete Works</value></option>
 </field>
 </x>
 </command>
</iq>

Here you see an action element, which describes the actions that can be taken. The ad-
hoc commands protocol is stateful when dealing with multistage forms, and by in-
cluding <prev/> as a permitted action, the service is allowing the client to travel back
to the previous stage in the command. As Alice didn’t mean to select Shakespeare’s
collection, she avails herself of this feature and goes back to select Lewis Carroll:

<iq from="alice@wonderland.lit/party"
 id="uagdbal2"
 to="bookstorewonderland.lit"
 type="set">
 <command xmlns="http://jabber.org/protocol/commands"
 sessionid="uaroeb3eub3920ubon"
 node="http://wonderland.lit/books/buy"
 action="prev"/>
</iq>

Providing Custom Commands | 161

The service would now resend the list of authors, but we quickly skip over that (in case
you’re getting bored of so many angle brackets). After selecting Lewis Carroll from the
list of authors, the service will send Alice the appropriate book list:

<iq from="bookstore.wonderland.lit"
 id="ua38bana"
 to="alice@wonderland.lit/party"
 type="result">
 <command xmlns="http://jabber.org/protocol/commands"
 node="http://wonderland.lit/books/buy"
 sessionid="uaroeb3eub3920ubon"
 status="executing">
 <actions execute="next">
 <next/>
 <prev/>
 </actions>
 <x xmlns="jabber:x:data" type="form">
 <title>Choosing your book</title>
 <instructions>
 Please choose a book by Lewis Carroll from the list.
 </instructions>
 <field label="Titles" type="list-single" var="author">
 <option label="Alice's Adventures in Wonderland">
 <value>Alice's Adventures in Wonderland</value>
 </option>
 <option label="Through the Looking-Glass">
 <value>Through the Looking-Glass</value>
 </option>
 <option label="The Hunting of the Snark">
 <value>The Hunting of the Snark</value>
 </option>
 <option label="Jabberwocky">
 <value>Jabberwocky</value>
 </option>
 </field>
 </x>
 </command>
</iq>

Just as she’s about to buy a copy of Jabberwocky, Alice decides to save her money
instead, and cancels the transaction. Alice does so by setting the value of the action
attribute to cancel:

<iq from="alice@wonderland.lit/party"
 id="ulamabam"
 to="bookstore.wonderland.lit"
 type="set">
 <command xmlns="http://jabber.org/protocol/commands"
 sessionid="uaroeb3eub3920ubon"
 node="http://wonderland.lit/books/buy"
 action="cancel"/>
</iq>

The service acknowledges that request by returning an IQ-result with the value of the
status attribute set to a value of canceled:

162 | Chapter 11: Remote Commands

<iq from="bookstore.wonderland.lit"
 id="ulamabam"
 to="alice@wonderland.lit/party"
 type="result">
 <command xmlns="http://jabber.org/protocol/commands"
 sessionid="uaroeb3eub3920ubon"
 node="http://wonderland.lit/books/buy"
 status="canceled"/>
</iq>

And so ends Alice’s book-buying adventure.

Advanced Workflows: SOAP, RPC, IO Data
If ad-hoc commands and data forms won’t solve the workflow needs of your applica-
tion, XMPP contains support for several more advanced workflow technologies.

First, ad-hoc commands are not tightly coupled with data forms: the <command/> ele-
ment can contain data qualified by any XML namespace, not just the jabber:x:data
namespace. You can take advantage of this extensibility to define your own “payload”
for the <command/> element. Alternatively, you can re-use an existing payload format,
such as the one defined in the IO Data [XEP-0244]. The intention behind IO Data is
to provide a more generic, XML-friendly payload format than Data Forms, including
the ability to specify XML data types and include data that can be checked against an
XML schema.

Second, the XMPP Standards Foundation has worked with the World Wide Web Con-
sortium (W3C) to define an official binding of SOAP to XMPP. The SOAP standard
[SOAP] is widely used in web services deployments across the Internet. Although typ-
ically SOAP workflows are sent over HTTP, the XMPP binding has several inherent
advantages, including strong identity on the part of the XMPP sender (not just the
receiver, as in HTTP) and presence information to dynamically redirect workflows in
response to network availability. The XMPP binding, which is defined in [XEP-0072],
is supported in several SOAP libraries.

For those desiring a workflow technology that is a bit more lightweight than SOAP,
many years ago the XMPP developer community also defined a binding of [XML-
RPC] for remote procedure calls between XMPP entities. This “Jabber-RPC” technol-
ogy is described in [XEP-0009], and has been used in online gaming networks,
integration with enterprise resource planning (ERP) systems, and other applications.

Summary
This chapter has covered Ad-Hoc Commands [XEP-0050], revisited Data Forms
[XEP-0004], which are typically contained in an ad-hoc commands interaction, looked
at the use of ad-hoc commands in Remote Controlling Clients [XEP-0146], and illus-
trated a custom workflow with a book-buying example. In using these, you’ve learned

Summary | 163

about the various steps involved in sending commands, from discovery of commands,
command and data form details, how to require the submission of particular fields, the
types of fields available, submission of completed forms, and the workflows used to
move through an ad-hoc commands session. We’ve also looked at some specialized
uses of data forms and the potential of more advanced workflow technologies. All of
these methods can be used in a wide variety of scenarios, including game management,
remote instrument monitoring, machine-to-machine communication, and cloud
computing.

164 | Chapter 11: Remote Commands

CHAPTER 12

Connection Methods and Security

Most of the chapters in this book focus on describing the high-level XMPP protocols
in terms of stanzas sent and received, without talking about the XML streaming layer
that handles the sending and receiving of stanzas over the wire. To round out our
coverage of XMPP, we focus on the lower layers of the XMPP protocol stack in this
chapter.

XMPP provides a great deal of flexibility regarding connection methods, authentica-
tion, encryption, and other fundamentals. This chapter walks you through some of
these fundamentals, showing how you can use them to build more powerful and secure
applications. First, we describe standard client-to-server connections over TCP, in-
cluding techniques for securing those connections. We then illustrate the power of the
network by explaining how server-to-server connections work, and how servers can be
extended using external components. We then look at an alternative binding that en-
ables you to send XMPP traffic over HTTP for web applications and for mobile devices
that have intermittent network connectivity. Going even farther afield, we explore how
to set up serverless messaging between clients on ad-hoc local networks. Finally, we
provide an overview of some of the key security issues to consider when deploying
XMPP-based systems.

Negotiating an XMPP Stream
The fundamental building block of XMPP is the XML stream, which in client-to-server
communication equates to a session. A client session starts by connecting to a server
and negotiating the session details, after which the client can send message, presence,
and IQ stanzas to other entities on the network. The session ends when the client (or
the server) decides to close the stream. In this section, we focus on how the client and
server work together to set up the XML stream; what happens after that is the topic of
the other chapters in Part II.

165

In broad outline, setting up a client-to-server session consists of the following phases:

1. Initiating a TCP connection to the server

2. Opening an XML stream

3. Negotiating various stream features

4. Authenticating with the server

5. Selecting a resource

6. For IM applications, requesting the roster and sending initial presence

After the session has been started, the actual XMPP communication (consisting of
message, IQ, and presence stanzas) can start happening.

Let’s say that our friend alice@wonderland.lit wants to connect to her server. She first
needs to find out which physical machine is providing XMPP services for that domain.
You might expect that Alice can simply connect to the machine wonderland.lit. How-
ever, XMPP allows you to run your XMPP service for a given domain on any host you
choose, so this guess isn’t necessarily correct (although it’s a good fallback method).

To find out the machine name of the XMPP service for wonderland.lit, Alice needs to
do a DNS Service lookup. This means that she queries the DNS SRV record for the
_xmpp-client._tcp.wonderland.lit. service (i.e., the machine that services XMPP cli-
ents over TCP at the wonderland.lit domain). The DNS answer yields the following
result:

_xmpp-client._tcp.wonderland.lit. 86400 IN SRV 10 20 5222 xmpp1.wonderland.lit
_xmpp-client._tcp.wonderland.lit. 86400 IN SRV 10 5 5222 xmpp2.wonderland.lit

It seems that there are two XMPP servers available for the wonderland.lit service,
xmpp1 and xmpp2, and that both of them are running on port 5222 (which is the standard
port used for receiving XMPP client connections). To proceed, Alice’s does the
following:

1. Based on the priority and weight of the records, picks one of these machines (here,
xmpp1.wonderland.lit).

2. Performs a standard “A” (or “AAAA”) lookup to determine the IP address of the
chosen machine.

3. Opens a TCP connection to that IP address and port.

Now the XMPP negotiation begins. Alice’s client sends an initial stream header to the
server:

<?xml version="1.0"?>
<stream:stream to="wonderland.lit"
 version="1.0"
 xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">

166 | Chapter 12: Connection Methods and Security

This is the XML text declaration. It is optional to include it before sending the stream
header itself.

Elements qualified by the http://etherx.jabber.org/streams namespace must al-
ways be prefixed with stream: (e.g., an opening stream tag of <stream:stream>).

The to attribute contains the domain part of Alice’s JID. It is the logical domain
name, which might not be the same as the physical machine used for connecting.

The version attribute indicates the version of the XMPP protocol. This is always 1.0.

The xmlns attribute specifies the default namespace for all XML sent over the stream
(i.e., the namespace that applies if no other namespace is noted). Because this is a
client-to-server stream, the default namespace is jabber:client.

The <stream/> element is not closed. At this point the client sends only the opening
tag to start the stream, i.e., <stream:stream>. From now on, all subsequent XML
elements will be sent as children of this root element, until the session ends by closing
the root element with the ending </stream:stream> tag.

In response, the server opens a response stream in the opposite direction by sending an
opening <stream:stream> tag to Alice (as mentioned, there is one stream in each
direction):

<?xml version="1.0"?>
<stream:stream from="wonderland.lit"
 id="k0d1m43rt53ht"
 version="1.0"
 xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">

Before sending the response stream header, the server generates a unique stream ID
for this session.

Immediately after opening the response stream, the server tries to reach agreement with
the client on how the connection will proceed. First, the server tells the client about
the stream features it supports:

<stream:features>
 <starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls">
 <optional/>
 </starttls>
 <mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">
 <mechanism>PLAIN</mechanism>
 <mechanism>DIGEST-MD5</mechanism>
 <required/>
 </mechanisms>
 <compression xmlns="http://jabber.org/features/compress">
 <method>zlib</method>
 </compression>
</stream:features>

Negotiating an XMPP Stream | 167

In this case, the server supports the following features:

• Encrypted connections with the XMPP profile of Transport Layer Security (TLS)
[RFC 5246]. The wonderland.lit server says that TLS negotiation is optional, but
in general it is recommended for all XML streams (we discuss TLS in “Encrypting
the Connection” on page 172).

• Authentication via the Simple Authentication and Security Layer (SASL) [RFC
4422]. In this case, the only supported authentication methods are the PLAIN
mechanism and the DIGEST-MD5 mechanism. The wonderland.lit server says
that SASL negotiation is required.

• Stream compression for more optimal bandwidth usage, as described in
[XEP-0138]; this too is optional here (the wonderland.lit server has not included
an <optional/> child element, but features default to optional).

Optional Features
RFC 3920 defined the <required/> flag only for the TLS stream feature,
and did not define the <optional/> flag at all. Implementation experi-
ence has indicated the need for consistent flagging of which stream fea-
tures are required and which are optional, so the document that captures
ongoing revisions to RFC 3920 (known as [rfc3920bis]) specifies that
all stream features must indicate whether they are required or optional.

Because Alice isn’t interested in securing or compressing her connection at this point,
she proceeds directly to the authentication step. In this step, she logs in to her account
by passing her credentials to the server, proving to the server that she really is Alice.

Since the wonderland.lit service supports both DIGEST-MD5 and PLAIN, Alice choo-
ses the simplest alternative, and authenticates herself using the PLAIN mechanism (this
is for demonstration purposes only—don’t do this over an unencrypted connection,
because your password will be sent in the clear!). Alice does this by sending a Base64-
encoded version of a string containing her username and her password, separated by
a 0 byte:

<auth xmlns="urn:ietf:params:xml:ns:xmpp-sasl" mechanism="PLAIN">
 AGFsaWNlAHBhc3N3b3JkCg==
</auth>

(The Base64-decoded string is <0>alice<0>password—clearly Alice needs some instruc-
tion on best practices for information security.)

Alice’s server responds with the message that her authentication was successful:

<success xmlns="urn:ietf:params:xml:ns:xmpp-sasl"/>

168 | Chapter 12: Connection Methods and Security

SASL Challenges
Unlike the PLAIN authentication mechanism, most SASL authentica-
tion mechanisms typically consist of more than one step. In those cases,
the server and client send each other different subsequent challenges
and responses (embedded in <challenge/> and <response/> elements),
until the authentication has been established.

Immediately following the notification of successful authentication, the server resets
the session by sending a new stream header (with a new Stream ID). This time, however,
it announces different stream features:

<?xml version="1.0"?>
<stream:stream from="wonderland.lit"
 id="d1r3ht0n4"
 version="1.0"
 xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">
 <stream:features>
 <compression xmlns="http://jabber.org/features/compress">
 <method>zlib</method>
 </compression>
 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind">
 <required/>
 </bind>
 <session xmlns="urn:ietf:params:xml:ns:xmpp-session">
 <optional/>
 </session>
 </stream:features>

SASL negotiation has been completed, so the authentication feature is no longer ad-
vertised. However, two other features are now included: support for resource binding
and support for formally starting an XMPP session.

Before starting the XMPP session, Alice requests a resource from the server, since this
is necessary for proper routing of XMPP stanzas. Because Alice is currently in the rabbit
hole, she decides to ask for a resource called rabbithole:

<iq id="b1h4r9rx" type="set">
 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind">
 <resource>rabbithole</resource>
 </bind>
</iq>

The server acknowledges this request, which means that Alice’s full JID on the XMPP
network is now alice@wonderland.lit/rabbithole:

<iq id="b1h4r9rx" type="result">
 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind">
 <jid>alice@wonderland.lit/rabbithole</jid>
 </bind>
</iq>

Negotiating an XMPP Stream | 169

Resource Assignment
When a client requests a specific resource, most servers grant the re-
quested resource unchanged if it is available, or fail if it is not. However,
servers are always free to assign a different resource than the one re-
quested. For example, when requesting the rabbithole resource, the
server could have returned alice@wonderland.lit/rabbithole-1 in its
response, binding the session to the rabbithole-1 resource instead. A
possible reason for doing this is to avoid collisions between resources,
or to randomize resource IDs for security purposes.

Finally, Alice seals the deal by explicitly starting an XMPP session:

<iq id="uyq6z751" type="set">
 <session xmlns="urn:ietf:params:xml:ns:xmpp-session"/>
</iq>

And the server responds with success:

<iq id="uyq6z751" type="result"/>

The Session No-Op
After the XMPP RFCs were published in October 2004, the XMPP de-
veloper community realized that the xmpp-session step of the stream
negotiation was unnecessary, so most clients and servers now treat it as
a “no-op,” advertise it only for backward compatibility, and proceed
normally if the step is skipped.

Alice can now begin sending messages and presence notifications. She will typically
start by retrieving her roster and sending initial presence, as we discussed in Chapter 3:

<iq from="alice@wonderland.lit/rabbithole"
 id="hr71vl77"
 to="alice@wonderland.lit"
 type="get">
 <query xmlns="jabber:iq:roster"/>
</iq>

<iq from="alice@wonderland.lit"
 id="hr71vl77"
 to="alice@wonderland.lit/rabbithole"
 type="result">
 <query xmlns="jabber:iq:roster">
 <item jid="whiterabbit@wonderland.lit"/>
 <item jid="lory@wonderland.lit"/>
 <item jid="mouse@wonderland.lit"/>
 <item jid="sister@realworld.lit"/>
 </query>
</iq>

<presence/>

170 | Chapter 12: Connection Methods and Security

Now that Alice has logged in, retrieved her roster, and sent initial presence, she can
chat with friends, join chat rooms, and interact with other entities on the network.

Authentication Options
The PLAIN mechanism illustrated in the previous section is the very simplest (and least
secure) of SASL mechanism. One benefit of the SASL framework is that it enables
application developers and service administrators to support many different authenti-
cation mechanisms depending on their requirements. Here are some of the SASL mech-
anisms that are currently used or planned for deployment within the XMPP community:

PLAIN
As we’ve seen, the PLAIN mechanism [RFC 4616] provides a very simple
password-based authentication method. Because the password is sent without any
security protection, the PLAIN mechanism is safe to use only if the underlying XML
stream is protected using Transport Layer Security (TLS).

DIGEST-MD5
The DIGEST-MD5 mechanism [RFC 2831] provides stronger security than the
PLAIN mechanism, since the password is encrypted in transit (thus the channel
does not require TLS security). Unfortunately, many interoperability problems
have arisen for DIGEST-MD5, not just in XMPP but in other uses of SASL, such
as IMAP. Therefore, the IETF has deprecated DIGEST-MD5 in favor of SCRAM.

SCRAM
The Salted Challenge Response Authentication Mechanism [SCRAM] is the IETF’s
proposed replacement for DIGEST-MD5. The mechanism provides quite strong
protection against numerous security threats when it is used in conjunction with
Transport Layer Security. Because SCRAM is a new technology (in fact, it had not
yet been published as an RFC at the time of this writing), it will probably take some
time before all XMPP servers support it.

EXTERNAL
The EXTERNAL mechanism [RFC 4422] enables the initiating entity (whether a
client or a server) to present a digital certificate during TLS negotiation and then
refer to that certificate during authentication, thus obviating the need for pass-
words altogether. However, very few end users outside of certain specialized en-
vironments have digital certificates, so in practice the EXTERNAL mechanism is
used more for server-to-server connections than for client-to-server connections.

GSSAPI
The GSSAPI mechanism [RFC 4121] was conceived as a general SASL mechanism
(pluggability within pluggability!), but to date has been employed only for use with
Kerberos V. The GSSAPI mechanism is deployed even less widely than the EX-
TERNAL mechanism, but is quite powerful within organizations that use Kerberos
for “single sign-on.”

Authentication Options | 171

ANONYMOUS
The ANONYMOUS mechanism [RFC 4505] enables users to authenticate without
having registered accounts on the server. This mechanism is most useful for
customer-facing applications, such as call centers and online help systems, where
it doesn’t make sense to require registration for a one-time use of the XMPP
application.

Some of these authentication methods can also result in a mutually authenticated ses-
sion that invokes a security layer, thus providing integrity protection and encryption.
However, this aspect of SASL is not as widely used as its authentication capabilities.
Instead, as described in the next section, Transport Layer Security is used for
encryption.

Encrypting the Connection
Connecting to an XMPP server using a normal TCP connection (as you saw in the
previous section) has the disadvantage of not being secure. Indeed, eavesdroppers who
are able to monitor the traffic on your network can intercept everything you send to
your server, including personal messages, and even the password you send in the
authentication step. Clearly this is not good!

The authentication phase can be made more secure by using an authentication mech-
anism that, unlike PLAIN, does not send your password in a way that it can be recon-
structed from the traffic you send (e.g., DIGEST-MD5). Nevertheless, this still leaves
the rest of your communication going over the wire in an unsecured fashion (if, say,
DIGEST-MD5 was not used to negotiate a security layer). Another problem is that you
have no assurance that the server you are connecting to is indeed the server you think
it is. For example, a malicious person can find ways to redirect your connection to his
own host, resulting in you sending your credentials to a server without even noticing
this. However, these problems are not specific to XMPP: the same issues arise when
entering your credit card number on a website, when sending an email with sensitive
company information, and so on. This is why smart security professionals have de-
signed a general solution for securing connections. This solution was originally called
Secure Sockets Layer (SSL) and is now called Transport Layer Security [RFC 5246]. Just
like all the other widely used Internet protocols that employ either SSL or TLS, XMPP
uses TLS for securing its connections as well. This section describes the XMPP profile
of TLS for client-to-server connections.

172 | Chapter 12: Connection Methods and Security

TLS and SSL
Transport Layer Security is the IETF’s evolution of Secure Sockets
Layer. SSL was originally developed by Netscape in the early years of
the Web to encrypt TCP connections between web browsers and web
servers, usually on port 443 (“https”) instead of port 80 (“http”). Orig-
inally the Jabber community followed the same convention by encrypt-
ing client-to-server TCP connections on port 5223 instead of 5222. With
the publication of [RFC 3920] in 2004, XMPP adopted the more modern
practice of upgrading an unencrypted connection to encrypted using the
<starttls/> command. This means that an ordinary (unsecured) con-
nection is set up first, after which a <starttls/> command is sent to
negotiate an encrypted connection.

Let’s say that the wonderland.lit server has instituted a new security policy. When Alice
opens a session, the server greets her with the following stream features announcement:

<stream:stream from="wonderland.lit"
 id="d1r3ht0n4"
 version="1.0"
 xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">
 <stream:features>
 <starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls">
 <required/>
 </starttls>
 </stream:features>

Not only does the wonderland.lit server announce support for secure connections us-
ing TLS, it even requires encrypted connections. Indeed, in addition to the
<required/> tag within the <starttls/> element, the server doesn’t announce support
for any authentication mechanisms, so Alice has no choice but to switch to an encrypted
connection:

<starttls xmlns="urn:ietf:params:xml:ns:xmpp-tls"/>

This request is promptly followed by an acknowledgment from the server:

<proceed xmlns="urn:ietf:params:xml:ns:xmpp-tls"/>

From the point where the <proceed/> happened, the regular XMPP stream ends, and
the TLS handshake starts happening over the TCP connection itself. This handshake
step involves the server sending a certificate to the client, and the client validating the
certificate to ensure that the server is indeed the one it claims to be. This handshake
occurs directly over the TCP connection using standard TLS messages (not an XML
encapsulation of TLS), as defined in the TLS specification. After the handshake has
successfully completed, the client restarts its XMPP session, only now encrypting
everything it sends using the key received from the server during the TLS handshake:

Encrypting the Connection | 173

<stream:stream to="wonderland.lit"
 version="1.0"
 xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">

Because the connection is now secure, the server responds with more stream features,
including authentication mechanisms, allowing the client to start authenticating its
XMPP session, as we discussed in the last section:

<stream:stream from="wonderland.lit"
 id="c8b7rn6p6"
 version="1.0"
 xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">
 <stream:features>
 <mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">
 <mechanism>PLAIN</mechanism>
 <mechanism>DIGEST-MD5</mechanism>
 </mechanisms>
 </stream:features>

Server Federation
So far, the focus of this chapter has been on creating a connection between a client and
a server. However, if you want to send a message to a contact on another server, your
server needs to connect to the other server before it can send the message through. This
kind of server-to-server connectivity is commonly called federation. In this section, we
talk about how federated connections are made, what the security considerations are,
and how these security problems are solved.

c2s and s2s
Client-to-server connections are often abbreviated as c2s in the net-
working world, whereas server-to-server connections are (not surpris-
ingly) referred to as s2s connections.

Server-to-server (s2s) connections basically follow the same pattern as client-to-server
connections: after opening a connection to the host serving XMPP for the target JID,
the sending server needs to authenticate itself before it is allowed to send a message.
Without authentication, any server would be able to pretend that it is responsible for
a given domain, and could send messages in the name of any user in that domain (this
is called domain spoofing).

Just as in the case of clients connecting to a server, servers can also use SASL to au-
thenticate themselves. The SASL mechanisms most commonly used by clients require
the user to register in some way with the server and then reference the registered cre-
dentials when authenticating. This is impractical for server-to-server connections be-
cause XMPP promotes a distributed network where servers don’t need to have prior

174 | Chapter 12: Connection Methods and Security

knowledge about each other (this dynamic federation model is similar to email but
different from the formal “peering” model public telecommunication networks use).

You might therefore think that SASL cannot be used for inter-domain federation.
However, one SASL mechanism comes in handy here: the EXTERNAL mechanism.
For server-to-server connections, SASL EXTERNAL is used in conjunction with Trans-
port Layer Security. During the TLS negotiation, the servers exchange certificates in
both directions. After the negotiation completes, the servers can then simply refer to
the certificates provided via TLS for mutual authentication. Unfortunately, the use of
TLS and SASL EXTERNAL is not yet widespread, even though it provides strong server-
to-server authentication.

In the case where certificate-based verification is not possible, XMPP servers fall back
on the less secure approach of checking the validity of a sending server, called server
dialback. This approach can be illustrated by the story of a representative from your
electric company coming to your house and asking whether he can enter to work on
your electric system. Before letting him into your house, you ask for his employee ID
number. You then call the number of the electric company’s service department (which
you looked up in your own phone book), and ask them whether the employee with the
given ID is allowed to come and work on your house. After having checked their re-
cords, the service department confirms that the person at your door is indeed one of
their employees and is authorized to visit you now, so you let him enter. In XMPP, the
equivalent of the homeowner is the receiving server (to which an s2s connection is being
made), the equivalent of the worker is the originating server (which is attempting to
connect), the equivalent of the phone book is the Domain Name System (DNS), and
the equivalent of the service department is the authoritative server for the originating
domain.

The basic flow of events is as follows:

1. The originating server performs a DNS lookup on the hostname of the receiving
server, opens a TCP connection to the discovered IP address and port, and estab-
lishes an XML stream with the receiving server.

2. The originating server generates a dialback key and sends that value over its XML
stream with the receiving server.

3. The Receiving Server does not immediately accept the connection but instead per-
forms a DNS lookup on the hostname of the authoritative server, opens a TCP
connection to the discovered IP address and port, and establishes an XML stream
with the authoritative server.

4. The receiving server sends the same dialback key over its XML stream with the
authoritative server for verification.

5. The authoritative server replies that the key is valid or invalid.

6. The receiving server informs the originating server whether its identity has been
verified or not.

Server Federation | 175

This flow is illustrated in Figure 12-1.

Figure 12-1. Server dialback defines a DNS-based “callback” method that provides weak identity
verification

Let’s walk through the case where Alice wants to send a message to her sister in the
real world. In order to get the message delivered, Alice’s server wonderland.lit needs
to open a connection to realworld.lit. A DNS lookup for SRV records for the XMPP
server service at realworld.lit yields the following result:

_xmpp-server._tcp.xmpp.realworld.lit. 86400 IN SRV 10 0 5269 xmpp.realworld.lit

Alice’s server therefore performs a standard “A” or “AAAA” lookup on xmpp.real
world.lit to discover that machine’s IP address, opens a TCP connection on port 5269
at that IP address, and starts an XML stream:

<stream:stream from="wonderland.lit"
 to="realworld.lit"
 version="1.0"
 xmlns="jabber:server"
 xmlns:db="jabber:server:dialback"
 xmlns:stream="http://etherx.jabber.org/streams">

176 | Chapter 12: Connection Methods and Security

Inclusion of the jabber:server:dialback namespace declaration indicates to the re-
ceiving server that the originating server supports the server dialback protocol.

The realworld server sends a response stream header and the stream features:

<stream:stream from="realworld.lit" to="wonderland.lit" id="D60000229F" version="1.0"
 xmlns="jabber:server"
 xmlns:db="jabber:server:dialback"
 xmlns:stream="http://etherx.jabber.org/streams">
 <stream:features>
 <dialback xmlns="urn:xmpp:features:dialback">
 <required/>
 </dialback>
 </stream:features>

The receiving server apparently requires the originating server to provide some verifi-
cation of its identity using the dialback protocol. To start this verification process, the
wonderland server generates a dialback key, which will be used by the receiving server
and the authoritative server to verify the originating server. This key is then sent to the
realworld server:

<db:result from="wonderland.lit" to="realworld.lit">
 37c69b1cf07a3f67c04a5ef5902fa5114f2c76fe4a2686482ba5b89323075643
</db:result>

To verify whether the server that opened a connection is really the wonderland server,
the realworld server now “dials back” to the wonderland server. To do that, it looks
up the host serving XMPP for that domain using a DNS SRV query, resulting in the
following reply:

_xmpp-server._tcp.wonderland.lit. 86400 IN SRV 10 0 5269 cm.wonderland.lit

This is the authoritative server for wonderland.lit. The realworld server now performs
a standard “A” or “AAAA” lookup on cm.wonderland.lit to discover that machine’s IP
address, opens a TCP connection on port 5269 at that IP address, and starts an XML
stream:

<stream:stream from="realworld.lit"
 to="wonderland.lit"
 version="1.0"
 xmlns="jabber:server"
 xmlns:db="jabber:server:dialback"
 xmlns:stream="http://etherx.jabber.org/streams">

The cm.wonderland.lit machine in turn replies with the normal stream header:

<stream:stream from="wonderland.lit"
 id="D60000229F"
 to="realworld.lit"
 version="1.0"
 xmlns="jabber:server"
 xmlns:db="jabber:server:dialback"
 xmlns:stream="http://etherx.jabber.org/streams"
 <stream:features>
 <dialback xmlns="urn:xmpp:features:dialback">

Server Federation | 177

 <optional/>
 </dialback>
 </stream:features>

Now that the realworld server has a reverse connection to the wonderland server, it can
ask the latter whether it is trying to connect a stream with the given ID and the given key:

<db:verify from="realworld.lit" to="wonderland.lit" id="D60000229F">
 37c69b1cf07a3f67c04a5ef5902fa5114f2c76fe4a2686482ba5b89323075643
</db:verify>

The wonderland server confirms that it is indeed trying to connect and that the key
given is valid:

<db:verify from="wonderland.lit"
 id="D60000229F"
 to="realworld.lit"
 type="valid">
 37c69b1cf07a3f67c04a5ef5902fa5114f2c76fe4a2686482ba5b89323075643
</db:verify>

The realworld server is now confident that the stream opened by the originating server
is indeed from a server in the wonderland network, and therefore sends a response on
its initial stream with the originating server, informing the wonderland.lit server that
it may proceed with sending stanzas:

<db:result from="realworld.lit" to="wonderland.lit" type="valid">
 37c69b1cf07a3f67c04a5ef5902fa5114f2c76fe4a2686482ba5b89323075643
</db:result>

Verification complete!

In the foregoing example, we assumed that the initiating server (the server opening the
connection) was the same as the authoritative server (the server used by the receiving
server to verify the validity of the key). However, this doesn’t always have to be the
case. You can compare this to a self-employed electrician picking up the phone when
you dial his company’s number from the phone book, as opposed to the administration
office of the company answering the phone and validating employees.

Although the server dialback protocol provides a relatively good authenticity check, it
is still weaker than using TLS plus SASL EXTERNAL for this job. The main weakness
of this approach is that it relies on the initiating host being registered through DNS,
which means that DNS poisoning attacks can still result in domain spoofing if the DNS
security extensions (DNSSEC) are not used. This is the major reason why it is preferable
to use certificate-based validation with TLS.

178 | Chapter 12: Connection Methods and Security

Got Certs?
One of the challenges related to TLS is not support for it in software but
the availability of certificates. In the early days, many server adminis-
trators installed “self-signed” certificates that were not issued by a
recognized Certification Authority (CA). But such “homegrown” certif-
icates cause security warnings to pop up in XMPP clients—and security
warnings are scary to most end users. Unfortunately, acquiring a cer-
tificate that is signed by one of best-known CA’s can cost quite a bit of
money. To remedy this situation, the XMPP Standards Foundation of-
fers free certificates to administrators of XMPP servers, currently by
running an Intermediate CA that uses StartCom (a widely recognized
certification authority) as the root CA. For more information or to ob-
tain a free certificate for your XMPP server, visit http://xmpp.org/ca/.

Server Components
A third class of entities that can connect to an XMPP server, besides clients and other
XMPP servers, is made up of server components. Server components, like MUC com-
ponents (see Chapter 7), connect to a server and get a specific subdomain of the server
assigned to them (e.g., conference.wonderland.lit). Whenever the XMPP server re-
ceives a stanza addressed to a JID within this domain, it directly routes the stanza to
the component over the component’s connection with the server.

Setting up a stream between a component and the server is done using a simple hand-
shake protocol, defined in Jabber Component Protocol [XEP-0114]. After having opened
a connection to the wonderland.lit server, our MUC component starts the stream,
using the requested subdomain of the component as the to target of the stream:

<stream:stream xmlns="jabber:component:accept"
 xmlns:stream="http://etherx.jabber.org/streams"
 to="conference.wonderland.lit">

The server replies by starting a stream as well:

<stream:stream xmlns:stream="http://etherx.jabber.org/streams"
 xmlns="jabber:component:accept"
 from="conference.wonderland.lit"
 id="3BF96D32">

At this point, the component needs to authenticate itself with the server. This authen-
tication is done by taking a shared secret known by both the server and the component,
and applying a transformation on it. More specifically, the shared secret is appended
to the stream ID of the server stream, after which the value is hashed (using SHA-1)
and then Base64-encoded. The component then sends the resulting string in a
<handshake/> element:

<handshake>aaee83c26aeeafcbabeabfcbcd50df997e0a2a1e</handshake>

Server Components | 179

http://xmpp.org/ca/

After the server has verified that our key is indeed what the server expects it to be, it
sends back a successful result:

<handshake/>

After this handshake has completed, the server will send all stanzas addressed to the
conference.wonderland.lit domain over this stream to the component, and the com-
ponent can send stanzas originating from the same domain over the stream.

Because the existing component protocol lacks some flexibility and does not enable a
component to upgrade the stream to an encrypted connection using Transport Layer
Security, a number of XMPP developers have shown an interest in building a more
modern component protocol. The beginnings of such a protocol are documented in a
proposal called Component Connections [XEP-0225], but further work remains to be
done before that protocol will be ready for widespread implementation and
deployment.

BOSH: XMPP over HTTP
So far, all of the client-to-server and server-to-server connections we’ve looked at hap-
pen over long-lived TCP connections, where the parties keep that connection open as
long as the session is needed. However, in certain situations, it can be difficult or in-
convenient to maintain a long-lived TCP connection. The following are some examples:

• Networks with intermittent connectivity can repeatedly interrupt the TCP con-
nection, forcing the client to expend a large number of round trips to frequently
re-establish an XMPP session by negotiating stream headers, encryption, authen-
tication, resource binding, roster retrieval, and initial presence.

• On a mobile phone or other portable devices, constantly maintaining a long-lived
TCP connection can quickly drain the battery.

• Some web-based applications do not carry any state and as such can’t keep a con-
nection open.

• Restrictive firewall settings can prevent even a standard XMPP client from opening
a regular TCP connection to an XMPP server.

The solution is to use a connection method that does not require the client to maintain
a long-lived TCP connection. The standard way to do so emulates the bidirectional
streams that are familiar from the TCP binding, but by efficiently using multiple, syn-
chronous HTTP request/response pairs. This creative re-use of HTTP (similar to, but
subtly different from the methodology known as “Comet”) is called Bidirectional-
streams Over Synchronous HTTP, or BOSH for short. BOSH is defined in two specifi-
cations: [XEP-0124] describes the core approach, and [XEP-0206] describes some
additional rules and considerations for using BOSH with XMPP systems.

180 | Chapter 12: Connection Methods and Security

BOSH-based systems are usually deployed with a special connection manager that acts
as a kind of proxy between the client and the XMPP server, as illustrated in Fig-
ure 12-2. In this case, the server is a standard XMPP daemon, the connection manager
(or CM) sends XMPP to the server but HTTP to the client, and the client is a hybrid
XMPP+HTTP user agent that functions as an XMPP client from the user’s perspective
but wraps the XMPP traffic in a special <body/> element for sending to the connection
manager over HTTP.

Figure 12-2. In BOSH, the client speaks HTTP to the connection manager, which speaks XMPP to
the server

It’s Convenient, but Is It Secure?
BOSH is convenient, but because it introduces a connection manager
into the traditional XMPP architecture, it also introduces the possibility
of new attack vectors on XMPP traffic. These threats are mitigated in
several ways: the use of SSL/TLS between the client and the connection
manager, as well as between the connection manager and the XMPP
server; the large random value for the initial Request ID as described
next, inclusion of the Session ID as described below, and optional use
of a keying mechanism (not described in this chapter).

Let’s suppose that Alice finds herself behind a restrictive firewall after she falls down
the rabbit hole. She can’t access any XMPP servers on the standard port 5222, but
maybe she can use a web client to access a BOSH connection manager being served on
port 80 or 443.

BOSH: XMPP over HTTP | 181

First, however, she needs to find the BOSH CM. She could manually configure her
client, but it is more efficient and less error-prone to use automated discovery processes.
Therefore, her client sends a DNS query for the TXT records associated with the
wonderland.lit domain. In the DNS answer, her client finds the following record, which
matches the format defined in Discovering Alternative XMPP Connection Methods
[XEP-0156]:

_xmppconnect IN TXT "_xmpp-client-xbosh="https://bosh.wonderland.lit/webclient"

Now that Alice’s client has found a BOSH connection manager, she can start an XMPP
session with the wonderland.lit XMPP server by sending an initial HTTP request to
https://bosh.wonderland.lit/webclient. The request consists of an HTTP POST con-
taining a <body/> element; in this case, the element is empty, but includes a number of
attributes used to set up the BOSH session (line breaks are included for readability only,
and the Content-Length is based on the XML without line breaks or extraneous
whitespace):

POST /webclient HTTP/1.1
Host: bosh.wonderland.lit
Content-Type: text/xml; charset=utf-8
Content-Length: 181

<body hold="1"
 secure="true"
 rid="90029201"
 to="wonderland.lit"
 wait="60"
 xmpp:version="1.0"
 xml:lang="en"
 xmlns="http://jabber.org/protocol/httpbind"
 xmlns:xmpp="urn:xmpp:xbosh"/>

The hold attribute sets the maximum number of HTTP requests that the BOSH CM
is allowed to queue up for delivery to the client at any one time. Typically, the
hold attribute is set to a value of 1, as explained later in this section.

The client includes the secure attribute with a value of true to tell the BOSH CM
that its connection to the XMPP server needs to be secure (i.e., either encrypted via
SSL/TLS or hosted on the same machine as the connection manager).

When starting a BOSH session, the client must generate a large, random number
that will function as the initial Request ID. The rid attribute is then incremented by
one with each request the client sends to the BOSH CM.

The wait attribute sets the maximum time (in seconds) that the BOSH CM is allowed
to wait before responding to a pending request; effectively this sets the timeout pe-
riod for an HTTP/TCP connection.

The BOSH CM then opens a regular XMPP connection to wonderland.lit and receives
an XMPP reply (i.e., a response stream header and stream features), which it forwards
to Alice in an HTTP response:

182 | Chapter 12: Connection Methods and Security

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 390

<body hold="1"
 requests="2"
 secure="true"
 sid="3m1ts1htd1s"
 wait="60"
 xmpp:version="1.0"
 xmlns="http://jabber.org/protocol/httpbind"
 xmlns:stream="http://etherx.jabber.org/streams"
 xmlns:xmpp="urn:xmpp:xbosh">
 <stream:features>
 <mechanisms xmlns="urn:ietf:params:xml:ns:xmpp-sasl">
 <mechanism>DIGEST-MD5</mechanism>
 <mechanism>PLAIN</mechanism>
 <required/>
 </mechanisms>
 </stream:features>
</body>

The requests attribute sets the maximum number of HTTP requests that the client
is allowed to have open with the BOSH CM at any one time. Typically the
requests attribute is set to a value of 2 (or, more generally, one more than the value
of the hold attribute), as explained later.

When it replies to the session creation request, the BOSH CM generates a unique
Session ID, which is different from the Stream ID generated by the XMPP server.
Each subsequent request and response must then include the sid attribute.

Alice can then authenticate with the server by sending another HTTP request whose
<body/> element contains the first step of the SASL authentication handshake (as de-
scribed earlier in this chapter):

POST /webclient HTTP/1.1
Host: bosh.wonderland.lit
Content-Type: text/xml; charset=utf-8
Content-Length: 187

<body rid="90029202" sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <auth xmlns="urn:ietf:params:xml:ns:xmpp-sasl" mechanism="PLAIN">
 AGFsaWNlAHBhc3N3b3JkCg==
 </auth>
</body>

The server notifies Alice of success in the HTTP response:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 127

<body sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <success xmlns="urn:ietf:params:xml:ns:xmpp-sasl"/>
</body>

BOSH: XMPP over HTTP | 183

Now that Alice has successfully authenticated with the server, she needs to restart the
stream; this is done by sending a special restart request:

POST /webclient HTTP/1.1
Content-Type: text/xml; charset=utf-8
Content-Length: 153

<body rid="90029203"
 sid="3m1ts1htd1s"
 to="wonderland.lit"
 xmpp:restart="true"
 xmlns="http://jabber.org/protocol/httpbind"
 xmlns:xmpp="urn:xmpp:xbosh"/>

The xmpp:restart attribute tells the BOSH CM to restart the XML stream it has
opened with the XMPP server on the client’s behalf.

The connection manager restarts the stream with the XMPP server and returns a new
set of stream features:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 345

<body sid="3m1ts1htd1s"
 xmpp:version="1.0"
 xmlns="http://jabber.org/protocol/httpbind"
 xmlns:stream="http://etherx.jabber.org/streams"
 xmlns:xmpp="urn:xmpp:xbosh">
 <stream:features>
 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind">
 <required/>
 </bind>
 <session xmlns="urn:ietf:params:xml:ns:xmpp-session">
 <optional/>
 </session>
 </stream:features>
</body>

Alice now requests a resource:

POST /webclient HTTP/1.1
Host: bosh.wonderland.lit
Content-Type: text/xml; charset=utf-8
Content-Length: 233

<body rid="90029204" sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <iq id="vc18f4hj7"
 type="set"
 xmlns="jabber:client">
 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind">
 <resource>rabbithole</resource>
 </bind>
 </iq>
</body>

184 | Chapter 12: Connection Methods and Security

The IQ stanza includes a namespace declaration because the default namespace for
BOSH is http://jabber.org/protocol/httpbind instead of the default namespace for
a client-to-server XMPP stream (i.e., jabber:client).

In response, the connection manager returns the binding result it has received from the
XMPP server:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 232

<body sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <iq id="vc18f4hj7" type="result" xmlns="jabber:client">
 <bind xmlns="urn:ietf:params:xml:ns:xmpp-bind">
 <jid>alice@wonderland.lit/rabbithole</jid>
 </bind>
 </iq>
</body>

At this point, Alice has successfully negotiated an XML stream with the XMPP server
through the BOSH CM. We assume that she also retrieves her roster and sends initial
presence (not shown here), so that she’s finally ready to communicate with people on
the network.

During the stream negotiation process, the special properties of BOSH have not yet
been revealed, because each HTTP POST sent by the client to the connection manager has
been answered almost immediately with an HTTP 200 OK containing information that
the BOSH CM has received from the XMPP server (stream features, authentication
mechanisms and challenge/response combinations, IQ-set and IQ-result stanzas rela-
ted to resource binding and roster retrieval, and initial presence). These interactions all
happen within the timeout period that is set by the value of the wait attribute (in this
case, 60 seconds).

The real usefulness of BOSH comes into the picture when Alice does not send or receive
a stanza for longer than the timeout period. When that happens, the connection man-
ager will send keepalives to Alice if the timeout period is about to expire, or will return
an empty body element to her if she has more than one HTTP request pending at a
time. For instance, in our scenario, Alice has told the BOSH CM that she wants it to
hold onto at most one HTTP request at a time (hold=1), and the CM has replied that
it will let Alice have at most two HTTP requests in play at a time (requests=2). Because
the timeout period is one minute (wait=60), if Alice has not received an HTTP response
to her first request within 60 seconds (usually because the BOSH CM has not received
any incoming stanzas for her), then the CM will return an HTTP 200 OK response con-
taining an empty <body/> element. This response functions as a keepalive. If Alice does
not have any outbound stanzas to send at this point, then her client sends an HTTP
request that also contains an empty <body/> element.

Alice and the CM can keep sending these keepalives every 60 seconds until one of the
following happens:

BOSH: XMPP over HTTP | 185

• The BOSH CM receives an incoming stanza for Alice, at which point, the CM will
return an HTTP 200 OK response to her with a nonempty <body/> element that con-
tains the incoming stanza.

• Alice sends another outbound stanza, at which point, she will have two HTTP
requests in play, thus forcing the connection manager to respond to her first HTTP
request with an HTTP 200 OK response containing an empty <body/> element.

This approach is illustrated in Figure 12-3.

Let’s see how these interactions happen in protocol.

First, Alice sends a message to her sister:

POST /webclient HTTP/1.1
Host: bosh.wonderland.lit
Content-Type: text/xml; charset=utf-8
Content-Length: 205

<body rid="90029205" sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <message to="sister@realworld.lit" xmlns="jabber:client">
 <body>Help, I fell down the rabbit hole!</body>
 </message>
</body>

Here we assume that Alice does not yet receive an immediate HTTP response from the
connection manager because it takes half a minute for Alice’s sister to notice the mes-
sage and then reply. The connection manager therefore delays sending an HTTP re-
sponse until it receives data intended for delivery to Alice. Because this delay does not
quite approach the timeout period, the BOSH CM returns a nonempty <body/> element
that contains the reply from her sister:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 163

<body sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <message from="sister@realworld.lit/home">
 <body>Oh my! How can I help?</body>
 </message>
</body>

Alice quickly replies by sending a new HTTP POST to the CM (thus she once again has
one HTTP request in play):

POST /webclient HTTP/1.1
Host: bosh.wonderland.lit
Content-Type: text/xml; charset=utf-8
Content-Length: 206

<body rid="90029206" sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <message to="sister@realworld.lit/home">
 <body>I don't know yet, it's all very confusing!</body>
 </message>
</body>

186 | Chapter 12: Connection Methods and Security

And Alice’s sister just as quickly replies:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 194

<body sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">

Figure 12-3. BOSH uses multiple HTTP request/response pairs to emulate a bidirectional TCP
connection

BOSH: XMPP over HTTP | 187

 <message from="sister@realworld.lit/home">
 <body>I'm going to find mother, but I'll be back!</body>
 </message>
</body>

Alice thanks her sister and anxiously awaits a reply:

POST /webclient HTTP/1.1
Content-Type: text/xml; charset=utf-8
Content-Length: 161

<body rid="90029207" sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <message to="sister@realworld.lit/home">
 <body>Thanks!</body>
 </message>
</body>

Alice now has one HTTP request in play. Now, however, Alice’s sister has run off to
find their mother, so Alice does not receive a reply from her sister within the timeout
period. The connection manager therefore tells Alice that it hasn’t received any incom-
ing stanzas for her, by returning an HTTP response with an empty <body/> element. It
does this because it is not allowed to hold on to the request longer than the timeout
period set in the wait attribute, i.e., 60 seconds. This empty response functions as a
keepalive:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 70

<body sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind"/>

Because Alice has not generated any more outbound stanzas, her client immediately
sends an HTTP request that also contains an empty <body/> element, thus putting the
BOSH CM on notice that she is still interested in receiving incoming stanzas:

POST /webclient HTTP/1.1
Host: bosh.wonderland.lit
Content-Type: text/xml; charset=utf-8
Content-Length: 85

<body rid="90029208" sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind"/>

However, Alice is getting nervous, so before the next timeout period expires, she sends
another HTTP request containing an outbound stanza:

POST /webclient HTTP/1.1
Content-Type: text/xml; charset=utf-8
Content-Length: 167

<body rid="90029209" sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <message to="sister@realworld.lit/home">
 <body>Please hurry!</body>
 </message>
</body>

188 | Chapter 12: Connection Methods and Security

Alice now has two HTTP requests in play, so she has hit the limit set by the requests
attribute. The BOSH CM therefore sends a reply to her first HTTP POST (the empty
one). In this case, the response also contains an empty <body/> element, because the
connection manager has not yet received any incoming stanzas for Alice:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 70

<body sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind"/>

After a short while (less than the timeout period related to the second request), Alice’s
sister finally responds. As a result, the connection manager sends an HTTP response
to the last (nonempty) HTTP POST:

POST /webclient HTTP/1.1
Host: bosh.wonderland.lit
Content-Type: text/xml; charset=utf-8
Content-Length: 163

<body sid="3m1ts1htd1s" xmlns="http://jabber.org/protocol/httpbind">
 <message from="sister@realworld.lit/home">
 <body>She's on her way!</body>
 </message>
</body>

As you can see, by having only two request-response pairs outstanding at any one time,
and embedding incoming XMPP stanzas in responses to outgoing HTTP requests sent
from the client, BOSH can neatly map XMPP’s bidirectional streams to HTTP seman-
tics. Best of all, it achieves this efficiency without forcing the client to constantly poll
the connection manager. Exactly how efficient BOSH turns out to be depends on the
values of the hold, requests, and wait attributes.

BOSH and Constrained Clients
In constrained clients that cannot maintain two request-response pairs,
the client can ask the connection manager to have only one request-
response pair outstanding at a time. However, this method means that
the connection manager always responds immediately to every request
and that it is the responsibility of the client to check for incoming XMPP
stanzas at regular intervals (by sending empty <body/> elements). As a
result, this message is much less efficient, although still a viable alter-
native to long-lived TCP connections.

Serverless Messaging
XMPP is based on a client-server architecture, which means that you always need a
server if you want to communicate between two people. Thanks to the widespread
deployment of Internet connectivity in many parts of the world, connecting to a server
to communicate via XMPP rarely is a problem. However, in some less fortunate

Serverless Messaging | 189

situations, connecting to an XMPP server can pose a problem. The following are some
examples:

• You might be in a remote location that has no Internet connectivity (say, a rural
school), but you still want to use XMPP to communicate with other people in the
area.

• You might be at an international conference where you want to discuss the topic
of the current talk with the people in the room, but you don’t know their JabberIDs.

• You might have fallen down a rabbit hole, and the authorities there block all out-
bound connections to the Internet!

Indeed, this problem is not limited to XMPP. For example, you might want to find local
devices such as printers without any central coordination. However, the problem is
more acute in XMPP because it is almost always deployed using a client-server archi-
tecture. To solve the more general problem, a team of people at Apple Computer
defined a set of technologies known as “zero-configuration networking.” These tech-
nologies in turn have been applied to real-time communication using XMPP, and this
usage has been standardized by the XSF under the name Serverless Messaging
[XEP-0174].

Picture poor Alice and her friends down the rabbit hole when the queen exclaims, “Off
with their net!” and blocks connections to the broader Internet. How will they com-
municate? It turns out that there’s still a local network in Wonderland, so maybe they
can use that for communication. To do so, Alice needs to discover who is on the local
network and to ensure that the others can find her there.

The basic approach is that each person will multicast special DNS entries to everyone
on the local network; as a result, they will collectively manage a reserved top-level
domain called .local. For the sake of serverless messaging, we are not interested in all
of the services that might exist on the .local domain (printers and the like), but only
in entities that advertise support for the presence service using defined DNS PTR, A,
and SRV records. (For all the details, refer to the Multicast DNS [mDNS] and DNS-
based service discovery [DNS-SD] specifications.)

To find her friends on the local network, Alice would first broadcast a multicast DNS
query for all PTR records that match the _presence._tcp.local. service. Anyone on the
local network can answer this query; down the rabbit hole, this query will result in
answers like the following:

_presence._tcp.local. PTR hatter@mercury._presence._tcp.local.
_presence._tcp.local. PTR rabbit@ivory._presence._tcp.local.

Here, Alice finds two people on the local network: the Mad Hatter (who is the user
hatter on a machine named mercury) and the White Rabbit (who is the user rabbit on
a machine named ivory). Let’s say that she wants to chat with the Mad Hatter. She has
a pointer to his machine, but she needs to find out the hostname and port number of

190 | Chapter 12: Connection Methods and Security

this machine (mercury). So, she broadcasts another mDNS query, requesting the SRV
record of the hatter@mercury presence service. This returns the following information:

hatter@mercury._presence._tcp.local. SRV 5562 mercury.local.

Now Alice knows that the XMPP client for hatter@mercury is listening on port 5562 of
the host mercury.local. The final piece of the puzzle is finding out the actual IP address
of mercury.local. This is done by broadcasting an mDNS query for the A (or, for IPv6,
the AAAA) DNS record of that hostname; the answer is as follows:

mercury.local. A 10.2.1.187

At this point, Alice knows exactly where to connect for starting her XMPP conversation
with the Mad Hatter. All of this DNS magic has simply been a precursor to XMPP
communications! To chat with the Mad Hatter, Alice opens a TCP connection to
10.2.1.187 on port 5562 and starts an XMPP stream:

<stream:stream from="alice@odyssey"
 to="hatter@mercury"
 version="1.0"
 xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">

The Mad Hatter responds by opening an XMPP stream back to Alice at the IP address
and port she has advertised:

<stream:stream from="hatter@mercury"
 to="alice@odyssey"
 version="1.0"
 xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">

After this handshake, Alice can send <message/> and <iq/> stanzas back and forth to
start her conversation, just as she would over a normal XMPP connection. (There is no
TLS encryption or SASL authentication for these serverless streams, although methods
for doing so are in the works to improve the security of ad-hoc meshes.)

<message from="alice@odyssey" to="hatter@mercury">
 <body>I didn't know it was YOUR table; it's laid for a great many more than
 three.</body>
</message>

Besides knowing the machines on the network, Alice would also like to find out more
detailed information about the people (or fictional characters) behind those machines.
This information is also stored in mDNS records, specifically in DNS TXT records that
contain a variety of key-value pairs. For example, a request for the Mad Hatter’s TXT
record might result in the following response:

hatter@mercury._presence._tcp.local. IN TXT "
 txtvers=1
 status=avail
 msg=Having a spot of tea
 1st=Mad
 last=Hatter

Serverless Messaging | 191

 nick=thehatter
 node=http://psi-im.org/caps
 ver=QgayPKawpkPSDYmwT/WM94uAlu0=
 hash=sha-1

This version number is always 1, and the txtvers field must always come first in the
TXT record value.

This is equivalent to the <show/> element from standard XMPP presence, except that
mere available presence is mapped to a TXT show of avail.

This is equivalent to the <status/> element from standard XMPP presence.

This is equivalent to the node attribute from the XMPP Entity Capabilities extension.

This is equivalent to the ver attribute from the XMPP Entity Capabilities extension.

This is equivalent to the hash attribute from the XMPP Entity Capabilities extension.

Besides presence information, Alice also received some basic information about the
Mad Hatter’s identity and the capabilities of his client (as described in Chapter 5).
Whenever the Mad Hatter updates his presence information (by publishing a new
TXT record), it will be broadcast on the network, notifying everybody of the change.

So far, Alice has discovered and connected to other clients on the network. Of course,
she also needs to announce her own XMPP client to the other clients, so that they can
contact her as well. She does this by publishing the same types of mDNS and DNS-SD
records that she used to discover the other clients:

odyssey.local. A 10.2.1.188
_presence._tcp.local. PTR alice@odyssey._presence._tcp.local.
alice@odyssey._presence._tcp.local. SRV 5562 odyssey.local.
alice@odyssey._presence._tcp.local. IN TXT "txtvers=1
 status=avail
 1st=Alice"

Serverless messaging provides yet another way to use the same XMPP “primitives” in
ways that expand the ability to communicate (even when there is no server in the mix).
Future topics in the area of serverless messaging include encryption and authentication
using TLS and SASL, as well as the ability to seamlessly bridge between the serverless
mode and the traditional client-server mode for improved connections between local
meshes and the broader network.

XMPP Security
Everyone says that they like to use secure technologies, but few people rigorously define
security—and even fewer do the hard work necessary to make communication systems
both secure and usable. Security can mean different things to different people, but there
is general agreement among security professionals that the most common threats to
communication systems include the following:

192 | Chapter 12: Connection Methods and Security

• Eavesdropping on communication channels

• Unauthenticated or weakly authenticated users

• Rogue servers

• Address spoofing

• Denial of service attacks

• Viruses, worms, and other malware

• Unwanted communications (“spam”)

• Impersonation attacks (“phishing”)

• Leaks of personal or privileged information

• Inappropriate logging or archiving

• Buffer overflows and other code security issues

Before you deploy an XMPP application, it’s important to understand the track record
of XMPP technologies on these critical issues. The good news is that the attacks we
discuss here are, so far, mostly theoretical. Even the open XMPP network running on
the public Internet since 1999 has experienced very few security issues: no significant
denial of service attacks; very little spam; no known instances of phishing, viruses,
worms, or other malware; no rogue servers; and only a few code security reports related
to particular clients and servers (which were quickly fixed in most cases).

However, the lack of successful attacks is no reason to be complacent. Because infor-
mation security is a bit of an “arms race” between the bad guys and the good guys, the
XMPP community continues to work on ways to prevent these attacks (and others that
might arise in the future). So let’s look at what XMPP technologies have to offer in the
area of security. We can’t discuss every possible threat in this book, but the following
topics should give you a feeling for the approaches taken by both developers and op-
erators in the XMPP community. (If you have a strong interest in security issues, be
sure to join the security@xmpp.org discussion list.)

Encryption
Earlier in this chapter, we discussed the use of Transport Layer Security (TLS) for
channel encryption. This technology is mandatory to implement for XMPP servers and
clients. It is also widely (but not yet universally) deployed by operators of XMPP-based
services. The use of TLS overcomes many concerns about the identity of servers on the
network and makes it straightforward to encrypt traffic on client-to-server and server-
to-server links.

Channel encryption is good, but it leaves a few vulnerable points. Even if you encrypt
your connection to your server, your contact encrypts her connection to her server, and
the link between the two servers is also encrypted, the messages that you exchange with
your friend are still unencrypted inside the servers themselves. This means that the
server admins could be logging all of your messages as they pass through. Not good!

XMPP Security | 193

The solution is called end-to-end encryption, whereby you and your friend negotiate a
method for encrypting your messages so that no one in the middle can read them.

However, end-to-end encryption is a hard problem. The approach taken by the early
open source developers was to use the open flavor of Pretty Good Privacy (PGP), called
OpenPGP. Unfortunately, typical end users don’t have PGP keys. The approach rec-
ommended by various IETF security experts during formalization of XMPP was to use
Secure/Multipurpose Internet Mail Extensions (S/MIME), but this approach has never
taken off in the XMPP community (partly because the resulting technology was not
very “Jabberish” and partly because it required users to have digital certificates, which
are probably even less common than PGP keys). Another interim technology, Encryp-
ted Sessions, is supported in one open source XMPP client, but its security properties
have not been fully validated, and it too is seen as difficult to implement by most de-
velopers. The community is currently working on an adaptation of Transport Layer
Security that can be exchanged between clients over XMPP, but work on it is not com-
plete as of this writing. Visit http://xmpp.org for up-to-date information about end-to-
end encryption.

Authentication and Identity
Perhaps the most basic form of trust on a communications network is knowing that
the sender of a message is who he says he is. If addresses can be faked or users can be
impersonated, trust quickly breaks down and people migrate to a different communi-
cations technology.

XMPP includes a number of methods for ensuring relatively strong identity on the
network. One such method is authentication: a server will not allow users onto the
network unless they first provide proper credentials during the login process. Unless a
user’s password or other credential information is leaked, the authentication require-
ment almost guarantees that the person you added to your contact list yesterday or last
year is the same person today. In addition, XMPP servers do not allow end users to
assert just any “from” address on the stanzas they send; instead, the “from” address is
always stamped by the user’s server, further strengthening trust in the messages you
receive.

Another aspect of identity and authentication relates to domain names. As we discussed
earlier in this chapter, XMPP server instances are also checked in inter-domain com-
munication, either via the server dialback protocol or TLS plus SASL (which provide
weak and strong identity verification, respectively). Servers are also required to verify
incoming stanzas from other domains, so that, say, the wonderland.lit server can’t
masquerade as looking-glass.lit. These rules help to prevent faked addresses on the
network. These relatively strong identities can also be bootstrapped into trust islands
by means of blacklisting and whitelisting other domains, either at the firewall or in
XMPP server software.

194 | Chapter 12: Connection Methods and Security

http://xmpp.org

That said, the use of the full Unicode character set for JabberIDs introduces the pos-
sibility of some impersonation attacks, because characters in different scripts can look
very much alike. A very simple method that can be implemented even in plain ASCII
addresses is to replace the letter “l” with the number “1”, as in paypa1.com (which has
been known to fool end users). When an address can include different characters that
are effectively indistinguishable—such as “a” (Latin Small Letter A) and “а” (Cyrillic
Small Letter A)— the potential for abuse is significant. For this reason, XMPP clients
are encouraged to handle mixed-character addresses carefully.

Spam and Abuse
Every communication system can be a breeding ground for unsolicited bulk messages
(“spam”) and other forms of abuse. It is currently estimated that 90% or more of the
email messages sent over the Internet are spam. What has the XMPP community done
to prevent spam from taking over its network?

On the face of it, the fact that XMPP is a distributed technology (just like email) and
not a centralized service (like most legacy instant messaging systems) might make you
think that the XMPP network would be open to the same kinds of spam threats as the
email network. However, there are some important differences:

• Most people assume that you must be able to send an email to any random person
on the Internet. Techniques that require you to be authorized before you can send
someone an email message are viewed with suspicion. Yet the very same system
exists in IM—we call it a roster—without offending anyone. In XMPP, we can
leverage presence subscriptions to block messages from anyone who is not in your
roster, cutting down on spam quite a bit.

• Spam is not just an annoyance: it’s a business. If it is more expensive for spammers
to operate on the XMPP network than on, say, the email network, they will tend
to stay on the email network. XMPP developers and operators continue to raise
the bar for participation; for example, they might require digital certificates from
trusted CA’s at some point in the next few years, and those certificates could be
easily revoked from domains that behave badly on the network.

• Spammers send a lot of messages. However, all XMPP server daemons include
built-in rate limiting, which prevents users from sending a large volume of messages
in a short period of time. True, a spammer could get around this restriction by
creating a large number of accounts on a particular server, but servers could restrict
registration by requiring CAPTCHAs or other techniques for account registration
(as described in Chapter 6) and by limiting the number of registration attempts per
IP address. Yet XMPP is a distributed technology, so spammers could create ac-
counts on multiple servers, thus forcing administrators of legitimate XMPP servers
to work together on blocking techniques (e.g., maintaining a repository of black-
listed domains or IP addresses). And so the arms race continues. For some related

XMPP Security | 195

recommendations for server administrators, see Best Practices to Discourage Denial
of Service Attacks [XEP-0205].

Summary
Whereas in previous chapters, we explored higher-level XMPP extensions, in this
chapter, we delved into the fundamentals: XML streams, TCP and HTTP connection
methods, channel encryption via Transport Layer Security (TLS), the authentication
framework provided through the Simple Authentication and Security Layer (SASL),
dynamic federation of XMPP servers using the Server Dialback protocol, serverless
messaging, and key considerations related to the security of XMPP systems. Depending
on the type of application you want to build, you may not need to worry about these
lower layers of the XMPP stack. However, it is good to know that you have flexibility
here, too.

196 | Chapter 12: Connection Methods and Security

PART III

Putting It All Together

CHAPTER 13

Design Decisions

Now that you’ve become familiar with the various tools in the XMPP toolkit, let’s start
to think about how you can use those tools to build an XMPP application (or XMPP-
enable an existing application). In this chapter, we explore some of the thought
processes underlying successful application development with XMPP. Then in Chap-
ter 14, we illustrate these principles by building an application from the ground up.

Is XMPP the Right Choice?
Like any technology, XMPP has strengths and weaknesses. As legendary Internet pro-
tocol designer Marshall Rose once put it, you can build a good helicopter or you can
build a good submarine, but you can’t build something that is both a good helicopter
and a good submarine. Trying to use the same tool to solve every problem usually ends
in disaster.

As we mentioned before, XMPP was designed to transmit numerous small snippets of
XML data over a decentralized network in close to real time, with built-in presence and
straightforward federation. This means that XMPP is not a panacea for all Internet
usages and, thankfully, the Internet already has time-tested technologies you can use
instead for other tasks: HTTP/HTML, BitTorrent, Real-time Transport Protocol,
SMTP/POP/IMAP, Usenet, etc.

So when is XMPP a good choice? Here are some guidelines:

• When you need information about network availability, i.e., presence

• When you need to deliver “just-in-time” alerts and notifications instead of con-
tinually polling for updates

• When you need channel encryption, strong authentication, and trusted identities

• When you need communication among a distributed network of entities or servers

• When you need a relatively simple signaling channel to set up multimedia
interactions

199

• When you need the extensibility of XML for custom payloads

• When you want to tap into the large user base on the XMPP network

These considerations have led many cutting-edge software developers to incorporate
XMPP into their applications. As of this writing, XMPP technologies seem to be espe-
cially popular in the following domains:

Social networking
The main attraction here is that XMPP overcomes the serious scaling problems
associated with constantly polling for updated information. As we discussed in
Chapter 8, it’s much more efficient to treat microblogging, location sharing, and
social music services as forms of on-demand micromessaging than as dynamic
websites that must be continually polled for updates.

Cloud computing and machine-to-machine communication
In the emerging “Internet of Things,” it makes a lot of sense to use real-time mes-
saging to coordinate activities between a distributed network of entities, especially
because presence information and service discovery can reveal which entities are
both available on the network and capable of handling particular tasks.

Voice, video, and other multimedia sessions
XMPP is not optimized for transferring bandwidth-heavy data such as voice and
video, but it is nearly ideal for managing such transfers. Existing session manage-
ment technologies do not natively incorporate three key features of XMPP: pres-
ence information, trusted identities, and straightforward federation between
domains. Presence enables the same kind of fluid communication that is familiar
from instant messaging (no more voicemail!), trusted identities significantly reduce
the possibility of spam, and federation makes it possible to finally connect a large
number of separate silos and thus increase the power of the Internet’s real-time
communications network.

How do you implement these and other application types? Usually you won’t build
your entire application from scratch; instead, you’ll mix and match existing code with
your own custom code. That means you will install, download, embed, or otherwise
employ one or more of the servers, libraries, clients, and other codebases released by
various participants in the XMPP developer community. Then you’ll build on that
foundation to add your own special features. For example, you might write a client
plug-in, a bot, a server module, or an external component that will integrate with the
infrastructure you’ve installed. If you get really serious, you might even write your own
custom client or server, although that’s a bigger task. In any case, no matter how you
proceed, you’ll need to know how the XMPP developer community works, and how
to work with that community, so let’s delve into that topic next.

200 | Chapter 13: Design Decisions

How the XMPP Community Works
In order to build XMPP applications, it helps to understand how the XMPP developer
community is structured so that you can get the most out of community-generated
software, build your own software, and define XMPP extensions.

Perhaps the most important lesson to learn about the XMPP developer community is
that it is extremely diverse, and it has become more and more diverse over the years.

In the beginning, there was one Jabber project: the open source jabberd server created
by Jeremie Miller. Immediately, other open source developers contributed to Jeremie’s
server project, but they also wrote clients for Windows and Mac and Linux that would
connect to jabberd, server modules (generically called components) that would work
with jabberd, and code libraries for Perl and Java and many other languages that would
enable other people to create additional code projects. So, right from the start, the
community was focused not on a single codebase (as with, say, the Apache web server),
but on a technology ecosystem.

Since 1999, that ecosystem has continued to grow and change. Developers have come
and gone, early projects disappeared, new projects emerged to take their place, com-
mercial companies and service providers built their own implementations, additional
open source server projects came into being, and deployment of all this software became
almost commonplace on the Internet. As a result, the XMPP community contains many
participants:

• Open source projects and individual developers

• Small consultancies that support particular codebases or offer XMPP expertise in
certain domains (e.g., for mobile devices)

• Midsize software development shops

• Large hardware and software companies such as Apple, Cisco, Nokia, and Sun

• Service providers such as Google, LiveJournal, DreamHost, and GMX

• Businesses, universities, and other operators of XMPP services

• The XMPP Standards Foundation (XSF), which loosely coordinates all of this ac-
tivity but primarily focuses on standardization of the XMPP protocols

Just as XMPP itself is a decentralized technology, so too is the community decentralized.
There is no one central location where all of these projects, companies, and other parties
host their code, manage their projects, help their users, or share operational experience.
Instead, each project has its own website, code repository, and communication
channels.

Paradoxically, this decentralized approach has not prevented the community from re-
maining relatively coherent in its priorities and direction. Given its focus on rough
consensus and running code, the various entities in the XMPP community have two
primary connection points: the standardization of the XMPP protocols, and the

How the XMPP Community Works | 201

day-to-day operation of the XMPP communications network. If a new server joins the
network but it doesn’t quite interoperate with existing software and services, you can
be sure that the developers of that server will quickly receive bug reports from interested
coders in the community. Likewise, the busiest discussion venue run by the XSF is the
standards@xmpp.org mailing list, where hundreds of developers define new protocol
extensions and work to clarify the subtleties of older protocols. (The XSF also runs
specialized discussion lists and chat rooms for PubSub, Jingle, BOSH, MUC, social
networking, mobile applications, operational challenges, and other such topics; con-
sult http://xmpp.org for a full list.)

The fact that the XMPP community is so decentralized can be a bit disorienting at first.
For example, you may need to hunt around for a while to find a codebase that meets
your needs or a software developer who can solve your problem. On the other hand,
this decentralization means that it is quite easy to contribute new code, create new
projects, and join the developer community (it also means that problems in one XMPP-
related project don’t infect all the others, leading to an almost Darwinian survival of
the fittest over time).

In the following sections, we talk about how to make use of the many existing software
codebases, design and implement new code, and define new XMPP extensions if
needed.

Writing XMPP Software
Whether you want to extend an existing application or service to use XMPP, or you
want to build an XMPP-based application from the ground up, your adventure will
always begin with finding the right ingredients to make your XMPP recipe. You will be
able to use some of these ingredients directly off-the-shelf, others will require making
some extensions or modifications, and some other parts will have to be created from
scratch, either with or without the use of commonly available libraries and SDKs. In
this section, we delve deeper into the various aspects involved in building your own
XMPP application.

Mixing, Matching, and Extending Existing XMPP Software
In order to build an XMPP application, you will need a few moving parts. Some of these
you will be able to use as-is, and others may require tailoring to meet your needs.
However, most XMPP applications consist of the following parts:

An XMPP server
Many open source and commercial XMPP server codebases exist, of which a few
are described briefly in “Servers” on page 253. If you want to deploy a serious
XMPP application, you’ll need to install one of these codebases and run it at your
own domain. (The alternative is to run a lightweight bot at one of the public XMPP
services, such as Google Talk or jabber.org, but if you do so, you run the risk of

202 | Chapter 13: Design Decisions

http://xmpp.org

being rate-limited or otherwise restricted by the policies in force at that service.)
Existing server projects can typically be extended with extra, custom functionality
through server-side modules or add-on components (we talk about these a bit more
later in this chapter). Although not very common, it could even happen that your
requirements cannot be met by using components or server-side modules. In that
case, you may choose to modify the server software (if the license allows it), or even
developer your own server implementation. Examples of organizations that chose
to build their own XMPP servers are LiveJournal (which released its software as
the djabberd codebase) and the Google Talk service.

An XMPP client
Some XMPP-based applications are built around a particular XMPP client. The
association between a client and a service can take the form of an existing IM client
that has been extended to suit your needs using plug-ins or adaptations to the
original codebase. However, it is not uncommon that your application will require
a dedicated, new client for what you want to achieve. For example, when building
a networked chess game application, you will not start from an IM client; instead,
you will create your own application and add XMPP client functionality to it. In
that case, you will need to write your own client, possibly making use of one of the
many available XMPP client libraries.

Integration with existing infrastructure
In some cases, your application will not be a strict client-server application. Rather,
you will integrate with existing infrastructure, such as a database, a content man-
agement system, or a distributed computing platform. In this case, XMPP tech-
nologies will form the “communications glue” among various entities within your
infrastructure, and you may not even need a single server (e.g., each entity could
run its own lightweight mini-server and then federate with the other entities).

Because of the decentralized nature of XMPP technologies and the modular approach
taken by many XMPP developers, you can mix and match implementations of all your
parts. For example, you might use one of the open source XMPP servers, but write your
own custom XMPP client. In the next section, we explore what is needed to develop
your own XMPP software.

Client Extension, Bot, Component, or Server Module?
When it comes to writing your own XMPP software, there are several approaches that
may fit your needs. Often, there is more than one way to reach your goal, so which is
best? This section addresses some of the design trade-offs you may face.

A first question that may arise is: Should I put most of my extensions on the server, or
should I put the code in the client? The Jabber philosophy has always been to take as
much burden as possible from the client and put it in the server. This approach has a
number of advantages:

Writing XMPP Software | 203

• By keeping the clients as simple as possible, you are making it very easy for another
client to be extended or even make use of your application, as the changes that
need to be done on the client side are minimal.

• The server often has easy access to information that is hard to retrieve from the
client. Moreover, it is a lot easier, safer, and more robust to adapt server-side in-
formation from the server software, which has direct access to the data.

Because of this philosophy, XMPP server implementations tend to be architected in a
more modular fashion than XMPP clients. You will find that you can much more easily
extend XMPP servers using components and plug-ins than you can extend most existing
XMPP clients.

When moving the functionality out of the client, you are still left with several options
to provide your services from the server side. The easiest way to provide services over
XMPP is to create a bot. A bot is a program that logs into a server like a normal client,
with a regular JabberID. Other clients typically add this bot to their roster, and a user
can then send it messages, to which the bot responds. Such a bot can also react to the
presence changes of the people in its roster. For example, there might be a bot called
mapbot@wonderland.lit that subscribes to all PEP geolocation changes (see Chapter 8)
of all clients in its roster. Whenever it receives geolocation information about one of
its contacts, it draws a marker on a map, served on some web page. Thanks to the
availability of XMPP libraries for a variety of high-level languages, creating a bot can
be a very easy way to do interesting things with XMPP in very little time (and code).
The fact that bots can connect to any deployed XMPP server makes them very flexible,
and allows virtually anyone to run a bot without having to set up a server themselves.

Although bots can yield some interesting XMPP applications, sometimes their capa-
bilities can be restricting because they are bound to one specific JID on a server. This
is where components come into play. As discussed in Chapter 12, when a component
connects to a server, it is assigned a subdomain of the server. Every stanza that is des-
tined for that subdomain is then delivered to the component, which can act upon it.
For example, in Chapter 7, we talked about multiuser chat components getting assigned
a subdomain (e.g., conference.wonderland.lit); when there is an incoming message
for trial@conference.wonderland.lit, the server directly routes it to the MUC compo-
nent without looking at the node part (in this case, trial) of the JID. The MUC com-
ponent treats the node part of the JID as a room name, and posts the message to the
trial room.

Because the server leaves all internal processing of the subdomain to the component,
it also does not keep track of any roster for a component. Since it routes all stanzas to
the component directly, including presence stanzas, it is the component’s responsibility
to maintain a roster based on incoming presence subscription stanzas (if it chooses to).
This technique increases the complexity of your implementation, but it also increases
the scalability of your implementation because you are no longer limited by a particular
server codebase (which typically is architected to handle thousands of concurrent

204 | Chapter 13: Design Decisions

sessions for entities with relatively small rosters, not one session for an entity with an
extremely large roster). Some applications that started out with a bot approach have
found it necessary to switch to a server component approach when their bot became
very popular.

The extra control of a component comes with a price, though. In order for a component
to connect to a server, the server needs to be specially configured to allow this compo-
nent to connect as the handler for a specific subdomain of the server. Because a
component needs explicit permissions from the server, not everyone can just run a
component on every server. This makes components less flexible than bots. However,
because components use a standardized protocol to connect to a server, as we discussed
in Chapter 12, one component can be used in combination with many different XMPP
server codebases, thus reducing the risk of being “locked in” to a particular server
project or product.

Although server components give you more control than bots, at the far end of the
scale, there are applications for which they also can be too limiting for your application.
For example, your application may need direct access to server internals (such as direct
access to the rosters from all users), or you may be dealing with performance-critical
applications where a network connection between the server and your component
would become a bottleneck. In this case, your application will need to directly tap into
the server implementation. The most common approach if you need this much control
is to write a server module that is loaded into the server and that gives you direct access
to the information you need. However, having full control over the server means that
your application will be tied to a particular server implementation. This means that
you will have much less flexibility in changing servers later, and that the possibilities
for reuse will be significantly reduced.

Rolling Your Own Client or Server
In some cases, extending an existing software codebase might not be enough for your
needs. For example, existing clients that could otherwise help solve your problem might
be focused on one use of XMPP (for example, instant messaging), whereas your appli-
cation targets a completely different use case. In this case, you will need to design your
own client, tailored to your needs. Aside from purely functional reasons, other con-
siderations may apply, such as license costs.

If you want to build your own software, you are still left with the choice to build it on
top of one of the many existing XMPP libraries (see “Libraries” on page 258) or to
build your solution from the ground up.

Building your own XMPP client or server from scratch requires a considerable amount
of low-level functionality. In many cases, this functionality is supported by external
libraries, or in some cases provided by the standard library of the programming lan-
guage you are targeting. If you are considering building your own solution, you should
look for the following low-level functionality:

Writing XMPP Software | 205

XML parsing
Because XMPP is an XML-based protocol, an XMPP client or server will obviously
need to do some XML parsing. Since XMPP uses a strict subset of the full XML
specification, some of the complexity involved in parsing XML can be avoided.
Many off-the-shelf XML libraries exist, and many languages even come with XMPP
support in their built-in libraries. The most important part to keep in mind is that
the XML parser needs to be incremental, and needs to be able to handle incomplete
data. An XMPP stream becomes a full XML document only after the XMPP session
is over, and the actual XML elements (i.e., the XMPP stanzas) can be delivered in
chunks due to network constraints. This functionality is typically available in most
stream-based XML parsers (e.g., SAX).

DNS SRV lookups
Many libraries provide an easy interface for doing lookups of host addresses by
domain name. However, in order to make deployment as flexible as possible,
XMPP allows server administrators to host an XMPP service for a certain domain
on a different host than the main domain host. Chapter 12 describes how both
clients and servers use DNS SRV lookups to find out the hosts serving XMPP for
a specific domain. This advanced DNS query functionality is often omitted in DNS
libraries (although it is becoming more common all the time).

Secure TLS connections
Although secure connections often are not very crucial in many protocols, they
play a very important role in the XMPP world. At the time of this writing, some
key XMPP deployments have explicitly disabled support for nonsecured connec-
tions, and we expect many (if not all) services to follow suit at some point. As a
result, supporting secure connections using Transport Layer Security (as described
in Chapter 12) is practically a hard requirement when building an XMPP
application.

Support for channel encryption can be implemented using external dedicated li-
braries such as OpenSSL and GnuTLS, or by using higher-level toolkit libraries.
Many higher-level languages even provide support for TLS (or, equivalently, SSL)
in their standard networking libraries. However, keep in mind that many of the
higher-level libraries only provide TLS in the form of “secure sockets,” i.e., sockets
that securely connect to a target host using channel encryption at a specified port
(e.g., 443 for HTTPS). By contrast, XMPP starts with an unencrypted connection,
and then dynamically upgrades that connection to an encrypted connection using
the “STARTTLS” feature of Transport Layer Security. If your library supports only
sockets that are encrypted from the initial connection, you may need to write your
own TLS support.

SASL authentication
As discussed in Chapter 12, XMPP uses the Simple Authentication and Security
Layer (SASL) framework for standards-based authentication between clients and
servers. By implementing only the most basic SASL authentication mechanisms

206 | Chapter 13: Design Decisions

(e.g., PLAIN and DIGEST-MD5) in your software, you can support authentication
for any XMPP-compliant entity. These basic mechanisms are simple enough that
they can be implemented without the need for external libraries. However, for more
advanced authentication mechanisms (such as Kerberos using the GSSAPI mech-
anism), it is probably more convenient to use dedicated SASL libraries (such as
Cyrus SASL or GNU SASL).

Internationalization
In order to support non-ASCII characters, the XMPP protocol requires UTF-8 en-
coding for XMPP streams (see [RFC 3629]). As a result, typically there is no need
for special text handling or conversions within an XMPP application. The only part
that might be affected is the user interface, which obviously needs to be able to
handle international character input and output, as well as encode it accordingly.

Besides the actual XMPP stream, international characters can also appear in Jab-
berIDs. Since JIDs are used to address entities on the XMPP network, they need
special treatment with respect to international characters. More specifically, they
need to be normalized according to a set of well-defined string preparation rules
called “stringprep,” as defined in [RFC 3454]. These rules handle, amongst other
things, case-folding (which is the Unicode equivalent of case-insensitivity for ASCII
characters), as well as transforming the domain part of the JID into standard re-
solvable domains. This is typically done using the GNU Internationalized Domain
Names (IDN) Library.

Extending XMPP
XMPP was designed to be extended—after all, the “X” in both XMPP and XML stands
for “extensible”! Over the years, the XMPP developer community has built a long
“runway” of XMPP extensions, making it possible for you to create lots of interesting
applications with XMPP. Usually you can just mix and match existing extensions to
build the functionality you need. However, sometimes the feature you need in your
application is not yet defined in any of the existing extensions. In this section, we delve
into XMPP extensibility by showing you how to define your own custom XMPP ex-
tensions, and even publish them as freely available specifications for use by the entire
community.

How to Design Custom Extensions
Extensibility is really quite easy: just create your own XML data structure and associ-
ated namespace, and then place it into an XMPP message, presence, or IQ stanza.

For example, let’s say that you have built an online reading club and you want to
exchange information about books so that users of your service can do things like share
recommendations. Scanning the existing XMPP extensions, you don’t find anything

Extending XMPP | 207

that meets your needs, so you decide to define a new XML format that looks something
like this:

<message>
 <bookinfo xmlns="http://example.com/schemas/bookinfo">
 <title>XMPP: The Definitive Guide</title>
 <subtitle>Building Real-Time Applications with Jabber Technologies</subtitle>
 <isbn>9780596521264</isbn>
 <note>One of my favorite books!</note>
 </bookinfo>
</message>

A custom format like this is very much preferable to overloading of existing XMPP data
structures, such as in the negative example shown here:

<message>
 <body>One of my favorite books!</body>
 <subject>XMPP: The Definitive Guide;
 Building Real-Time Applications with Jabber Technologies</subject>
 <thread>9780596521264</thread>
</message>

The contrast between these two examples illustrates one of the key principles of pro-
tocol design in the Jabber community: the core XMPP specifications are sacred. Any
feature you might need can probably be defined farther up the XMPP protocol stack
than in the core streaming, messaging, and presence layer (and if you think that you
need to modify the core layer, think again). Instead, focus higher up the stack by de-
fining new namespaces that can be included in message or IQ stanzas (and, rarely,
presence stanzas).

Another key principle is to keep presence as small and focused as possible. It’s easy to
think that presence is a good model for sending notifications each time someone’s
music player loads a new tune, including complete information about the title, per-
former, running time, track number, lyrics, or even associated artwork. If the listener
has 100 online friends in his roster, though, your application will result in 100 large
presence notifications every 3 or 4 minutes, which is not very network-friendly. In fact,
presence is the primary bottleneck in any messaging and presence technology, being
responsible for as much as 90% of the traffic, so it’s important to use presence only for
information that determines whether someone is online and available for
communication.

A third key principle is to keep XMPP clients as simple as possible (without putting
undue strain on XMPP servers). This is often a delicate balancing act. Sometimes clients
really do know best (e.g., about user preferences or local network conditions), and
therefore need to include more complexity. Usually it is inefficient to ask servers to
complete too many tasks related to a given stanza or to perform deep packet inspection
in order to route a message. Clients cannot be trusted to properly enforce security
policies, and therefore the server must take charge in such matters. And so on.

208 | Chapter 13: Design Decisions

Finally, it is important to reuse existing protocols where possible. Just as you would
not write your own TCP or TLS implementation to create an XMPP client (if at all
possible), it doesn’t make sense to define a new transport binding for XMPP or rip out
lower layers of the XMPP protocol stack when creating a new XMPP application. Sim-
ilarly, try to embed existing data formats into XMPP rather than defining new formats.
In this sense, the “bookinfo” example we just showed you is wrongheaded because it
could have easily reused data formats from the Dublin Core Initiative or DocBook
instead of defining a new XML namespace.

For more detailed recommendations about protocol design, consult the Protocol Design
Guidelines [XEP-0134], informally known as “The Tao of XMPP.”

Standardizing New Extensions
So you’ve created a custom XMPP extension, and it’s really useful in your application.
In fact, it’s so useful that you think other developers might want to add support for it,
too. How can you advertise it to the world and receive feedback on it so that it gets
even better?

Naturally, you could just post it on your project or company website, but that won’t
necessarily result in feedback from other developers. The solution is to publish your
protocol to a centralized location where everyone who cares about XMPP technologies
can read, review, and comment on your extension: the http://xmpp.org website, run by
the XSF.

The XSF was founded in the summer of 2001 to document the core Jabber protocols
and to define new extensions to those protocols. It does this through a developer-
friendly standards process focused on a series of documents called XMPP Extension
Protocols, or XEPs. The basic idea is simple (for all the details, refer to [XEP-0001]):

1. Anyone can submit a proposal for an XMPP extension by sending an email to
editor@xmpp.org (see [XEP-0143] for further instructions).

2. The XMPP Council, elected by the members of the XSF, determines whether to
publish a given proposal as an official XEP.

3. When an XEP is first published, it has a status of Experimental.

4. After the XEP has been discussed, improved, and hopefully implemented, it can
advance to a status of Draft.

5. Eventually, after the XEP has been implemented, deployed, and improved even
further, it can advance to a status of Final.

XEPs are discussed mainly on the standards@xmpp.org list, a high-traffic mailing list
that is the primary venue for XMPP developers to clarify existing protocols and define
new ones. If you are interested in XMPP technologies, this “standards list” is the place
to be.

Extending XMPP | 209

http://xmpp.org

Unlike for-pay industry consortia, the XSF does not require monetary contributions in
order to participate in its standards process. Furthermore, the XSF’s “intellectual prop-
erty rights” policy ensures that XMPP extensions are patent-free and that anyone can
implement XMPP technologies under any license they care to use for their software.
These policies maintain the legacy of XMPP’s roots in the open source Jabber
community.

What does public standardization give you that just defining a private extension does
not? Aside from the fame of authoring an official XEP and the warm glow of having
contributed something back to the community, working through the XSF’s standards
process usually results in a stronger technology, because many smart people will review
your proposal, suggest improvements, point out potential security concerns, and im-
plement it more widely (leading to better interoperability and therefore a more powerful
network effect).

Even so, it doesn’t always make sense to standardize your custom XMPP extensions.
Perhaps they define “one-off” features that are not of general interest. Perhaps they are
part of the “special sauce” in your product and you don’t want the world to find out
about your trade secrets. Perhaps you simply don’t have the time to document how
your extension works in the rigorous way that’s usually required of protocol specifi-
cations (although the friendly folks at the XSF are always happy to help with the writing
of specifications). However, many organizations and projects that define custom ex-
tensions have found it quite beneficial to submit their extensions to the XSF for more
formal standardization (including big companies like Apple and Google), and you
might too.

Summary
In this chapter, we covered many of the high-level issues you may face when you set
out to build an XMPP application, including how to work with the XMPP developer
community, how to use existing code developed by that community, how to write your
own XMPP-based software, and how to define protocol extensions to XMPP. Now let’s
apply those insights by building an XMPP application from the ground up.

210 | Chapter 13: Design Decisions

CHAPTER 14

Building an XMPP Application

In this chapter, we start with an existing application and look at different ways of XMPP-
enabling it with techniques you’ve learned earlier in the book.

The CheshiR Microblogging Platform
Meet “CheshiR,” our very own “microblogging” service. From the CheshiR website,
you can post short pieces of text about what you are currently doing, reading, or think-
ing. Other people can then subscribe to (or “follow”) your postings, which means that
they will receive a notification any time you post a new update. Figure 14-1 shows the
home page of a CheshiR user with three contacts.

The CheshiR service is implemented in Python, using a very simple design. On one
side, there is the HTTP frontend, which serves the web pages of the service. Whenever
a user posts a message, it is sent to the CheshiR backend, which stores all the messages
and subscriptions in a database. To display the homepage of a user, the frontend asks
the backend for all messages sent by that user’s contacts.

To extend the reach of our service and improve the experience of our users, we are
going to investigate different ways of integrating XMPP into our platform. Because we
like the principles of agile software development, we’ll take an iterative approach, with
focused code sprints to add a few well-defined features during each sprint.

First Sprint: The CheshiR XMPP IM Bot

Analysis
Having a web interface to post messages on CheshiR is convenient for our users, be-
cause it avoids the need to install a special application to read or post messages to their
microblog. However, the downside of a web interface is that our users constantly need
to switch to their web browser and hit the “Reload” button to find out whether new
messages have arrived. Not only is such a polling system inconvenient for the user, but

211

it also puts a high load on the service itself (see Chapter 8). Each time a user reloads
the web page to see if new messages are waiting, the HTTP frontend of our service
needs to query the backend database to render the “messages page” for that user. Since
this page doesn’t change that often (at best, a few new messages have arrived, which
still leaves the rest of the page unchanged), this means a lot of data is needlessly re-
quested over and over again. Moreover, this approach won’t scale over the long term:
the more users our service attracts, the more requests for new messages our service will
need to process. We’re already starting to worry that our web server will eventually
succumb to the high load of requests, so we do some research about technologies that
might help us send a notification whenever a user posts to her microblog.

Design
Our research indicates that a technology called XMPP might help to solve the user’s
inconvenience and the server’s scalability problem. We decide that a simple XMPP
“frontend” might enable our users to interact with their microblogs from within the
comfort of their IM clients (or specialized microblogging clients). What’s more, the
service will automatically push new messages to the connected XMPP clients. Whenever

Figure 14-1. Posting and receiving microblogs via the CheshiR web interface

212 | Chapter 14: Building an XMPP Application

a notification arrives at the IM client, the user will be notified of the new message,
removing the need for the user to regularly poll for new messages. And with users no
longer constantly polling for new messages, the heavy load of handling the page re-
quests in the HTTP frontend will also be lifted.

Our small team of developers gathers around the whiteboard to sketch out the archi-
tecture shown in Figure 14-2. Whereas the web-based approach always sends requests
from the browser to the HTTP frontend through to the backend, the XMPP approach
also has events going in the other direction. Besides being able to interact with the web
service from a standard IM client, XMPP also provides a standard interface for com-
municating with dedicated, custom CheshiR applications, tailored specifically toward
microblogging.

Figure 14-2. The architecture of the CheshiR service: web browsers query the HTTP frontend, which
in turn queries the backend; IM and custom clients post messages to the backend through the XMPP
interface, while the backend notifies the XMPP clients of incoming messages when they arrive

For our first sprint we decide to design the CheshiR frontend as a simple bot (similar
to the basic “echo” XMPP service discussed in Chapter 2). Users can add the bot as a
contact to their existing rosters, and interact with it the same way they interact with
regular contacts. Whenever a user sends a message to the bot, the message is forwarded
to the microblog of the user in question. Conversely, if someone that the user is fol-
lowing posts a message, the bot sends this message to the user’s IM client. Besides
allowing our users to post to the microblog by sending a message to the bot, we also
want the bot to automatically post all the <status/> text that users post in their presence
updates (e.g., “in a meeting” or “stepped out for lunch”). This gives users of our XMPP

First Sprint: The CheshiR XMPP IM Bot | 213

service the extra convenience of sharing their status on their microblog and on their IM
network with only one operation.

We quickly sketch out what the user’s interaction will look like—pretty much standard
IM conversations, as shown in Figure 14-3.

Figure 14-3. Posting and receiving microblogs via the CheshiR IM bot

Coding
Now that we have the basic design set, we do a bit of research into off-the-shelf XMPP
libraries. Because we find that the Python language is great for fast prototyping as well
as high-scale application development (as mentioned, our backend is written in Py-
thon), we check out several of the available Python libraries. After looking at APIs and
developer support, we select SleekXMPP (the same library used for the echo bot in
Chapter 2).

214 | Chapter 14: Building an XMPP Application

Once we settle on the library to use, getting the bot implemented is rather
straightforward. The basic code for our implementation is encapsulated in a Bot class,
as you can see in Example 14-1.

Example 14-1. CheshiR IM bot implementation

class Bot :
 def __init__(self, jid, password, backend, url) :
 self.url = url
 self.xmpp = sleekxmpp.ClientXMPP(jid, password)
 self.xmpp.add_event_handler("session_start", self.handleXMPPConnected)
 for event in ["message", "got_online", "got_offline", "changed_status"] :
 self.xmpp.add_event_handler(event, self.handleIncomingXMPPEvent)
 self.backend = backend
 self.backend.addMessageHandler(self.handleMessageAddedToBackend)

 def handleXMPPConnected(self, event):
 self.xmpp.sendPresence()

 def handleIncomingXMPPEvent(self, event) :
 message = event["message"]
 user = self.backend.getUserFromJID(event["jid"])
 self.backend.addMessageFromUser(message, user)

 def handleMessageAddedToBackend(self, message) :
 body = message.user + ": " + message.text
 htmlBody = "%(user)s: %(message)s" % {
 "uri": self.url + "/" + message.user,
 "user" : message.user, "message" : message.text }
 for subscriberJID in self.backend.getSubscriberJIDs(message.user) :
 self.xmpp.sendMessage(subscriberJID, body, mhtml=htmlBody)

 def start(self) :
 self.xmpp.connect()
 self.xmpp.process()

The functions are as follows:

• In the constructor of Bot, add_event_handler is called to register the bot to handle
several XMPP events: incoming XMPP messages, users changing their XMPP pres-
ence, and the start of the XMPP session (right after the authentication process has
finished).

• addMessageHandler registers our bot to be notified of messages added to the back-
end. These messages could have been added through the web interface or the XMPP
interface.

• In the handleXMPPConnected function, the bot will send initial presence whenever it
logs in (e.g., after being disconnected if the server goes down); this will make the
bot pop up in the roster of all our subscribers.

First Sprint: The CheshiR XMPP IM Bot | 215

• In the handleIncomingXMPPEvent function, any incoming XMPP message will be
mapped to a user of the blog platform, and the new message will be submitted to
the backend for storage.

• In the handleMessageAddedToBackend function, the bot will generate an outbound
XMPP message to all of the user’s followers. This message contains two main child
elements: the plain text of the notification is included in the XMPP <body/> child
of the message stanza, and a formatted version of the notification is included using
XHTML-IM. The formatted version includes auto-generated links to the CheshiR
homepage of the person who posted the message.

To add the bot to CheshiR, we simply instantiate it at the start of our application, as
shown in Example 14-2. The bot needs an XMPP account at a server, which it logs into
on startup. CheshiR users can then add this bot as a contact in their contact list, and
send messages to it.

Example 14-2. Instantiating the CheshiR IM bot upon application start

def main() :
 backend = SimpleBackend()
 bot = Bot("bot@cheshir.lit", "mypass", backend, "http://cheshir.lit")
 bot.start()
 httpFrontend = HTTPFrontend(8080, backend)
 httpFrontend.start()

With less than 30 lines of code, we were able to create a simple, generic interface to
our microblogging platform!

Second Sprint: Configuring the CheshiR XMPP IM Bot

Analysis
We now have a bot that monitors both incoming messages and users’ status changes,
and then posts these to the CheshiR service. After a few weeks, some users complain
that their feeds get filled with “Auto Status (idle)” messages, just because their IM client
automatically changes the status message after long periods of inactivity. A bit of
brainstorming in the developer room leads us to think that could let users disable the
automatic posting of presence changes to their microblog. Either way, account con-
figuration methods are in order, so we head back to the whiteboard for a design session.

Design
We envision several possibilities:

• Enable users to configure their accounts via the website.

216 | Chapter 14: Building an XMPP Application

• Force users to send a magic message to the CheshiR bot, such as disable_sta
tus_monitoring.

• Use a native XMPP configuration method, such as ad-hoc commands (see Chap-
ter 11).

Because we’re really starting to get into this XMPP stuff, we decide to experiment with
the ad-hoc commands approach.

Coding
Fortunately, the library we’re using makes it easy to add support for ad-hoc commands.
With only a few more lines of code, we’re able to provide an interface to the users’
settings. There are five notable changes:

• In the constructor, registerPlugin is called to load support for the three XEPs we
need: Data Forms [XEP-0004], Service Discovery [XEP-0030], and Ad-Hoc Com-
mands [XEP-0050].

• Also in the constructor, there are now separate handlers for incoming messages
and incoming presence changes, namely handleIncomingXMPPEvent and
handleIncomingXMPPPresence, respectively.

• The last change to the constructor is that a form is created with the Data Forms
plug-in and then registered with the Ad-Hoc Commands plug-in, to allow the users
to query the command and run it.

• In the new presence change handler handleIncomingXMPPPresence, the bot now calls
the backend implementation to check whether a user’s presence should be moni-
tored for changes before it creates a new post from it.

• The last change is the new handler for the configuration command,
handleConfigurationCommand, which reads the new value out of the submitted form
and updates the configuration in the backend.

These changes are highlighted in Example 14-3.

Example 14-3. Configurable CheshiR IM bot implementation, with the differences from the basic IM
bot shown in Example 14-1

class ConfigurableBot :
 def __init__(self, jid, password, backend, url) :
 self.url = url
 self.xmpp = sleekxmpp.ClientXMPP(jid, password)
 for plugin in ["xep_0004", "xep_0030", "xep_0050"] :
 self.xmpp.registerPlugin(plugin)
 self.xmpp.add_event_handler("session_start", self.handleXMPPConnected)
 self.xmpp.add_event_handler("message", self.handleIncomingXMPPEvent)
 for event in ["got_online", "got_offline", "changed_status"] :
 self.xmpp.add_event_handler(event, self.handleIncomingXMPPPresence)
 self.backend = backend
 self.backend.addMessageHandler(self.handleMessageAddedToBackend)

Second Sprint: Configuring the CheshiR XMPP IM Bot | 217

 configurationForm = self.xmpp.plugin["xep_0004"].makeForm("form", "Configure")
 configurationForm.addField(
 var="monitorPresence", label="Use my status messages",
 ftype="boolean", required=True, value=True)
 self.xmpp.plugin["xep_0050"].addCommand("configure", "Configure",
 configurationForm, self.handleConfigurationCommand)

 def handleConfigurationCommand(self, form, sessionId):
 values = form.getValues()
 monitorPresence = True if values["monitorPresence"] == "1" else False
 jid = self.xmpp.plugin["xep_0050"].sessions[sessionId]["jid"]
 user = self.backend.getUserFromJID(jid)
 self.backend.setShouldMonitorPresenceFromUser(user, monitorPresence)

 def handleIncomingXMPPPresence(self, event):
 user = self.backend.getUserFromJID(event["jid"])
 if self.backend.getShouldMonitorPresenceFromUser(user):
 self.handleIncomingXMPPEvent(event)

 def handleXMPPConnected(self, event):
 self.xmpp.sendPresence()

 def handleIncomingXMPPEvent(self, event):
 message = event["message"]
 user = self.backend.getUserFromJID(event["jid"])
 self.backend.addMessageFromUser(message, user)

 def handleMessageAddedToBackend(self, message) :
 body = message.user + ": " + message.text
 htmlBody = "%(user)s: %(message)s" % {
 "uri": self.url + "/" + message.user,
 "user" : message.user, "message" : message.text }
 for subscriberJID in self.backend.getSubscriberJIDs(message.user) :
 self.xmpp.sendMessage(subscriberJID, body, mhtml=htmlBody)

 def start(self) :
 self.xmpp.connect()
 self.xmpp.process()

Third Sprint: Scaling the CheshiR XMPP Service Using a Server
Component

Analysis
A few more weeks pass by, and we notice that our XMPP service is becoming rather
slow. Sometimes it even stops working due to a lack of resources. After some investi-
gation, we discover that it is actually our bot that is causing some havoc. It seems that
our XMPP interface has become very popular—in fact, the bot’s roster is so large that
the server cannot handle it any longer.

218 | Chapter 14: Building an XMPP Application

The reason for this scenario is that many XMPP server implementations are not opti-
mized to deal with huge rosters like the one from our bot. (All XMPP servers reach such
a limit eventually, because they simply are not designed for rosters with 10,000 or
100,000 items!) Because we’ve run into a limit on the number of CheshiR users who
can interact with the bot, we need to find a more scalable way of providing the hot new
XMPP interface to our users.

So we ask ourselves: why does our XMPP server need to keep track of the bot’s roster
in the first place? Our CheshiR backend knows who signed up for the XMPP service,
so why does this information need to be duplicated in the XMPP server’s database? The
root cause is presence routing, which is described in detail in Chapter 3. Whenever our
bot generates a presence notification, our server needs to distribute that information
to every user of the XMPP service. Additionally, whenever one of our users connects
to the XMPP network, it will query the presence of our bot (using a presence probe),
and our bot’s XMPP server will automatically answer to this with the current presence
of the bot.

However, if we could offload control of presence-related functionality from the server,
maybe we would no longer need the server to keep track of the bot’s roster. It’s time
to head back to the whiteboard and see what we can come up with....

Presence Scaling in Components
In fact, it’s not the presence that’s the problem, per se, but the roster.
When a bot logs into the server and requests the roster, the server must
fetch the entire roster and send it as one giant stanza to the bot. Although
it’s probably vain to believe that we can handle this better than the server
can, we can improve matters by not handling it at all. Because, unlike
our bot, a component isn’t tied to this atomic roster get, the roster can
be loaded from disk lazily, or in stages, and as such avoid the load of a
(potentially) multi-hundred-megabyte roster stanza. The load saved
from not probing the presence of our contacts is also significant, as our
component need not know the contacts’ status on login and will be
happy to see presence stanzas trickle in over time.

Design
To solve our scalability problems, we do a bit more research into XMPP and discover
that most XMPP servers are architected in a modular way that enables the server to
offload stanza processing onto an external component. This approach seems like it
might solve our scalability issues, so we decide to transform our CheshiR bot into an
XMPP server component. This will require some code changes as well as some config-
uration changes to our XMPP server so that our server will allow our new component
to connect as a trusted part of the system. As described in Chapter 13, this means that
our component will be assigned a predefined subdomain of the server, and will directly
receive all stanzas addressed to this domain without the server taking any other actions.

Third Sprint: Scaling the CheshiR XMPP Service Using a Server Component | 219

This, of course, means that our component will need to handle presence broadcasts
and probe responses on its own, which might be just what we need to make the system
more scalable.

Coding
Our design decisions lead us to refactor the bot code so that it will run as a component.
However, it turns out that we don’t need to make too many changes. Handling of
incoming presence, message events, and messages added from the web interface
behaves exactly the same as before. The main difference is that now everything related
to presence broadcasting and presence subscriptions needs to be handled by the com-
ponent itself. Here’s an overview of the modifications:

• Because initial presence broadcasting is no longer handled by the server, the com-
ponent needs to send out its presence to all its users in handleXMPPConnected.

• Whenever an XMPP user probes for the presence of our XMPP service, handle
XMPPPresenceProbe sends back the presence of the component (which in this case,
is always “available”).

• When an XMPP user subscribes to the component’s presence,
handleXMPPPresenceSubscription automatically authorizes the subscription re-
quest, and sends the current presence of the component to the user. Additionally,
because the component wants to listen to presence changes from CheshiR user, it
also sends a subscription request to the originating user.

These modifications are shown in Example 14-4, which you can compare to the simple
bot code in Example 14-1.

To deploy these changes, we just need to replace our bot with a server component in
our application, as shown in Example 14-5.

Example 14-4. CheshiR IM server component implementation (the most important differences with
the basic bot implementation from Example 14-1 are highlighted)

class SimpleComponent :
 def __init__(self, jid, password, server, port, backend) :
 self.xmpp = sleekxmpp.componentxmpp.ComponentXMPP(jid, password, server, port)
 self.xmpp.add_event_handler("session_start", self.handleXMPPConnected)
 self.xmpp.add_event_handler("changed_subscription",
 self.handleXMPPPresenceSubscription)
 self.xmpp.add_event_handler("got_presence_probe",
 self.handleXMPPPresenceProbe)
 for event in ["message", "got_online", "got_offline", "changed_status"] :
 self.xmpp.add_event_handler(event, self.handleIncomingXMPPEvent)
 self.backend = backend
 self.backend.addMessageHandler(self.handleMessageAddedToBackend)

 def handleXMPPConnected(self, event) :
 for user in self.backend.getAllUsers() :
 self.xmpp.sendPresence(pto = self.backend.getJIDForUser(user))

220 | Chapter 14: Building an XMPP Application

 def handleIncomingXMPPEvent(self, event) :
 message = event["message"]
 user = self.backend.getUserFromJID(event["jid"])
 self.backend.addMessageFromUser(message, user)

 def handleXMPPPresenceProbe(self, event) :
 self.xmpp.sendPresence(pto = self.backend.getJIDForUser(user))

 def handleXMPPPresenceSubscription(self, subscription) :
 if subscription["type"] == "subscribe" :
 userJID = subscription["from"]
 self.xmpp.sendPresenceSubscription(pto=userJID, ptype="subscribed")
 self.xmpp.sendPresence(pto = userJID)
 self.xmpp.sendPresenceSubscription(pto=userJID, ptype="subscribe")

 def handleMessageAddedToBackend(self, message) :
 body = message.user + ": " + message.text
 for subscriberJID in self.backend.getSubscriberJIDs(message.user) :
 self.xmpp.sendMessage(subscriberJID, body)

 def start(self) :
 self.xmpp.connect()
 self.xmpp.process()

Example 14-5. Instantiating the CheshiR IM server component upon application start

def main() :
 backend = SimpleBackend()
 component = SimpleComponent(
 jid = "component.cheshir.lit", password = "mypass",
 server = "cheshir.lit", port = 5060, backend = backend)
 component.start()
 httpFrontend = HTTPFrontend(8080, backend)
 httpFrontend.start()

We now have an XMPP service that no longer puts the burden of roster and presence
management on the XMPP server. As a result, our service is more scalable. From the
perspective of our users, the only thing that has changed is that they now need to add
posts.cheshir.lit to their roster instead of bot@cheshir.lit. (Some XMPP servers can
redirect traffic for a particular user@domain.tld address to a component, so even this
might not be necessary.)

Fourth Sprint: Registering with the CheshiR Server Component

Analysis
So far, we’ve assumed that our users would sign up for the XMPP service from the
CheshiR web page, where they would provide the JID they would use for posting and
receiving messages. But we know that some XMPP clients enable you to register with

Fourth Sprint: Registering with the CheshiR Server Component | 221

services from within the client itself, using in-band registration as described in “What’s
in a Nick?” on page 85. Adding this feature sounds like it might make our service even
easier to use and further differentiate it from the crowded microblogging field, so we
decide to investigate the possibility.

Design
To provide in-band registration, we look for a plug-in in SleekXMPP that provides
jabber:iq:register functionality. Unfortunately, after looking through the
documentation and source code, we conclude that SleekXMPP does not yet have sup-
port for in-band registration (although that might have changed by the time you read
this book!). So we will have to write our own custom handling for IQ requests for the
jabber:iq:register namespace. Some hacking is in order....

We envision a registration screen of the kind in Figure 14-4.

Figure 14-4. The CheshiR registration form, as presented in an IM client

Coding
To make this happen, it seems that we need to add a few new pieces of code to our
component:

1. First, we need the xep_0030 plug-in, which allows us to announce support for the
jabber:iq:register extension in the service discovery information of our
component.

2. Next, we register handlers for both get and set IQ requests for the
jabber:iq:register namespace. This way, whenever a user’s client wants to reg-
ister with the service, it will first send an IQ-get request to find out what information
it needs to provide to the service. Upon receiving such a request,

222 | Chapter 14: Building an XMPP Application

handleRegistrationFormRequest sends back a response, adding a username and
password element, indicating that it expects this information when the user
registers.

3. After the user has entered the requested information, the user’s client submits the
registration form by embedding the filled form in an IQ-set request to the compo-
nent, which is processed by handleRegistrationRequest.

4. After having extracted the username and password from the received form, the
component checks whether registration with these credential succeeds. If it does,
a successful (empty) result is sent back, acknowledging successful registration. If
registration fails (for example, because of an incorrect password), the component
informs the user of the problem by sending back an IQ reply with an error payload.

These changes are shown in Example 14-6.

Example 14-6. CheshiR IM server component with in-band registration support (only the changed
and new methods since Example 14-5 are shown)

class RegistrableComponent :
 def __init__(self, jid, password, server, port, backend) :
 self.xmpp = sleekxmpp.componentxmpp.ComponentXMPP(jid, password, server, port)
 self.xmpp.add_event_handler("session_start", self.handleXMPPConnected)
 self.xmpp.add_event_handler("changed_subscription",
 self.handleXMPPPresenceSubscription)
 self.xmpp.add_event_handler("got_presence_probe",
 self.handleXMPPPresenceProbe)
 for event in ["message", "got_online", "got_offline", "changed_status"] :
 self.xmpp.add_event_handler(event, self.handleIncomingXMPPEvent)
 self.backend = backend
 self.backend.addMessageHandler(self.handleMessageAddedToBackend)
 self.xmpp.registerPlugin("xep_0030")
 self.xmpp.plugin["xep_0030"].add_feature("jabber:iq:register")
 self.xmpp.add_handler("<iq type='get' xmlns='jabber:client'>" +
 "<query xmlns='jabber:iq:register'/></iq>", self.handleRegistrationFormRequest)
 self.xmpp.add_handler("<iq type='set' xmlns='jabber:client'>" +
 "<query xmlns='jabber:iq:register'/></iq>", self.handleRegistrationRequest)

 def handleRegistrationFormRequest(self, request) :
 payload = ET.Element("{jabber:iq:register}query")
 payload.append(ET.Element("username"))
 payload.append(ET.Element("password"))
 self.sendRegistrationResponse(request, "result", payload)

 def handleRegistrationRequest(self, request) :
 jid = request.attrib["from"]
 user = request.find("{jabber:iq:register}query/{jabber:iq:register}username")
 password = request.find("{jabber:iq:register}query/{jabber:iq:register}password")
 if self.backend.registerXMPPUser(user, password, jid) :
 self.sendRegistrationResponse(request, "result")
 else :
 error = self.xmpp.makeStanzaError("forbidden", "auth")
 self.sendRegistrationResponse(request, "error", error)

Fourth Sprint: Registering with the CheshiR Server Component | 223

 def sendRegistrationResponse(self, request, type, payload = None) :
 iq = self.xmpp.makeIq(request.get("id"))
 iq.attrib["type"] = type
 iq.attrib["from"] = self.xmpp.fulljid
 iq.attrib["to"] = request.get("from")
 if payload :
 iq.append(payload)
 self.xmpp.send(iq)

Fifth Sprint: Extending the Server Component with Rosters

Analysis
Will, the marketing guy, says we need to boost communication among our users. Right
now, all messages from a user’s contact are delivered to his client in one continuous
stream. Whenever a user wants to respond to one of his contact’s posts, he starts his
message with “@contact”, a popular convention on microblogging services. Although
this way of communicating works, marketing thinks we should be able to improve the
user experience for this, which would increase the “stickiness” of our service (whatever
that means). So once again we sketch out some ideas at the whiteboard.

Design
We already mentioned that our server component gets assigned the complete
posts.cheshir.lit subdomain. So far, we’ve only used the domain JID to send and
receive messages. However, because we have a whole domain at our disposal, we can
create as many arbitrary JIDs as we want. This means that people’s posts can come
from, say, alice@posts.cheshir.lit or rabbit@posts.cheshir.lit, not just
posts.cheshir.lit. Conversely, sending a message to rabbit@posts.cheshir.lit could
prefix that message with “@rabbit” before posting it to your microblog, thus simulating
a public one-to-one conversation in the microblogging style.

We can extend this feature a bit by associating the user’s presence on the XMPP network
with his alias on the CheshiR service. In particular, when we receive a presence change
from a user’s real JID, we will republish it to his CheshiR account as his latest post and
as his presence status on CheshiR. The basic idea is shown in Figure 14-5.

Coding
To implement these enhanced features, we need to change the behavior of a few of the
methods from our previous version of the component:

• Instead of sending one presence stanza from the XMPP service to every user,
handleXMPPConnected needs to send a presence stanza for each follower of every
user, containing the last message of the contact as a presence status.

224 | Chapter 14: Building an XMPP Application

• Incoming XMPP messages that are directed to a user need to have “@user” pre-
pended to them in handleIncomingXMPPMessage.

• Since the user’s server will send presence to every one of the user’s contacts, there
will be multiple incoming presence stanzas. Because we don’t want to post a pres-
ence event more than once, we’ll only listen to the presence events directed to the
component itself in handleIncomingXMPPPresence.

• handleXMPPPresenceProbe returns the last message for presence probes directed to
contacts.

• Whenever a user subscribes to our service, the component sends a presence sub-
scription request for every contact in the user’s contact list, which results in the
contacts getting added to the user’s XMPP roster.

• Whenever a message is posted using the web interface, we send a message to all
subscribed users, and send it from the corresponding JID of the author. This de-
livers the message to the XMPP clients as a message from the contact.

Example 14-7 shows the updated version of the bot, which uses the helper methods
shown in Example 14-8.

Example 14-7. Extended CheshiR IM server component implementation

class Component :
 def __init__(self, jid, password, server, port, backend) :
 self.componentDomain = jid

Figure 14-5. Using the CheshiR server component from an XMPP client: CheshiR contacts are mixed
with regular XMPP contacts, messages from different contacts get delivered in their own chat dialog,
and the message sent to Kevin will result in the message “@kevin I know the feeling!” being posted
on Remko’s microblog

Fifth Sprint: Extending the Server Component with Rosters | 225

 self.xmpp = sleekxmpp.componentxmpp.ComponentXMPP(jid, password, server, port)
 self.xmpp.add_event_handler("session_start", self.handleXMPPConnected)
 self.xmpp.add_event_handler("changed_subscription",
 self.handleXMPPPresenceSubscription)
 self.xmpp.add_event_handler("got_presence_probe",
 self.handleXMPPPresenceProbe)
 self.xmpp.add_event_handler("message", self.handleIncomingXMPPMessage)
 for event in ["got_online", "got_offline", "changed_status"] :
 self.xmpp.add_event_handler(event, self.handleIncomingXMPPPresence)
 self.backend = backend
 self.backend.addMessageHandler(self.handleMessageAddedToBackend)

 def handleXMPPConnected(self, event) :
 for user in self.backend.getAllUsers() :
 self.sendPresenceOfAllContactsForUser(user)

 def handleIncomingXMPPMessage(self, event) :
 message = self.addRecipientToMessage(event["message"], event["to"])
 user = self.backend.getUserFromJID(event["jid"])
 self.backend.addMessageFromUser(message, user)

 def handleIncomingXMPPPresence(self, event) :
 if event["to"] == self.componentDomain :
 user = self.backend.getUserFromJID(event["jid"])
 self.backend.addMessageFromUser(event["message"], user)

 def handleXMPPPresenceProbe(self, event) :
 self.sendPresenceOfContactToUser(contactJID=event["to"], userJID=event["from"])

 def handleXMPPPresenceSubscription(self, subscription) :
 if subscription["type"] == "subscribe" :
 userJID = subscription["from"]
 user = self.backend.getUserFromJID(userJID)
 contactJID = subscription["to"]
 self.xmpp.sendPresenceSubscription(
 pfrom=contactJID, pto=userJID, ptype="subscribed", pnick=user)
 self.sendPresenceOfContactToUser(contactJID=contactJID, userJID=userJID)
 if contactJID == self.componentDomain :
 self.sendAllContactSubscriptionRequestsToUser(userJID)

 def handleMessageAddedToBackend(self, message) :
 userJID = self.getComponentJIDFromUser(message.user)
 for subscriberJID in self.backend.getSubscriberJIDs(message.user) :
 self.xmpp.sendMessage(mfrom=userJID, mto=subscriberJID, mbody=message.text)
 self.xmpp.sendPresence(pfrom=userJID, pto=subscriberJID, pstatus=message.text)

Example 14-8. CheshiR IM server component helper methods

 def sendPresenceOfAllContactsForUser(self, user) :
 userJID = self.backend.getJIDForUser(user)
 for contact in self.backend.getContacts(user) :
 contactJID = self.getComponentJIDFromUser(contact)
 self.sendPresenceOfContactToUser(contactJID = contactJID, userJID = userJID)

 def sendPresenceOfContactToUser(self, contactJID, userJID) :
 message = self.backend.getLastMessage(contactJID).text

226 | Chapter 14: Building an XMPP Application

 self.xmpp.sendPresence(pto = userJID, pfrom = contactJID, pshow = message)

 def sendAllContactSubscriptionRequestsToUser(self, userJID) :
 user = self.backend.getUserFromJID(userJID)
 for contact in self.backend.getContacts(user) :
 contactJID = self.getComponentJIDFromUser(contact)
 self.xmpp.sendPresenceSubscription(
 pfrom=contactJID, pto=userJID, ptype="subscribe", pnick=contact)

 def addRecipientToMessage(self, message, recipientJID) :
 contact = self.getUserFromComponentJID(recipientJID)
 return ("@" + contact if contact else "") + " " + message

 def getUserFromComponentJID(self, jid) :
 return jid.split("@",1)[0] if "@" in jid else None

 def getComponentJIDFromUser(self, user) :
 return user + "@" + self.componentDomain

 def start(self) :
 self.xmpp.connect()
 self.xmpp.process()

Future Sprints
A living service like CheshiR doesn’t stand still. We’re already thinking about additional
enhancements. Here are two intriguing possibilities:

• We’ve heard a lot about the XMPP PubSub technology and how it can overcome
scalability issues. Perhaps it would make sense to re-architect the XMPP frontend
as a PubSub service, providing a PubSub interface for custom clients out there. In
fact, we could probably even replace the CheshiR backend with a PubSub service,
storing all posts and subscription information in PubSub nodes and their
subscriptions.

• The micromessaging model behind CheshiR and other microblogging services has
some intriguing similarities to groupchat. What if we created a personalized Multi-
User Chat room for each user, where they could interact with their subscribers in
a familiar groupchat interface? The room occupants could even be aliases because
we don’t want to force everyone to park in multiple groupchat rooms.

Unfortunately we don’t have space to explore these potential sprints in detail, so we
leave them as an exercise for the reader.

A CheshiR Server Module or Dedicated Server?
So far, we have seen how to integrate XMPP into an application by building either a
bot or a server component. Both approaches yield a solution that is independent from
the server you are using to deploy your application. This is mostly an advantage, but

A CheshiR Server Module or Dedicated Server? | 227

the downside of having an external XMPP integration is that you don’t have access to
the server internals, and this can limit both the functionality and the performance of
your application. In fact, our CheshiR server component has started to take on the same
kind of presence features that are usually the responsibility of an XMPP server, and it’s
likely that the server developers will do a better job of this than component developers
will!

In the case of CheshiR, we could make use of a tight integration with an XMPP server
by directly manipulating the rosters of our contacts. As a result, we wouldn’t have to
send subscription requests back and forth whenever a user registers with the service,
or whenever a user subscribes to one of his contact’s notifications.

However, building a CheshiR server module would be very specific to a given server
codebase. In particular, this level of integration would require us to code directly to the
server’s internal API, rather than using a wire protocol to communicate, so exploring
this solution will take us outside the realm of XMPP itself and into the world of a
particular codebase. Similarly, we could go even further and build our own dedicated
XMPP server implementation.

Before deciding to build a server module or a dedicated server, we would need to weigh
the costs and benefits. Is the XMPP interface really core to the CheshiR service? Can
we justify the vendor lock-in associated with writing a module for a specific server, or
the investment in building and maintaining an entirely new server codebase? Sometimes
the benefits of these paths do outweigh the costs, but only if messaging and presence
are core to your business.

Summary
In this chapter, we explored how to build an XMPP application through the example
of a microblogging system. Clearly you could make many different kinds of applications
using XMPP, and we cannot describe them all here. The thought processes and design
decisions involved might differ somewhat if you want to create, say, a voice and video
chat service, a whiteboarding client, a location tracker, a network monitoring system,
or an online gaming application. For any given type of application, you will need to
focus more carefully on certain parts of the system (e.g., the server rather than the
client), write more code instead of reusing existing code, integrate more completely
with non-XMPP systems, design more XMPP extensions, or work more closely with
XMPP community. However, our intent in this book has been to give you the tools you
need to build any kind of XMPP application. If we succeeded, you should be able to
take the tools we have described and apply them in a wide range of projects, products,
and services. We wish you success in using XMPP technologies and invite you to join
the ongoing conversation in the XMPP community as more and more developers col-
laborate to build out the real-time Internet.

228 | Chapter 14: Building an XMPP Application

PART IV

Appendixes

APPENDIX A

A Guide to XMPP Specifications

XMPP is defined in a number of documents called specifications. These documents
define the precise XML that is sent back and forth to complete all the use cases we’ve
discussed in this book (and many more). The XMPP specifications contain many ex-
amples to help developers understand exactly how XMPP works, and would fill several
books as long as this one if published all together. Here we provide a brief guide to
these specifications, which are published in two series: several documents in the IETF’s
Request for Comments (RFC) series, and a large and growing number of XMPP Ex-
tension Protocols in the XMPP Standards Foundation’s XEP series.

XMPP RFCs
The IETF’s RFC series contains specifications that define most of the core technologies
of the Internet, including the Internet Protocol (IP) itself, Transmission Control Pro-
tocol (TCP), User Datagram Protocol (UDP), Simple Mail Transfer Protocol (SMTP),
Hypertext Transfer Protocol (HTTP), Session Initiation Protocol (SIP), and many oth-
ers. In 2004, the IETF published two RFCs that define the basis for all XMPP
technologies.

RFC 3920 defines XML streams along with all of the stream-level features required to
build XMPP applications, including:

• The basic XMPP architecture and address format

• The use of Transmission Control Protocol (TCP) as the underlying transport for
XMPP communications

• The use of Transport Layer Security (TLS) for stream encryption

• The use of Simple Authentication and Security Layer (SASL) for stream
authentication

• The use of Unicode, UTF-8, and stringprep for fully internationalized addresses
and text

231

• The use of XML in XMPP, including prohibited features of XML and the inclusion
of XML namespaces

• The basic semantics of the message, presence, and IQ stanzas

• Error conditions that can be communicated at the XML stream, SASL, and XMPP
stanza levels

RFC 3921 defines the instant messaging and presence features required to build XMPP
applications, including:

• Management of rosters (contact lists)

• Handling of presence subscriptions

• Handling of presence notifications, whether broadcast or directed

RFC Revisions
As of this writing, RFC 3920 and RFC 3921 are under active revision to
incorporate errata, clarify ambiguities, improve their readability, define
additional error codes, etc. These documents, called [rfc3920bis] and
[rfc3921bis] in the terminology of the IETF, provide the most accurate
definition of XMPP and might have been published as replacement
RFCs (with new numbers) by the time you read this book. For the latest
versions of the revised specifications, visit http://xmpp.org.

XMPP Extension Protocols
The XMPP Extension Protocol (XEP) series specifies extensions to the core of XMPP
as defined in the RFCs. The XEP series is produced by the XMPP Standards Foundation
and published at http://xmpp.org. There are five types of XEP documents:

Standards Track
The mainstay of the XEP series, Standards Track XEPs describe XMPP protocol
extensions in the various stages of the XSF’s standards process.

Informational
Informational XEPs do not define new protocols, but act as support documents
for the XEP series, providing best practices and usage profiles.

Historical
Used to document XMPP protocol extensions developed outside the XSF’s
standards process that have gained widespread usage within the XMPP developer
community, several of these predate the XMPP RFCs and even the XSF itself (which
was founded in 2001).

Humorous
Usually published on April 1st, these provide tongue-in-cheek protocol extensions
or other light-hearted XMPP-related documentation. They may provide amuse-
ment but should not be taken seriously.

232 | Appendix A: A Guide to XMPP Specifications

http://xmpp.org
http://xmpp.org

Procedural
These XEPs do not define XMPP extensions, but describe the processes of the
XMPP Standards Foundation itself.

In addition to the five types of XEPs, there are also several states that XEPs can be in:

Experimental
XEPs of any type start off in the Experimental state after their acceptance by the
XMPP Council. Implementing Experimental protocol XEPs isn’t an inherently bad
idea if they solve a problem you have, but the protocol might change—usually in
the details, but sometimes radically—so it’s not recommended to make primary
software releases using these XEPs.

Proposed
XEPs that are under consideration for advancement from Experimental to Active
or Draft have a temporary state of Proposed.

Deferred
Experimental XEPs change status to Deferred if no progress (either advancement
in the XEP process, or modifications) is made on them in 12 months. Deferring an
XEP doesn’t imply that the XEP is on the path to rejection, but the same imple-
mentation warnings apply as to Experimental XEPs.

Retracted
Retracted XEPs have been removed from the standards process at their authors’
request.

Deprecated
An older XEP may be Deprecated when a newer XEP is released that supersedes it.
It’s recommended that you do not implement these, except for the sake of back-
ward compatibility with older software.

Obsolete
When the XMPP Council determines that a previously accepted XEP should no
longer be used, it enters the Obsolete stage. It’s recommended that you do not
implement these.

Rejected
If the XMPP Council determines that an XEP is unsuitable for use within the XMPP
community, it is Rejected.

When a non-Standards Track XEP is ready for advancement from Experimental, it can
enter the Active stage:

Active
This catch-all state for non-Standards Track XEPs is used for all documents cur-
rently in use.

XMPP Extension Protocols | 233

Standards Track XEPs have a well-defined “track” that they proceed along; after the
Experimental state, they advance as follows:

Draft
A Standards Track XEP enters the Draft state after it has undergone extensive
community review (and preferably implementation) and has been voted for ad-
vancement from Experimental by the XMPP Council. Once an XEP advances to
Draft, it typically is implemented in multiple codebases and deployed in production
XMPP services. This experience can lead to clarifications and revisions, which are
incorporated into the specification while it is in the Draft state.

Final
After an XEP has been in the Draft state for a while (sometimes years), the XMPP
Council can choose to issue a “Call for Experience” regarding the protocol. At that
time, the XEP undergoes a thorough review by the developer community, which
evaluates the specification for accuracy and completeness, formulates a list of im-
plementations, and determines whether those implementations are interoperable.
The XMPP Council can then vote for the XEP to be advanced to Final status. Al-
though modifications can still be made to the XEP in Final, these must essentially
be clarifications or tweaks: no backward-incompatible changes can be made. Rel-
atively few XEPs have advanced to the Final state, although this is caused more by
a focus on new work than a lack of maturity in existing protocols.

The following pages describe many of the XEPs that were published at the time of this
writing. However, some XEPs are not described here, in particular those with status of
Retracted, Rejected, Deprecated, or Obsolete. A list of all XEPs, including those not
mentioned here, is maintained at http://xmpp.org. Unless otherwise noted, the specifi-
cations described here are Standards Track XEPs:

XEP-0001: XMPP Extension Protocols
This Procedural XEP defines the XEP publishing process, detailing the XEP types
and states listed earlier, and the procedures for advancing and expiring XEPs.
Reading this XEP can provide some interesting insight into the work of the XMPP
Standards Foundation.

XEP-0004: Data Forms
The Data Forms extension defines a data exchange format using forms with typed
fields (similar to HTML forms). By embedding Data Forms in other protocols, it
is possible to offer customized options to a user without defining them in the outer
protocol. We discussed Data Forms in Chapter 6.

XEP-0009: Jabber-RPC
This XEP describes how to use XMPP as a transport for remote procedure calls
using the format defined in [XML-RPC].

XEP-0012: Last Activity
The Last Activity protocol is used for querying a client or server to find out when
the user was last active on the network.

234 | Appendix A: A Guide to XMPP Specifications

http://xmpp.org

XEP-0013: Flexible Offline Message Retrieval
Flexible Offline Message Retrieval provides a method for a finer control of the
delivery of offline messages during a client’s login. It allows a client to check the
quantity of offline messages, and fetch and remove specific or all messages. There
is some support for it in servers, but it is not widely implemented in clients, perhaps
because few users need to manage a large number of offline messages.

XEP-0016: Privacy Lists
The protocol described in Privacy Lists was originally defined in XEP-0016 and
then published in RFC 3921, but it has since been moved back to XEP-0016 because
the protocol is not needed in rfc3921bis. The Privacy Lists protocol provides a
server-side method for blocking incoming and outgoing stanzas to other entities
based full or partial JID, subscription state, or roster group. [XEP-0191] provides
a simplified interface to the same kind of information.

XEP-0020: Feature Negotiation
This is a building-block XEP for negotiating the parameters used in communication
between two entities. It is used mainly in XEP-0096 for negotiating file transfer
stream details.

XEP-0027: Current Jabber OpenPGP Usage
This Historical specification describes the usage of OpenPGP for improving the
end-to-end security of XMPP exchanges between clients. The protocol is imple-
mented in several clients, but the lack of OpenPGP usage among end users has
limited its deployment. This XEP is likely to be replaced in time by a more user-
friendly end-to-end encryption technique.

XEP-0030: Service Discovery
The Service Discovery protocol is used extensively throughout the XMPP protocol
stack. As we saw in Chapter 5, Service Discovery provides a mechanism for dis-
covering both the capabilities of an entity (its identity, and the features and pro-
tocols it supports) and the items associated with the entity (such as the rooms
hosted by an MUC service or the nodes on a PubSub service).

XEP-0033: Extended Stanza Addressing
Extended Stanza Addressing enables stanzas to be addressed to multiple recipients
in a manner close to that of SMTP, such as cc, bcc, and replyto directives.

XEP-0045: Multi-User Chat
Multi-User Chat is a chat room/chat channel/text conference protocol with
administration functions such as kicking, banning, and room configuration. We
discussed the “MUC” protocol in Chapter 7.

XEP-0047: In-Band Bytestreams
In-Band Bytestreams or “IBB” is a Standards Track XEP defining a transport mech-
anism for binary data within a standard XMPP stream. It covers chunking the data
to allow normal traffic to continue while a data transfer proceeds. We discussed
IBB in Chapter 10.

XMPP Extension Protocols | 235

XEP-0048: Bookmarks
The Bookmarks specification provides a format for server-side storage of book-
marks to web pages and chat rooms (including a hint to clients to auto-join selected
chat rooms at login time).

XEP-0049: Private XML Storage
This is a description of the Historical protocol for storing arbitrary private user
data on the user’s server (such as XEP-0048’s bookmarks). This protocol might be
superseded at some point by a profile of the Publish-Subscribe protocol (see
XEP-0222).

XEP-0050: Ad-Hoc Commands
This XEP defines a method for discovering and executing commands on remote
entities, where the commands and their parameters are not known in advance. We
discussed this protocol in Chapter 11.

XEP-0053: XMPP Registrar Function
This is a Procedural document describing the workings of the XMPP Registrar,
which maintains registries of XML namespaces, application parameters, and other
dynamic information used throughout the XMPP protocol stack. The Registrar is
located at http://xmpp.org/registrar/.

XEP-0054: vcard-temp
The vcard-temp XEP provides documentation of the Historical protocol the Jabber
community uses for storage and retrieval of XML-formatted vCards. We discussed
this protocol in Chapter 4.

XEP-0055: Jabber Search
This is a Historical protocol that is primarily used for querying directories of users.
Through Data Forms, a service may define additional search methods beyond the
standard fields included in the XEP.

XEP-0059: Result Set Management
Result Set Management is used to deal with large results of queries to services such
as Jabber Search, Service Discovery, Publish-Subscribe, and Message Archiving. It
provides methods for paging through a result set as well as direct access to arbitrary
subsets, allowing access to data sets that would be infeasible to transfer in their
entirety.

XEP-0060: Publish-Subscribe
PubSub, discussed at some length in Chapter 8, provides a rich protocol for push-
based notifications of content on presubscribed data nodes, as well as mechanisms
for dynamically creating subscriptions based on interests defined in entity capa-
bilities data (see XEP-0115). The “Personal Eventing Protocol” (XEP-0163) is a
subset of PubSub.

XEP-0065: SOCKS5 Bytestreams
SOCKS5 Bytestreams is a method of establishing out-of-band binary streams. Such
bytestreams are primarily used for file transfer, as described in XEP-0096. Although

236 | Appendix A: A Guide to XMPP Specifications

http://xmpp.org/registrar/

mainly aimed at peer-to-peer streams, mediated transfers (through a specialized
proxy) are also supported. We discussed this protocol in Chapter 10.

XEP-0066: Out-of-Band Data
Out of Band Data provides a mechanism for exchanging a reference to data stored
outside XMPP, such as a file at an HTTP URL.

XEP-0068: Field Standardization for Data Forms
This is an Informational XEP describing the process of formalizing the field varia-
bles used in Data Forms by various XMPP extensions. The XMPP Registrar
maintains a registry of such fields.

XEP-0070: Verifying HTTP Requests via XMPP
This XEP defines a method for verifying identity in an HTTP request with a call-
back message over XMPP. This allows you to have a system that can authenticate
on HTTP using Jabber identity.

XEP-0071: XHTML-IM
XHTML-IM is a profile of XHTML used for markup of XMPP messages, particu-
larly for instant messaging. Cutting out large amounts of XHTML, this provides
semantic markup and formatting for chat text, while attempting to avoid the se-
curity issues inherent in some XHTML tags. We discussed XHTML-IM in Chap-
ter 4.

XEP-0072: SOAP Over XMPP
This XEP defines a SOAP Protocol Binding, which allows XMPP to be used as a
transport for SOAP payloads. It also describes provision of a WSDL definition for
discovering the service.

XEP-0077: In-Band Registration
In-Band Registration may be offered by an XMPP service to allow account creation
and/or user registration from within an XMPP stream. This can be used in several
ways, including account creation on XMPP servers and registration with services
such as Multi-User Chat rooms, as discussed in Chapter 7.

XEP-0078: Non-SASL Authentication
This document is Obsolete, but it defines the original Jabber protocol for authen-
tication (and resource binding) by clients. The protocol defined here was superse-
ded by the use of SASL as defined by the IETF’s XMPP Working Group, but is still
supported by many clients, servers, and libraries for the sake of backward com-
patibility and interoperability testing.

XEP-0079: Advanced Message Processing
The Advanced Message Processing (AMP) protocol defines an approach for chang-
ing the handling of message stanzas. It provides features such as short-lived mes-
sages (which are not delivered after they expire) and automatic message receipts.
This protocol hasn’t become very popular, but would be quite useful in scenarios
that require reliable delivery of messages.

XMPP Extension Protocols | 237

XEP-0080: User Location
User location is an XEP describing a payload format for representing information
about the geographical location of a user, primarily for transport over PubSub and
PEP.

XEP-0082: XMPP Date and Time Profiles
This simple Informational XEP describes best practices for representation of dates
and times in XMPP, reusing certain profiles of the ISO 8601 format.

XEP-0083: Nested Roster Groups
This is a very short Informational XEP describing a common format for naming
roster groups to denote a hierarchy. Mostly this just means putting the string ::
between each layer of the hierarchy in the roster group name (e.g., Top level::Mid
level::Lowest level).

XEP-0084: User Avatar
This is a Standards Track XEP describing a format for storing user avatars in PEP
or PubSub. As avatars are much larger than typical PEP payloads, it uses two nodes:
one with metadata (primarily a hash of the avatar), which notifications are sent
from, and a data node containing the avatar itself, which users’ clients query when
they need an avatar that matches a previously unseen hash in the metadata. This
format is expected to supplant vCard-based avatars (XEP-0153) over time.

XEP-0085: Chat State Notifications
Chat State Notifications is an extension documenting a protocol for sending no-
tifications during a chat, such as when one user is typing, has stopped typing, or
has left a chat. It supersedes the older “message events” protocol described in
XEP-0022. We discussed this protocol in Chapter 4.

XEP-0086: Error Condition Mappings
This Informational specification is Deprecated but remains useful because it de-
scribes a mapping of the modern XML-formatted error conditions to the older error
code numbers, which are still supported in a number of implementations.

XEP-0092: Software Version
This XEP provides a very simple mechanism for requesting version information
about another entity. Eventually this protocol will probably be superseded by the
service discovery extension method described in XEP-0232 (which can be auto-
mated using Entity Capabilities).

XEP-0095: Stream Initiation
Stream Initiation is a method for negotiating a data stream between two entities.
In principle, this protocol can be used to negotiate any stream type, but in practice
it is used only for file transfers in XEP-0096. The Jingle extensions now informally
supersede Stream Initiation as a session initiation protocol, and once implemen-
tations catch up, this fact will probably be formalized.

238 | Appendix A: A Guide to XMPP Specifications

XEP-0096: File Transfer
This protocol uses XEP-0095’s Stream Initiation protocol for initiating file trans-
fers, as discussed in Chapter 10. It is expected that Jingle file transfers will even-
tually supersede the SI approach.

XEP-0100: Gateway Interaction
This Informational XEP provides best practices for workflows between XMPP
clients and gateway (or “transport”) services to other networks (such as proprietary
chat networks). It discusses registering and unregistering, logging into, and logging
out of the gateways, as well as adding and deleting contacts and message sending
to contacts on the other side of the gateway. Because gateways have become less
important over time as XMPP has emerged as a standalone technology, we do not
cover gateways in this book.

XEP-0106: JID Escaping
This protocol is used for encoding the characters into the node part (the part before
the @) of a JID that would normally be disallowed (space, ", &, ', /, :, <, >, and @).
This is useful when translating addresses from other systems, such as in gateways
to other messaging networks or when a new IM system needs to create XMPP
addresses from existing email credentials.

XEP-0107: User Mood
User Mood defines a format for information about a user’s mood, used as a payload
sent over PEP. The XEP contains a list of predefined mood values, which are sent
together with an optional mood message; this is a very similar approach to user
presence in XMPP itself.

XEP-0108: User Activity
Similar to User Mood, User Activity defines a PEP payload. User Activity defines
a set of activity values, such as doing_chores and eating, and specific activities to
complement these, such as cleaning, cooking, having_a_snack, and having_lunch.

XEP-0114: Jabber Component Protocol
This is a record of the Historical protocol used for communication between XMPP
servers and external components, such as transports to other messaging networks
or MUC services. Although XEP-0114 is widely used, it might be supplanted at
some point by a component protocol that provides stronger security and greater
flexibility (see XEP-0225).

XEP-0115: Entity Capabilities
Entity Capabilities is used extensively in other specifications for passive discovery
of the capabilities of remote entities. This XEP obviates the need for explicit Disco
requests in most cases by transmitting a hash of an entity’s capabilities inside their
presence stanza. As long as you’ve seen this hash before, and queried an entity to
discover the features it corresponds to, there’s no need to “disco” an entity with
this hash. We discussed this technology in Chapter 5.

XMPP Extension Protocols | 239

XEP-0118: User Tune
User Tune is another XEP defining a PEP payload. This one describes the music
that a user is listening to.

XEP-0122: Data Forms Validation
This XEP defines extensions to Data Forms that allow the submitting entity to
validate the contents of a form before submission. It includes further specification
of data types, such as dates and other XML types, and includes validation methods
both by range and by matching regular expressions.

XEP-0124: Bidirectional-streams Over Synchronous HTTP (BOSH)
Not directly an XMPP extension, BOSH defines an alternative stream transport so
that real-time traffic can be sent over HTTP instead of TCP. BOSH is quite useful
in constrained environments where long-lived TCP connections are not feasible,
such as browser-based clients and mobile telephony networks. Together with
XEP-0206, XEP-0124 defines an alternative transport for XMPP. We discussed
BOSH in Chapter 12.

XEP-0126: Invisibility
This is an Informational XEP listing best practices for using XMPP privacy lists to
allow an entity to be “invisible” to the majority of the network, while allowing the
entity to continue to communicate with entities as they wish.

XEP-0127: Common Alerting Protocol (CAP) Over XMPP
This is an Informational XEP providing methods for sending CAP data over XMPP,
either as a PubSub payload or using direct messages. The CAP format is used for
emergency notifications, weather alerts, and the like.

XEP-0128: Service Discovery Extensions
Service Discovery Extensions is an Informational best practices XEP describing the
inclusion of extended information in Disco results. This is particularly useful for
MUC and PubSub services.

XEP-0130: Waiting Lists
This Historical XEP defines a rarely seen protocol for adding a user without an
XMPP account to a waiting list, so you can be notified when they create an account.

XEP-0131: Stanza Headers and Internet Metadata (SHIM)
SHIM defines header information for XMPP stanzas, allowing XMPP stanzas to
include things such as keywords, stanza creation dates, and in-reply-to data.

XEP-0133: Service Administration
This specification provides an informational list of useful Ad-Hoc Commands for
server administrators. The list includes, amongst others, adding and deleting users
on the service, changing passwords, sending messages to all users, and setting wel-
come messages.

XEP-0134: Protocol Design Guidelines
Also known as “The Tao of XMPP,” this Informational XEP was written to help
designers of XMPP extensions in creating protocols that fit well with the existing

240 | Appendix A: A Guide to XMPP Specifications

infrastructure, and make the best use of the available XMPP resources. It includes
guidelines such as not attempting to modify core behavior, keeping complexity in
the server so clients can be simple, and reusing existing protocols where possible.

XEP-0136: Message Archiving
Message Archiving provides a method for the server-side storage of message his-
tory. As well as describing automatic archiving by the server, it also defines a
method for uploading existing history from a client and retrieving history data.

XEP-0137: Publishing SI Requests
This protocol is used for announcing the availability of a file for file transfer, either
through direct messaging or PubSub.

XEP-0138: Stream Compression
Stream Compression defines a mechanism for application-level negotiation of
(typically ZLIB) compression for an XMPP stream. TLS also provides compression
mechanisms, but these are not always available; in these cases, Stream Compres-
sion is useful.

XEP-0141: Data Forms Layout
This XEP defines extensions for Data Forms to specify the layout of fields when
rendered in a client. These include the relative layout of fields, and splitting forms
into pages and section hierarchies.

XEP-0143: Guidelines for Authors of XMPP Extension Protocols
A spiritual partner to Protocol Design Guidelines (XEP-0134), this Procedural
document describes the process of writing an XEP document, covering the sub-
mission process, the file formats, the sections of an XEP, and a style guide. Read
this if you are thinking of submitting a proposal for publication as an XEP.

XEP-0144: Roster Item Exchange
This protocol is used for transferring information on roster items between entities
(e.g., to tell someone about another person they might want to chat with). It in-
cludes formats for suggesting addition, deletion, and modification of records.

XEP-0145: Annotations
This Historical XEP documents a protocol in use in the community for storing
(annotating) information, primarily about roster items.

XEP-0146: Remote Controlling Clients
This is an Informational XEP listing five ad-hoc commands for controlling XMPP
clients: changing status, forwarding unread messages, changing settings, accepting
pending subscription requests, and leaving groupchats. We discussed these com-
mands in Chapter 11.

XEP-0147: XMPP URI Scheme Query Components
This Informational XEP provides a list of query parts for XMPP URIs. These query
parts specify actions such as sending messages, subscribing to entities, service reg-
istration, and joining MUC rooms.

XMPP Extension Protocols | 241

XEP-0149: Time Periods
This Informational XEP describes a common format for transmitting time periods
in XMPP stanzas, conforming to the XMPP Date and Time Profiles XEP. The pro-
tocol could be used, for example, to mark up a presence notification to specify that
you will be do-not-disturb in a meeting for the next two hours.

XEP-0153: vCard-Based Avatars
This is a Historical XEP documenting a protocol for avatar exchange. In this pro-
tocol, the avatar is stored in the photo field of a user’s vCard, and the hash of the
current avatar is announced in a user’s presence packets. Annotating presence
packets for data like these is generally ill-thought-of in XMPP, and it is now pref-
erable to support the standards track XEP-0084 User Avatar. However, the vCard-
Based Avatars approach is still widely deployed, and many clients support it for
backward compatibility with existing software.

XEP-0155: Stanza Session Negotiation
This rarely used specification defines a method for negotiating parameters for a
communication session between two entities that do not share presence informa-
tion, such as encryption, chat state notifications, formatting, and archiving. It is
quite possible that this XEP will be deprecated or obsolete at some point.

XEP-0156: Discovering Alternative XMPP Connection Methods
This XEP defines a way to use DNS records in discovering multiple methods for
connecting to an XMPP server (e.g., a BOSH URL).

XEP-0157: Contact Addresses for XMPP Services
This is an Informational definition of methods for supplying contact addresses for
an XMPP service over email and XMPP. It defines contact addresses such as those
for reporting abuse, security issues, and contacting a system administrator.

XEP-0158: CAPTCHA Forms
This defines defines a method for querying a user with CAPTCHA forms to attempt
to verify that a user is a human and not an automated process. This can be used in
situations such as when joining an MUC room or registering an account on a server,
in an attempt to limit abuse, particularly automated spam. The XEP lists several
types of possible CAPTCHAs, including the common image-based ones, as well as
audio identification and text challenges. We discussed this approach in Chapter 6.

XEP-0160: Best Practices for Handling Offline Messages
This is an Informational XEP defining best practices for handling messages sent to
JabberIDs that do not have any online resources when the message is sent. As well
as discussing general issues, it provides specific advice for each of the <message/>
stanza types: normal, chat, groupchat, headline, and error.

XEP-0163: Personal Eventing Protocol
The Personal Eventing Protocol or PEP specification is used in several other XEPs,
and defines a profile of PubSub that is useful for broadcasting information relating
to a user’s state, such as the User Tune, User Mood, and User Activity XEPs. Orig-
inally defining several new features, these were deemed valuable enough to be

242 | Appendix A: A Guide to XMPP Specifications

moved into the core PubSub XEP, and PEP is now simply a profile of PubSub, with
an emphasis on sane defaults. We discussed PEP in Chapter 8.

XEP-0166: Jingle
Jingle is a method for initiating streams between two entities. Currently used in
several XEPs related to voice and video calling, it’s currently considered that Jingle
will become increasingly relevant to the XMPP community as more XEPs are writ-
ten that rely upon it (such as file transfers and screen sharing). Chapter 9 covered
Jingle technologies in detail.

XEP-0167: Jingle RTP Sessions
One of the series of Jingle XEPs, this specification defines an application type for
the negotiation of streams using RTP (the Real-time Transport Protocol), such as
voice and video.

XEP-0170: Recommended Order of Stream Feature Negotiation
This Informational XEP defines best practices for the ordering of XMPP stream
feature negotiation. These recommendations have been incorporated into
rfc3920bis.

XEP-0171: Language Translation
Language Translation is a protocol that defines the use of language translation
services over XMPP. Including both automatic and manual translation, it provides
methods for the discovery of translation services, as well as the methods for re-
questing and receiving translations. It allows both direct translation and translation
through one or more intermediate (“pivot”) languages.

XEP-0172: User Nickname
This XEP defines a method for transmission of a user nickname for a user over
several transport methods, including presence, PubSub and direct messaging. It
allows a user to know the consistent nicknames by which other users identify
themselves, even when they do not share presence information, or when inside an
MUC.

XEP-0174: Serverless Messaging
This XEP defines methods for discovery of, and communication with, other Serv-
erless Messaging entities on a network. As we discussed in Chapter 12, serverless
messaging is founded on DNS-based Service Discovery and Multicast DNS,
thereby enabling entities to locate each other and chat without a common server.
Using this method, entities communicate using peer-to-peer XMPP streams. It is
useful when multiple entities do not have connectivity to the broader Internet (e.g.,
remote locations, trains, etc.) and for ad-hoc situations, such as conferences and
conventions.

XEP-0175: Best Practices for Use of SASL ANONYMOUS
This Informational XEP specifies best practices for use of the SASL ANONYMOUS
mechanism in the authentication process of clients with XMPP servers. Using this
mechanism, it is possible (where allowed) for a client to obtain a temporary server-
provided JID without user authentication, which is destroyed when the client’s

XMPP Extension Protocols | 243

session ends. Some services currently use this to provide simple web access to MUC
rooms, where a user can join an MUC room without an XMPP account simply by
visiting a web page.

XEP-0176: Jingle ICE-UDP Transport Method
Another XEP in the Jingle series, this defines an XMPP profile of Interactive Con-
nectivity Establishment (ICE). The ICE methodology (defined by the IETF) pro-
vides effective traversal of environments hostile to peer-to-peer sessions, such as
Network Address Translation (NAT) systems that otherwise make establishing
media traffic streams difficult.

XEP-0177: Jingle Raw UDP Transport Method
This XEP defines a transport method for UDP data transmission, but without the
sophisticated NAT traversal methodology of the Jingle ICE-UDP Transport
Method. It is mainly useful to intermediate servers or call managers that host an
“always-on” media relay.

XEP-0178: Best Practices for Use of SASL EXTERNAL with Certificates
As the name suggests, this Informational XEP defines best practices for the use of
certificates with the SASL EXTERNAL mechanism, both in client-to-server and
server-to-server authentication.

XEP-0181: Jingle DTMF
Jingle DTMF defines a format for encoding DTMF (Dual Tone Multi-Frequency)
events in an XMPP stream when they cannot be encoded directly into the corre-
sponding stream (such as RTP). DTMF is used mainly for interaction with older
telephony networks, especially Interactive Voice Response (IVR) systems.

XEP-0182: Application-Specific Error Conditions
This Procedural document defines the use of a registry of error conditions, main-
tained by the XMPP Registrar at http://xmpp.org/registrar/errors.html.

XEP-0184: Message Receipts
This is a method for a sender to request notification when a message has reached
the recipient. It is similar to the Read Receipts that email provides.

XEP-0185: Dialback Key Generation and Validation
This Informational XEP discusses the generation of the keys used in the dialback
between servers that is used for identity verification during stream initiation.

XEP-0186: Invisible Command
This specification provides an alternative invisibility protocol to XEP-0126. Where
XEP-0126 uses Privacy Lists to make an entity appear invisible, Invisible Command
uses an explicit command sent to a supporting server.

XEP-0189: Public Key Publishing
This XEP defines methods for sharing an entity’s public keys used in cryptography,
with transport methods both over PEP/PubSub and direct querying of entities.

244 | Appendix A: A Guide to XMPP Specifications

http://xmpp.org/registrar/errors.html

XEP-0190: Best Practice for Closing Idle Streams
This Informational XEP describes the best practices for handling the closing of a
stream due to inactivity. This mostly amounts to sending a closing
</stream:stream>, sending no stanzas after this, and waiting for the other entity to
also send a stream-closing element before terminating the stream. This recom-
mendation is included in rfc3920bis.

XEP-0191: Simple Communications Blocking
This is an alternative to Privacy Lists, providing a simpler interface when the more
complete control offered by Privacy Lists isn’t required. Simple Communications
Blocking provides only two commands: either “block this contact” or “unblock
this contact.”

XEP-0192: Proposed Stream Feature Improvements
This XEP defines improvements to feature negotiation and advertisement during
establishment of an XML stream between two entities. The recommendations have
been included in rfc3920bis.

XEP-0193: Proposed Resource Binding Improvements
Along with XEP-0192, this is another XEP defining improvements for the next
version of the XMPP RFCs, this time the binding to a resource by a client.

XEP-0194: User Chatting
User Chatting (Standards Track) defines a method for revealing (via PEP/PubSub)
which chat rooms a user is in.

XEP-0195: User Browsing
Similar to XEP-0194, User Browsing is an XEP for announcing the web pages that
a user visits.

XEP-0196: User Gaming
The third in this series of personal eventing payload XEPs, User Gaming publishes
events detailing the games a user plays.

XEP-0197: User Viewing
The last of the four XEPs in this series, User Viewing is an XEP for publishing
information about the video that a user is watching.

XEP-0198: Stream Management
This defines a set of improvements to XMPP stream handling relating to reliable
delivery, disconnection detection, and session resumption. Defining stanza ac-
knowledgments and pings, it allows an entity to know which stanzas are delivered
before a disconnection, and allows a session to resume after a disconnection by
providing the identity of the last received stanza. Because these features are defined
at the stream level, they provide reliable XMPP sessions for an individual hop.

XEP-0199: XMPP Ping
A complement to Stream Management, XMPP Ping defines entity to entity pings,
allowing disconnects to be tested at any hop between two XMPP entities, or end-
to-end.

XMPP Extension Protocols | 245

XEP-0201: Best Practices for Message Threads
Because message threads or conversations are traditionally an under-specified area
of XMPP, this Informational XEP attempts to provide best practices for handling
the <thread/> element in message stanzas. It covers handling of threads with dif-
ferent message types, and the creation and termination of threads.

XEP-0202: Entity Time
This defines a protocol for querying an XMPP Entity’s local time, including the
time-zone offset from UTC.

XEP-0203: Delayed Delivery
This XEP defines a protocol for stamping the time in an XMPP stanza, so that if
delivery is delayed, the original send-time can be determined. Examples are given
for receiving presence on login, offline messages, and messages sent in a chat room
before one joins it.

XEP-0205: Best Practices to Discourage Denial of Service Attacks
This is an Informational XEP defining a series of practices for alleviating the effects
of denial of service attacks. These include approaches such as rate limiting con-
nections, limiting the number of concurrent connections, the number of allowed
resources for one user, and the size of stanzas.

XEP-0206: XMPP Over BOSH
Partner to the BOSH protocol (XEP-0124), this XEP defines the use of BOSH as a
transport layer for XMPP streams.

XEP-0209: Metacontacts
Metacontacts is a term coined for the merging of several accounts belonging to one
user into a single logical contact. This XEP defines methods for doing this in XMPP,
including metacontacts that span several accounts, in a way that allows the meta-
contacts to persist when any of the accounts are missing or offline.

XEP-0220: Server Dialback
Originally defined in the XMPP RFCs but since moved to an XEP, Server Dialback
is the process of (weakly but usually effectively) verifying the initiator of an XMPP
S2S stream by attempting a return connection to the service the initiator claims to
be (looked up over DNS). We discussed the server dialback protocol in Chapter 12.

XEP-0221: Data Forms Media Element
This XEP defines a <media/> element for data forms that can reference media types
such as audio and video. Currently this is used only in CAPTCHA Forms
(XEP-0158) for spam prevention.

XEP-0222: Best Practices for Persistent Storage of Public Data via Publish-Subscribe
This Informational XEP simply describes how PubSub can be used to store persis-
tent data relating to an entity, such as its public cryptographic keys.

246 | Appendix A: A Guide to XMPP Specifications

XEP-0223: Best Practices for Persistent Storage of Private Data via Publish-Subscribe
Partner to XEP-0222, this Informational XEP discusses how PubSub can be used
to store private data for an entity. Over time, this is expected to replace the
iq:private mechanism defined in XEP-0049.

XEP-0224: Attention
This simple XEP defines a stanza that can be sent to request the attention of a
conversation partner or other contact. This typically results in a buzz, nudge, or
other attention-getting action on the contact’s machine.

XEP-0225: Component Connections
A possible replacement for the Jabber Component Protocol (XEP-0114), this XEP
provides methods for components to connect to servers using the now-standard
mechanisms in XMPP, such as TLS and SASL; it also allows multiple hostnames
to bind on a single connection.

XEP-0226: Message Stanza Profiles
In XMPP, <message /> stanzas can have many types of payload, some of which are
confusing and some nonsensical when presented together. This Informational XEP
attempts to list profiles for the many payload types, providing best practices for
the combination of these payloads.

XEP-0229: Stream Compression with LZW
This XEP describes how the LZW compression algorithm may be used with Stream
Compression (XEP-0138), as an alternative to the ZLIB algorithm used in that
specification.

XEP-0231: Bits of Binary
Bits of Binaryis a protocol for exchanging small amounts of binary data within an
XMPP stream. The data can be referenced with a cid identifier, allowing entities
to request the data only the first time they need it, and subsequently cache the
binary data and receive only references to it. We discussed this extension in Chap-
ter 10.

XEP-0232: Software Information
This is an alternative to the Software Version protocol (XEP-0092). Software In-
formation allows the transmission of information about a software deployment,
such as the version, within a service discovery result. As a consequence of embed-
ding this inside disco#info payloads, Entity Capabilities will be able to cache the
result, reducing the need for polling across the network.

XEP-0234: Jingle File Transfer
This Standards Track XEP defines a Jingle application for file transfer between
entities. While not currently widely deployed, it is expected to slowly replace the
established SI File Transfer protocol (XEP-0096) as more XMPP clients converge
on the use of Jingle.

XMPP Extension Protocols | 247

XEP-0235: OAuth Over XMPP
Predictably, this XEP defines a mechanism for using the OAuth protocol over
XMPP to gain access to resources. This allows external entities to access protected
resources of a user through the sharing of tokens, obviating the need for providing
third-party services with either your authentication details or unmitigated access
to your account. For example, you may allow a third-party service to modify your
vCard or publish PEP data on your behalf, but not access your roster or commu-
nicate with your contacts.

XEP-0237: Roster Versioning
This XEP provides a solution to the problem of retrieving roster information anew
for each session, which slows down the client login process, especially on mobile
devices. The Roster Versioning modification enables the server to assign a sequence
number to each revision of the roster information so that when a client logs in, it
can specify the most recent version it has cached. If the version has not changed,
the server will inform the client that it is up-to-date; if it has changed, the server
will send roster pushes for the changed roster items.

XEP-0244: IO Data
IO Data provides a richer alternative to Data Forms and Ad-Hoc Commands, in-
cluding more heavily structured data. The IO Data protocol is heavily biased to-
ward control of computational systems, with transaction semantics and inclusion
of job duration tracking.

XEP-0245: The /me Command
This XEP documents the Historical practice of transforming the text /me does
something in the recipient’s client to be rendered in some way that denotes the user
“doing something.” It is often rendered so that if a user Alice sends /me heads down
the rabbit hole, it is displayed to the recipient user as * Alice heads down the
rabbit hole.

XEP-0249: Direct MUC Invitations
Although the MUC protocol includes a mechanism for requesting that an MUC
room in which you are a participant send an invitation to a contact, privacy lists
or local policy may prevent the invitee from receiving the invite (since it doesn’t
know or hasn’t whitelisted the MUC room). This XEP simply allows sending an
MUC invite directly from one user to another, solving the problem because con-
tacts will already be able to send messages to each other.

XEP-0251: Jingle Session Transfer
This specification defines methods for transferring a Jingle session (usually a voice
chat session) from one party to another. Both attended transfer and unattended
transfer are handled by this protocol.

XEP-0253: PubSub Chaining
Sometimes it is desirable to subscribe one publish-subscribe node to another for
the purpose of lightweight data aggregation; this XEP specifies several useful tech-
niques for such “chaining” functionality.

248 | Appendix A: A Guide to XMPP Specifications

XEP-0254: PubSub Queueing
The full potential of the XMPP publish-subscribe extension is only just beginning
to be explored. XEP-0060, the base pubsub specification, defines protocols that
implement the “Observer” design pattern. By contrast, XEP-0254 defines several
small extensions that enable XMPP pubsub systems to support another major de-
sign pattern, usually called the “Queueing” or “Point-to-Point” pattern.

XEP-0255: Location Query
The XMPP geolocation payload format defined in XEP-0080 provides useful
information about an entity’s physical location. However, many devices cannot
directly produce data such as GPS coordinates; therefore, XEP-0255 provides a
way for such devices to use data they have (such as cellular phone beacons) to query
a location service to discover data in a format that can be communicated via
XEP-0080.

XEP-0256: Last Activity in Presence
This specification defines a way to notate a presence update with information that
is formatted according to the Last Activity specification (XEP-0012). As a result, a
user can know when a contact was last active when first receiving availability data
during a presence session.

XEP-0258: Security Labels in XMPP
The concept of a security label is commonly understood from government and
military applications (for example, “Top Secret”), but applies to many kinds of
information systems. XEP-0258 defines methods for including security label data
in XMPP communications.

XEP-0259: Message Mine-ing
In some XMPP systems, a message sent to an address that has multiple online
resources can be delivered to more than one of those resources. This specification
provides a way for a given resource to claim the message so that the other resources
will not show it to the user.

XEP-0260: Jingle SOCKS5 Bytestreams Transport Method
In order to reuse the SOCKS5 Bytestreams protocol (XEP-0065) in Jingle for file
transfer, end-to-end encryption, and other streaming data exchanges, this specifi-
cation defines a Jingle-specific method for setting up a SOCKS5 bytestream.

XEP-0261: Jingle In-Band Bytestreams Transport Method
Just as XEP-0260 defines a Jingle-specific method for reusing the SOCKS5 Byte-
streams protocol, XEP-0261 defines a similar method for reusing the In-Band
Bytestreams protocol (XEP-0047).

XEP-0262: Use of ZRTP in Jingle RTP Sessions
XEP-0167, the specification for Jingle voice calls, recommends using Secure Real-
time Transport Protocol (SRTP) for encryption of audio data. An alternative en-
cryption technology is ZRTP, developed by Phil Zimmerman, the inventor of Pretty
Good Privacy (PGP). XEP-0262 defines a way to use ZRTP in Jingle for secure voice
calls.

XMPP Extension Protocols | 249

Humorous XEPs
As well as the genuine protocol extensions and guideline documents listed in the pre-
vious section, the XSF publishes a range of humorous XEPs, usually on April 1st of
each year, showing that even protocol geeks have a sense of humor:

XEP-0076: Malicious Stanzas
Malicious Stanzas defines an <evil/> element, which can be added to XMPP stan-
zas to indicate that they are sent with malicious intent. This is in tandem with a
similar IETF April Fool’s day protocol for specifying an “evil bit” in IPv4.

XEP-0132: Presence Obtained via Kinesthetic Excitation (POKE)
POKE defines a method of requesting that a remote client physically interacts with
a user to determine their presence.

XEP-0148: Instant Messaging Intelligence Quotient (IM IQ)
This April Fool’s XEP describes the jabber:iq:iq namespace, used for server-side
calculation of a user’s intelligence, and the inclusion of the result in outbound
stanzas.

XEP-0169: Twas The Night Before Christmas (Jabber Version)
This is a rendering of the classic Christmas poem in XMPP stanzas, using mecha-
nisms such as requests for the time revealing that it was the night before Christmas,
presence revealing the mouse asleep, and User Location revealing that the children
were in bed.

XEP-0183: Jingle Telepathy Transport Method
This XEP defines a transport definition for Jingle that initiates a telepathic com-
munication stream.

XEP-0207: XMPP Eventing via Pubsub
It was once a long-standing joke in the XMPP community that all other specifica-
tions could be rewritten to use PubSub as the transport layer. This XEP was an
April Fool’s attempt to do this.

XEP-0239: Binary XMPP
More bandwidth-efficient transmission of XMPP has long been of interest among
some members of the community, and one possible approach is a binary repre-
sentation of the XML. This XEP is a humorous approach to binary XMPP: con-
verting all stanza text directly into the binary representation of the stanza strings,
and then encoding this in <zero/> and <one/> XML elements.

XMPP Compliance Suites
Each year the XSF releases Standards Track recommendations that describe reasonable
sets of XEPs to support interoperability in the XMPP sphere. The compliance suites for
2009 are (or, depending on when you read this, were) XEP-0242 and XEP-0243. Refer
to http://xmpp.org for more up-to-date compliance suites.

250 | Appendix A: A Guide to XMPP Specifications

http://xmpp.org

XEP-0242: XMPP Client Compliance 2009
Client Compliance 2009 recommendation is split into Core Client and Advanced
Client suites. The Core Client list consists of only the XMPP RFCs, Service Dis-
covery, and Entity Capabilities. The Advanced Client lists the Core Client features,
Server-Based Privacy Rules, Simple Communications Blocking, Multi-User Chat,
vcard-temp, and Chat State Notifications.

XEP-0243: XMPP Server Compliance 2009
The Server Compliance 2009 is similarly split into Core Server and Advanced Server
suites. The Core Server compliance requires compliance to the XMPP RFCs and
to Service Discovery. The Advanced Server list includes Core Server, Server-Based
Privacy Rules, Simple Communications Blocking, Multi-User Chat, and vcard-
temp, similar to the Advanced Client list. Advanced Server additionally lists BOSH,
XMPP Over BOSH, and Personal Eventing Protocol; this difference reflects the fact
that clients do not need these features to interact, but that enough clients require
them of their servers to make them worthy of inclusion.

XMPP Compliance Suites | 251

APPENDIX B

Popular Servers, Clients, and Libraries

In this book, we focused primarily on XMPP protocols and the thought processes and
design decisions involved in building XMPP applications. There’s a good reason for
this: so many XMPP-based software codebases exist that describing XMPP only in terms
of a particular server, library, or API might limit your ability to translate what you’ve
learned into other codebases. However, we would be remiss if we didn’t describe some
of the more popular software projects in the XMPP community. This list is only a
snapshot of the (mostly free and open source) software projects that are relatively active
at the time of this writing. By the time you read this, it’s possible that some of these
projects will have disappeared or at least become obsolete, while new projects will have
emerged, so visit http://xmpp.org for up-to-date links to the wealth of XMPP-based
software applications.

Servers
The following list describes the most popular open source XMPP servers:

djabberd
This is the server created by SixApart for its LiveJournal deployment, known as LJ
Talk. The djabberd codebase is designed to be extremely modular. It is something
of a bare-bones implementation without a lot of polish or packaging, so if you use
it, be prepared to get your hands dirty. The original developers still contribute to
the project, and patches come in on a fairly regular basis. Language: Perl. License:
GPL. Website: http://www.danga.com/djabberd/.

ejabberd
The ejabberd project was started by several developers in Russia. The primary focus
of development has since shifted to Process-one, a company in France that also
provides support for the codebase. The server is well-known for its scalability, and
it can be clustered across multiple instances. However, the code is written in Erlang
(a functional programming language), which could scare off some potential users
and contributors (to be fair, the project receives a large number of code
contributions, perhaps because there are not many prominent Erlang projects).

253

http://xmpp.org
http://www.danga.com/djabberd/

Language: Erlang. License: GPL. Website: http://www.process-one.net/en/ejab
berd/.

jabberd
The jabberd codebase is the direct descendant of the original server created by
Jeremie Miller, the inventor of Jabber/XMPP technologies (who learned the C pro-
gramming language by developing the server!). For many years, jabberd was the
reference implementation of the Jabber protocols (even before they were named
XMPP), and some of the oddities in the XMPP RFCs are there for backward com-
patibility with the jabberd server. The project has become less active over the years,
but the code is very stable and is still maintained by Matthias Wimmer. Language:
C. License: GPL. Website: http://jabberd.org/.

jabberd2
The jabberd2 project sounds like an upgraded version of the jabberd project, but
in fact it is a totally separate codebase. This is another highly modular server, with
separable routers, connection mangers, and the like. Some of the early design ideas
were provided by Jeremie Miller, but the server was essentially created by Rob
Norris, who then moved on to other pursuits; the project was effectively aban-
doned for a while, then resurrected by Tomasz Sterna. Language: C. License: GPL.
Website: http://jabberd2.xiaoka.com/.

Openfire
Openfire was originally a commercial product (“Jive Messenger”) developed by
Jive Software. The company decided to open source the code in 2004, first under
the name Wildfire and then (after trademark issues arose) as Openfire. The server
is very easy to install, runs on both Windows and Unix systems, and is especially
popular with small to midsize businesses and universities. Language: Java. License:
GPL. Website: http://www.igniterealtime.org/projects/openfire/.

Prosody
Prosody is a relatively new codebase written in the Lua programming language.
The Prosody team is focusing on simplicity for server administrators (e.g., ease of
installation, minimal hardware requirements) and flexibility for developers (e.g.,
the ability to rapidly protocol new features). Language: Lua. License: MIT. Web-
site: http://prosody.im/.

Tigase
The Tigase server, primary developed by Artur Hefczyc, is becoming very popular
with companies that want a scalable but accessible codebase. The server is quite
feature-complete, including support for PubSub and other advanced XMPP ex-
tensions. Language: Java. License: GPL. Website: http://www.tigase.org/.

In addition to the foregoing, there are a number of less popular open source servers, as
well as commercial servers sold by the likes of Cisco, Isode, and Sun Microsystems.
Because the XMPP community has less direct experience with these servers, it is difficult
to review them here. However, that doesn’t mean they won’t meet your needs, so be
sure to check the complete list of servers at http://xmpp.org.

254 | Appendix B: Popular Servers, Clients, and Libraries

http://www.process-one.net/en/ejabberd/
http://www.process-one.net/en/ejabberd/
http://jabberd.org/
http://jabberd2.xiaoka.com/
http://www.igniterealtime.org/projects/openfire/
http://prosody.im/
http://www.tigase.org/
http://xmpp.org

Clients
There are dozens and dozens of XMPP clients in existence—this section describes only
a small sample. For ease of reference, we list code clients by computing platform, not
the name of the client. Except where noted, these clients are open source, and in all
cases, they can be freely downloaded or come bundled with an existing operating
system.

Cross-Platform (Linux, Mac OS X, Windows)
Coccinella

The Coccinella client initially started out as a dedicated XMPP client with built-in
whiteboarding; the developers have also added support for voice communication
via integration with the open source Asterisk system. License: GPL. Website: http:
//coccinella.im/.

Jeti
Jeti is a Java applet that provides XMPP support on a wide variety of computing
platforms. The codebase is quite mature and well-supported. License: GPL. Web-
site: http://jeti.sourceforge.net/.

Psi
The Psi client traditionally targeted “power users,” but these days tries to provide
a usable interface for everyone. It has implementations of many of the XMPP ex-
tensions, and it provides tools for service administration and exploration of the
XMPP network. License: GPL. Website: http://psi-im.org/.

Spark
Spark is a business-oriented client, and is closely related to the Openfire server.
Besides integration with the Openfire server, it also provides semi-proprietary au-
dio and video communication capabilities. License: LGPL. Website: http://www
.igniterealtime.org/projects/spark/.

Swift
Swift is a young client developed by two of the authors of this book (Remko and
Kevin). The project aim is to build a client entirely driven by user needs, providing
an intuitive interface to the most commonly required tasks. Website: http://swift
.im/.

Tkabber
Few people would say that Tkabber is the prettiest client in the world, but it sup-
ports many XMPP extensions and runs on a large number of computing platforms.
License: GPL. Website: http://tkabber.jabber.ru/.

Clients | 255

http://coccinella.im/
http://coccinella.im/
http://jeti.sourceforge.net/
http://psi-im.org/
http://www.igniterealtime.org/projects/spark/
http://www.igniterealtime.org/projects/spark/
http://swift.im/
http://swift.im/
http://tkabber.jabber.ru/

Linux
Empathy

Empathy reuses the user interface from the Gossip client on top of a flexible frame-
work for desktop integration. The client supports many IM protocols, as well as
voice and video chat. License: GPL. Website: http://live.gnome.org/Empathy.

Gajim
Gajim is a full-featured, dedicated XMPP client written in Python. It is available in
a large number of languages and supports many advanced XMPP features, with a
special focus on strong security. License: GPL. Website: http://gajim.org/.

Gossip
Gossip is a dedicated XMPP client for the GNOME desktop that puts a premium
on being user-friendly for normal users. License: GPL. Website: http://developer
.imendio.com/projects/gossip/.

Kopete
Kopete is a multiprotocol client for the KDE desktop, which includes good support
for XMPP. License: GPL. Website: http://kopete.kde.org/.

Pidgin
Pidgin, formerly known as Gaim, is a very popular multiprotocol client for Linux
(it can also be built on Windows). Its underlying library, libpurple, is shared with
the Adium client for Mac OS X. License: GPL. Website: http://pidgin.im/.

Mac OS X
Adium X

Adium X is the most popular multiprotocol IM client for Mac OS. It shares the
libpurple library with the Pidgin client, which has good support for most basic (and
some advanced) XMPP features. License: GPL. Website: http://adiumx.com/.

iChat
iChat is a proprietary IM client that comes free with the Macintosh operating sys-
tem. It has supported Jabber functionality for several years, originally in serverless
messaging mode and then in client-server mode. The client is very user-friendly
but deliberately does not support more advanced features, such as chat room con-
figuration or ad-hoc commands. License: Proprietary. Website: http://www.apple
.com/macosx/features/ichat.html.

256 | Appendix B: Popular Servers, Clients, and Libraries

http://live.gnome.org/Empathy
http://gajim.org/
http://developer.imendio.com/projects/gossip/
http://developer.imendio.com/projects/gossip/
http://kopete.kde.org/
http://pidgin.im/
http://adiumx.com/
http://www.apple.com/macosx/features/ichat.html
http://www.apple.com/macosx/features/ichat.html

Windows
Exodus

Exodus was developed by Peter Millard, one of the early contributors to the Jabber
open source community. Since Peter’s death in 2006, there have been no new re-
leases of Exodus, but it is still a solid XMPP client. License: GPL. Website: http://
code.google.com/p/exodus/.

JAJC
JAJC is an ICQ-like client designed to run on any 32-bit Windows machine. Li-
cense: Proprietary. Website: http://jajc.jrudevels.org/.

Miranda IM
Miranda IM is a multiprotocol client designed to be very light on system resources,
extremely fast, and customizable. It provides an extensible plug-in architecture,
including a plug-in for XMPP functionality. License: GPL. Website: http://www
.miranda-im.org/.

Pandion
Pandion (formerly RhymBox) is a user-friendly, dedicated XMPP client that is quite
popular with end users. License: Proprietary. Website: http://www.pandion.be/.

Web Browsers
Claros Chat

Claros Chat is a full-featured Jabber client for the Web, built using Java Server
Pages and standard Ajax connectivity. License: GPL. Website: http://www.claros
.org/web/showProduct.do?id=2.

iJab
The iJab client is completely written in JavaScript, based on the JSJaC library and
Google Web Toolkit. License: GPL. Website: http://code.google.com/p/ijab/.

Jabbear
Jabbear is a no-download client that works in any web browser and supports a
number of XMPP features, including file transfer. License: Proprietary. Website:
http://www.jabbear.com/en/.

JWChat
JWChat is the longest-running XMPP web client project and is built by the same
developers as the JSJaC library. It supports instant messaging, rosters, and multi-
user chat via JavaScript and HTML on the client side. License: GPL. Website:
http://blog.jwchat.org/jwchat/.

SamePlace
SamePlace is an extension to the popular Firefox web browser. It supports instant
messaging as well as more advanced collaboration features. License: GPL. Website:
http://www.sameplace.cc/.

Clients | 257

http://code.google.com/p/exodus/
http://code.google.com/p/exodus/
http://jajc.jrudevels.org/
http://www.miranda-im.org/
http://www.miranda-im.org/
http://www.pandion.be/
http://www.claros.org/web/showProduct.do?id=2
http://www.claros.org/web/showProduct.do?id=2
http://code.google.com/p/ijab/
http://www.jabbear.com/en/
http://blog.jwchat.org/jwchat/
http://www.sameplace.cc/

SparkWeb
SparkWeb follows the example of the Spark client by focusing on the needs of
business users. It includes support for multi-user chat and strong security. License:
GPL. Website: http://www.igniterealtime.org/projects/sparkweb/.

TrophyIM
TrophyIM is built using the Strope library and works in all recent browsers. Li-
cense: MIT. Website: http://code.google.com/p/trophyim/.

Libraries
For ease of reference, we list code libraries by language, not the name of the library.

ActionScript
ActionScript is a scripting language used primarily for the development of websites and
software using the Flash environment. The only XMPP library for ActionScript is
as3xmpp, created by Daniel Dura for ActionScript 3. License: New BSD License. Web-
site: http://code.google.com/p/as3xmpp/.

C
The C programming language is one of the most widely used languages in existence.
The following are the three main XMPP libraries for C:

iksemel
The iksemel library is a highly portable, low-footprint codebase that supports all
core XMPP functionality. The code is quite modular and can be trimmed as needed,
making iksemel a good choice for embedded systems and other platforms that
require low memory usage and fast performance. The code is stable but not fre-
quently updated. License: LGPL. Website: http://code.google.com/p/iksemel/.

Loudmouth
Loudmouth is intended to be easy to use and highly extensible. It is used in the
Gossip client and in several other projects. There are also bindings for Ruby. Li-
cense: GPL. Website: http://groups.google.com/group/loudmouth-dev.

Strophe
Strophe is a well-documented library for developing XMPP clients, including ro-
bust TLS and SASL support. Strophe comes in two flavors: C (libstrophe) and
JavaScript (strophejs). License: GPL. Website: http://code.stanziq.com/strophe/.

258 | Appendix B: Popular Servers, Clients, and Libraries

http://www.igniterealtime.org/projects/sparkweb/
http://code.google.com/p/trophyim/
http://code.google.com/p/as3xmpp/
http://code.google.com/p/iksemel/
http://groups.google.com/group/loudmouth-dev
http://code.stanziq.com/strophe/

C++
C++ is a powerful, general-purpose, object-oriented programming language that has
long been quite popular with software developers in a wide variety of domains. There
are two main C++ libraries for XMPP development:

gloox
The gloox library is a very solid, well-documented, full-featured C++ library. It is
designed to be easy to use, extensible, and platform independent. License: GPL/
Commercial. Website: http://camaya.net/gloox.

Iris
Iris is a Qt/C++ library that includes support for all core XMPP protocols and a
number of extensions. License: GPL/Commercial. Website: http://delta.affinix
.com/iris/.

C#
C# is a simple, modern, general-purpose, object-oriented programming language de-
veloped by Microsoft. With a syntax heavily influenced by C++, Delphi, and Java, as
well as broad support in Windows tools and the .NET Framework, C# has become a
popular choice for many developers. The following are the primary open source
libraries:

agsXMPP
agsXMPP is an SDK that can be used for client, component, and server develop-
ment. License: GPL/Commercial. Website: http://www.ag-software.de/.

jabber-net
The jabber-net library provides a set of .NET controls for sending and receiving
XMPP data. It includes support for client connections, server components, pres-
ence, service discovery, and other XMPP primitives. License: LGPL. Website: http:
//code.google.com/p/jabber-net/.

Flash
Flash is a software environment for building rich web interfaces, and its two main
libraries are:

TwhiX
TwhiX is an XMPP library for Flash 9+ using an event-driven style. It supports the
core XMPP protocols (including encrypted connections), and additional exten-
sions can be added through its plug-in-based architecture. License: Apache 2.0.
Website: http://code.google.com/p/twhix/.

Libraries | 259

http://camaya.net/gloox
http://delta.affinix.com/iris/
http://delta.affinix.com/iris/
http://www.ag-software.de/
http://code.google.com/p/jabber-net/
http://code.google.com/p/jabber-net/
http://code.google.com/p/twhix/

XIFF
XIFF is the longest-established XMPP library for Flash. It supports the core XMPP
protocols and a number of extensions. License: LGPL. Website: http://www.igni
terealtime.org/projects/xiff/.

Java
Java is a general purpose, object-oriented programming language developed by Sun
Microsystems. Although originally developed for client-side applications, it is also quite
popular in servers and general applications. Its two main libraries are:

JSO
The Jabber Stream Objects (JSO) library is a solid implementation that is mainly
used for component and server development. It includes low-level support for
Jabber/XMPP protocol elements, as well as a fully controllable stream connection
interface, with the goal of providing a highly customizable and flexible platform
for building Jabber-based applications. License: LGPL. Website: https://jso.dev
.java.net/.

Smack
Smack is a very popular, full-featured library for writing clients, bots, and other
applications. It was produced by the same developers who created the Openfire
server and the Spark client. License: Apache. Website: http://www.igniterealtime
.org/projects/smack/.

JavaScript
JavaScript is the most popular scripting language for client-side web development. Be-
cause the integration of Jabber features into websites is of inherent interest, there are
many JavaScript libraries for XMPP development, as listed here:

JSJaC
JSJaC is an object-oriented library that supports client connections to XMPP serv-
ers via BOSH or the older HTTP Polling method. It uses the Ajax methodology
and is fully compatible with all major Ajax/JavaScript frameworks. License: Mo-
zilla Public License or GPL or LGPL. Website: http://blog.jwchat.org/jsjac/.

Strophe
Strophe is a well-documented library for developing XMPP clients, including ro-
bust TLS and SASL support. Strophe comes in two flavors: C (libstrophe) and
JavaScript (strophejs). License: GPL. Website: http://code.stanziq.com/strophe/.

XMPP4GWT
The XMPP4GWT library is created by the producers of the Tigase XMPP server
and uses the Google Web Toolkit (GWT) framework. License: GPLv3. Website:
http://www.tigase.org/en/project/xmpp4gwt.

260 | Appendix B: Popular Servers, Clients, and Libraries

http://www.igniterealtime.org/projects/xiff/
http://www.igniterealtime.org/projects/xiff/
https://jso.dev.java.net/
https://jso.dev.java.net/
http://www.igniterealtime.org/projects/smack/
http://www.igniterealtime.org/projects/smack/
http://blog.jwchat.org/jsjac/
http://code.stanziq.com/strophe/
http://www.tigase.org/en/project/xmpp4gwt

xmpp4js
The xmpp4js library is used in the Soashable web-based messenger. It has been
heavily tested and has a strong emphasis on reusability and extensibility. License:
LGPL. Website: http://xmpp4js.sourceforge.net/.

Perl
Perl is a high-level, general-purpose, interpreted, dynamic programming language. It
is still very popular for scripting and even application development (e.g., the djabberd
server is written in Perl). Its two main libraries are:

AnyEvent::XMPP
AnyEvent::XMPP (formerly Net::XMPP2) is an event-driven Perl library that offers
support for the core XMPP RFCs and a significant number of XMPP extensions.
Website: http://www.ta-sa.org/projects/net_xmpp2.html.

Net::XMPP
Net::XMPP is an updated version of Net::Jabber, the original Perl library for Jabber
written by Ryan Eatmon (one of the earliest developers in the Jabber open source
community). Website: http://www.ta-sa.org/projects/net_xmpp2.html.

PHP
PHP is a popular scripting language for building dynamic websites. There are two main
PHP libraries for XMPP development:

Lightr
Lightr is an XMPP client that is intended to be run by an Ajax-enabled frontend
and therefore functions as a library for Web/Jabber integration. License: BSD.
Website: https://area51.myyearbook.com/trac.cgi/wiki/Lightr.

XMPPPHP
XMPPPHP is a successor to the older Class.Jabber.PHP project. It supports all of
the core XMPP functionality, including TLS encryption. License: GPL. Website:
http://code.google.com/p/xmpphp/.

Python
Python is a dynamic, object-oriented programming language that is widely used for
scripting and software development. There are many XMPP libraries for Python, but
here are the most active projects:

PyXMPP
PyXMPP is a stable library developed by Jacek Konieczny. The library provides
solid support for the core XMPP RFCs and a number of XMPP extensions (service
discovery, vCards, data forms, etc.). It can be used to create both clients and server
components. License: LGPL. Website: http://pyxmpp.jajcus.net/.

Libraries | 261

http://xmpp4js.sourceforge.net/
http://www.ta-sa.org/projects/net_xmpp2.html
http://www.ta-sa.org/projects/net_xmpp2.html
https://area51.myyearbook.com/trac.cgi/wiki/Lightr
http://code.google.com/p/xmpphp/
http://pyxmpp.jajcus.net/

SleekXMPP
SleekXMPP is primarily developed by Nathan Fritz and is used in Chapter 14 of
this book as the basis for application development. The library is fairly recent but
has strong support for the XMPP RFCs, as well as the XEPs that are Draft or Final.
License: GPL. Website: http://code.google.com/p/sleekxmpp/.

Twisted
Twisted is an event-driven networking engine that has support for just about every
network protocol in existence, including XMPP. Although Twisted has been used
for some client development, its forte is component development, and it is even
being used as the basis for an XMPP server daemon. License: MIT. Website: http:
//twistedmatrix.com/.

xmpppy
The xmpppy library focuses on scripting with XMPP. It inherits some code from
the older jabber.py library and has been used to write both bots and server com-
ponents. License: GPL. Website: http://xmpppy.sourceforge.net/.

Ruby
Ruby is a dynamic, reflective, object-oriented programming language that focuses on
simplicity and productivity. Its two main libraries are:

XMPP4R
The primary XMPP library for Ruby is XMPP4R, an event-based codebase that
aims to be fully XMPP compliant, with support for the XMPP RFCs and a number
of XEPs. The code is well-documented and the developers use unit tests to ensure
stability. License: Ruby License (GPL-compatible). Website: http://home.gna.org/
xmpp4r/.

xmpp4r-simple
xmpp4r-simple is a stripped-down version of XMPP4R, which is easier for devel-
opers to use in building simple Ruby applications. License: Ruby License (GPL-
compatible). Website: http://code.google.com/p/xmpp4r-simple/.

262 | Appendix B: Popular Servers, Clients, and Libraries

http://code.google.com/p/sleekxmpp/
http://twistedmatrix.com/
http://twistedmatrix.com/
http://xmpppy.sourceforge.net/
http://home.gna.org/xmpp4r/
http://home.gna.org/xmpp4r/
http://code.google.com/p/xmpp4r-simple/

APPENDIX C

Further Practical Considerations

This appendix provides a few tips that can help you along the path of learning about,
implementing, and deploying XMPP applications.

Getting Started
A good way to start your experiments with XMPP technologies is to download a client,
create an account at one of the public XMPP servers, and explore some of the chat
rooms, bots, and other resources available on the network. Here’s how:

1. Visit http://xmpp.org and follow the links to the client software page, where you
can find XMPP clients for just about every computing platform imaginable. Almost
all of these clients can be downloaded without charge (“free as in beer”), and many
of them are also open source (“free as in speech”) so that you can inspect the source
code to see how they work.

2. You might already have an XMPP account but you just don’t know it (for example,
an existing Gmail or Live Journal account also functions as an XMPP account). If
not, you can create an account at the jabber.org IM service or any one of the hun-
dreds of public XMPP servers.

3. Once you have logged in to your account, join the primary developer chat room
on the XMPP network: jdev@conference.jabber.org. The coders in this room can
always provide helpful pointers to the latest news and developments related to
Jabber/XMPP technologies. They can also help you think through the design pro-
cesses involved in building your own XMPP applications, so make the jdev room
your first port of call on the network.

If you like what you see, you might consider running your own XMPP server, because
it’s easier to debug your code if you have access to both sides of an XML stream. Your
server can start out as a private deployment (not connected to the public XMPP net-
work) while you work out the kinks, but it is also straightforward to federate your server
if you so please. Visit the server download page at http://xmpp.org to experiment with
deploying your own XMPP service.

263

http://xmpp.org
http://xmpp.org

Finally, if you get more deeply interested in contributing to the XMPP community,
you’ll want to find a project you can help out with (e.g., one of the open source clients,
servers, or libraries) and join one of the busy email discussion lists hosted by the XSF
(there is a complete inventory of these lists at http://xmpp.org).

Debugging Tools
When you are developing an application, it’s handy to have good debugging tools.
Some of the most useful tools XMPP developers have are those that observe and ma-
nipulate the underlying XML stream. In the olden days before support for TLS and
SASL became widespread, one way to work with client-to-server streams was to simply
telnet to a server on port 5222, copy and paste in the authorization elements using
Non-SASL Authentication [XEP-0078], and directly control the stream by typing raw
XML. An example of a telnet session is shown in Example C-1, using non-SASL
authentication over an unencrypted stream (not recommended except for
experimentation!).

Example C-1. Good old-fashioned telnet enables you to experiment with XMPP sessions

$ telnet wonderland.lit 5222
Trying 192.0.2.1...
Connected to wonderland.lit.
Escape character is "^]".

<stream:stream to="wonderland.lit" xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">

<stream:stream from="wonderland.lit" id="B7392AAOBX" xmlns="jabber:client"
 xmlns:stream="http://etherx.jabber.org/streams">

<iq id="a1" type="get">
 <query xmlns="jabber:iq:auth">
 <username>alice</username>
 </query>
</iq>

<iq id="a1" type="result">
 <query xmlns="jabber:iq:auth">
 <username/>
 <password/>
 <digest/>
 <resource/>
 </query>
</iq>

<iq id="a2" type="set">
 <query xmlns="jabber:iq:auth">
 <username>alice</username>
 <resource>telnet</resource>
 <password>rabbitsrock</password>
 </query>

264 | Appendix C: Further Practical Considerations

http://xmpp.org

</iq>

<iq id="a2" type="result"/>

<presence/>

<presence from="alice@wonderland.lit/telnet" to="alice@wonderland.lit/telnet"/>

<message from="alice@wonderland.lit/telnet" to="sister@realworld.lit" type="chat">
 <body>Help, I fell down the rabbit hole!</body>
</message>

<presence type="unavailable"/>

<presence from="alice@wonderland.lit/telnet"
 to="alice@wonderland.lit/telnet" type="unavailable"/>
</stream:steam>

These days, less primitive methods exist. One approach is to use a command-line script
such as sendxmpp, although this does not necessarily show you the complete XML.
Another approach is to use one of the many XMPP clients that provide an XML Con-
sole. A sample is shown in Figure C-1; as you can see, such an XML console enables
you to observe the incoming and outgoing stanzas, and to send new stanzas directly.
Some clients even keep a ringbuffer of recent stanzas so that you can recover interesting
stanzas after the event.

Debugging Tools | 265

Figure C-1. The Psi client’s XML console can be used to view the XML streams

As well as viewing the incoming and outgoing streams, these XML consoles allow you
to inject stanzas into the outgoing stream directly, as in Figure C-2. To avoid the server
disconnecting you due to typing mistakes, some XML consoles will even warn you of
XML errors in your stanza before you send it.

266 | Appendix C: Further Practical Considerations

Figure C-2. The Psi client’s XML console allows you to send XML stanzas in the stream manually—
even XML that will cause you to be disconnected!

The XML console is most useful for developers building client-to-server applications.
For server-to-server development, most XMPP daemons can be run in debug mode so
that you can view the stanzas that are sent to and from the server (this can also be very
helpful for client-to-server development so that you can see both the output of your
client and what a given server implementation does with the stanzas you send). For
more challenging debugging tasks (e.g., related to UTF-8 encoding of non-ASCII char-
acters, as described in [RFC 3629]), a network protocol analyzer such as Wireshark
can also prove quite useful.

Network Setup
When the time comes to deploy an XMPP service on the network, you probably want
it to be accessible to as wide an audience as possible. If your service is using standard
XMPP ports as registered with the Internet Assigned Numbers Authority (IANA), that
means exposing port 5222 if you want to allow client-to-server access and port 5269 if
you want to allow server-to-server access. Depending on deployment scenarios and
access policies, you might want to host this machine in the “DMZ” of your organiza-
tion’s network, or behind the firewall.

Network Setup | 267

Deployment of an XMPP-based service also requires proper configuration of Domain
Name System (DNS) settings. Although standard “A” and “AAAA” lookups are a fall-
back method for IPv4 and IPv6 respectively, the preferred method is to define DNS
Service (SRV) records. SRV records are similar to the MX records used for email servers,
except that they can be used by any application type. The SRV records for XMPP enable
you to specify exactly which machine or machines a client or server should connect to
in order to reach the XMPP service for your domain.

To specify an XMPP service for client-to-server connectivity at the wonderland.lit do-
main, you would define one or more SRV records for the _xmpp-client._tcp.wonder
land.lit service. For example, if you have two different machines (x1 and x2) that
handle client-to-server traffic, you would define two SRV records, such as the following:

_xmpp-client._tcp.wonderland.lit. 86400 IN SRV 10 10 5222 x1.wonderland.lit
_xmpp-client._tcp.wonderland.lit. 86400 IN SRV 10 5 5222 x2.wonderland.lit

To specify an XMPP service that enables server-to-server connectivity, you would define
one or more SRV records for the _xmpp-server._tcp.wonderland.lit service. For ex-
ample, if you have a special machine s2s.wonderland.lit that handles your server-to-
server traffic, you would define one SRV record, such as the following:

_xmpp-server._tcp.wonderland.lit. 86400 IN SRV 10 5 5269 s2s.wonderland.lit

If your XMPP service includes add-on components (e.g., multi-user chat rooms) that
need to be accessed by users from other domains, you will also need to define xmpp-
server SRV records for those components; this enables SRV lookups for the purpose
of server-to-server connectivity (e.g., to be used in a server dialback negotiation). For
example, if you host MUC rooms at conference.wonderland.lit, then you would prob-
ably define an SRV record for s2s connectivity using the same host you defined for
normal server-to-server traffic, as follows:

_xmpp-server._tcp.conference.wonderland.lit. 86400 IN SRV 10 5 5269 s2s.wonderland.lit

268 | Appendix C: Further Practical Considerations

Glossary

Authentication
In computer systems, authentication is the
act or process of establishing that someone
or something is what they claim to be. In
XMPP, authentication most often occurs
when a server confirms that a connecting
client has the proper credentials to establish
a session on behalf of a registered account
(these credentials usually take the form of a
username and password, but can also be a
digital certificate, a shared secret, or a tem-
porary token). Authentication can also oc-
cur between two peer servers based on the
use of digital certificates issued by a com-
mon certification authority. The original au-
thentication method used in the XMPP
community [XEP-0078] has been superse-
ded by use of the Simple Authentication and
Security Layer (SASL), defined in [RFC
4422].

Bare JID
XMPP developers often use the term “bare
JID” to refer to a JabberID of the form
user@domain.tld, in contrast to a “full JID”
of the form user@domain.tld/resource.

BOSH
BOSH (Bidrectional-stream Over Synchro-
nous HTTP) is an alternative HTTP binding
for XMPP traffic between a client and a
server, which uses a paired sequence of
HTTP requests and responses to mimic the
bidirectional XML streams used over the
standard TCP binding. BOSH is used
mainly by web clients and mobile devices

that cannot maintain long-lived TCP
connections.

Bot
A bot is an automated entity that typically
connects to a server as a client and then pro-
vides services to human users and other
bots, either directly or in a chat room.

Client
A client is an entity that authenticates with
a server to access the network, typically by
providing credentials associated with an ac-
count registered on the server. A client need
not be controlled by a human user and
might be an automated entity, such as a bot.

Component
Most XMPP servers are written in a modular
fashion that enables server administrators to
provide extended features by adding a
server-side component to the XMPP router
itself. Such components are typically used to
provide multi-user chat rooms, gateways or
“transports” to legacy IM systems, and
other specialized functionality.

Dialback
The server dialback protocol provides a way
for a server that receives a connection from
an originating peer to “call back” the au-
thoritative server based on a DNS lookup for
the domain name asserted by the originating
server. Dialback results in weak identity ver-
ification and is commonly used on the
XMPP network to help prevent address
spoofing.

269

Encryption
In information security, encryption is the
conversion of data into a form that cannot
be accessed or understood by unauthorized
entities (thus ensuring the confidentiality of
information but not necessarily its authen-
ticity or integrity). In XMPP, encryption
comes in two flavors. Channel encryption
provides data confidentiality for an XML
stream between a client and a server or be-
tween two servers, but does not encrypt the
data while it is processed by a server; in
XMPP this is accomplished through an
XMPP profile of the Transport Layer Secur-
ity (TLS) protocol that is defined in [RFC
5246]. Several XMPP technologies for end-
to-end encryption have been proposed over
the years (including OpenPGP, S/MIME,
XML Encryption, in-band Diffie-Hellman
key exchange, and end-to-end TLS), but as
of this writing, none has yet gained over-
whelming consensus among XMPP
developers.

Federation
XMPP servers connect to each other dynam-
ically based on DNS lookups and either
server dialback or domain certificates issued
by trusted certification authorities. This ad-
hoc connection model is similar to the
model used on the email network and does
not require the kind of formal peering agree-
ments that are common on traditional tele-
communication networks.

Full JID
XMPP developers often use the term “full
JID” to refer to a JabberID of the form
user@domain.tld/resource, in contrast to a
“bare JID” of the form user@domain.tld.

Gateway
A gateway is a server-side component that
provides connectivity and protocol transla-
tion between an XMPP system and a non-
XMPP system, such as SIP/SIMPLE or
Internet Relay Chat (IRC), or a closed
communications silo, such as AOL Instant
Messenger (AIM), ICQ, Windows Live
Messenger, or Yahoo! Instant Messenger.

Gateways (also called “transports”) were
important in the early days of the Jabber
open source community but have become
much less important over the years as more
organizations have deployed native XMPP
systems.

IQ
The IQ stanza is one of the three top-level
elements that can be sent over an XML
stream. The different IQ types enable struc-
tured interaction between XMPP entities;
specifically, an IQ stanza of type get is sim-
ilar to the HTTP GET method, and an IQ
stanza of type set is similar to the HTTP
POST and PUT methods.

Jabber Identifier (JID)
An XMPP address as used natively by
clients, servers, components, and other en-
tities; it is fully internationalized and is typ-
ically of the form domain.tld (for a server or
service), node@domain.tld (for an account,
bot, or chat room), or user@domain.tld/
resource (for a connected client or device).

Message
The IQ stanza is one of the three top-level
elements that can be sent over an XML
stream. It provides a “fire-and-forget”
mechanism for pushing information from
one entity to another, similar to an email or
SMS message.

Multi-User Chat (MUC)
An XMPP extension (defined in XEP-0045)
for multi-party information exchange, sim-
ilar to Internet Relay Chat (IRC). Typically
MUC is used for textual chat, but there are
no restrictions on the information that can
be passed through an MUC room.

Personal Eventing Protocol (PEP)
A profile of Publish-Subscribe (defined in
XEP-0163) that enables a user account to
function as a virtual pubsub service by inte-
grating standard XMPP presence and roster
semantics into publish-subscribe routing
and access decisions.

Encryption

270 | Glossary

Presence
Presence is information about the network
availability of an entity. In XMPP, presence
information is typically shared only with en-
tities that have an explicit subscription to
that information. The presence stanza is one
of the three top-level elements that can be
sent over an XML stream.

Publish-Subscribe (PubSub)
An XMPP extension (defined in XEP-0060)
for data syndication, alerts and notifica-
tions, rich presence, and other use cases that
implement the “observer” design pattern.

Resource
In XMPP, a “resource” is a connected de-
vice, client, or application that has authen-
ticated for a particular account. An XMPP
server will allow multiple simultaneous re-
sources for a given account, up to some con-
figurable limit. A connected resource has an
address of the form user@domain.tld/
resource.

Roster
A roster is a user’s contact list, including the
state of the user’s presence subscription to
each contact. The roster is stored on the
server so that a user can access it from any
device or client.

Server
An XMPP server is the authoritative entity
for a given domain (such as example.com).
A server typically manages accounts on be-
half of users, authenticates connecting cli-
ents, enforces local policies such as channel
encryption, connects as necessary to other
servers, etc.

Service Discovery (“disco”)
A method for determining the identity and
features of any entity on the network, de-
fined in XEP-0030.

Stanza
The basic unit of meaning in XMPP, formed
by the first-level child element of an XML
stream. The three stanza types are message,
presence, and IQ.

Stream
An XML stream is the dynamic container for
all XMPP communication. A client negoti-
ates a stream with a server to gain access to
the network, and a server can negotiate a
stream with a peer server to enable federated
communication among different domains.
Many core features (such as authentication
and channel encryption) occur at the level
of the stream. Once a stream is negotiated,
an entity can send an unbounded number of
stanzas over the stream.

Stream

Glossary | 271

Download at Boykma.Com

Download at Boykma.Com

Bibliography

[DNS-SD] Cheshire, Stuart. Krochmal, Marc. DNS-Based Service Discovery.

[mDNS] Cheshire, Stuart. Krochmal, Marc. Multicast DNS.

[RFC 1928] Leech, Marcus. SOCKS Protocol Version 5.

[RFC 2111] Levinson, Edward. Content-ID and Message-ID Uniform Resource Loca
tors.

[RFC 2426] Dawson, Frank. Howes, Tim. vCard MIME Directory Profile.

[RFC 2831] Leach, Paul. Newman, Chris. Using Digest Authentication as a SASL Mech
anism.

[RFC 3454] Hoffman, P. Blanchet, M. Preparation of Internationalized Strings (“string
prep”).

[RFC 3629] Yergeau, F. UTF-8, a transformation format of ISO 10646.

[RFC 3920] Saint-Andre, Peter. Extensible Messaging and Presence Protocol: Core.

[rfc3920bis] Saint-Andre, Peter. Extensible Messaging and Presence Protocol: Core.

[RFC 3921] Saint-Andre, Peter. Extensible Messaging and Presence Protocol: Instant
Messaging and Presence.

[rfc3921bis] Saint-Andre, Peter. Extensible Messaging and Presence Protocol: Instant
Messaging and Presence.

[RFC 4121] Zhu, Larry. Jaganathan, Karthik. Hartman, Sam. The Kerberos Version 5
Generic Security Service Application Program Interface (GSS-API) Mechanism: Ver
sion 2.

[RFC 4287] Nottingham, Mark. Sayre, Robert. The Atom Syndication Format.

[RFC 4422] Melnikov, Alexey. Zeilenga, Kurt. Simple Authentication and Security
Layer.

[RFC 4505] Zeilenga, Kurt. Anonymous Simple Authentication and Security Layer
(SASL) Mechanism.

273

Download at Boykma.Com

http://tools.ietf.org/html/draft-cheshire-dnsext-dns-sd
http://tools.ietf.org/html/draft-cheshire-dnsext-multicastdns
http://www.ietf.org/rfc/rfc1928.txt
http://www.ietf.org/rfc/rfc2111.txt
http://www.ietf.org/rfc/rfc2111.txt
http://www.ietf.org/rfc/rfc2426.txt
http://www.ietf.org/rfc/rfc2831.txt
http://www.ietf.org/rfc/rfc2831.txt
http://www.ietf.org/rfc/rfc3454.txt
http://www.ietf.org/rfc/rfc3454.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3920.txt
http://tools.ietf.org/html/draft-saintandre-rfc3920bis
http://www.ietf.org/rfc/rfc3921.txt
http://www.ietf.org/rfc/rfc3921.txt
http://tools.ietf.org/html/draft-saintandre-rfc3921bis
http://tools.ietf.org/html/draft-saintandre-rfc3921bis
http://www.ietf.org/rfc/rfc4121.txt
http://www.ietf.org/rfc/rfc4121.txt
http://www.ietf.org/rfc/rfc4121.txt
http://www.ietf.org/rfc/rfc4287.txt
http://www.ietf.org/rfc/rfc4422.txt
http://www.ietf.org/rfc/rfc4422.txt
http://www.ietf.org/rfc/rfc4505.txt
http://www.ietf.org/rfc/rfc4505.txt

[RFC 4616] Zeilenga, Kurt. The PLAIN Simple Authentication and Security Layer
(SASL) Mechanism.

[RFC 5122] Saint-Andre, Peter. Internationalized Resource Identifiers (IRIs) and Uni
form Resource Identifiers (URIs) for the Extensible Messaging and Presence Protocol
(XMPP).

[RFC 5246] Rescorla, Eric. Dierks, Tim. The Transport Layer Security (TLS) Protocol
Version 1.2.

[SCRAM] Menon-Sen, Abhijit. Newman, Chris. Melnikov, Alexey. Salted Challenge
Response (SCRAM) SASL Mechanism.

[SOAP] Gudgin, Martin. Hadley, Marc. Mendelsohn, Noah. Moreau, Jean-Jacques.
Nielsen, Henrik Frystyk. Karmarkar, Anish. Lafon, Yves. SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition).

[XEP-0001] Saint-Andre, Peter. XMPP Extension Protocols.

[XEP-0004] Eatmon, Ryan. Hildebrand, Joe. Miller, Jeremie. Muldowney, Thomas.
Saint-Andre, Peter. Data Forms.

[XEP-0009] Adams, DJ. Jabber-RPC.

[XEP-0016] Millard, Peter. Saint-Andre, Peter. Privacy Lists.

[XEP-0030] Hildebrand, Joe. Millard, Peter. Eatmon, Ryan. Saint-Andre, Peter. Service
Discovery.

[XEP-0033] Hildebrand, Joe. Saint-Andre, Peter. Extended Stanza Addressing.

[XEP-0045] Saint-Andre, Peter. Multi-User Chat.

[XEP-0047] Karneges, Justin. In-Band Bytestreams (IBB).

[XEP-0050] Miller, Matthew. Ad-Hoc Commands.

[XEP-0054] Saint-Andre, Peter. vcard-temp.

[XEP-0060] Millard, Peter. Saint-Andre, Peter. Meijer, Ralph. Publish-Subscribe.

[XEP-0065] Smith, Dave. Miller, Matthew. Saint-Andre, Peter. SOCKS5 Bytestreams.

[XEP-0068] Hildebrand, Joe. Saint-Andre, Peter. Field Standardization for Data Forms.

[XEP-0071] Saint-Andre, Peter. XHTML-IM.

[XEP-0072] Forno, Fabio. Saint-Andre, Peter. SOAP Over XMPP.

[XEP-0077] Saint-Andre, Peter. In-Band Registration.

[XEP-0078] Saint-Andre, Peter. Non-SASL Authentication.

[XEP-0079] Miller, Matthew. Saint-Andre, Peter. Advanced Message Processing.

[XEP-0080] Hildebrand, Joe. Saint-Andre, Peter. User Location.

274 | Bibliography

Download at Boykma.Com

http://www.ietf.org/rfc/rfc4616.txt
http://www.ietf.org/rfc/rfc4616.txt
http://www.ietf.org/rfc/rfc5122.txt
http://www.ietf.org/rfc/rfc5122.txt
http://www.ietf.org/rfc/rfc5122.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://tools.ietf.org/html/draft-newman-auth-scram-08
http://tools.ietf.org/html/draft-newman-auth-scram-08
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://xmpp.org/extensions/xep-0001.html
http://xmpp.org/extensions/xep-0004.html
http://xmpp.org/extensions/xep-0009.html
http://xmpp.org/extensions/xep-0016.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0033.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0047.html
http://xmpp.org/extensions/xep-0050.html
http://xmpp.org/extensions/xep-0054.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0065.html
http://xmpp.org/extensions/xep-0068.html
http://xmpp.org/extensions/xep-0071.html
http://xmpp.org/extensions/xep-0072.html
http://xmpp.org/extensions/xep-0077.html
http://xmpp.org/extensions/xep-0078.html
http://xmpp.org/extensions/xep-0079.html
http://xmpp.org/extensions/xep-0080.html

[XEP-0084] Saint-Andre, Peter. Millard, Peter. Muldowney, Thomas. Missig, Julian.
User Avatar.

[XEP-0085] Saint-Andre, Peter. Smith, Dave. Chat State Notifications.

[XEP-0086] Norris, Robert. Saint-Andre, Peter. Error Condition Mappings.

[XEP-0094] Saint-Andre, Peter. Agent Information.

[XEP-0095] Muldowney, Thomas. Miller, Matthew. Eatmon, Ryan. Stream Initiation.

[XEP-0096] Muldowney, Thomas. Miller, Matthew. Eatmon, Ryan. SI File Transfer.

[XEP-0107] Saint-Andre, Peter. Meijer, Ralph. User Mood.

[XEP-0108] Meijer, Ralph. Saint-Andre, Peter. User Activity.

[XEP-0114] Saint-Andre, Peter. Jabber Component Protocol.

[XEP-0115] Hildebrand, Joe. Saint-Andre, Peter. Tronçon, Remko. Konieczny, Jacek.
Entity Capabilities.

[XEP-0118] Saint-Andre, Peter. User Tune.

[XEP-0124] Paterson, Ian. Smith, Dave. Saint-Andre, Peter. Bidirectional-streams Over
Synchronous HTTP (BOSH).

[XEP-0127] Saint-Andre, Peter. Fletcher, Boyd. Common Alerting Protocol (CAP) Over
XMPP.

[XEP-0128] Saint-Andre, Peter. Service Discovery Extensions.

[XEP-0133] Saint-Andre, Peter. Service Administration.

[XEP-0134] Saint-Andre, Peter. Protocol Design Guidelines.

[XEP-0136] Paterson, Ian. Perlow, Jon. Saint-Andre, Peter. Karneges, Justin. Message
Archiving.

[XEP-0138] Hildebrand, Joe. Saint-Andre, Peter. Stream Compression.

[XEP-0143] Saint-Andre, Peter. Guidelines for Authors of XMPP Extension Protocols.

[XEP-0146] Tronçon, Remko. Saint-Andre, Peter. Remote Controlling Clients.

[XEP-0147] Saint-Andre, Peter. XMPP URI Scheme Query Components.

[XEP-0156] Hildebrand, Joe. Saint-Andre, Peter. Discovering Alternative XMPP Con
nection Methods.

[XEP-0158] Paterson, Ian. Saint-Andre, Peter. CAPTCHA Forms.

[XEP-0163] Saint-Andre, Peter. Smith, Kevin. Personal Eventing Protocol.

[XEP-0166] Ludwig, Scott. Beda, Joe. Saint-Andre, Peter. McQueen, Robert. Egan,
Sean. Hildebrand, Joe. Jingle.

Bibliography | 275

Download at Boykma.Com

http://xmpp.org/extensions/xep-0084.html
http://xmpp.org/extensions/xep-0085.html
http://xmpp.org/extensions/xep-0086.html
http://xmpp.org/extensions/xep-0094.html
http://xmpp.org/extensions/xep-0095.html
http://xmpp.org/extensions/xep-0096.html
http://xmpp.org/extensions/xep-0107.html
http://xmpp.org/extensions/xep-0108.html
http://xmpp.org/extensions/xep-0114.html
http://xmpp.org/extensions/xep-0115.html
http://xmpp.org/extensions/xep-0118.html
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0127.html
http://xmpp.org/extensions/xep-0127.html
http://xmpp.org/extensions/xep-0128.html
http://xmpp.org/extensions/xep-0133.html
http://xmpp.org/extensions/xep-0134.html
http://xmpp.org/extensions/xep-0136.html
http://xmpp.org/extensions/xep-0136.html
http://xmpp.org/extensions/xep-0138.html
http://xmpp.org/extensions/xep-0143.html
http://xmpp.org/extensions/xep-0146.html
http://xmpp.org/extensions/xep-0147.html
http://xmpp.org/extensions/xep-0156.html
http://xmpp.org/extensions/xep-0156.html
http://xmpp.org/extensions/xep-0158.html
http://xmpp.org/extensions/xep-0163.html
http://xmpp.org/extensions/xep-0166.html

[XEP-0167] Ludwig, Scott. Saint-Andre, Peter. Egan, Sean. McQueen, Robert. Cio-
noiu, Diana. Jingle RTP Sessions.

[XEP-0172] Saint-Andre, Peter. Mercier, Valerie. User Nickname.

[XEP-0174] Saint-Andre, Peter. Serverless Messaging.

[XEP-0176] Beda, Joe. Ludwig, Scott. Saint-Andre, Peter. Hildebrand, Joe. Egan, Sean.
Jingle ICE-UDP Transport Method.

[XEP-0177] Beda, Joe. Saint-Andre, Peter. Ludwig, Scott. Hildebrand, Joe. Egan, Sean.
Jingle Raw UDP Transport Method.

[XEP-0184] Saint-Andre, Peter. Hildebrand, Joe. Message Receipts.

[XEP-0191] Saint-Andre, Peter. Simple Communications Blocking.

[XEP-0203] Saint-Andre, Peter. Delayed Delivery.

[XEP-0205] Saint-Andre, Peter. Best Practices to Discourage Denial of Service Attacks.

[XEP-0206] Paterson, Ian. Saint-Andre, Peter. XMPP Over BOSH.

[XEP-0207] Saint-Andre, Peter. XMPP Eventing via Pubsub.

[XEP-0221] Paterson, Ian. Saint-Andre, Peter. Data Forms Media Element.

[XEP-0225] Saint-Andre, Peter. Component Connections.

[XEP-0231] Saint-Andre, Peter. Šimerda, Pavel. Bits of Binary.

[XEP-0234] Saint-Andre, Peter. Jingle File Transfer.

[XEP-0244] Wagener, Johannes. Willighagen, Egon. Heusler, Andreas. Markmann,
Tobias. Spjuth, Ola. IO Data.

[XEP-0248] Saint-Andre, Peter. Meijer, Ralph. PubSub Collection Nodes.

[XML-RPC] Winer, Dave. XML-RPC Specification.

276 | Bibliography

Download at Boykma.Com

http://xmpp.org/extensions/xep-0167.html
http://xmpp.org/extensions/xep-0172.html
http://xmpp.org/extensions/xep-0174.html
http://xmpp.org/extensions/xep-0176.html
http://xmpp.org/extensions/xep-0177.html
http://xmpp.org/extensions/xep-0184.html
http://xmpp.org/extensions/xep-0191.html
http://xmpp.org/extensions/xep-0203.html
http://xmpp.org/extensions/xep-0205.html
http://xmpp.org/extensions/xep-0206.html
http://xmpp.org/extensions/xep-0207.html
http://xmpp.org/extensions/xep-0221.html
http://xmpp.org/extensions/xep-0225.html
http://xmpp.org/extensions/xep-0231.html
http://xmpp.org/extensions/xep-0234.html
http://xmpp.org/extensions/xep-0244.html
http://xmpp.org/extensions/xep-0248.html
http://www.xmlrpc.com/spec

Index

Symbols
<starttls/> command, 173

A
“AAAA” lookups, 166, 177, 268
access control, 43
access_model option (PubSub), 111
action attribute

ad-hoc commands, 155
Jingle, 125

<active/> element (chat state notifications),
50

Ad-Hoc Commands, 153, 236
<address/> element (extended stanza

addressing), 155
address spoofing, 12
addresses, 14–16

presence priorities and, 36
XMPP accounts, 15

addressing (PubSub), 98
admin affiliation (MUC), 85
admins (MUC), 81
Advanced Message Processing (see AMP)
affiliations (MUC), 84
“Agent Information”, 61
Ajax, 17
allowinvites option (MUC), 89
AMP (Advanced Message Processing), 21, 58,

237
annotations, 241
ANONYMOUS mechanism (SASL), 172
anonymous room type (MUC), 91
application types, 124
Application-Specific Error Conditions, 244

applications, 5–7
building, 211

architecture, 11–14
ASCII characters in resource identifiers, 15
asynchronicity (stanzas), 24
Atom data, 92
attention, 247
audio, 124, 242, 246
authentication, 4, 12, 194

SASL, 25, 169, 175
authoritative servers (dialback), 175, 177, 178
authorize access model (PubSub), 112
auto-creation feature (PubSub), 107
“availability status”, 35
avatars, 238
away value (<show/> element), 35

B
ban commands (MUC), 82
bans, 81, 84
bare JIDs, 15, 36
Base64-encoded data, 138
Bidirectional-streams Over Synchronous

HTTP (see BOSH)
binary data, 137–152
Bits of Binary (see BOB)
<block/> element (communications blocking),

56
blocking communications, 55

advanced, 57
BOB (Bits of Binary), 137, 247
bookmarks, 236
boolean value, for <field/> type attribute, 70
BOSH (Bidirectional-streams Over

Synchronous HTTP), 180–189, 240

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

277

Download at Boykma.Com

XMPP Over BOSH, 246
bots, 25, 203
broadcasts (presence), 37

C
<c/> element (entity capabilities), 66
c2s (client-to-server), 166, 174
<candidate/> element (Jingle), 128
CAP (Common Alerting Protocol), 240
capabilities advertisement, 5
CAPTCHA (Completely Automated Public

Turing Test to Tell Computers and
Humans Apart), 71, 137, 242

<captcha/> element (data forms), 72
Cascading Style Sheets (CSS), 53
case folding (addresses), 16
case-insensitivity of JIDs, 15
CCS (Cascading Style Sheets), 53
changesubject option (MUC), 89
channels (Jingle), 124
chat sessions, 46, 47

notifications, 48–52
chat states, 49
chat value (<show/> element), 35
cid: URL, 138
client extensions, 203
client sessions, 165
client-server architecture, 11
client-to-server (c2s), 166
clients

controlling, 153–160
list of, 255–258
service discovery, using with, 64–68

cloud computing, 6, 200
CM (connection managers), 181
collection nodes (PubSub), 114
collection option, 111
Comet, 17, 180
<command/> element (ad-hoc commands),

163
commands (remote), 153–164
Common Alerting Protocol (CAP), 240
communication blocking, 55

advanced, 57
communication primitives, 18–25
Completely Automated Public Turing Test to

Tell Computers and Humans Apart
(CAPTCHA), 72, 137, 242

compliance suites, 250

Component Connections, 247
components, 201

servers, 14
modules, 78

<composing/> element (chat state
notifications), 50

connection managers (CM), 181
connection methods, 165–196
contact lists, 4

rosters, 32
content-add action (Jingle), 135
content-modify action (Jingle), 135
content-remove action (Jingle), 135
create-and-configure feature (PubSub), 108
crowd control (MUC), 81–85, 91
custom commands, providing, 160–163

D
data forms, 5, 69–75, 86, 153, 234

commands and, 156–160
protocol, 87
using, 71–73
validation, 240

Data Forms Layout, 241
data storage via Publish-Subscribe, 246, 247
data streams, 139
data syndication, 6
datagram transport method, 127
dates, 238
debugging tools, 264
deferred extensions, 233
<delay/> element (presence), 35
Delayed Delivery, 246
deliver_notifications option (PubSub), 111
deliver_payloads option (PubSub), 111
denial of service attacks, 246
deprecated extensions, 233
<description/> element (Jingle), 125
description-info action (Jingle), 135
descriptions of files, 149
Dialback Key Generation and Validation, 244
DIGEST-MD5 mechanism (SASL), 168
direct federation model, 13
Direct MUC Invitations, 248
directed presence, 37

going offline and, 38
groupchat and, 79

“disco” (see service discovery)
disco#info method, 59–61

278 | Index

Download at Boykma.Com

disco#items method, 59–61
dnd value (<show/> element), 35
DNS (Domain Name System), 14, 46, 175

network setup and, 268
DNS Service lookups, 166, 206
Domain Name System (see DNS)
domain spoofing, 174
domains, 15
DTMF (Dual Tone Multi-Frequency), 244
Dual Tone Multi-Frequency (DTMF), 244
Dusseault, Lisa, 18

E
echo bots, 25
 element (XHTML), presenting

messages with, 53
email, 11, 12, 175

encrypting connections and, 172
spam/abuse and, 195

emoticons, 137
enablelogging option (MUC), 89
encryption

channel, 4, 12
connections, 172
security and, 193

<entry/> element (communications blocking),
101

enterprise resource planning (ERP), 163
entities (XMPP), 59
entity capabilities, 66, 118, 239
Entity Time, 246
ERP (enterprise resource planning), 163
Error Condition Mappings, 238
error handling, 24, 46
<error/> element (error handling), 24
error value (type attribute), 21
errors, 24
<evil/> element (humorous), 250
experimental extensions, 233
extended presence, 38, 120
Extended Stanza Addressing, 58, 235
extensibility, 9, 23
Extensible Markup Language (see XML)
Extensible Messaging and Presence Protocol

(XMPP), xi
extensions

creating custom, 207
standardizing new, 209

EXTERNAL mechanism (SASL), 171

F
Feature Negotiation, 235
federation, 12, 174–179
<field/> element (data forms), 70, 74
Field Standardization for Data Forms, 237
<file/> element (SI), 146
file transfer

negotiating, 145–152
stream initiation and, 146–149
VoIP and, 7

File Transfer, 239
“fire-and-forget” mechanism, 18, 21
fixed value, for <field/> type attribute, 70
Flash, 259
Flexible Offline Message Retrieval, 235
flooding servers, 141
<forbidden/> element (error handling), 24
<FORM> HTML tag, 69
formatted messages, 52
forms, 69–75

types, 73
FORM_TYPE (var attribute), 73
FQDN (fully qualified domain name), 15
from address, 34
full JIDs, 16, 36
fully qualified domain name (FQDN), 15

G
gaming, 6
Gateway Interaction, 239
geolocation, 6
get value (type attribute), 21
getmemberlist option (MUC), 89
<gone/> element (chat state notifications), 51
<group/> element (chat state notifications),

41
groupchat, 6, 18, 46, 61, 77, 78–81 (see MUC)

Normal message type and, 46
privacy and security, 91

groups (rosters), 40
GSSAPI mechanism (SASL), 171
Guidelines for Authors of XMPP Extension

Protocols, 241

H
<handshake/> element (component

connections), 179
handshakes (authorization), 31

Index | 279

Download at Boykma.Com

hash attribute (entity capabilities), 192
headline messages, 46
hello world program, 25
hidden value, for <field/> type attribute, 70
historical XEP documents, 232
hops (networks), 13
host candidate type (Jingle), 133
HTML, 11, 52

data forms and, 69
HTTP, 11, 173, 231

BOSH and, 180–189
HTTPS, 173
humorous XEP documents, 232

I
IANA (Internet Assigned Numbers Authority),

267
IBB (In-Band Bytestreams), 139, 235
ICE (Interactive Connectivity Establishment),

132–135, 244
identity, 194
<identity/> element (service discovery), 61
identity services, 7
IDN (Internationalized Domain Names), 207
IETF (Internet Engineering Task Force), 3, 8
IM (instant messaging), 5, 45–58

Jingle and, 123
IM IQ (Instant Messaging Intelligence

Quotient), 250
IMAP, 11
 element (XHTML), 137
in-band, 61, 86, 93, 235

out-of-band and, 142–145
transferring intermediate files, 139

In-Band Bytestreams (IBB), 139, 235
In-Band Registration, 86
<inactive/> element (chat state notification),

52
incremental parsing of XML, 16, 206
indirect federation model, 13
Info/Query (see <iq/>)
informational XEP documents, 232
initiating servers (dialback), 178
initiators (Jingle), 124
instant messaging (see IM)
<instructions/> element (MUC), 86
inter-domain connections (federation), 12
Interactive Connectivity Establishment (ICE),

132–135, 244

internationalization, 16, 207
Internationalized Domain Names (IDN), 207
Internet Assigned Numbers Authority (IANA),

267
Internet Engineering Task Force (IETF), 3, 8
Internet Protocol (IP), 14, 231
Internet Relay Chat (IRC), 4, 77

nicknames and, 85
invisibility, 240
Invisible Command, 244
IO data, 163, 248
IP (Internet Protocol), 14, 231
<iq/> stanza, 16, 20
IQ stanzas, 20
IRC (Internet Relay Chat), 4, 77

nicknames and, 85
item aggregation (PubSub), 114–117
<item-not-found/> element (error handling),

24
<item/> element (communications blocking),

57
<item/> element (PubSub), 101
<item/> element (roster), 22
items (PubSub), 103–104
items (service discovery), 59–61

J
Jabber, 7

Component Protocol, 239
Jabber Search, 236
presence and, 31

“Jabber-RPC”, 163
jabber:iq:roster namespace, 22
jabber:x:data namespace, 70
JabberID, 14

<message/> stanza and, 19
presence priorities and, 36
users and, 15

JID (see JabberID)
JID Escaping, 239
jid-multi value, for <field/> type attribute, 71
jid-single value, for <field/> type attribute, 71
Jingle, 7, 123–136, 243

DTMF, 244
File Transfer, 247
Jingle Raw UDP Transport method, 244
making calls, 127–131
session negotiation, using, 149–152
Telepathy Transport Method, 250

280 | Index

Download at Boykma.Com

Jingle ICE-UDP Transport, 132
Jingle Raw UDP Transport, 128

K
kick command (MUC), 82

L
lang option (MUC), 90
Language Translation, 243
Last Activity, 234
Last Activity in Presence, 249
leaf nodes (PubSub), 114
libraries, list of, 258–262
list-multi value, for <field/> type attribute, 71
list-single value, for <field/> type attribute, 71
Location Query, 249
LZW compression, 247

M
machine-to-machine communication, 200
maxusers option (MUC), 90
max_items option (PubSub), 111
max_payload_size option (PubSub), 111
/me command, 248
<media/> element (data forms), 74, 246
media sessions, setting up, 132
media, including in data forms, 74
mediated data, 124
member affiliation (MUC), 84
members-only rooms (MUC), 85
membersonly option (MUC), 90
Message Archiving, 241
Message Mine-ing, 249
Message Receipts, 244
<message/> stanza, 16, 18–19, 56, 101, 247
message threads, 246
messaging extensions, 58
metacontacts, 246
middleware, 6
Miller, Jeremie, xiii, 7, 9, 201
moderated rooms (MUC), 85
moderatedroom option (MUC), 90
moderator role (MUC), 85
moderators (MUC), 81
MUC (Multi-User Chat), 77–93

data transports and, 92
Direct MUC Invitations, 248
nicknames and, 85–87

multi-party interactions, 77–93
multi-party messaging, 4
Multi-User Chat, 235 (see MUC)
multiple hops (networks), 13

N
NATs (Network Address Translators), 131
negotiation (Jingle), 124
nested avatar, 238
Nested Roster Groups, 238
Network Address Translators (NATs), 131
networks (servers), 12
nicknames (MUC), 85–87
nodes (PubSub)

discovering, 104–107
management, 107–117
managing access, 112–114
payloads, 102

node_type option (PubSub), 111
non-SASL authentication, 237, 264
normal messages, 46
<not-acceptable/> element (error handling),

56
notification-only nodes (PubSub), 102
notifications service, 4
notify_config option (PubSub), 111
notify_delete option (PubSub), 111
notify_retract option (PubSub), 111
notify_sub option (PubSub), 111

O
OAuth Over XMPP, 248
obsolete extensions, 233
“offline messages”, 38, 46
one-to-one messaging, 4
open access model (PubSub), 112
open rooms (MUC), 85
open source, 8

clients, 255–258
libraries, 258–262
servers, 253–254

OpenPGP, 194
<optional/> element (stream features), 168
out-of-band, 142–145, 237
outcast affiliation (MUC), 84
outcast, changing affiliations to, 83
owner affiliation (MUC), 85

Index | 281

Download at Boykma.Com

P
participant role (MUC), 84
passwords, 168

authentication options and, 171
encryption and, 172

<paused/> element (chat state notification),
51

payload-included nodes, 102
<payload-type/> element (Jingle), 128
payloads (PubSub), 102
peer reflexive candidate type (Jingle), 133
peer-to-peer, 124
peer-to-peer media sessions, 5
“peering” models, 175
PEP (Personal Eventing Protocol), 43, 117,

242
persistent nodes (PubSub), 103
persistentroom option (MUC), 90
persist_items option (PubSub), 111
personal eventing, 117–122
Personal Eventing Protocol (see PEP)
PGP (Pretty Good Privacy), 194, 249
PLAIN mechanism (SASL), 168

authentication options, 171
“point of presence”, 15
POKE (Presence Obtained via Kinesthetic

Excitation), 250
polling systems, 95
POP, 11
port 443, 173
port 5222, 166, 264
port 5223, 173
port 80, 173
presence, 4, 11, 31–44

explicit service discovery and, 64
instant messaging, 5
PEP and, 118
publish-subscribe model, 96
PubSub extension and, 117
service discovery, 64
using, 42–44

presence access model (PubSub), 112
presence leaks, 73
presence notifications, 33
Presence Obtained via Kinesthetic Excitation

(POKE), 250
presence priorities, 36
presence probes, 34
presence sessions, 38

<presence/> stanza, 16, 19, 32
presence subscriptions, 20, 31–33
presence-based routing, 42
presencebroadcast option (MUC), 90
presence_based_delivery option (PubSub),

111
Pretty Good Privacy (PGP), 194, 249
<prev/> element (ad-hoc commands), 161
primitives, 11

communication, 18–25
priorities, 36

presence-based routing and, 42
<priority/> element (presence), 36, 157
privacy, 91
privacy lists, 55, 57, 235
private messages, 81
Private XML Storage, 236
procedural XEP documents, 233
<proceed/> element (Transport Layer

Security), 173
proposed extensions, 233
Proposed Resource Binding Improvements,

245
Proposed Stream Feature Improvements, 245
Protocol Design Guidelines, 42, 240
proxies, sending data through, 143–145
Public Key Publishing, 244
publicroom option (MUC), 90, 92
<publish/> element, 101
publish-subscribe, 28, 59, 93, 95–122, 236

PubSub extension and, 98
publish-subscribe method, 14, 20, 39
Publishing SI Requests, 241
publish_model option (PubSub), 112
PubSub extension, 96–122

access schemes, 112
node management, 107–117
personal eventing, 117–122
publishing/receiving notifications, 100
PubSub Chaining/Queueing, 248
subscriptions, 98

Q
queries, 241
<query/> element, 23

R
Real-time Transport Protocol (RTP), 124

282 | Index

Download at Boykma.Com

<reason/> element (Jingle), 127
receiving servers (dialback), 175
rejected extensions, 233
relayed candidate type (Jingle), 133
remote commands, 153–164
Remote Controlling Clients, 241
<remote-server-not-found/> element (error

handling), 148
<remote-server-not-found/> error, 151
representational state transfer (REST), 108
<required/> element (PubSub), 99, 168

TLS and, 173
Resnick, Pete, 18
resource binding, 169
resource identifiers, 15
resources, 35, 38

presence-based routing and, 42
roster pushes and, 41

responders (Jingle), 124, 153
response headers, 60
response streams, 167
REST (representational state transfer), 108
result value (type attribute), 21
Results Set Management, 236
retracted extensions, 233
RFC (Request for Comments), 231

RFC 3920, 3, 168
RFC 3921, 3

rich presence, 38, 96
roles and affiliations (MUC), 84
room adminstrators (MUC), 91
room rosters (MUC), 77
roomadmins option (MUC), 90
roomdesc option (MUC), 90
roomname option (MUC), 90
roomowner option (MUC), 90
roster access model (PubSub), 112
roster groups, 40, 42

nested, 238
PubSub nodes and, 112

Roster Item Exchange, 241
roster pushes, 41
rosters, 4, 32

room (MUC), 77
roster_groups_allowed option (PubSub), 112
routing (presence-based), 42
RSS data, 92
RTP (Real-time Transport Protocol), 124

S
s2s (server-to-server), 174
Salted Challenge Response Authentication

Mechanism (SCRAM) (SASL), 171
SASL (Simple Authentication and Security

Layer), 168, 231, 243
authentication, 25, 169, 175

SCRAM (Salted Challenge Response
Authentication Mechanism) (SASL),
171

Secure Real-time Transport Protocol (SRTP),
249

Secure Sockets Layer (SSL), 8, 172
security, 91, 165–196

address spoofing, 12
denial of service attacks, 246
encryption (see encryption)
spam, 195
XMPP, 192–196

Security Labels, 249
send_last_published_item option (PubSub),

112
server components, 14, 179
server dialback, 175, 246
server reflexive candidate type (Jingle), 133
server-to-server connections, 12
serverless messaging, 189–192, 243
servers

federation, 174–179
list of, 253–254
polling and, 95
service discovery, using with, 61–64
software, writing for, 202

Service Administration, 240
service discovery, 5, 23, 28, 59, 235

clients, using with, 64–68
publicroom option and, 90
servers/services and, 61–64

Service Discovery Extensions, 240
<service-unavailable/> element (error

handling), 56
services, 3–5

serves, using service discovery with, 61–64
Session Initiation Protocol (SIP), 231
session negotiations, 149–152
session-accept action (Jingle), 124, 127, 134
session-info action (Jingle), 129
session-initiate action (Jingle), 125, 134
session-terminate action (Jingle), 127, 130

Index | 283

Download at Boykma.Com

sessions, 165
set value (type attribute), 21
set-status command, 156
SHIM (Stanza Headers and Internet Metadata),

240
<show/> element (presence), 35, 43, 192
SI (Stream Initiation), 146–149
<si/> element (stream initiation), 146
sid attribute (IBB), 139
signaling channel, 124
Simple Authentication and Security Layer (see

SASL)
Simple Communications Blocking, 245
Simple Mail Transfer Protocol (see SMTP)
SIP (Session Initiation Protocol), 231
SMTP (Simple Mail Transfer Protocol), 11
SOAP, 23, 93, 163, 237
social networking, 200
SOCKS5 protocol, 142, 146, 236

Jingle SOCKS5 Bytestreams Transport
Method, 249

Software Information, 247
software, writing, 202–207
spam, 195
specifications, 231–251
src attribute (element), 137
SRTP (Secure Real-time Protocol), 249
SRV records, 166, 268
SSL (Secure Sockets Layer), 8, 172
Standards Track, 232
stanzas (XML), 17

availability status and, 35
communication primitives and, 18
<iq/>, 20
<message/>, 18
<presence/>, 19, 32
sending, 139
SHIM and, 240

<starttls/> element (TLS), 173
status attribute (ad-hoc commands), 156
status codes, 84
<status/> element (presence), 35, 157, 192
Stream Compression, 241
stream features, 167
stream headers, 166
Stream Initiation (SI), 146–149, 238
Stream Management, 245
<stream:stream> tag, 167
streaming transport method, 127

streaming XML, 16–18
streams, 139

negotiating, 165–171
stringprep, 16
 element (XHTML), presenting

messages with, 53
structured data forms, 5
STUN (Session Traversal Utilities), 132
<subscribe/> element (PubSub), 98
subscriptions (presence), 31–33
subscriptions (PubSub), 98–100
<success/> element (Jingle), 127
systems control, 6

T
“Tao of XMPP”, 240
TCP connections, 231

streaming XML and, 16
XML transactions and, 17

text-multi value, for <field/> type attribute,
71

text-private value, for <field/> type attribute,
71

text-single value, for <field/> type attribute,
71

Time Periods, 242
times, 238
TLS (Transport Layer Security), 8, 168, 171,

172
connections, 206
encryption and, 193

transient nodes (PubSub), 103
Transmission Control Protocol (see TCP

connections)
<transport/> element (Jingle), 125
Transport Layer Security (TLS), 168, 171, 172

connections, 206
encryption and, 193

transport method (Jingle), 124
transport-accept action (Jingle), 135
transport-info action (Jingle), 134
transport-reject action (Jingle), 135
transport-replace action (Jingle), 135, 151
Traversal Using Relays around NAT (TURN),

132
TURN (Traversal Using Relays around NAT),

132
type attribute, 18

error handling and, 24

284 | Index

Download at Boykma.Com

values for, 20
<x/> element, 70

type option (PubSub), 112

U
UDP (User Datagram Protocol), 124, 231
<unblock/> element (communications

blocking), 56
Unicode characters in resource identifiers, 16
Uniform Resource Identifiers (see URIs)
unmoderated rooms (MUC), 85
<unsubscribe/> element (PubSub), 100
URI, 16
URIs (Uniform Resource Identifiers), 16
User Activity, 239
User Browsing, 245
User Chatting, 245
User Datagram Protocol (UDP), 124, 231
User Gaming, 245
User Location, 238
User Mood, 239
User Nickname, 243
User Viewing, 245
users, 15

V
vcard-temp, 236
vCards, 48, 53–55, 61

vCard-Based Avatars, 242
ver attribute

entity capabilities, 66
XML streams, 192

video, 5, 200, 246
calls, 123, 132

visitor role (MUC), 84
Voice over IP (see VoIP)
VoIP (Voice over IP), 7, 8, 123

W
W3C (World Wide Web Consortium), 163
Waiting Lists, 240
“walk the tree” of entities, 61
web browser clients, 257
whitelist access model (PubSub), 112
whois configuration, 91
whois option (MUC), 91
workflow management, 5
World Wide Web Consortium (W3C), 163

X
<x/> element, 70
xa value (<show/> element), 35
XEP (XMPP Extension Protocol), 9, 232–250
XHTML, 23, 48, 53
XHTML-IM, 237
XML (Extensible Markup Language), 3

extending XMPP, 207
namespaces, 23
parsing, 206
stanzas, 17, 18, 78

(see also stanzas (XML))
streaming, 16–18
streams, closing, 245
XML Console, for debugging, 265

XML-RPC, 23
XMPP, 3
XMPP (Extensible Messaging and Presence

Protocol), xi
XMPP Extension Protocol (XEP), 9, 232–250
XMPP Over BOSH, 246
XMPP Ping, 245
XMPP Registrar, 236
XMPP Standards Foundation (XSF), 7, 201

extensions, standardizing, 210
XMPP URI Scheme Query Components, 241
XSF (XMPP Standards Foundation), 7, 201

extensions, standardizing, 210

Z
zero-configuration networking, 190
ZLIB algorithm, 247
ZRTP in Jingle, 249

Index | 285

Download at Boykma.Com

Download at Boykma.Com

About the Authors
Peter Saint-Andre has been contributing to the Jabber/XMPP developer community
since late 1999, where he has focused on technology standardization as author of the
XMPP RFCs and numerous XMPP extension protocols. Since 2002, he has also served
as executive director of the XMPP Standards Foundation.

Kevin Smith is currently chair of the XMPP Council, having served as a council member
since 2006, and is also the coauthor of several XMPP extensions. He was the project
leader on the Psi XMPP client for several years, and is now a developer on the Swift
client. He holds a Ph.D. from the School of Engineering, Computer Science, and Math-
ematics at the University of Exeter.

Remko Tronçon, a member of the XMPP Standards Foundation, coauthor of several
XMPP protocol extensions, and former lead developer of Psi, is a developer of the Swift
Jabber/XMPP project. He holds a Ph.D. in engineering (computer science) from Ka-
tholieke Universiteit Leuven.

Colophon
The animal on the cover of XMPP: The Definitive Guide is a kanchil mouse deer. The
kanchil (Tragulus kanchil) lesser mouse deer of Southeast Asia is the smallest of all
ungulates. At a mature size, they can be as little as 45 cm (18 in) and 2 kg (4.4 lb).
Another name for this little creature is chevrotain. In Indonesia, they are called kanchil
(“KON-chil”), and in Malaysia, pelandok (“puh-LON-do”). There are nine species of
chevrotains/mouse deer that make up the Tragulidae family.

Mouse deer are small, secretive creatures, about the size of a cat, that live in the jungles
of Africa, Asia, and many Pacific islands. They have the legs and tail of a deer and the
face and body of a mouse (but they are neither really a mouse nor a deer).

Mouse deer eat only plants, but lots of animals eat the mouse deer. To stay alive, they
must be quick and smart. Young of lesser mouse deer are called fawns or asses. The
females are called does, hinds, or cows and males are called bucks, stags, or bulls. A
lesser mouse deer group is called a herd. They are the smallest known hoofed mammal.
These are the average mouse deer’s measurements: body length is 70–75 cm, shoulder
height is 30–35 cm, and tail length is 8–10 cm.

Mouse deer are shy and their fawn tend to be “hiders.” They are solitary animals, and
usually interact only to mate. The young are weaned at 3 months of age, and reach
sexual maturity between 5 and 10 months, depending on the species. Parental care is
relatively limited. Although they lack the types of scent glands found in most other
ruminants, they do possess a chin gland for marking each other as mates or antagonists,
and, in the case of the water mouse deer, anal and preputial glands for marking territory.
Their territories are relatively small, but neighbors generally ignore each other, rather
than competing aggressively.

Download at Boykma.Com

Mouse deer are active at night. During the day, they stay in deeply shaded spots, among
the dense vegetations inside original forests. Mouse deer are difficult to find in the forest
during the day, but at night, they roam around the cleared areas, sometimes close to
the seashore. One can often find mouse deer along the roadsides at night using flash-
lights. Their eyes flash very brightly once caught in the beam and they normally stare
for some time before fleeing.

The cover image is from Riverside Natural History. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Why XMPP?
	Is This Book for You?
	Getting the Most Out of This Book
	Conventions Used in This Book
	About the Examples
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Peter Saint-Andre
	Kevin Smith
	Remko Tronçon

	Part I. An Overview of XMPP
	Chapter 1. Introduction
	What Can You Do with XMPP?
	Services
	Applications

	Brief History
	Open Source and Open Standards
	Extensibility
	Summary

	Chapter 2. Basics of XMPP
	Architecture
	Addresses
	Domains
	Users
	Resources
	Internationalization
	XMPP URIs

	Streaming XML
	Communication Primitives
	Message
	Presence
	IQ
	Extensibility
	Asynchronicity
	Error Handling

	Hello Hello World World: Building a Basic XMPP Application
	Summary

	Part II. The XMPP Toolkit
	Chapter 3. Presence
	Is Anybody Home?
	Authorization Required: The Subscription Handshake
	How Presence Is Propagated
	Availability Status
	Presence Priorities
	Directed Presence
	Going Offline
	Rich Presence
	Presence and Rosters
	Using Presence
	Presence-Based Routing
	Access Control
	Presence As a Transport

	Summary

	Chapter 4. Instant Messaging
	I Think, Therefore IM
	Chat Sessions
	Are You There? Chat State Notifications
	Looks Matter: Formatted Messages
	Who Are You? vCards
	Talk to the Hand: Blocking and Filtering Communication
	Blocking: The Simple Approach
	Advanced Blocking and Filtering

	More Messaging Extensions
	Summary

	Chapter 5. Discovering the World
	Items and Info
	Using Service Discovery with Servers and Services
	Using Service Discovery with Clients
	Explicit Service Discovery
	Entity Capabilities: Service Discovery Shorthand

	Summary

	Chapter 6. Data Forms
	Basic Structure
	Using Data Forms
	Defining Your Terms: Form Types
	Including Media in Data Forms
	Summary

	Chapter 7. Multi-Party Interactions
	Starting the Party
	Groupchat Basics
	Crowd Control
	What’s in a Nick?
	Configure This!
	Privacy, Security, and All That Jazz
	MUC As a Data Transport
	Summary

	Chapter 8. Publish/Subscribe
	Why It Matters
	Quickstart
	Subscriptions
	Publishing and Receiving Notifications
	Payloads: To Send or Not to Send?
	Items: To Store or Not to Store?
	Discovering Nodes
	Node Management
	Creating and Deleting Nodes
	Node Configuration
	Managing Node Access
	Item Aggregation via Collection Nodes

	Personal Eventing: PubSub Simplified
	Summary

	Chapter 9. Jingle: Jabber Does Multimedia
	To Instant Messaging and Beyond
	The Jingle Model
	Making a Call
	A Swarm of NATs
	Jingle on ICE
	Additional Jingle Actions
	Summary

	Chapter 10. Sending Binary Data
	Starting Small: Bits of Binary
	Moving On Up: Transferring Midsize Files In-Band
	Thinking Big: Sending Large Files Out-of-Band
	Sending Data Directly
	Sending Data Through a Proxy

	Negotiating File Transfer
	File Transfer Using Stream Initiation
	Session Negotiation Using Jingle

	Summary

	Chapter 11. Remote Commands
	Controlling Clients
	A Simple Command
	Commands and Data Forms

	Providing Custom Commands
	Advanced Workflows: SOAP, RPC, IO Data
	Summary

	Chapter 12. Connection Methods and Security
	Negotiating an XMPP Stream
	Authentication Options
	Encrypting the Connection
	Server Federation
	Server Components
	BOSH: XMPP over HTTP
	Serverless Messaging
	XMPP Security
	Encryption
	Authentication and Identity
	Spam and Abuse

	Summary

	Part III. Putting It All Together
	Chapter 13. Design Decisions
	Is XMPP the Right Choice?
	How the XMPP Community Works
	Writing XMPP Software
	Mixing, Matching, and Extending Existing XMPP Software
	Client Extension, Bot, Component, or Server Module?
	Rolling Your Own Client or Server

	Extending XMPP
	How to Design Custom Extensions
	Standardizing New Extensions

	Summary

	Chapter 14. Building an XMPP Application
	The CheshiR Microblogging Platform
	First Sprint: The CheshiR XMPP IM Bot
	Analysis
	Design
	Coding

	Second Sprint: Configuring the CheshiR XMPP IM Bot
	Analysis
	Design
	Coding

	Third Sprint: Scaling the CheshiR XMPP Service Using a Server Component
	Analysis
	Design
	Coding

	Fourth Sprint: Registering with the CheshiR Server Component
	Analysis
	Design
	Coding

	Fifth Sprint: Extending the Server Component with Rosters
	Analysis
	Design
	Coding

	Future Sprints
	A CheshiR Server Module or Dedicated Server?
	Summary

	Part IV. Appendixes
	Appendix A. A Guide to XMPP Specifications
	XMPP RFCs
	XMPP Extension Protocols
	Humorous XEPs
	XMPP Compliance Suites

	Appendix B. Popular Servers, Clients, and Libraries
	Servers
	Clients
	Cross-Platform (Linux, Mac OS X, Windows)
	Linux
	Mac OS X
	Windows
	Web Browsers

	Libraries
	ActionScript
	C
	C++
	C#
	Flash
	Java
	JavaScript
	Perl
	PHP
	Python
	Ruby

	Appendix C. Further Practical Considerations
	Getting Started
	Debugging Tools
	Network Setup

	Glossary
	Bibliography
	Index

