
www.allitebooks.com

http:///
http://www.allitebooks.org

www.allitebooks.com

Zend Framework 2.0 by Example

Beginner's Guide

A step-by-step guide to help you build full-scale web

applicaions using Zend Framework 2.0

Krishna Shasankar V

BIRMINGHAM - MUMBAI

http:///
http://www.allitebooks.org

www.allitebooks.com

Zend Framework 2.0 by Example Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmited in any form or by any means, without the prior writen permission of the
publisher, except in the case of brief quotaions embedded in criical aricles or reviews.

Every efort has been made in the preparaion of this book to ensure the accuracy of the
informaion presented. However, the informaion contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark informaion about all of the
companies and products menioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this informaion.

First published: July 2013

Producion Reference: 1180713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-192-9

www.packtpub.com

Cover Image by Abhishek Dhir (abhishekdhirimages@gmail.com)

http:///
http://www.allitebooks.org

www.allitebooks.com

Credits

Author

Krishna Shasankar V

Reviewers

Wenbert S. Del Rosario

Alex (Shurf) Frenkel

Islam Mohamed Abdel-aziz

Acquisiion Editor
Antony Lowe

Lead Technical Editor
Neeshma Ramakrishnan

Technical Editor
Veena Pagare

Project Coordinator
Anugya Khurana

Proofreader
Maria Gould

Indexer
Priya Subramani

Graphics

Abhinash Sahu

Producion Coordinator
Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

http:///
http://www.allitebooks.org

www.allitebooks.com

About the Author

Krishna Shasankar V is a web developer with 7 years of extensive development
experience in PHP. He leads a team of engineers at Lister Technologies developing
enterprise class retail and e-commerce soluions.

He is a Zend Ceriied Engineer in PHP 5 and Zend Framework. He also has a Bachelor's
degree in Informaion Technology from Anna University, Chennai, and a Master's degree
in Sotware Systems from Birla Insitute of Technology and Science, Pilani.

In his spare ime, he enjoys music, photography, and travel (especially when combined). You
can contact Krishna and leave some comments on his blog (www.clickoffline.com).

I would like to thank my parents, my brother, and all my friends who
encouraged and supported me throughout my life.

Thanks to Mukund Deverajan for his full and enthusiasic support, without
which, this book would not have existed. Thanks to Apoorv Bhargava,
Jayabharathi and Souvik Sengupta for moivaing me and helping me
rework a majority of the book's content. Special thanks to my amazing
team at Lister Technologies for their wonderful support and all the fun.
You guys are awesome!

Thanks to the reviewers Wenbert S. Del Rosario, Alex (Shurf) Frenkel, and
Islam Mohamed Abdel-aziz for providing me with valuable feedback during
the review stages.

Finally, the awesome team, Antony Lowe, Neeshma Ramakrishnan, Veena
Pagare, and everyone else at Packt Publishing who had contributed to this
book, ensuring quality at each level. I am indebted to Anugya Khurana at
Packt Publishing, without her paience and persistence, this book would
have stalled many imes. Special thanks to Veena Manjrekar for giving me
this opportunity, for which I am grateful.

http:///
http://www.allitebooks.org

www.allitebooks.com

About the Reviewers

Wenbert Del Rosario is a web developer with a couple of years of experience working
with open source technologies (Linux, CakePHP, Code Igniter, MySQL, jQuery, Knockout JS,
and WordPress). In his free ime, he loves to work on personal projects. He also does some
freelance and consuling work.

Wenbert has also reviewed a couple of books for Packt Publishing:

 � Zend Framework 1.8 Web Applicaion Development Keith Pope

 � CouchDB and PHP Web Development Beginner's Guide, Tim Juravich

He shares his ideas, soluions, and day-to-day encounters at work through his blog at
http://blog.ekini.net. You can also follow him on Twiter @wenbert.

For Noeme and our baby Lucas.

http:///
http://www.allitebooks.org

www.allitebooks.com

Alex Frenkel has been working in the ield of web applicaion development since 1998
(the beginning of PHP 3.X) and has extensive experience in system analysis and project
management. Alex is a PHP 5.3 Zend Ceriied Engineer and is considered to be one of
the most prominent LAMP developers in Israel.

In the past, Alex was the CTO of ReutNet, one of the leading Israeli web technology
based companies, and also worked as the CEO/CTO of OpenIview LTD., a company built
around an innovaive idea of breaching IBM Mainframe business with PHP applicaions.
He also provided expert consuling services to diferent companies in various aspects of
web-related technology.

Alex is a CTO of a startup called GBooking and the owner of a small consuling company,
Frenkel-Online.

GBooking allows consumers to search, compare, and book a wide range of services on the
Web, while opimizing prices according to the demand, creaing discounts during the weak
hours of businesses and propagaing them to partners' sites.

Frenkel-Online is a project-based company, working with a number of professional
freelance consultants in Israel and abroad. Currently their permanent staf comprises of
several consultants in Israel and abroad for the company's PHP projects, and an altering
number of specialists in other programming languages for the rest of the projects.

http:///
http://www.allitebooks.org

www.allitebooks.com

Islam Abdel-Aziz is a senior open source sotware engineer, and Zend Framework
contributor. He has been a Zend Ceriied Engineer since 2009.

Islam spent 9 years teaching and consuling on the latest web and enterprise technologies.

He is involved in development techniques, including the NO-SQL databases, the scalability of
the web, parallel/distributed processing using map/reduce model.

He has contributed to many open source projects in the last 7 years, and he has experience
in most open source technologies including PHP5, Python, and Java.

Islam joined Oracle in 2008 as a senior sotware engineer. He was one of the team for
developing the most stable cloud-compuing plaform in Python.

Islam currently holds the itle of Arabic Team Lead in the ADVFN, the most popular inancial
sotware company in UK. He is the one who is responsible for the engineering of ME versions
of the ADVFN products.

I would like to thank my wife for standing by me while I reviewed this book.

http:///
http://www.allitebooks.org

www.allitebooks.com

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to
your book.

Did you know that Packt ofers eBook versions of every book published, with PDF and ePub
iles available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are enitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collecion of free technical aricles, sign up
for a range of free newsleters and receive exclusive discounts and ofers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant soluions to your IT quesions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's enire library of books.

Why Subscribe?
 � Fully searchable across every book published by Packt

 � Copy and paste, print and bookmark content

 � On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine enirely free books. Simply use your login credenials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http:///
http://www.allitebooks.org

www.allitebooks.com

http:///
http://www.allitebooks.org

http:///

To my parents Paramajothi and Anuragalatha whose uncondiional love and
sacriice resulted in where I stand today.

http:///

http:///

Table of Contents
Preface 1

Chapter 1: Geing Started with Zend Framework 2.0 7
Zend Framework 2.0 7
Introducion to Zend Server Community Ediion (CE) 8

Zend Server CE – system requirements 8
Time for acion – installing Zend Server CE 8

Coniguring Zend Server CE 11
Zend Server CE – Administraion Interface 11

Time for acion – coniguring Zend Server CE 12
MySQL 14
Time for acion – installing MySQL 15

phpMyAdmin 16
Time for acion – creaing a database 16
Summary 20

Chapter 2: Building Your First Zend Framework Applicaion 21
Prerequisites 21
ZendSkeletonApplicaion 22
Time for acion – creaing a Zend Framework project 22
Zend Framework 2.0 – modules 27

Zend Framework 2.0 – project folder structure 28
Time for acion – creaing a module 29
MVC layer 30
Zend Framework module – folder structure 31
Time for acion – creaing controllers and views 31
Zend Framework module – coniguraion 33
Time for acion – modifying module coniguraion 34
Summary 38

http:///

Table of Contents

[ii]

Chapter 3: Creaing a Communicaion Applicaion 39
Zend\Form 39
Time for acion – creaing a registraion form 40
Form validaion 46

Zend\InputFilter 46
Time for acion – adding validaion to the registraion form 47
Models and database access 50

TableGateway 50
Time for acion – creaing models and saving the form 51

Zend\Authenicaion 55
Time for acion – user authenicaion 56
Summary 58

Chapter 4: Data Management and Document Sharing 59
Zend Framework 2 ServiceManager 59
Time for acion – migraing exising code to ServiceManager 61
Database operaions 63

More on TableGateway 64
Time for acion – implemening an admin UI to manage users 65
Document management 71
Time for acion – creaing a ile upload form 71
Managing ile sharing 76
Time for acion – implemening a ile sharing system 76
Summary 82

Chapter 5: Chat and E-mail 83
Layouts and views 83

View helpers 84
The URL helper 84
The BasePath helper 85
The JSON helper 85

Concrete placeholder implementaions 85
The HeadLink helper 85
The HeadMeta helper 86
The HeadScript helper 86
The HeadStyle helper 87
The HeadTitle helper 87

Time for acion – using jQuery UI in a simple page 88
Building a simple group chat 90
Time for acion – creaing a simple group chat applicaion 90
Sending mails 95

Zend\Mail\Transport 96
Zend\Mail\Message 96
Zend\Mime\Message and Zend\Mime\Part 96

http:///

Table of Contents

[iii]

Time for acion – creaing a simple e-mail form 97
Zend\EventManager 99
Time for acion – seing module layout using ZF events 100
Summary 103

Chapter 6: Media Sharing 105
External modules 105
Resizing images 106
Time for acion – resizing images using modules 106
The Photo gallery applicaion 108
Time for acion – implemening a simple photo gallery 109
Google Data APIs 113

The Google Photos API 114
Time for acion – fetching photos from Google Photos 115
YouTube Data API 119
Time for acion – lising YouTube videos for a keyword 119
Summary 122

Chapter 7: Search Using Lucene 123
Introducion to Lucene 123
Time for acion – installing ZendSearch\Lucene 124
Indexing 125
Time for acion – generaing a Lucene index 127
Searching 129
Time for acion – displaying search results 130
Indexing Microsot Oice documents 133
Time for acion – indexing document iles 134
Summary 137

Chapter 8: Creaing a Simple Store 139
Shopping cart 140
Time for acion – creaing a store front 140
The store administraion 143
Time for acion – creaing the Store Admin interface 144
Payments with PayPal 146

PayPal and Zend Framework 2.0 146
Time for acion – seing up PayPal 147
PayPal Express Checkout 149
Time for acion – acceping payments using PayPal 150
Summary 157

http:///

Table of Contents

[iv]

Chapter 9: HTML5 Support 159
HTML5 input elements 160
Time for acion – HTML5 input elements 165
HTML5 view helpers 167
Time for acion – HTML5 view helpers 168
HTML5 atributes 171

Muliple ile uploads 172
Time for acion – HTML5 muliple ile uploads 172
Summary 176

Chapter 10: Building Mobile Applicaions 177
Cloud-connected mobile applicaions 177

Zend Studio 10 178
phpCloud 178

Time for acion – coniguring your phpCloud account 178
PhoneGap and Zend Studio 182

Time for acion – building your irst cloud-connected mobile applicaion 182
Naive applicaions versus mobile web applicaions 186
Time for acion – tesing as a naive applicaion 187
Zend Server Gateway 190
Time for acion – creaing a mobile search interface 190
Summary 193

Appendix: Pop Quiz Answers 195
Chapter 1, Geing Started with Zend Framework 2.0 195
Chapter 2, Building Your First Zend Framework Applicaion 195
Chapter 3, Creaing a Communicaion Applicaion 195
Chapter 4, Data Management and Document Sharing 196
Chapter 5, Chat and E-mail 196
Chapter 6, Media Sharing 196
Chapter 7, Search Using Lucene 196
Chapter 8, Creaing a Simple Store 197
Chapter 9, HTML5 Support 197
Chapter 10, Building Mobile Applicaions 197

Index 199

http:///

Preface
Zend Framework 2 is the latest update to the well-known Zend Framework. This version
has considerably eased the process of building complex web applicaions with minimal
development efort using plug and play components. Zend Framework 2 also provides a
highly robust and scalable framework for developing web applicaions.

This book will guide you through the process of developing powerful web applicaions using
ZF2. It covers all aspects of Zend Framework applicaion development right from installaion
and coniguraion; the tasks are designed in a way that readers can easily understand and
use them to build their own applicaions with ease.

This book begins with basic installaion and coniguraion of the Zend Framework. As you
progress through the exercises, you will become thoroughly acquainted with ZF2. With
this book, you will learn about the basic concepts of building solid MVC web applicaions
using Zend Framework 2. The detailed step-by-step instrucions will enable you to build
funcionality such as a group chat, a ile and media sharing service, search, and a simple
store, to name a few. You will also use a wide range of external modules to implement
features that are not naively available.

By the end of the book, you will be well versed in building complex and funcionality-rich
web applicaions using Zend Framework 2.

What this book covers

Chapter 1, Geing Started with Zend Framework 2.0, introduces you to the coniguraion of
the development environment. In this chapter, we will set up a PHP applicaion server, install
MySQL, and create a development database which will be used in subsequent chapters for
our Zend Framework learning exercises.

http:///

Preface

[2]

Chapter 2, Building Your First Zend Framework Applicaion, explains the creaion of the Zend
Framework 2 project; we will be reviewing some of the key aspects of building a ZF2 MVC
applicaion by creaing modules, controllers, and views. We will be creaing our own custom
module in Zend Framework which will be enhanced further in subsequent chapters of
this book.

Chapter 3, Creaing a Communicaion Applicaion, introduces you to Zend\Form. In this
chapter we will create our irst registraion form, and set up login and authenicaion for
registered users using Zend Framework components.

Chapter 4, Data Management and Document Sharing, covers some of Zend Framework's
data and ile management concepts. In this chapter, we will learn various aspects of Zend
Framework including ServiceManager, the TableGateway patern, handling uploads, and
ile sharing.

Chapter 5, Chat and E-mail, covers the use of JavaScript in your applicaion. This chapter uses
a simple group chat implementaion as an example for explaining the usage of JavaScript in
your applicaions; you will also be introduced to sending e-mails using Zend\Mail and the ZF2
event manager.

Chapter 6, Media Sharing, explains the management and sharing of images and videos using
Zend Framework. In this chapter, we will use of various external Zend Framework 2 modules
to work with images and videos.

Chapter 7, Search using Lucene, introduces you to the Lucene search implementaion
using Zend Framework. This chapter begins by explaining the users about the installaion
of ZendSearch\Lucene module, we then cover the details of implemening search for
database records and also document iles.

Chapter 8, Creaing a Simple Store, introduces you to e-commerce. In this chapter, we will
be building a simple online store to demonstrate the process involved in development of
a shopping cart. We will be using PayPal Express Checkout as our payment processer in
this chapter.

Chapter 9, HTML5 Support, introduces you to HTML5 support in Zend Framework 2. When
compared to the previous version, ZF2 ofers exhausive support for various HTML5 features;
this chapter covers two major aspects of ZF2's HTML5 support—new input types and
muliple ile uploads.

Chapter 10, Building Mobile Applicaions, introduces you to the development of naive
mobile applicaions with the help of Zend Framework 2 and Zend Studio 10. In this chapter,
we will learn the fundamentals of building cloud-connected mobile applicaions using Zend
Framework; we will also learn about the setup of Zend PHP developer cloud environment.

http:///

www.allitebooks.com

Preface

[3]

What you need for this book
You will need a system that is capable of running Zend Server CE along with MySQL.
The prerequisite sotware that is required for working with tasks to be performance
in the book is covered in Chapter 1, Geing Started with Zend Framework 2.0.

Who this book is for
If you are a PHP developer who is new to Zend Framework, but you want to get hands-on with
the product quickly, this book is for you. Basic knowledge of object-oriented programming with
PHP is expected.

Conventions

In this book, you will ind several headings appearing frequently.

To give clear instrucions of how to complete a procedure or task, we use:

Time for action – heading
1. Acion 1

2. Acion 2

3. Acion 3

Instrucions oten need some extra explanaion so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instrucions that you have just completed.

You will also ind some other learning aids in the book, including:

Pop quiz – heading
These are short muliple-choice quesions intended to help you test your own understanding.

http:///
http://www.allitebooks.org

Preface

[4]

Have a go hero – heading
These pracical challenges give you ideas for experimening with what you have learned.

You will also ind a number of styles of text that disinguish between diferent kinds of
informaion. Here are some examples of these styles, and an explanaion of their meaning.

Code words in text are shown as follows: "The TableGateway class extends
AbstractTableGateway which implements TableGatewayInterface."

A block of code is set as follows:

 // Add Document to index

 $indexDoc = new Lucene\Document();

 $indexDoc->addField($label);

 $indexDoc->addField($owner);

 $indexDoc->addField($fileUploadId);

 $index->addDocument($indexDoc);

 }

 // Commit Index

 $index->commit();

When we wish to draw your atenion to a paricular part of a code block, the relevant lines
or items are set in bold:

 // Add Document to index

 $indexDoc = new Lucene\Document();

 $indexDoc->addField($label);

 $indexDoc->addField($owner);

 $indexDoc->addField($fileUploadId);

 $index->addDocument($indexDoc);

 }

 // Commit Index

 $index->commit();

Any command-line input or output is writen as follows:

$ sudo apt-get install php5-cli

$ sudo apt-get install git

$ curl -s https://getcomposer.org/installer | php

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "On the Select Desinaion

Locaion screen, click on Next to accept the default desinaion."

http:///

Preface

[5]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
|book—what you liked or may have disliked. Reader feedback is important for us to
develop itles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
menion the book itle through the subject of your message.

If there is a topic that you have experise in and you are interested in either wriing or
contribuing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the iles
e-mailed directly to you.

http:///

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you ind a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustraion and help us improve subsequent versions of this book. If you ind
any errata, please report them by visiing http://www.packtpub.com/submit-errata,
selecing your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are veriied, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of exising errata, under the Errata
secion of that itle.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protecion of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the locaion
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecing our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http:///

1
Getting Started with

Zend Framework 2.0

In this chapter we will get our development environment set up and configured
in order to start development with Zend Framework 2.0. We will set up a PHP
Application Server, install MySQL, and create a development database that will
be used in subsequent chapters for our Zend Framework learning exercises. So,
let's get started.

Zend Framework 2.0

The last major release of Zend Framework, which happened in 2007, was version 1.0;
during the last ive years, Zend Framework has undergone a lot of changes to be a
successful PHP-based framework. But by merely updaing the framework, Zend Framework
has retained some of the issues that were inherently present in Zend Framework 1.0.

Zend Framework 2.0 is an atempt to make Zend Framework beter by rearchitecing the
framework right from the core. Some of the key features of Zend Framework 2.0 over its
previous version are listed as follows:

 � PHP 5.3 features such as namespaces and closures
 � A modular applicaion architecture
 � Event manager
 � Dependency Injecion (DI)

We will get to know about implemening the new features of Zend Framework 2.0 in the
coming chapters.

http:///

Geing Started with Zend Framework 2.0

[8]

In this chapter we will cover the installaion and coniguraion of some of the prerequisites
of Zend Framework 2.0. ZF2 can be installed on most PHP-enabled web servers that support
PHP 5.3.3 or later.

We have used Zend Server Community Ediion as our default web server; however, any other
PHP stack that supports PHP 5.3.3 can be used. Alternaively, you can also download Apache
and PHP separately and install PHP over Apache.

To simplify the installaion process, I am using Linux as the primary development
environment in this book. All the tools used in this book are available for Windows
and can be used to perform the same acivity.

Introduction to Zend Server Community Edition (CE)

Zend Server Community Ediion is the free version of the popular Zend Server stack. The
Zend Server stack provides a pre-integrated PHP applicaion stack that could be used across
development, tesing, and producion. This enables applicaion development teams to have
a consistent environment across all stages of development.

Zend Server CE also provides features such as Zend Opimizer+ for PHP bytecode caching and
Zend Guard for encoding iles.

Zend Server CE – system requirements
Zend Server ofers installers for Windows, Mac OS X, and a universal installaion package
compaible with most Linux distribuions.

More details on the installaion requirements can be found at http://www.zend.com/en/
products/server/system-requirements.

Time for action – installing Zend Server CE
Our next step will be to download and install Zend Server CE; I am running Ubuntu 12.04
Precise Pangolin. The installaion procedure for other operaing systems could be diferent;
you can always refer to the Zend Server website for installaion instrucions. The following
are the steps to install the Zend Server CE:

1. Visit the Zend Server Community Ediion website (http://www.zend.com/en/
community/zend-server-ce) and download the latest version of Zend Server
that is applicable to your operaing system. In this case, we will be downloading the
Linux installer.

http:///

Chapter 1

[9]

2. Once the installer is downloaded, extract the contents of the installer to a
temporary locaion:
$ tar -zxvf ZendServer-5.6.0-RepositoryInstaller-linux.tar.gz

3. Ater extracing, the installer needs to be started with administrator privileges:
$ cd ZendServer-RepositoryInstaller-linux/

$ sudo ./install_zs.sh 5.3 ce

We are passing two parameters to the installer. The first one is the version of
PHP that needs to be installed; in this case it is 5.3. The second parameter
identifies the edition of Zend Server that needs to be installed; in this case it
is ce for Community Edition.

4. During the installaion, the installer will request you to download various packages:

5. Zend Server will be installed into /usr/local/zend by default; the default
document root will point to /var/www. You can use the following iles to make
coniguraion changes to the Zend Server instance:

 � Apache master configuration is available in /etc/apache2/apache2.
conf

 � PHP configuration is controlled by /var/local/zend/etc/php.ini

http:///

Geing Started with Zend Framework 2.0

[10]

The following screenshot shows the installed locaion of Zend Server:

6. Once the installaion is completed, you should be able to open http://localhost

on your web browser. This should take you to a test page like the one shown in the
following screenshot:

To restart Zend Server, use the $ sudo service
zend-server restart command.

http:///

Chapter 1

[11]

What just happened?
Zend Server CE is installed and ready to be used. Now we have a web server and a
compaible version of PHP running—this saisies the core requirements for running
Zend Framework 2.0.

Have a go hero

We will be using Git to check out Zend Framework from Github; one of the major changes that
happened to Zend Framework 2.0 is that the source control has changed from SVN to Git.

Your next task will be to install Git. We will be making use of Git when we are seing up our
Zend Framework project.

Git binaries can either be downloaded from http://www.git-scm.com/

or installed from your operaing system's repositories.

Installaion instrucions for Git can be found at the following link:

http: //git-scm.com/book/en/Getting-Started-
Installing-Git

Coniguring Zend Server CE
Our next step will be to set up Zend Server CE and make some coniguraion changes that
will enable us to run other PHP applicaions.

Zend Server CE – Administration Interface
Zend Server CE's Administraion Interface is a web-based user interface that provides the
following features:

 � Managing PHP extensions

 � Coniguring PHP direcives

 � Managing Zend Server components

 � Monitoring PHP status, extension status, and applicaion/server logs

In our next task, we will be making a coniguraion change to Zend Server by using its
Administraion Interface.

http:///

Geing Started with Zend Framework 2.0

[12]

Time for action – coniguring Zend Server CE
The Zend Server needs to be conigured ater the installaion is completed. The following are
the steps for coniguring Zend Server CE:

1. Open the admin console of Zend Server in your default browser
(http://localhost:10081/).

The Zend Server UI console runs on port 10081 while the web server
runs on port 80. This is why we need to implicitly specify the port
number in the URL for accessing the UI console.

2. When opening the Zend Server Administraion Interface for the irst ime, you
will be presented with a coniguraion wizard. Review and accept the terms and
condiions of Zend's End User License Agreement page:

http:///

www.allitebooks.com

Chapter 1

[13]

3. As shown in the following screenshot, you will be asked to set the password for the
Zend Server installaion:

4. Ater the iniial coniguraion wizard is completed, you will be redirected to the Zend
Server Administraion Interface's home page.

http:///
http://www.allitebooks.org

Geing Started with Zend Framework 2.0

[14]

5. We need to set the session save path. In order to do this, perform the
following steps:

1. Navigate to Directives in Server Setup.

2. Search for session.save_path.

3. Set the value to /tmp.

4. Click on Save Changes and then Restart PHP.

What just happened?
We have successfully modiied a server coniguraion using Zend Server's Administraion
Interface and we have restarted the PHP instance running on Zend Server.

MySQL

MySQL doesn't need an introducion—it is the world's most widely used open source database
applicaion. It's free and is available on the Internet to individuals and businesses that wish to
develop their websites and applicaions using the MySQL database.

Zend Framework 2.0 has driver support for MySQL along with SQLite, PostgreSQL, and
Microsot SQL Server.

Our next exercise will be to install MySQL on our development machine. MySQL is available
for download from all Linux repositories. Windows and Mac users will have to download the

installer from the MySQL website (http://dev.mysql.com/downloads/).

http:///

Chapter 1

[15]

Windows and Mac users can skip this secion if they have chosen to install
MySQL Server as a part of their Zend Server CE installaion. The Zend Server
installer allows Windows and Mac users to download and install MySQL
Server as a part of the installaion.

Time for action – installing MySQL
MySQL Server and Client need to be installed using the following steps; we will be using
MySQL as our primary database in this book:

1. In a standard Ubuntu installaion, MySQL can be installed by execuing the following
command in the shell prompt:
$ sudo apt-get install mysql-server mysql-client

2. Ater the installaion is complete, MySQL Server will start automaically. To check if
MySQL Server is running, run the following command:
$ sudo netstat -tap | grep mysql

3. The command should give an output that is similar to the following; this means that
the MySQL daemon is running:
tcp 0 0 localhost:mysql *:* LISTEN 923/mysqld

4. If, for some reason, MySQL Server is not running, you can start the server by running
the restart command:
$ sudo service mysql restart

What just happened?
We have just installed MySQL; we have the LAMP stack ready too. Our next step will be to
create a database in MySQL Server.

Since we are using Zend Server, we don't need to install the php5-mysql

package. If you are using a stack that doesn't have MySQL support enabled
by default, you will have to install the necessary packages manually.

http:///

Geing Started with Zend Framework 2.0

[16]

Have a go hero

Having gone through this secion, feel free to atempt the task in the following secion.

phpMyAdmin

phpMyAdmin is a free, open source web-based database administraion tool writen in PHP.
phpMyAdmin provides a web-based UI to manage MySQL Database Server; add / remove /
manage databases, users, privileges; and so on. In this book, we will be using phpMyAdmin
as the database Administraion Interface for managing our database(s).

Now that we have Apache, PHP, and MySQL installed, our next step will be to create a blank
database in MySQL Server.

For doing this, we need to install and conigure phpMyAdmin in the Zend Server.

phpMyAdmin can either be downloaded from http://www.phpmyadmin.
net/ or installed from your operaing system's repositories.

Installaion instrucions for phpMyAdmin can be found at the following link:

http://docs.phpmyadmin.net/en/latest/setup.html

In our next task we will be creaing a MySQL database, creaing users in the MySQL
server and also grant them access permissions to connect to the database and perform
database operaions.

Time for action – creating a database
To create a new database, open an instance of phpMyAdmin in your web browser and follow
the steps described here:

1. Open phpMyAdmin in your web browser by visiing http://localhost/
phpmyadmin:

http:///

Chapter 1

[17]

2. Choose Databases, enter the name of the new database as zf_app in Create new

database, and click on Create:

http:///

Geing Started with Zend Framework 2.0

[18]

3. Ater creaing the database, create a database user for this database; this can be
done by selecing Add a new user from Privileges. Provide the following details:

User field Value
User name zf_user

Host localhost

Password zf_pass

Ater doing this you will get the following screen:

4. Ater the user is created, go to the Privileges secion and choose Edit Privileges for
the zf_user.

5. In the Database-speciic privileges secion, select the zf_app database.

http:///

Chapter 1

[19]

6. You will be redirected to the privileges secion of the zf_app database for the
zf_user user. Choose Check All and click on Go.

You can now test the database by logging out of phpMyAdmin and logging in again with the
user credenials of zf_user. You should now be able to see only the zf_app database.

What just happened?
We just created our irst database in MySQL. We have also created a user in the database
and mapped the user to the database with administraive rights; we can now use these
credenials in the applicaion that we will be building in our next chapters.

Have a go hero

Now that you have the PHP web server up and running and also have a MySQL database,
create a simple table called Students and add a few records to the table using phpMyAdmin.

Your task will be to create a simple PHP web page that will display all the records in the
Students table in the page.

http:///

Geing Started with Zend Framework 2.0

[20]

Pop quiz – Zend Framework 2.0
Q1. What is the minimum version of PHP needed to run Zend Framework 2.0?

1. PHP 4.3 and above

2. PHP 5.2.0 and above

3. PHP 5.3.3 and above

4. PHP 5.4.7 and above

Q2. What is the default locaion of php.ini in the new Zend Server installaion?

1. /home/<user>/etc/php/php.inc

2. /etc/php/php.ini

3. /var/www/php.ini

4. /usr/local/zend/etc/php.ini

Summary

In this chapter we have learned the setup and coniguraion of Zend Server's PHP applicaion
stack. We went on to install MySQL Server and created our irst database. In your exercises,
you have learned about the installaion of Git and phpMyAdmin.

In the next chapter, we will learn about the structure of a Zend Framework project and core
MVC components such as views and controllers.

http:///

2
Building Your First Zend

Framework Application

In this chapter, we are going to create our first Zend Framework 2.0 project; we
will be reviewing some of the key aspects of building a ZF2 MVC Application by
creating modules, controllers, and views. We will be creating our own custom
module in Zend Framework which will be enhanced further in subsequent
chapters of this book.

Prerequisites

Before you get started with seing up your irst ZF2 Project, make sure that you have the
following sotware installed and conigured in your development environment:

 � PHP Command Line Interface

 � Git: Git is needed to check out source code from various github.com repositories

 � Composer: Composer is the dependency management tool used for managing PHP
dependencies

http:///

Building Your First Zend Framework Applicaion

[22]

The following commands will be useful for installing the necessary tools to setup
a ZF2 Project:

 � To install PHP Command Line Interface:
$ sudo apt-get install php5-cli

 � To install Git:
$ sudo apt-get install git

 � To install Composer:
$ curl -s https://getcomposer.org/installer | php

ZendSkeletonApplication

ZendSkeletonApplication provides a sample skeleton applicaion that can be used
by developers as a staring point to get started with Zend Framework 2.0. The skeleton
applicaion makes use of ZF2 MVC, including a new module system.

ZendSkeletonApplication can be downloaded from GitHub
(https://github.com/zendframework/ZendSkeletonApplication).

Time for action – creating a Zend Framework project
To set up a new Zend Framework project, we will need to download the latest version of
ZendSkeletonApplication and set up a virtual host to point to the newly created Zend
Framework project. The steps are given as follows:

1. Navigate to a folder locaion where you want to set up the new Zend
Framework project:
$ cd /var/www/

2. Clone the ZendSkeletonApplication app from GitHub:
$ git clone git://github.com/zendframework/
ZendSkeletonApplication.git CommunicationApp

http:///

www.allitebooks.com

Chapter 2

[23]

In some Linux configurations, necessary permissions may not be available to
the current user for writing to /var/www. In such cases, you can use any folder
that is writable and make necessary changes to the virtual host configuration.

3. Install dependencies using Composer:
$ cd CommunicationApp/

$ php composer.phar self-update

$ php composer.phar install

The following screenshot shows how Composer downloads and installs the
necessary dependencies:

http:///
http://www.allitebooks.org

Building Your First Zend Framework Applicaion

[24]

4. Before adding a virtual host entry we need to set up a hostname entry in our hosts
ile so that the system points to the local machine whenever the new hostname is
used. In Linux this can be done by adding an entry to the /etc/hosts ile:
$ sudo vim /etc/hosts

In Windows, this file can be accessed at %SystemRoot%\
system32\drivers\etc\hosts.

5. Add the following line to the hosts ile:
127.0.0.1 comm-app.local

The inal hosts ile should look like the following:

6. Our next step would be to add a virtual host entry on our web server; this can be
done by creaing a new virtual host's coniguraion ile:
$ sudo vim /usr/local/zend/etc/sites.d/vhost_comm-app-80.conf

This new virtual host filename could be different for you depending upon the
web server that you use; please check out your web server documentation
for setting up new virtual hosts.
For example, if you have Apache2 running on Linux, you will need to create
the new virtual host file in /etc/apache2/sites-available and
enable the site using the command a2ensite comm-app.local.

7. Add the following coniguraion to the virtual host ile:
<VirtualHost *:80>

 ServerName comm-app.local

 DocumentRoot /var/www/CommunicationApp/public

 SetEnv APPLICATION_ENV "development"

 <Directory /var/www/CommunicationApp/public>

http:///

Chapter 2

[25]

 DirectoryIndex index.php

 AllowOverride All

 Order allow,deny

 Allow from all

 </Directory>

</VirtualHost>

If you are using a different path for checking out the
ZendSkeletonApplication project make sure that you include
that path for both DocumentRoot and Directory directives.

8. Ater coniguring the virtual host ile, the web server needs to be restarted:
$ sudo service zend-server restart

9. Once the installaion is completed, you should be able to open http://comm-app.
local on your web browser. This should take you to the following test page :

http:///

Building Your First Zend Framework Applicaion

[26]

Test rewrite rules
In some cases, mod_rewrite may not have been enabled in your web server
by default; to check if the URL redirects are working properly, try to navigate
to an invalid URL such as http://comm-app.local/12345; if you get an
Apache 404 page, then the .htaccess rewrite rules are not working; they
will need to be fixed, otherwise if you get a page like the following one, you
can be sure of the URL working as expected.

What just happened?
We have successfully created a new ZF2 project by checking out ZendSkeletonApplication

from GitHub and have used Composer to download the necessary dependencies including
Zend Framework 2.0. We have also created a virtual host coniguraion that points to the
project's public folder and tested the project in a web browser.

Downloading the example code
You can download the example code iles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

http:///

Chapter 2

[27]

Alternate installaion opions
We have seen just one of the methods of installing
ZendSkeletonApplication; there are other ways of doing this.

You can use Composer to directly download the skeleton applicaion and
create the project using the following command:
$ php composer.phar create-project --repository-
url="http://packages.zendframework.com" zendframework/
skeleton-application path/to/install

You can also use a recursive Git clone to create the same project:
$ git clone git://github.com/zendframework/
ZendSkeletonApplication.git --recursive

Refer to:
http://framework.zend.com/downloads/skeleton-app

Zend Framework 2.0 – modules
In Zend Framework, a module can be deined as a unit of sotware that is portable and reusable
and can be interconnected to other modules to construct a larger, complex applicaion.

Modules are not new in Zend Framework, but with ZF2, there is a complete overhaul in the
way modules are used in Zend Framework. With ZF2, modules can be shared across various
systems, and they can be repackaged and distributed with relaive ease. One of the other
major changes coming into ZF2 is that even the main applicaion is now converted into a
module; that is, the applicaion module.

Some of the key advantages of Zend Framework 2.0 modules are listed as follows:

 � Self-contained, portable, reusable

 � Dependency management

 � Lightweight and fast

 � Support for Phar packaging and Pyrus distribuion

http:///

Building Your First Zend Framework Applicaion

[28]

Zend Framework 2.0 – project folder structure
The folder layout of a ZF2 project is shown as follows:

Folder name Description

config Used for managing application configuration.
data Used as a temporary storage location for storing application

data including cache files, session files, logs, and indexes.
module Used to manage all application code.
module/Application This is the default application module that is provided with

ZendSkeletonApplication.
public Serves as an entry point to the application; the website's

document root points here. All web resources including CSS
files, images, and JavaScripts are stored here.

vendor Used to manage common libraries that are used by the
application. Zend Framework is also installed in this folder.

vendor/zendframework Zend Framework 2.0 is installed here.

http:///

Chapter 2

[29]

Time for action – creating a module
Our next acivity will be about creaing a new Users module in Zend Framework 2.0. The
Users module will be used for managing users including user registraion, authenicaion, and
so on. We will be making use of ZendSkeletonModule provided by Zend, shown as follows:

1. Navigate to the applicaion's module folder:
$ cd /var/www/CommunicationApp/

$ cd module/

2. Clone ZendSkeletonModule into a desired module name, in this case it is Users:
$ git clone git://github.com/zendframework/ZendSkeletonModule.git
Users

3. Ater the checkout is complete, the folder structure should look like the
following screenshot:

4. Edit Module.php; this ile will be located in the Users folder under modules
(CommunicationApp/module/Users/module.php) and change the namespace to

Users. Replace namespace ZendSkeletonModule; with namespace Users;.

http:///

Building Your First Zend Framework Applicaion

[30]

5. The following folders can be removed because we will not be using them in
our project:
* Users/src/ZendSkeletonModule

* Users/view/zend-skeleton-module

What just happened?
We have installed a skeleton module for Zend Framework; this is just an empty module, and
we will need to extend this by creaing custom controllers and views. In our next acivity, we
will focus on creaing new controllers and views for this module.

Creaing a module using ZFTool
ZFTool is a uility for managing Zend Framework applicaions/
projects, and it can also be used for creaing new modules; in order to
do that, you will need to install ZFTool and use the create module

command to create the module using ZFTool:
$ php composer.phar require zendframework/
zftool:dev-master

$ cd vendor/zendframework/zftool/

$ php zf.php create module Users2 /var/www/
CommunicationApp

Read more about ZFTool at the following link:
http://framework.zend.com/manual/2.0/en/modules/
zendtool.introduction.html

MVC layer

The fundamental goal of any MVC Framework is to enable easier segregaion of three layers
of the MVC, namely, model, view, and controller. Before we get to the details of creaing
modules, let's quickly try to understand how these three layers work in an MVC Framework:

 � Model: The model is a representaion of data; the model also holds the business
logic for various applicaion transacions.

 � View: The view contains the display logic that is used to display the various user
interface elements in the web browser.

 � Controller: The controller controls the applicaion logic in any MVC applicaion; all
acions and events are handled at the controller layer. The controller layer serves
as a communicaion interface between the model and the view by controlling the
model state and also by represening the changes to the view. The controller also
provides an entry point for accessing the applicaion.

http:///

Chapter 2

[31]

 � In the new ZF2 MVC structure, all the models, views, and controllers are grouped by
modules. Each module will have its own set of models, views, and controllers, and
will share some components with other modules.

Zend Framework module – folder structure
The folder structure of Zend Framework 2.0 module has three vital components—the
coniguraions, the module logic, and the views. The following table describes how contents
in a module are organized:

Folder name Description

config Used for managing module configuration
src Contains all module source code, including all controllers and models
view Used to store all the views used in the module

Time for action – creating controllers and views
Now that we have created the module, our next step would be having our own controllers
and views deined. In this secion, we will create two simple views and will write a controller
to switch between them:

1. Navigate to the module locaion:
$ cd /var/www/CommunicationApp/module/Users

2. Create the folder for controllers:
$ mkdir -p src/Users/Controller/

3. Create a new IndexController ile, < ModuleName >/src/<ModuleName>/
Controller/:
$ cd src/Users/Controller/

$ vim IndexController.php

4. Add the following code to the IndexController ile:
<?php

namespace Users\Controller;

use Zend\Mvc\Controller\AbstractActionController;

use Zend\View\Model\ViewModel;

class IndexController extends AbstractActionController

{

 public function indexAction()

 {

http:///

Building Your First Zend Framework Applicaion

[32]

 $view = new ViewModel();

 return $view;

 }

 public function registerAction()

 {

 $view = new ViewModel();

 $view->setTemplate('users/index/new-user');

 return $view;

 }

 public function loginAction()

 {

 $view = new ViewModel();

 $view->setTemplate('users/index/login');

 return $view;

 }

}

5. The preceding code will do the following acions; if the user visits the home page,
the user is shown the default view; if the user arrives with an acion register, the
user is shown the new-user template; and if the user arrives with an acion set to
login, then the login template is rendered.

6. Now that we have created the controller, we will have to create necessary views to
render for each of the controller acions.

7. Create the folder for views:
$ cd /var/www/CommunicationApp/module/Users

$ mkdir -p view/users/index/

8. Navigate to the views folder, <Module>/view/<module-name>/index:
$ cd view/users/index/

9. Create the following view iles:
 � index

 � login

 � new-user

1. For creating the view/users/index/index.phtml file, use the
following code:
<h1>Welcome to Users Module</h1>

Login | <a href="/users/
index/register">New User Registration

http:///

www.allitebooks.com

Chapter 2

[33]

2. For creating the view/users/index/login.phtml file, use the
following code:
<h2> Login </h2>

<p> This page will hold the content for the login form </p>

<< Back to Home

3. For creating the view/users/index/new-user.phtml file, use the
following code:
<h2> New User Registration </h2>

<p> This page will hold the content for the registration
form </p>

<< Back to Home

What just happened?
We have now created a new controller and views for our new Zend Framework module;
the module is sill not in a shape to be tested. To make the module fully funcional we will
need to make changes to the module's coniguraion, and also enable the module in the
applicaion's coniguraion.

Zend Framework module – coniguration
Zend Framework 2.0 module coniguraion is spread across a series of iles which can be
found in the skeleton module. Some of the coniguraion iles are described as follows:

 � Module.php: The Zend Framework 2 module manager looks for the Module.php

ile in the module's root folder. The module manager uses the Module.php ile to
conigure the module and invokes the getAutoloaderConfig() and getConfig()

methods.

 � autoload_classmap.php: The getAutoloaderConfig() method in
the skeleton module loads autoload_classmap.php to include any custom
overrides other than the classes loaded using the standard autoloader format.
Entries can be added or removed to the autoload_classmap.php ile to
manage these custom overrides.

 � config/module.config.php: The getConfig() method loads
config/module.config.php; this ile is used for coniguring various
module coniguraion opions including routes, controllers, layouts, and
various other coniguraions.

http:///
http://www.allitebooks.org

Building Your First Zend Framework Applicaion

[34]

Time for action – modifying module coniguration
In this secion will make coniguraion changes to the Users module to enable it to work
with the newly created controller and views using the following steps:

1. Autoloader coniguraion – The default autoloader coniguraion provided by

the ZendSkeletonModule needs to be disabled; this can be done by ediing
autoload_classmap.php and replacing it with the following content:
<?php

return array();

2. Module coniguraion – The module coniguraion ile can be found in
config/module.config.php; this ile needs to be updated to relect
the new controllers and views that have been created, as follows:

 � Controllers – The default controller mapping points to the
ZendSkeletonModule; this needs to be replaced with the
mapping shown in the following snippet:
 'controllers' => array(

 'invokables' => array(

 'Users\Controller\Index' =>
 'Users\Controller\IndexController',

),

),

 � Views – The views for the module have to be mapped to the appropriate
view location. Make sure that the view uses lowercase names separated by a
hyphen (for example, ZendSkeleton will be referred to as zend-skeleton):
 'view_manager' => array(

 'template_path_stack' => array(

 'users' => __DIR__ . '/../view',

),

),

 � Routes – The last module configuration is to define a route for accessing

this module from the browser; in this case we are defining the route as
/users, which will point to the index action in the Index controller of

the Users module:
 'router' => array(

 'routes' => array(

 'users' => array(

 'type' => 'Literal',

 'options' => array(

 'route' => '/users',

http:///

Chapter 2

[35]

 'defaults' => array(

 '__NAMESPACE__' =>
 'Users\Controller',

 'controller' => 'Index',

 'action' => 'index',

),

),

3. Ater making all the coniguraion changes as detailed in the previous secions,
the inal coniguraion ile, config/module.config.php, should look like
the following:
<?php

return array(

 'controllers' => array(

 'invokables' => array(

 'Users\Controller\Index' =>
 'Users\Controller\IndexController',

),

),

 'router' => array(

 'routes' => array(

 'users' => array(

 'type' => 'Literal',

 'options' => array(

 // Change this to something specific to
 your module

 'route' => '/users',

 'defaults' => array(

 // Change this value to reflect the
 namespace in which

 // the controllers for your module are
 found

 '__NAMESPACE__' => 'Users\Controller',

 'controller' => 'Index',

 'action' => 'index',

),

),

 'may_terminate' => true,

 'child_routes' => array(

 // This route is a sane default when
 developing a module;

 // as you solidify the routes for your module,
 however,

 // you may want to remove it and replace it
 with more

http:///

Building Your First Zend Framework Applicaion

[36]

 // specific routes.

 'default' => array(

 'type' => 'Segment',

 'options' => array(

 'route' =>
 '/[:controller[/:action]]',

 'constraints' => array(

 'controller' =>
 '[a-zA-Z][a-zA-Z0-9_-]*',

 'action' =>
 '[a-zA-Z][a-zA-Z0-9_-]*',

),

 'defaults' => array(

),

),

),

),

),

),

),

 'view_manager' => array(

 'template_path_stack' => array(

 'users' => __DIR__ . '/../view',

),

),

);

4. Applicaion coniguraion – Enable the module in the applicaion's coniguraion—
this can be done by modifying the applicaion's config/application.config.
php ile, and adding Users to the list of enabled modules:
 'modules' => array(

 'Application',

 'Users',

),

5. To test the module in a web browser, open http://comm-app.local/users/ in
your web browser; you should be able to navigate within the module.

http:///

Chapter 2

[37]

The module home page is shown as follows:

The registraion page is shown as follows:

http:///

Building Your First Zend Framework Applicaion

[38]

What just happened?
We have modiied the coniguraion of ZendSkeletonModule to work with the new
controller and views created for the Users module. Now we have a fully-funcional
module up and running using the new ZF module system.

Have a go hero

Now that we have the knowledge to create and conigure own modules, your next task
would be to set up a new CurrentTime module. The requirement for this module is to
render the current ime and date in the following format:

Time: 14:00:00 GMT Date: 12-Oct-2012

Pop quiz – Zend Framework 2.0
Q1. What is the tool used by ZendSkeletonApplication for managing dependencies
in PHP?

1. Git

2. Composer

3. PHP Command Line Interface

4. Pyrus

Q2. What is the ilename of a module's coniguraion ile?

1. <App>/module/<Module>/config.inc

2. <App>/<Module>/config/config.php

3. <App>/module/<Module>/module.config.php

4. <App>/module/<Module>/config/module.config.php

Summary

We have now learned about seing up a new Zend Framework project using Zend's skeleton
applicaion and module. In our next chapters, we will be focusing on further development on
this module and extending it into a fully-ledged applicaion.

http:///

3
Creating a Communication

Application

In the previous chapter, we covered creating controllers and views in a new
Zend Framework module. In this chapter we will create our first registration
form, and set up login and authentication for registered users using Zend
Framework components.

Some of the key components that we will focus on in this chapter are listed as follows:

 � Zend\Form

 � Zend\InputFilter

 � Zend\Validator

 � Models and Zend\Db

Zend\Form

Forms are usually built by creaing the HTML page for the form, wriing separate validaion
and iltering for various form events, and inally wriing the controllers and acions for the
form acions. With Zend Framework, the Zend\Form component provides all the previously
stated features in a single component.

Zend\Form allows developers to programmaically create and handle forms in your
applicaions. Zend\Form supports form rendering, form handling, input iltering and
validaion, and form coniguraions. In our next task we will set up our irst form in ZF2.

http:///

Creaing a Communicaion Applicaion

[40]

Time for action – creating a registration form
To create our irst registraion form, we will create a new controller to display a registraion
form; we will also create new forms and views. We need to make the following changes to
the Users module:

1. Form – We will also need to create a registraion form under src/Users/Form/
RegisterForm.php:

1. The RegisterForm class extends Zend\Form\Form; the form's
configuration is added to the constructor:
<?php

// filename : module/Users/src/Users/Form/RegisterForm.php

namespace Users\Form;

use Zend\Form\Form;

class RegisterForm extends Form

{

 public function __construct($name = null)

 {

 parent::__construct('Register');

 $this->setAttribute('method', 'post');

 $this->setAttribute('enctype','multipart/form-
 data');

2. All fields are added to the form using the $this->add() method on the
form's constructor:
 $this->add(array(

 'name' => 'name',

 'attributes' => array(

 'type' => 'text',

),

 'options' => array(

 'label' => 'Full Name',

),

));

3. Additional validators/filters can be added to the fields while declaring
the fields in the form. In this case we are adding special validation for
the EmailAddress field:
 $this->add(array(

 'name' => 'email',

 'attributes' => array(

 'type' => 'email',

),

http:///

Chapter 3

[41]

 'options' => array(

 'label' => 'Email',

),

 'attributes' => array(

 'required' => 'required'

),

 'filters' => array(

 array('name' => 'StringTrim'),

),

 'validators' => array(

 array(

 'name' => 'EmailAddress',

 'options' => array(

 'messages' => array(

 \Zend\Validator\
EmailAddress::INVALID_FORMAT => 'Email address format is
invalid'

)

)

)

)

));

4. Use the same method to add password, confirm_password, and
submit fields; password and confirm_password will be of type

password, whereas submit will be of type button.

2. Views – The following views will have to be created to support the
registraion process:

1. Registration page: The view for registration page is created in src/view/
users/register/index.phtml.

2. The view consists of three main sections—the section to display error
messages, the view logic which is used to generate the form tag, and the
view helpers used to generate the actual form elements. The following logic
is used to display error messages:
<section class="register">

<h2>Register</h2>

<?php if ($this->error): ?>

<p class="error">

 There were one or more issues with your submission.
Please correct them as

 indicated below.

</p>

<?php endif ?>

http:///

Creaing a Communicaion Applicaion

[42]

3. The following block is used to generate the <form> HTML tag using the

form object assigned to the view in the controller:
<?php

$form = $this->form;

$form->prepare();

$form->setAttribute('action', $this->url(NULL,
array('controller'=>'Register', 'action' => 'process')));

$form->setAttribute('method', 'post');

echo $this->form()->openTag($form);

?>

4. The following section is used to generate individual form elements for the
Name, Email, Password, Confirm Password, and Submit fields:
<dl class="zend_form">

<dt><?php echo $this->formLabel($form->get('name')); ?></dt>

<dd><?php

 echo $this->formElement($form->get('name'));

 echo $this->formElementErrors($form->get('name'));

?></dd>

<dt><?php echo $this->formLabel($form->get('email')); ?></
dt>

<dd><?php

 echo $this->formElement($form->get('email'));

 echo $this->formElementErrors($form->get('email'));

?></dd>

<dt><?php echo $this->formLabel($form->get('password'));
?></dt>

<dd><?php

 echo $this->formElement($form->get('password'));

 echo $this->formElementErrors($form->get('password'));

?></dd>

<dt><?php echo $this->formLabel($form->get('confirm_
password')); ?></dt>

<dd><?php

 echo $this->formElement($form->get('confirm_password'));

 echo $this->formElementErrors($form->get('confirm_
password'));

?></dd>

<dd><?php

 echo $this->formElement($form->get('submit'));

 echo $this->formElementErrors($form->get('submit'));

?></dd>

</dl>

http:///

www.allitebooks.com

Chapter 3

[43]

5. Finally the form HTML tag needs to be closed:
<?php echo $this->form()->closeTag() ?>

</section>

6. Confirmation page: The view for the confirmation page is pretty
straightforward, the view is created in src/view/users/register/
confirm.phtml.
<section class="register-confirm">

<h2>Register Sucessfull</h2>

<p> Thank you for your registration. </p>

</section>

3. Controller – Now that we have the form and views ready, our next step will be to
have a controller in place, which will help us to access this form. We will create a
new RegisterController class and load the newly created form in its index
acion. The new controller will be created in the src/Users/Controller/
RegisterController.php ile:
<?php

namespace Users\Controller;

use Zend\Mvc\Controller\AbstractActionController;

use Zend\View\Model\ViewModel;

use Users\Form\RegisterForm;

class RegisterController extends AbstractActionController

{

 public function indexAction()

 {

 $form = new RegisterForm();

 $viewModel = new ViewModel(array('form' =>
 $form));

 return $viewModel;

 }

 public function confirmAction()

 {

 $viewModel = new ViewModel();

 return $viewModel;

 }

}

http:///
http://www.allitebooks.org

Creaing a Communicaion Applicaion

[44]

4. Coniguraion – Now we have created all the necessary components to display our
form, we need to add our controller to the invokables list in the module conig
(config/module.config.php):
'controllers' => array(

 'invokables' => array(

 'Users\Controller\Index' =>
 'Users\Controller\IndexController',

 'Users\Controller\Register' =>
 'Users\Controller\RegisterController',

),

5. To test the registraion form's display, open any web browser and try accessing the
following URL:
http://comm-app.local/users/register

The registraion form should look like the following:

http:///

Chapter 3

[45]

What just happened?
Unil now we have created a form that can be used to display all the necessary ields that
can be used during the registraion process. Let us try to understand how the form is being
rendered. When we invoke the http://comm-app.local/users/register page, the
controller creates a new instance of the RegisterForm class and displays it on the web
browser. We have added the following ields to the RegisterForm class using its constructor:

 � Name

 � Email

 � Password

 � Conirm Password

 � The Submit buton

These ields are added to the newly created Form object. The ViewModel patern renders
the form, and the form object gets passed over to the view for rendering, and each ield is
rendered as per the logic in the view using the FormElement view helper.

FormElement works as a magic helper to render any form ield based on
the type of the Zend\Form\Element tag that is passed on to it. There
are individual helpers for rendering speciic form ields. The complete
list of form view helpers can be obtained from the ZF documentaion
on Form View Helpers found at http://framework.zend.com/
manual/2.0/en/modules/zend.form.view.helpers.html.

Have a go hero

Before we move on to the next secion, please create a login form in the same way that we
used to create the registraion form. The form will contain the following ields:

 � Email

 � Password

 � The Submit buton

We will be using this login form to perform authenicaion towards the end of this chapter.

http:///

Creaing a Communicaion Applicaion

[46]

Form validation

If you had taken a closer look at the form code, you would have noiced that we have added
some validaion for the Email Address ield as shown in the following snippet:

 'attributes' => array(

 'required' => 'required'

),

 'filters' => array(

 array('name' => 'StringTrim'),

),

 'validators' => array(

 array(

 'name' => 'EmailAddress',

 'options' => array(

 'messages' => array(

 \Zend\Validator\EmailAddress::INVALID_
 FORMAT => 'Email address format is
 invalid'

)

So, we added the following:

 � An atribute to make the ield a required ield

 � A ilter to trim the string that is passed

 � A validator to verify if the e-mail address is in the valid format

With the introducion on Zend Framework's InputFilter, we can validate enire forms
instead of ataching validaion to each and every form ield. This allows much cleaner code
and beter scalability of Zend Forms. So efecively we can have the same form being used
in muliple secions of the website, each having its own set of validaion rules that are not
dependant on the form's validaion. In our next secion we will set up a new validator for the
registraion form.

Zend\InputFilter
Validaion for forms and various other inputs can be performed by making use of Zend\
InputFilter. This component allows iltering and validaion of generic sets of input data.
For speciic form elements you can apply validaion and iltering on the speciic elements,
but if we have to ilter an input set like a $_GET request or a $_POST request, this can be
implemented using the InputFilter class.

In our next task, we will be adding the InputFilter class to our registraion form.

http:///

Chapter 3

[47]

Time for action – adding validation to the registration form
To add an InputFilter class to an exising form, we need to create a new InputFilter

class and use it during form submission for validaion, as shown in the following steps:

1. Create a new InputFilter class in src/Users/Form/RegisterFilter.php.
The RegisterFilter class will extend the Zend\InputFilter\InputFilter

class and will add all the necessary validators in its constructor:
<?php

namespace Users\Form;

use Zend\InputFilter\InputFilter;

class RegisterFilter extends InputFilter

{

 public function __construct()

 {

2. Using the $this->add() method, we can add various ilter opions to the
registraion form:

1. For the Email Address field, we will add a validator to check if the value
entered is a valid e-mail address:
 $this->add(array(

 'name' => 'email',

 'required' => true,

 'validators' => array(

 array(

 'name' => 'EmailAddress',

 'options' => array(

 'domain' => true,

),

),

),

));

2. For the Name field, we will add a validator to limit the size between 2 to

140 characters and will also add a filter to strip the HTML tags:
 $this->add(array(

 'name' => 'name',

 'required' => true,

 'filters' => array(

 array(

 'name' => 'StripTags',

),

http:///

Creaing a Communicaion Applicaion

[48]

),

 'validators' => array(

 array(

 'name' => 'StringLength',

 'options' => array(

 'encoding' => 'UTF-8',

 'min' => 2,

 'max' => 140,

),

),

),

));

3. For the Password and Confirm Password fields, we will not add any
validators but will make them mandatory:
'password'));

 $this->add(array(

 'name' => 'confirm_password',

 'required' => true,

));

3. This InputFilter class is not mapped to the RegisterForm class yet; we will
be performing the validaion during form submission. We need to modify the
RegisterController class to enable the processAction method and validate

the form upon submission.

4. Modify the RegisterController class to enable the processAction method:
public function processAction()

{

 if (!$this->request->isPost()) {

 return $this->redirect()->toRoute(NULL ,

 array('controller' => 'register',

 'action' => 'index'

));

 }

 $post = $this->request->getPost();

 $form = new RegisterForm();

 $inputFilter = new RegisterFilter();

 $form->setInputFilter($inputFilter);

 $form->setData($post);

 if (!$form->isValid()) {

 $model = new ViewModel(array(

 'error' => true,

 'form' => $form,

));

http:///

Chapter 3

[49]

 $model->setTemplate('users/register/index');

 return $model;

 }

 return $this->redirect()->toRoute(NULL , array(

 'controller' => 'register',

 'action' => 'confirm'

));

}

5. Now open the registraion page in your web browser and test the validaion:

http:///

Creaing a Communicaion Applicaion

[50]

What just happened?
We have now enabled validaion on the registraion form. In the processAction()

funcion of the RegisterController class, you will see that a new instance of the

RegisterFrom class is created and RegisterFilter is applied to the form using the
$form->setInputFilter() method. The data entered as input to the form is added again
and validaion is performed by using the isValid() method. Error messages are rendered
in the form using the FormElementErrors view helper.

We need to ensure that the names in the InputFilter class properly map to the names in
the form while adding validaion to InputFilter.

Have a go hero

You've just learned about adding a custom InputFilter class to a Zend form using the
previous task; before you move on to the next secion, set up a validaion InputFilter

for the Login form that you have built in your previous exercise.

Models and database access

Models provide a representaion of data in the MVC applicaion. There is no Zend\Model

component that is provided by Zend Framework, so developers have to decide on the
implementaion part of models. Models by themselves cannot talk to databases and fetch
or process data, so they are usually connected to mapper objects or use ORM to connect
to databases. For this example, we will be using a TableGateway patern for storing data
in the database.

TableGateway is a built-in Zend Framework 2 DB patern which acts as a
gateway to a database table, having access to all table rows for performing
various SQL operaions including select, insert, update, and delete.

TableGateway
The TableGateway patern is used for creaing an object that represents a table in the
database; in this example, we will need a TableGateway object for the User table.

The exchangeArray() method needs to be declared
in the model if the model uses TableGateway for
database storage.

http:///

Chapter 3

[51]

Time for action – creating models and saving the form
In this task, we will be creaing a new user model, creaing a table in MySQL database to save
the registraion data using TableGateway to store registraion data to the table. We will,
inally, connect our registraion form to UserTable so that new registraions are stored in
the database. Perform the following steps to do so:

1. A new table needs to be created to store the registraion informaion in the
MySQL database:
CREATE TABLE user (

 id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,

 name TEXT NOT NULL,

 email VARCHAR(255) NOT NULL,

 password TEXT NOT NULL,

 PRIMARY KEY (id),

 UNIQUE INDEX idx_email(email)

);

2. The applicaion's global coniguraion needs to be modiied to add references to
the database connecion as shown in the following snippet. This is available under
<Application_Home>/config/autoload/global.php.
return array(

 'db' => array(

 'driver' => 'Pdo',

 'dsn' => 'mysql:dbname=test;host=localhost',

 'username' => 'db_user',

 'password' => '',

 'driver_options' => array(

 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''

),

),

 'service_manager' => array(

 'factories' => array(

 'Zend\Db\Adapter\Adapter'

 => 'Zend\Db\Adapter\AdapterServiceFactory',

),

),

);

http:///

Creaing a Communicaion Applicaion

[52]

3. Create a new model for the User class. This needs to be created under
src/Users/Model/User.php.
<?php

namespace Users\Model;

class User

{

 public $id;

 public $name;

 public $email;

 public $password;

}

4. The User model will deine the setPassword() and the exchangeArray()

methods:

1. Implement a setPassword() method which will assign a MD5 version
password to the UserTable entity for storage:
 public function setPassword($clear_password)

 {

 $this->password = md5($clear_password);

 }

2. Implement the exchangeArray() method; this method is used while
mapping the User entity to the UserTable entity:
 function exchangeArray($data)

 {

 $this->name = (isset($data['name'])) ?
 $data['name'] : null;

 $this->email = (isset($data['email'])) ?
 $data['email'] : null;

 if (isset($data["password"]))

 {

 $this->setPassword($data["password"]);

 }

 }

5. Create a new table reference for User. This needs to be created under src/Users/
Model/UserTable.php:
<?php

namespace Users\Model;

use Zend\Db\Adapter\Adapter;

use Zend\Db\ResultSet\ResultSet;

use Zend\Db\TableGateway\TableGateway;

class UserTable

http:///

www.allitebooks.com

Chapter 3

[53]

{

 protected $tableGateway;

 public function __construct(TableGateway $tableGateway)

 {

 $this->tableGateway = $tableGateway;

 }

 public function saveUser(User $user)

 {

 $data = array(

 'email' => $user->email,

 'name' => $user->name,

 'password' => $user->password,

);

 $id = (int)$user->id;

 if ($id == 0) {

 $this->tableGateway->insert($data);

 } else {

 if ($this->getUser($id)) {

 $this->tableGateway->update($data, array('id' => $id));

 } else {

 throw new \Exception('User ID does not exist');

 }

 }

 }

 public function getUser($id)

 {

 $id = (int) $id;

 $rowset = $this->tableGateway->select(array('id' => $id));

 $row = $rowset->current();

 if (!$row) {

 throw new \Exception("Could not find row $id");

 }

 return $row;

 }

}

6. Now we can use UserTable to save new registraions to the database. To save
registraions, we need to make changes to the RegisterController class. First,
we will create a new funcion for saving user registraion:
protected function createUser(array $data)

{

 $sm = $this->getServiceLocator();

 $dbAdapter = $sm->get('Zend\Db\Adapter\Adapter');

 $resultSetPrototype = new \Zend\Db\ResultSet\ResultSet();

http:///
http://www.allitebooks.org

Creaing a Communicaion Applicaion

[54]

 $resultSetPrototype->setArrayObjectPrototype(new
 \Users\Model\User);

 $tableGateway = new \Zend\Db\TableGateway\TableGateway('user',
 $dbAdapter, null, $resultSetPrototype);

 $user = new User();

 $user->exchangeArray($data);

 $userTable = new UserTable($tableGateway);

 $userTable->saveUser($user);

 return true;

}

The TableGateway constructor takes the following parameters and
generates a TableGateway object in response:

 � $table: Used to provide the table name for the TableGateway

object.
 � Adapter $adapter: Used to provide the database adapter

name.
 � $features (optional): TableGateway Feature API allows the

extension of the TableGateway functionality without having
to extend the base class. The features can be specified here.

 � ResultSet $resultSetPrototype (optional): Used to

provide the ResultSet type.
 � Sql $sql (optional): Used to provide any additional SQL criteria;

make sure that the SQL object is bound to the same table as in
$table.

 � For more information refer to:
http://framework.zend.com/manual/2.0/en/
modules/zend.db.table-gateway.html#zend-db-
tablegateway

7. Next, we need to make sure that the processAction() method calls this funcion
before redirecing to the conirmaion page:
// Create user

$this->createUser($form->getData());

http:///

Chapter 3

[55]

8. Open the registraion page in your favourite browser and use the MySQL database
to check if the registraion informaion is properly stored in the database. The
registraion conirmaion page should look like the following screenshot:

You can check the MySQL database to see if the records have been inserted properly:

What just happened?
We have now modiied the form to save new user registraions to the database; our next
step will be to set up authenicaion based on the informaion stored in the database.

Zend\Authentication
Zend\Authentication is an authenicaion component provided by Zend Framework
which can be used for authenicaion against a wide number of authenicaion mechanisms
including database table, HTTP authenicaion, and LDAP authenicaion. The component
also lets you store the session informaion to a wide range of storages.

In this example, we will be using the Zend\Authentication component to validate the
user credenials submited in the login form.

http:///

Creaing a Communicaion Applicaion

[56]

Time for action – user authentication
In this task we will be authenicaing the login form using the Zend\Authentication

component using the following steps:

1. Add a funcion to return the authenicaion service in the login controller src/
Users/Controller/LoginController.php:
// References

use Zend\Authentication\AuthenticationService;

use Zend\Authentication\Adapter\DbTable as DbTableAuthAdapter;

// Class definition

public function getAuthService()

{

 if (! $this->authservice) {

 $dbAdapter = $this->getServiceLocator()->get('Zend\Db\Adapter\
Adapter');

 $dbTableAuthAdapter = new DbTableAuthAdapter($dbAdapter,
'user','email','password', 'MD5(?)');

 $authService = new AuthenticationService();

 $authService->setAdapter($dbTableAuthAdapter);

 $this->authservice = $authService;

 }

 return $this->authservice;

}

2. In the processAction() method for LoginController, check if the form
submission is valid, and use the AuthService method to validate the credenials

using the authenticate method:
public function processAction()

//

$this->getAuthService()->getAdapter()

 ->setIdentity($this->request-
>getPost('email'))

 ->setCredential($this->request-
>getPost('password'));

$result = $this->getAuthService()->authenticate();

if ($result->isValid()) {

 $this->getAuthService()->getStorage()->write($this->request-
>getPost('email'));

 return $this->redirect()->toRoute(NULL , array(

 'controller' => 'login',

 'action' => 'confirm'

));

}

http:///

Chapter 3

[57]

3. The ConfirmAction funcion will render the logged in user's welcome screen:
 public function confirmAction()

 {

 $user_email = $this->getAuthService()->getStorage()->read();

 $viewModel = new ViewModel(array(

 'user_email' => $user_email

));

 return $viewModel;

 }

4. The view for the user's home page created under /view/users/login/confirm.
phtml will be as follows:
<section class="login-confirm">

<h2>Login Successful</h2>

<p> Welcome! <?php echo $this->user_email; ?> </p>

</section>

5. Open the login page in your browser and try to log in with the credenials that you
used during registraion. The login form should look like the following:

http:///

Creaing a Communicaion Applicaion

[58]

Upon successful login, you will be redirected to the login success page as shown below.

What just happened?
We created a new database table authenicaion adapter for the user table to validate
the email and password ields. Using the authenicaion adapter we have been able to

perform authenicaion for registered users.

Pop quiz – Zend Framework 2.0
Q1. Which ile should be modiied to store the database credenials applicaion-wide?

1. <App>/module/<Module>/config.inc

2. <App>/config/autoload/global.php

3. <App>/module/<Module>/module.config.php

4. <App>/module/<Module>/config/module.config.php

Q2. What is the correct method to assign an input ilter to a form?

1. $form->setInputFilter($inputFilter)

2. $form->useInputFilter($inputFilter)

3. $form->assignInputFilter($inputFilter)

4. $form->mapInputFilter($inputFilter)

Summary

In this chapter we have learned creaing forms, doing basic validaions, storing form data
to the database, using models, and authenicaing with the database. In the next chapter
we will be learning about advanced database operaions, which will be based on the
TableGateway patern that we have covered in this chapter.

http:///

4
Data Management and

Document Sharing

After getting ready to write your own basic models in the previous chapters,
you can now learn how to make the most out of your Zend Framework's data
and file management concepts in this chapter.

In this chapter we will cover the following key topics:

 � Zend Framework 2 ServiceManager

 � The TableGateway patern

 � File uploads and ile sharing using Zend Framework

Zend Framework 2 ServiceManager

The ZF2 ServiceManager implements the service locator design patern. The service locator
is a service/object locator used for retrieving other objects.

The ServiceManager coniguraions are classiied into six main categories; your
applicaion/module coniguraion will fall under one or more of the categories
listed in the following table:

Configuration type Description

abstract_factories Used to define an array of abstract classes.

aliases Used to define an associative array of alias name / target name pairs.

http:///

Data Management and Document Sharing

[60]

Configuration type Description

factories Used to define an array of service name / factory class name pairs.
The factory classes defined here should either implement Zend/
ServiceManager/FactoryInterface or invokable classes.

invokables Used to define an array of service name / class name pairs. The classes
listed here may be directly instantiated without any constructor
arguments.

services Used to define an array of service name / object pairs. The service is
basically an instance of a class. Services can be used to register classes
which are already initialized.

shared Used to define an array of service name / Boolean pairs, indicating
whether or not a service should be shared. All services are shared by
default; this ServiceManager option can be used to disable sharing on
specific services.

The ServiceManager coniguraion can be stored either in the applicaion coniguraion or
in the module coniguraion; this can be chosen according to the needs, applicaion, or
module. Usually, the coniguraion, which is staic across the applicaion, is stored in the
applicaion-level coniguraion; all other informaion is stored at a module level.

The coniguraion for ServiceManager is merged in the following order:

1. Module coniguraion provided by the Module lass using the getServiceConfig()

method. This will be processed in the same order in which the modules are processed:
 public function getServiceConfig()

 {

 return array(

 'abstract_factories' => array(),

 'aliases' => array(),

 'factories' => array(),

 'invokables' => array(),

 'services' => array(),

 'shared' => array(),

);

 }

2. Module coniguraion is present in the service_manager key; again, this is
processed in the same order in which the modules are processed.

3. Applicaion coniguraion is present in various coniguraion iles in the
config/autoload/ directory in the order in which they are processed:
<?php

return array(

 'service_manager' => array(

http:///

Chapter 4

[61]

 'abstract_factories' => array(),

 'aliases' => array(),

 'factories' => array(),

 'invokables' => array(),

 'services' => array(),

 'shared' => array(),

),

);

Time for action – migrating existing code to ServiceManager
Our next step will be to migrate exising code blocks to make use of ServiceManager. Some
of the key factories that can be moved into ServiceManager are as follows:

 � Database connecions

 � Models and table gateways

 � Forms and ilters

 � Authenicaion service

If you review the exising code, you will be able to igure out that all the database connecions
are already using the Zend Framework 2 ServiceManager model for storing credenials. We
will take one step forward and move the rest of the factories into ServiceManager using the
following steps:

1. Modify Module.php and add a new funcion to load the ServiceManager coniguraion:
public function getServiceConfig()

{

 return array(

 'abstract_factories' => array(),

 'aliases' => array(),

 'factories' => array(

 // DB

 'UserTable' => function($sm) {

 $tableGateway = $sm->get('UserTableGateway');

 $table = new UserTable($tableGateway);

 return $table;

 },

 'UserTableGateway' => function ($sm) {

 $dbAdapter = $sm->get('Zend\Db\Adapter\Adapter');

 $resultSetPrototype = new ResultSet();

 $resultSetPrototype->setArrayObjectPrototype(new User());

http:///

Data Management and Document Sharing

[62]

 return new TableGateway('user', $dbAdapter, null,
 $resultSetPrototype);

 },

 // FORMS

 'LoginForm' => function ($sm) {

 $form = new \Users\Form\LoginForm();

 $form->setInputFilter($sm->get('LoginFilter'));

 return $form;

 },

 'RegisterForm' => function ($sm) {

 $form = new \Users\Form\RegisterForm();

 $form->setInputFilter($sm->get('RegisterFilter'));

 return $form;

 },

 // FILTERS

 'LoginFilter' => function ($sm) {

 return new \Users\Form\LoginFilter();

 },

 'RegisterFilter' => function ($sm) {

 return new \Users\Form\RegisterFilter();

 },

),

 'invokables' => array(),

 'services' => array(),

 'shared' => array(),

);

}

2. Make sure that the Module.php ile includes all the necessary namespaces:
use Users\Model\User;

use Users\Model\UserTable;

use Zend\Db\ResultSet\ResultSet;

use Zend\Db\TableGateway\TableGateway;

http:///

Chapter 4

[63]

Using namespaces
Namespaces can be utilized by making use of PHP 5.3's namespace and
use keywords. All ZF2 classes have a namespace which directly matches
with the folder structure of the folder holding that class; all classes stored
within that folder are directly determined by their namespace.
By default, the use keyword creates an alias for the last segment of
the namespace, and this can be changed by using the as option on the
keyword. For example, see the following code:

use Zend\Form\Element as Element;

use Zend\Form\Element; // same as previous line

3. Make necessary changes to the controllers to fetch the instances from
ServiceManager:
// to get Login Form

$form = $this->getServiceLocator()->get('LoginForm');

// to get User Table

$userTable = $this->getServiceLocator()->get('UserTable');

4. To check if the changes are working as expected, try to register and log in with
new credenials.

What just happened?
We have migrated our code to make use of Zend's ServiceManager framework.
ServiceManager provides enormous beneits in terms of a cleaner code, highly
efecive refactoring ability, and a centralized register for core applicaion components.

Have a go hero

Now that you have understood Zend ServiceManager funcionality, here is a simple
task for you. The login controller (CommunicationApp/module/Users/src/Users/
Controller/LoginController.php) makes use of getAuthService() for the
authenicaion service. Modify the funcion, so that the authenicaion service is obtained
from ServiceManger.

Database operations

In the previous chapter we learned how to implement a basic database operaion, namely,
table insert. In this secion, you will learn all the basic database operaions necessary
for building a simple CRUD (Create, Read, Update and Delete) interface.

http:///

Data Management and Document Sharing

[64]

More on TableGateway
The TableGateway class extends AbstractTableGateway, which implements
TableGatewayInterface. The interface deiniion of TableGatewayInterface

is provided in the following code snippet; all the basic table operaions are deined
in the interface:

interface Zend\Db\TableGateway\TableGatewayInterface

{

 public function getTable();

 public function select($where = null);

 public function insert($set);

 public function update($set, $where = null);

 public function delete($where);

}

The TableGateway class ofers a wide range of methods to perform basic database
operaions; some of the most frequently used methods are explained in the following secion:

 � getTable(): Returns a string which contains the table name mapped with the
TableGateway object. For example, see the following code:
$myTableName = $myTableGateway->getTable();

 � select($where = null): Used to select a set of rows with the criteria speciied

in $where; it can either be a where condiion based on Zend\Db\Sql\Where or an
array of criteria. For example, see the following code:
$rowset = $myTableGateway->select(array('id' => 2));

 � insert($set): Used to insert the data deined in $set into the table as a new
record. For example, see the following code:
$myTableGateway->insert(array('id' => 2, 'name'=>'Ravi'));

 � update($set, $where = null): Used to update a set of rows with the criteria
speciied in $where; it can either be a where condiion based on Zend\Db\Sql\
Where or an array of criteria. $set holds the data that will be updated for all the
records matched with $where. For example, see the following code:
$rowset = $myTableGateway->update(array('name' => 'Jerry') ,
array('id' => 2));

 � delete($where): Used to delete a set of rows with the criteria speciied in
$where; it can either be a where condiion based on Zend\Db\Sql\Where

or an array of criteria. For example, see the following code:
$myTableGateway->delete(array('id' => 2));

http:///

Chapter 4

[65]

 � getLastInsertValue(): Returns the last insert value for the table's primary

key. the return type is an integer. For example, see the following code:
$myTableGateway->insert(array('name'=>'Ravi'));

$insertId = $myTableGateway-> getLastInsertValue ();

Time for action – implementing an admin UI to manage users
In this task we will be creaing an administraion user interface for managing users in our
applicaion. The following operaions will include lising all users, ediing exising users,
deleing users, and adding users:

1. Modify CommunicationApp/module/Users/src/Users/Model/UserTable.

php using the following code. Add the following funcions:

 � fetchAll()

 � getUser($id)

 � getUserByEmail($userEmail)

 � deleteUser($id)

public function fetchAll()

{

 $resultSet = $this->tableGateway->select();

 return $resultSet;

}

public function getUser($id)

{

 $id = (int) $id;

 $rowset = $this->tableGateway->select(array('id' => $id));

 $row = $rowset->current();

 if (!$row) {

 throw new \Exception("Could not find row $id");

 }

 return $row;

}

public function getUserByEmail($userEmail)

{

 $rowset = $this->tableGateway->select(array('email' =>
 $userEmail));

 $row = $rowset->current();

 if (!$row) {

 throw new \Exception("Could not find row $ userEmail");

 }

http:///

Data Management and Document Sharing

[66]

 return $row;

}

public function deleteUser($id)

{

 $this->tableGateway->delete(array('id' => $id));

}

2. Create a new controller for user management under CommunicationApp/
module/Users/src/Users/Controller/UserManagerController.php.

3. The UserManagerController controller will have the following acions:

 � indexAction(): This is used to render all available users in the system,
and we will also render links to add/edit and delete links as shown in the
following code:
$userTable = $this->getServiceLocator()

 ->get('UserTable');

$viewModel = new ViewModel(array(

 'users' => $userTable->fetchAll()));

return $viewModel;

 � editAction(): This action is used to render the edit form to modify the
information related to the user:
$userTable = $this->getServiceLocator()

 ->get('UserTable');

$user = $userTable->getUser(

 $this->params()->fromRoute('id'));

$form = $this->getServiceLocator()

 ->get('UserEditForm');

$form->bind($user);

$viewModel = new ViewModel(array(

 'form' => $form,

 'user_id' => $this->params()->fromRoute('id')

));

return $viewModel;

http:///

Chapter 4

[67]

The bind method
The bind method used in the Form function allows the mapping of the
model to a form. The function works in two directions—it updates the form
in the view with the data from the model and it updates the model with the
form submission data if the form is validated, that is, $form->isValid().
Read more here:
http://framework.zend.com/manual/2.2/en/modules/zend.
form.quick-start.html#binding-an-object

 � processAction(): The processAction action is used when the user
edit form is submitted; processAction saves the updated record and
returns to indexAction:
// Get User ID from POST

$post = $this->request->getPost();

$userTable = $this->getServiceLocator()

 ->get('UserTable');

// Load User entity

$user = $userTable->getUser($post->id);

// Bind User entity to Form

$form = $this->getServiceLocator()

 ->get('UserEditForm');

$form->bind($user);

$form->setData($post);

// Save user

$this->getServiceLocator()

 ->get('UserTable')->saveUser($user);

 � deleteAction(): This action is used to delete the user record:
$this->getServiceLocator()->get('UserTable')

 ->deleteUser($this->params()

 ->fromRoute('id'));

4. Create the necessary views and modify the module's config/module.config.
php ile to specify a unique child route to access this controller:
'user-manager' => array(

 'type' => 'Segment',

 'options' => array(

 'route' => '/user-manager[/:action[/:id]]',

 'constraints' => array(

 'action' => '[a-zA-Z][a-zA-Z0-9_-]*',

 'id' => '[a-zA-Z0-9_-]*',

http:///

Data Management and Document Sharing

[68]

),

 'defaults' => array(

 'controller' => 'Users\Controller\UserManager',

 'action' => 'index',

),

),

),

5. Finally add the new controller to the invokables array:
'Users\Controller\UserManager' => 'Users\Controller\
UserManagerController',

6. Now open your web browser and access the controller, log in to your applicaion,
and open http://comm.-app.local/users/user-manager. You should be
able to see a page similar to the one given in the following screenshot:

http:///

Chapter 4

[69]

The Edit user link should redirect you to an user edit form like the one in the
following screenshot:

The Delete user link can be used to remove the user from the user list:

http:///

Data Management and Document Sharing

[70]

What just happened?
We have now created an administraion user interface for adding, modifying, and removing
users from our communicaion applicaion. We have uilized all the core funcionaliies of
the TableGateway model and created funcions for performing CRUD operaions on the
table access objects.

Going forward, we will be making use of some of the more advanced applicaions
of TableGateway.

Have a go hero

Before we move on to the next secion, here is a small task for you to pracice. Your task for
this secion will be to create a new Add User form. Refer to the following screenshot:

This form will be similar to the Register Form that we created in the previous chapter.
Once the form is submited, the user will be taken back to the user lising page. A link to this
form will have to be added in the user lising page.

http:///

Chapter 4

[71]

Document management

In this secion we will create a new document management interface. The document
management interface will allow users to upload documents, manage uploads, and share
uploaded documents with other users. The user interface will also allow users to manage
sharing, and add/remove shares.

In this secion, we will focus on providing users with opions to create ile uploads and
manage those uploads. We will be using the ilesystem to store the uploaded ile and the
relaive path of the uploaded ile will be stored in the database mapped to the user who
uploaded the ile.

Some of the important Zend Framework components used in ile uploads are:

 � File upload form element (Zend\Form\Element\File): The File upload element
is used in the upload form to display a ile input box. This element is an equivalent of
the <input type='file'../> style element in HTML used for allowing users to
upload iles. The ile input element can be rendered by seing 'type' => 'file'

in the form deiniion.

 � File transfer adapter (Zend\File\Transfer\Adapter\Http): The ile transfer

adapter handle ile uploads upon form submission. The setDestination()

method in the ile transfer adapter allows the user to set a desinaion and receive
the ile in that desinaion. The receive() method is used to iniiate the transfer.

Time for action – creating a ile upload form
In this task, we will be creaing a new document upload form; ile uploads will be stored in
the ilesystem, and the informaion regarding the ile upload will be stored in the database
in a table named uploads. The ile uploads are stored in a folder locaion deined in the
module coniguraion. Perform the following steps to do so:

1. Our irst step will be to deine a locaion where iles can be uploaded in the
module's coniguraion (config/module.config.php):
<?php

return array(

 // Other configurations

 // ..

 // ..

 // MODULE CONFIGURATIONS

 'module_config' => array(

 'upload_location' => __DIR__ . '/../data/uploads',

),

);

http:///

Data Management and Document Sharing

[72]

2. Next, we need to create a table which will store the upload informaion:
CREATE TABLE IF NOT EXISTS uploads (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,

 filename VARCHAR(255) NOT NULL ,

 label VARCHAR(255) NOT NULL ,

 user_id INT NOT NULL,

 UNIQUE KEY (filename)

);

3. Create the Upload and UploadTable classes for interacing with the uploads

table. Add default methods such as saveUpload(), fetchAll(), getUpload(),
and deleteUpload(). Also, add a method to get uploads made by a speciic user
getUploadsByUserId($userId):
public function getUploadsByUserId($userId)

{

 $userId = (int) $userId;

 $rowset = $this->tableGateway->select(

 array('user_id' => $userId));

 return $rowset;

}

4. Create an UploadManagerController controller for managing ile uploads. Add

indexAction() to display the list of uploads done by the user:
$uploadTable = $this->getServiceLocator()

 ->get('UploadTable');

$userTable = $this->getServiceLocator()

 ->get('UserTable');

// Get User Info from Session

$userEmail = $this->getAuthService()

 ->getStorage()->read();

$user = $userTable->getUserByEmail($userEmail);

$viewModel = new ViewModel(array(

'myUploads' => $uploadTable->getUploadsByUserId($user->id),

));

return $viewModel;

http:///

Chapter 4

[73]

5. Create an upload form with a ile input as described in the following code snippet:
$this->add(array(

 'name' => 'fileupload',

 'attributes' => array(

 'type' => 'file',

),

 'options' => array(

 'label' => 'File Upload',

),

));

Upload form

6. Create views for the ile upload form, and the index acion. Now we have all the
necessary elements to handle a ile upload. We need to read the coniguraion for
the ile upload path and use the Zend HTTP ile transfer adapter to receive the ile
in the coniguraion locaion. The get('config') method on the service locator is
used to retrieve the coniguraion. The following code is used to read the ile upload
locaion from the coniguraion:
public function getFileUploadLocation()

{

 // Fetch Configuration from Module Config

 $config = $this->getServiceLocator()->get('config');

 return $config['module_config']['upload_location'];

}

http:///

Data Management and Document Sharing

[74]

7. The last step is to handle the ile upload process. There are two acions that need to
happen once the form is successfully submited:

1. The uploaded file has to be moved to the file upload locations.

2. An entry needs to be added describing the upload in the 'uploads' table

using the following code:
$uploadFile = $this->params()->fromFiles('fileupload');

$form->setData($request->getPost());

if ($form->isValid()) {

 // Fetch Configuration from Module Config

 $uploadPath = $this->getFileUploadLocation();

 // Save Uploaded file

 $adapter = new \Zend\File\Transfer\Adapter\Http();

 $adapter->setDestination($uploadPath);

 if ($adapter->receive($uploadFile['name'])) {

 // File upload sucessfull

 $exchange_data = array();

 $exchange_data['label'] = $request->getPost()
 ->get('label');

 $exchange_data['filename'] = $uploadFile['name'];

 $exchange_data['user_id'] = $user->id;

 $upload->exchangeArray($exchange_data);

 $uploadTable = $this->getServiceLocator()
 ->get('UploadTable');

 $uploadTable->saveUpload($upload);

 return $this->redirect()

 ->toRoute('users/upload-manager' ,

 array('action' => 'index'

));

 }

}

8. Add a child route (upload manger) for the UploadManager controller and the
controller to the invokables list.

9. Open the web browser and test the upload form.

http:///

Chapter 4

[75]

The inal form will look like the following screenshot:

What just happened?
We have now created a ile upload process, which allows users to upload iles into the
applicaion and view the iles that are uploaded. We have used Zend Framework's ile upload
handling components to handle a ile upload. In our next secion, we will set up a ile sharing
mechanism such that the documents can be shared with diferent users. Before we move on
to implement ile sharing, please complete the following task.

Have a go hero

Your next task will be to add a Delete opion that allows users to delete uploaded iles as
shown in the following screenshot. Also, ensure that the ile is removed from the ilesystem
when the delete acion is triggered.

http:///

Data Management and Document Sharing

[76]

Managing ile sharing
Now that we have a fully funcional document management secion, our next task is to extend
this document management system to support ile sharing with other users. The most important
part of implemening a ile sharing mechanism is to store the informaion about upload sharing;
we do this by linking documents with user IDs in a table called upload_sharing.

Time for action – implementing a ile sharing system
For implemening ile sharing, we will need to create a new table called upload_sharing

and store all sharing-related informaion in that table. The following steps will explain how
this is implemented in our applicaion:

1. Create a new table called upload_sharing; this table will hold the relaionship
about uploads shared with users:
CREATE TABLE IF NOT EXISTS uploads_sharing (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,

 upload_id INT NOT NULL ,

 user_id INT NOT NULL,

 UNIQUE KEY (upload_id, user_id)

);

2. In the module deiniion Module.php, add a simple TableGateway object for the
uploads_sharing table:
'UploadSharingTableGateway' => function ($sm) {

 $dbAdapter = $sm->get('Zend\Db\Adapter\Adapter');

 return new TableGateway('uploads_sharing', $dbAdapter);

},

3. Modify the constructor of the UploadTable class to take in an addiional
parameter of the upload sharing TableGateway object:
public function __construct(TableGateway $tableGateway,

 TableGateway $uploadSharingTableGateway)

{

 $this->tableGateway = $tableGateway;

 $this->uploadSharingTableGateway = $uploadSharingTableGateway;

}

4. Modify the module coniguraion (Module.php) for the UploadTable factory to
support UploadSharingTableGateway:
'UploadTable' => function($sm) {

 $tableGateway = $sm->get('UploadTableGateway');

http:///

Chapter 4

[77]

 $uploadSharingTableGateway = $sm->get('UploadSharingTableGatew
ay');

 $table = new UploadTable($tableGateway,
$uploadSharingTableGateway);

 return $table;

},

5. Modify the UploadTable class to support the following ile sharing funcions:

 � addSharing(): Adds a new sharing permission for the given upload with
the user

 � removeSharing(): Removes the sharing permission for the specific

upload/user combination

 � getSharedUsers(): Gets the list of users for which the upload is shared

 � getSharedUploadsForUserId(): Gets the list of uploads that are shared
for that user

This can be done using the following code:
public function addSharing($uploadId, $userId)

{

 $data = array(

 'upload_id' => (int)$uploadId,

 'user_id' => (int)$userId,

);

 $this->uploadSharingTableGateway->insert($data);

}

public function removeSharing($uploadId, $userId)

{

 $data = array(

 'upload_id' => (int)$uploadId,

 'user_id' => (int)$userId,

);

 $this->uploadSharingTableGateway->delete($data);

}

public function getSharedUsers($uploadId)

{

 $uploadId = (int) $uploadId;

 $rowset = $this->uploadSharingTableGateway->select(

 array('upload_id' => $uploadId));

 return $rowset;

http:///

Data Management and Document Sharing

[78]

}

public function getSharedUploadsForUserId($userId)

{

 $userId = (int) $userId;

 $rowset = $this->uploadSharingTableGateway->select(

 function (Select $select) use ($userId){

 $select->columns(array())

 ->where(array('uploads_sharing.user_id'=>$userId))

 ->join('uploads', 'uploads_sharing.upload_id = uploads.id');

 });

 return $rowset;

}

The Manage Documents secion lists all uploads for a speciic user and also lists
uploads shared by others with the user:

6. Modify the edit upload form to display the list of users the upload is shared with;
this can be achieved by passing the upload ID to the getSharedUsers()method of

the UploadTable object.

http:///

Chapter 4

[79]

7. Add a new secion in the edit upload form which allows the addiion of new
shares; this is achieved by displaying the list of all users in the system in a
drop-down list. When the user clicks on Add Share, a new record is added
to the upload_sharing table:
$userTable = $this->getServiceLocator()

 ->get('UserTable');

$uploadTable = $this->getServiceLocator()

 ->get('UploadTable');

$form = $this->getServiceLocator()->get('UploadForm');

$request = $this->getRequest();

if ($request->isPost()) {

 $userId = $request->getPost()->get('user_id');

 $uploadId = $request->getPost()->get('upload_id');

 $uploadTable->addSharing($uploadId, $userId);

}

The following screenshot shows the Upload Sharing page with a drop-down list to
add shares:

8. The last secion of the ile sharing implementaion is to allow an opion for users to

download shared iles. This is provided by the fileDownloadAction() funcion
deined in our ile sharing applicaion:
public function fileDownloadAction()

{

 $uploadId = $this->params()->fromRoute('id');

 $uploadTable = $this->getServiceLocator()
 ->get('UploadTable');

http:///

Data Management and Document Sharing

[80]

 $upload = $uploadTable->getUpload($uploadId);

 // Fetch Configuration from Module Config

 $uploadPath = $this->getFileUploadLocation();

 $file = file_get_contents($uploadPath ."/" . $upload->filename);

 // Directly return the Response

 $response = $this->getEvent()->getResponse();

 $response->getHeaders()->addHeaders(array(

 'Content-Type' => 'application/octet-stream',

 'Content-Disposition' => 'attachment;filename="'
 .$upload->filename . '"',

));

 $response->setContent($file);

 return $response;

}

File download
For implementing a file download, we need to disable the layout. This can be
achieved by directly providing the HTTP response object as output for that
particular action as shown in the previous code. This can also be achieved by
setTerminal(), as shown in the following code:

 $result = new ViewModel();

 $result->setTerminal(true);

 return $result;

Large file downloads
The file_get_contents() method is capable of handling small file
uploads and consume a lot of memory when processing large files. For
better performance, you can create a stream HTTP response object Zend\
Http\Response\Stream() and stream the file download.

9. Now we have a fully funcional ile sharing system in place. Test the ile
sharing system; start by sharing the ile with diferent users, and log in
and out as diferent users.

http:///

Chapter 4

[81]

The inal form should look like the following screenshot:

What just happened?
You created a table that can store user and upload relaionships; you modiied the
UploadTable class to support addiional sharing funcions. You created controllers and
views to enable ile sharing, and inally you provided the ability for the user to download the
shared ile using a ile download script. With this, you have successfully implemented the ile
sharing system, where users can now upload, edit, and share documents within the system.

Pop quiz – data management and document sharing
Q1. In TableGateway, which funcion is used to determine the last inserted record ID?

1. getLastId()

2. getLastInsertId()

3. get('last_insert_id')

4. getLastInsertValue()

Q2. Which method can be used to disable layouts in a view model?

1. $viewModel->setNoLayouts(true)

2. $ viewModel->Layouts(false)

3. $viewModel->setTerminal(true)

4. $viewModel->setLayouts(false)

http:///

Data Management and Document Sharing

[82]

Summary

In this chapter, we have discussed several topics in the context of data and ile management.
First, we elaborated on the usage of the TableGateway database patern. We then
implemented a simple ile upload service by making use of Zend Framework's ile transfer
components. Finally, we implemented a simple ile sharing service by uilizing both Zend
Framework's ile transfer components and the TableGateway patern. In the next chapter,
we will be working closely on the frontend, especially with JavaScript and AJAX calls.

http:///

5
Chat and E-mail

In any web application development, there will be very high dependency on
client-side scripts primarily including JavaScript and CSS. The MVC model of
Zend Framework provides basic support of controlling the output that is sent
across to the browser. The view helper classes in Zend Framework 2 offer
maximum control over the content that gets rendered in the client browser.

In this chapter we will focus on building a simple group chat and e-mail component which
will make use of various frontend capabiliies of Zend Framework 2.0. Some of the important
topics covered in this chapter include:

 � Using external JavaScript libraries in the Zend Framework 2 applicaion

 � Implemening a simple group chat applicaion using Zend Framework 2
and JavaScript

 � Using Zend\Mail to send e-mails

 � Introducion to the Zend Framework event manager

Layouts and views

Zend Framework MVC uses layouts and views to render pages in the web browser; the
overall page content is controlled by the layout speciicaion, and the view level informaion
is contained in the views. The concept is to minimize the amount of redundant HTML code
that needs to be generated for each of these views.

By using layouts, the applicaion can have a consistent user interface, which is also easy
to customize; the views ofer the lexibility to modify the targeted content and allow
customizaion to the maximum possible extent. This is also known as two-step view.

http:///

Chat and E-mail

[84]

When a new view is generated, the appropriate layout is ideniied from the layout
deiniions in the view_manager coniguraion and the view is rendered with that layout.

<HTML>

<HEAD>

.....

</HEAD>

<BODY>

......

<DIV id='content'>

.....

..

.

</DIV>

....

... FOOTER ...

</HTML>

Layout

View

The preceding schemaic explains how the layout and view are combined to form an HTML
page, so for each and every view, the view part changes and the layout part remains staic.

View helpers
Zend Framework 2 ofers a wide range of view helpers that help us perform complex
operaions on views; if the included helpers are not suicient, you can deine your own
custom helper by implemening the interface Zend\View\HelperInterface.

In this secion, we will quickly review some of the included helpers in Zend Framework 2.

The URL helper
The syntax for this helper is url($name, $urlParams, $routeOptions = array(),
$reuseMatchedParams = array()).

The URL helper is used to generate the URL for a speciic route. The route's segment match
parameters can be passed over the URL helper to form a URL based on the route opion; for
example, see the following:

<a href="<?php $this->url('users/upload-manager',
array('action'=>'edit', 'id' => 10));">Edit

This code will generate Edit if

the route deiniion is as follows:

'route' => '/user-manager[/:action[/:id]]'

http:///

Chapter 5

[85]

The BasePath helper

The syntax for this helper is basePath().

The BasePath helper returns the base URL of the view, this can be used by developers to
prepend to their custom URLs and form links for various resources.

The JSON helper

The syntax for this helper is json($jsonData = array()).

The JSON helper is used to render PHP arrays as JSON-encoded data. Most AJAX libraries
classify JSON content by its content header, and this helper also sets the content type header
to application/json.

Concrete placeholder implementations
Zend Framework makes use of placeholder helpers to perform some standard operaions on
the HTML head secions including adding/removing references to new JavaScript libraries,
linking with new styles, adding and cross referencing scripts, and adding/removing HTML
head secion's meta content.

This is achieved by the following list of helpers called as concrete placeholder helpers. The
reason why they are called placeholder helpers is because the helpers themselves don't make
any changes to the way in which the content is rendered. For example, if you add <?php
echo $this->headLink(); ?> to the HTML code, this won't do anything, unil you add
something to the headLink helper by using appendStylesheet or some other funcion.

The HeadLink helper

The HeadLink helper is used to modify the <link> tag in the HTML head secion; this
helper is used to atach or manage external CSSs.

Some of the most-used funcions in this helper are listed as follows:

 � appendStylesheet($href, $media, $conditionalStylesheet, $extras)

 � offsetSetStylesheet($index, $href, $media,

$conditionalStylesheet, $extras)

 � prependStylesheet($href, $media, $conditionalStylesheet,

$extras)

 � setStylesheet($href, $media, $conditionalStylesheet, $extras)

http:///

Chat and E-mail

[86]

To render the Link tags in an HTML layout/view, use the following script:
<?php echo $this->headLink(); ?>

The HeadMeta helper

The HeadMeta helper is used to modify the <meta> tag in the HTML head secion; this
helper is used to manipulate the HTML meta informaion.

Some of the most-used funcions in this helper are listed as follows:

 � appendName($keyValue, $content, $conditionalName)

 � offsetSetName($index, $keyValue, $content, $conditionalName)

 � prependName($keyValue, $content, $conditionalName)

 � setName($keyValue, $content, $modifiers)

 � appendHttpEquiv($keyValue, $content, $conditionalHttpEquiv)

 � offsetSetHttpEquiv($index, $keyValue, $content,

$conditionalHttpEquiv)

 � prependHttpEquiv($keyValue, $content, $conditionalHttpEquiv)

 � setHttpEquiv($keyValue, $content, $modifiers)

 � setCharset($charset)

To render the meta tags in an HTML layout/view, use the following script:
<?php echo $this->headMeta(); ?>

The HeadScript helper

The HeadScript helper is used to modify the <script> tag in the HTML head secion; this
helper is used to atach external JavaScript and also add the <script> tags to the HTML
head secion.

Some of the most-used funcions in this helper are listed as follows:

 � appendFile($src, $type = 'text/javascript', $attrs = array())

 � offsetSetFile($index, $src, $type = 'text/javascript', $attrs =

array())

 � prependFile($src, $type = 'text/javascript', $attrs = array())

 � setFile($src, $type = 'text/javascript', $attrs = array())

 � appendScript($script, $type = 'text/javascript', $attrs =
array())

http:///

Chapter 5

[87]

 � offsetSetScript($index, $script, $type = 'text/javascript',

$attrs = array())

 � prependScript($script, $type = 'text/javascript', $attrs =

array())

 � setScript($script, $type = 'text/javascript', $attrs = array())

To render the Script tags in an HTML layout/view use the following script:
<?php echo $this->headScript(); ?>

The HeadStyle helper

The HeadStyle helper is used to modify the <style> tag in HTML head secion; this helper
is used to add internal styles by adding the <style> tags to the HTML head secion.

Some of the most-used funcions in this helper are listed as follows:

 � appendStyle($content, $attributes = array())

 � offsetSetStyle($index, $content, $attributes = array())

 � prependStyle($content, $attributes = array())

 � setStyle($content, $attributes = array())

To render the Style tags in an HTML layout/view use the following script:
<?php echo $this->headStyle(); ?>

The HeadTitle helper

The HeadTitle helper is used to render itle in the <title> tags on the HTML head

secion; muliple calls to a headTitle() helper create a list of itles which are rendered
when tag is outputed in the layout/view. The opional parameter $setType can be set
to override the pre-exising array of itles, the default is APPEND, it can be overridden to
PREPEND or SET(overwrite).

The syntax for this helper is headTitle($title, $setType = null);.

To render the Title tags in an HTML layout/view, use the following script:
<?php echo $this->headTitle(); ?>

http:///

Chat and E-mail

[88]

Time for action – using jQuery UI in a simple page
In this task we will be convering some of our exising pages to make use of the jQuery UI
library and render butons in that page using jQuery UI:

1. View the exising applicaion home page as shown in the following screenshot; our
next task is to convert the Login and Register links to render as jQuery UI butons:

Existing application home page

2. Replace the Login and Register links in the index view (module/Users/view/
users/index/index.html), and add the ui-button class to the links as shown
in the following code snippet:
Login

Register

3. Add external references to jQuery UI towards the beginning of the view:
// Attached jQuery UI Scripts

$this->headScript()

->appendFile('http://code.jquery.com/jquery-1.8.3.js','text/
javascript');

$this->headScript()

->appendFile('http://code.jquery.com/ui/1.10.0/jquery-ui.
js','text/javascript');

// Attach jQuery UI Styles

$this->headLink()->appendStylesheet('http://code.jquery.com/
ui/1.10.0/themes/base/jquery-ui.css');

http:///

Chapter 5

[89]

Referencing custom JavaScript libraries
Instead of directly referencing the external scripts, you can also optionally
download the scripts to the /public folder in your application and pass
relative links as parameters to the appendFile and appendStylesheet

functions. You can also make use of the basePath() helper to prepend the
base URL.

4. Add a UI iniializaion script to apply the buton look and feel to both the links:
// UI Initializer for buttons

$this->headScript()->appendScript(

'$(function() {

 $("a.ui-button").button();

 });', 'text/javascript');

5. Preview the home page in the browser now, and you will be able to see that
both the Login and Register butons are styled using jQuery UI as shown in
the following screenshot:

A View Source link on the index page will reveal the applicaion of headScript() as shown
in the following code:

<!DOCTYPE html>

<html lang="en">

...

...

<script type="text/javascript" src="http://code.jquery.com/jquery-
1.8.3.js"></script>

<script type="text/javascript" src="http://code.jquery.com/ui/1.10.0/
jquery-ui.js"></script>

<script type="text/javascript">

 //<!--

http:///

Chat and E-mail

[90]

 $(function() {

 $("a.ui-button").button();

 });

 //-->

</script>

...

...

</html>

What just happened?
We have made use of Zend Framework's view helpers to connect to the external
JavaScript library; we then added custom JavaScript to the HTML head secion
using the headScript() view helper.

Now we have integrated our applicaion with an external JavaScript; in the next exercise we
will learn a litle bit more on how scripts can be added to the HTML head secion.

Have a go hero

Before we move on to building the Group Chat interface, here is a simple task for you to
complete. Now that you have understood how to link external JavaScript libraries, you can
download jQuery UI from its website, extract it to the public/ folder, and modify the
previously listed page to use the downloaded version of jQuery UI.

jQuery UI can be downloaded from http://jqueryui.com/.

Building a simple group chat

Our next task is to build a simple group chat applicaion that allows muliple users to log in to
our system and chat with each other. The backend for this tool is prety straighforward. We
need to create a table that will store all user messages and render them in a separate view;
we will create a simple form that will allow users to send messages.

Time for action – creating a simple group chat application
1. Create a new chat_messages table to store all user messages:

CREATE TABLE IF NOT EXISTS chat_messages (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,

 user_id INT NOT NULL,

 message VARCHAR(255) NOT NULL ,

 stamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP

)

http:///

Chapter 5

[91]

2. Create a controller for group chat in CommunicationApp/module/Users/src/
Users/Controller/GroupChatController.php.

3. Make necessary changes to CommunicationApp/module/Users/config/
module.config.php and add the new controller to invokables and routes:
// Invokable

'Users\Controller\GroupChat' => 'Users\Controller\
GroupChatController',

// Route

'group-chat' => array(

 'type' => 'Segment',

 'options' => array(

 'route' => '/group-chat[/:action[/:id]]',

 'constraints' => array(

 'action' => '[a-zA-Z][a-zA-Z0-9_-]*',

 'id' => '[a-zA-Z0-9_-]*',

),

 'defaults' => array(

 'controller' => 'Users\Controller\GroupChat',

 'action' => 'index',

),

),

),

4. Create a new view in CommunicationApp/module/Users/view/users/group-
chat/index.phtml:
<?php

$this->headScript()->appendScript(

'$(function() {

 $("#btnRefresh")

 .click(function(event) {

 document.getElementById("messageListFrame").contentWindow.
location.reload(true);

 })

 });', 'text/javascript');

$this->headStyle()->appendStyle('

 #userName { width:100px; margin-top:10px; display: inline}

 #messageText { width:700px; margin-top:10px;}

');

?>

<h3>Group Chat</h3>

<iframe src="<?php echo $this->url('users/group-chat', array(

http:///

Chat and E-mail

[92]

 'action' => 'messageList'

)) ?>" width="80%" height="400px"
id="messageListFrame"></iframe>

<?php

// Render the opening tag

echo $this->form()->openTag($form);

// ...loop through and render the form elements...

echo '<label id="userName">'. $userName .': </label>';

foreach ($form as $element) {

 echo $this->formElement($element); // <-- Magic!

 echo $this->formElementErrors($element);

}

// Render the closing tag

echo $this->form()->closeTag();

?>

5. Add the messageList acion to GroupChatController -
CommunicationApp/module/Users/src/Users/Controller/

GroupChatController.php; this acion will query the chat_messages table

and get all the records from that table and pass that on to the view:
public function messageListAction()

{

 $userTable = $this->getServiceLocator()->get('UserTable');

 $chatMessageTG = $this->getServiceLocator()->get('ChatMessagesTa
bleGateway');

 $chatMessages = $chatMessageTG->select();

 $messageList = array();

 foreach($chatMessages as $chatMessage) {

 $fromUser = $userTable->getUser($chatMessage->user_id);

 $messageData = array();

 $messageData['user'] = $fromUser->name;

 $messageData['time'] = $chatMessage->stamp;

 $messageData['data'] = $chatMessage->message;

 $messageList[] = $messageData;

 }

 $viewModel = new ViewModel(array('messageList' =>
$messageList));

 $viewModel->setTemplate('users/group-chat/message-list');

 $viewModel->setTerminal(true);

 return $viewModel;

}

http:///

Chapter 5

[93]

6. Create a simple message lising view, CommunicationApp/module/Users/view/
users/group-chat/message-list.phtml, which will list messages from the
$messageList array:
<!DOCTYPE html>

<html lang="en">

<body>

<section id="messages" >

 <?php foreach ($messageList as $mesg) : ?>

 <div class="message" style="clear:both;">

 [<?php echo $this->escapeHtml($mesg['time']);?>]

 <?php echo $this->escapeHtml($mesg['user']);?>:

 <?php echo $this->escapeHtml($mesg['data']);?>

 </div>

 <?php endforeach; ?>

</section>

</body>

</html>

7. Create a method called sendMessage(), which is called when a user sends a
message to store the message in the database, as shown in the following code.
This needs to be placed in the group chat controller CommunicationApp/module/
Users/src/Users/Controller/GroupChatController.php.
protected function sendMessage($messageTest $fromUserId)

{

 $chatMessageTG = $this->getServiceLocator()

 ->get('ChatMessagesTableGateway');

 $data = array(

 'user_id' => $fromUserId,

 'message' => $messageTest,

 'stamp' => NULL

);

 $chatMessageTG->insert($data);

 return true;

}

http:///

Chat and E-mail

[94]

8. Modify the indexAction funcion to display a Send Message form and to call
sendMessage() on form submission. This needs to be placed in the group chat
controller CommunicationApp/module/Users/src/Users/Controller/
GroupChatController.php.
public function indexAction(

{

 $user = $this->getLoggedInUser();

 $request = $this->getRequest();

 if ($request->isPost()) {

 $messageTest = $request->getPost()->get('message');

 $fromUserId = $user->id;

 $this->sendMessage($messageTest, $fromUserId);

 // to prevent duplicate entries on refresh

 return $this->redirect()->toRoute('users/group-chat');

 }

 //Prepare Send Message Form

 $form = new \Zend\Form\Form();

 $form->add(array(

 'name' => 'message',

 'attributes' => array(

 'type' => 'text',

 'id' => 'messageText',

 'required' => 'required'

),

 'options' => array(

 'label' => 'Message',

),

));

 $form->add(array(

 'name' => 'submit',

 'attributes' => array(

 'type' => 'submit',

 'value' => 'Send'

),

));

 $form->add(array(

 'name' => 'refresh',

 'attributes' => array(

 'type' => 'button',

 'id' => 'btnRefresh',

http:///

Chapter 5

[95]

 'value' => 'Refresh'

),

));

 $viewModel = new ViewModel(array('form' => $form,

 'userName' => $user->name));

 return $viewModel;

}

9. To test the changes, log in to the browser from two diferent computers or two
diferent browsers using diferent credenials, and test the Group Chat interface.

What just happened?
We have now successfully implemented a Group Chat interface using Zend Framework; the
interface is efecive for muliple people chaing with each other in a group. Our next task
will need to build a mechanism to send e-mails to other users in the system; for that we will
be exhausively using the Zend Framework's mailing capabiliies.

Have a go hero

Here is a simple exercise for you to try before you move on to the next secion. In the Group

Chat interface, we have a Refresh buton that reloads the iframe tag. Write some JavaScript
and atach it to the view, which will reload the IFrame every ive seconds.

Sending mails

Zend Framework ofers the Zend\Mail library to send and receive e-mails. In this secion,
we will cover the basics of Zend Framework's mailing capabiliies, and will also implement a
simple mailing script.

http:///

Chat and E-mail

[96]

Zend\Mail supports both plain text and MIME complaint mulipart e-mail messages. The
framework by default supports Sendmail, SMTP, and File transports; new transports can be
implemented using Zend\Mail\Transport\TransportInterface.

Zend\Mail\Transport
The Mail transport is used to send the e-mail message to recipients; Zend\Mail supports
the following transports:

 � Sendmail using Zend\Mail\Transport\Sendmail

 � SMTP using Zend\Mail\Transport\Smtp

 � File Transport using Zend\Mail\Transport\File

The Mail transport implements the send() method; this method accepts an object of type
Zend\Mail\Message as the parameter; this object (Zend\Mail\Message) contains all the

necessary informaion for an e-mail message; the message is sent using the transport.

Zend\Mail\Message
Zend\Mail\Message is used to compose the mail message in Zend Framework; this object
takes various parameters including the from address, to address, subject, and body. If the
message is a MIME complaint mulipart message, then the body of the message can be set
to a Zend\Mime\Message mail message object using the setBody() method, and the
message can be sent. Some of the most frequently-used methods in Zend\Mail\Message

are listed as follows:

 � setFrom()

 � setHeaders

 � setTo()

 � addCc() and addBcc()

 � setSubject()

 � setBody()

Zend\Mime\Message and Zend\Mime\Part
For sending HTML or muli-part content, each message part is deined as a Zend\Mime\
Part object along with its type and associated to the Zend\Mime\Message object using
the setParts() method. The Zend\Mime\Message object is assigned to the Zend\Mail\
Message object using the setBody() method.

http:///

Chapter 5

[97]

Time for action – creating a simple e-mail form
In this acivity, we will be creaing an e-mail form making use of Zend's mailing capabiliies:

1. Create a simple e-mail form with input ields for subject, message content,
and addressee.

2. Set up a new controller to display the form and write the necessary views.

3. Modify the controller so that it references the Zend\Mail namespace.
use Zend\Mail;

4. Create a new controller method that does the actual e-mailing; this can be placed
within our group chat controller (CommunicationApp/module/Users/src/
Users/Controller/GroupChatController.php) using the following code:
protected function sendOfflineMessage($msgSubj,

 $msgText, $fromUserId, $toUserId)

{

 $userTable = $this->getServiceLocator()

 ->get('UserTable');

 $fromUser = $userTable->getUser($fromUserId);

 $toUser = $userTable->getUser($toUserId);

 $mail = new Mail\Message();

 $mail->setFrom($fromUser->email, $fromUser->name);

 $mail->addTo($toUser->email, $toUser->name);

 $mail->setSubject($msgSubj);

 $mail->setBody($msgText);

 $transport = new Mail\Transport\Sendmail();

 $transport->send($mail);

 return true;

}

The Sendmail transport (Zend\Mail\Transport\Sendmail) is

available in Linux by default and can be used for sending e-mail messages.
Windows users can make use of SMTP transport (Zend\Mail\Transport\
Smtp) to connect an SMTP server to send e-mail messages. The following
reference link provides a quick example on using SMTP transport:
https://packages.zendframework.com/docs/latest/
manual/en/modules/zend.mail.transport.html#zend-mail-
transport-quick-start-smtp-usage

http:///

Chat and E-mail

[98]

5. Preview the form in a web browser and test if the e-mail is being received; a
message similar to the following one would be received by the recipient:

http:///

Chapter 5

[99]

What just happened?
We have used the Zend\Mail object to send e-mails within the system using the Sendmail

mail transport; we have also learned about how to send HTML or muli-part mail messages.

Have a go hero

Before moving on to the next secion, try to implement the e-mailing form for sending out
HTML e-mails.

Zend\EventManager

Zend Framework 2 is an event-driven framework; the event manager allows you to atach
events to almost any funcionality. There are three main terms used in Zend Framework's
event management, which are as follows:

 � Event manager: The EventManager object is the object that holds a collecion of
listeners and their relaive events

 � Listener: The listener is the callback that reacts to the triggered event

 � Event: The event is the acion that is triggered by the event manager

The event manager provides attach() and trigger() to create and trigger events
respecively. Mostly we will be depending on MVC events for various operaion, and the
sequence of execuion of MVC applicaion events is described in the following diagram:

Bootstrap

Route

Dispatch

Finish

View

Render

Dispatch

Controller

Routing/Dispatch Error

Dispatch.error

Application

Renderer

Response

The aricle at the following link explains the sequence of events in a
ZF2 applicaion:
http://akrabat.com/zend-framework-2/a-list-of-
zf2-events/

http:///

Chat and E-mail

[100]

Flow of events for successful execuion is as follows:

1. Zend\Mvc\Application: Bootstrap

2. Zend\Mvc\Application: Route

3. Zend\Mvc\Application: Dispatch

4. Zend\Mvc\Controller\ActionController: Dispatch (if controller extends this
class)

5. Zend\Mvc\Application: Render

6. Zend\View\View: Renderer

7. Zend\View\View: Response

8. Zend\Mvc\Application: Finish

In case of errors during dispatch (or) route, the low of events will be as follows:

1. Zend\Mvc\Application: Dispatch.error

2. Zend\Mvc\Application: Render

3. Zend\View\View: Renderer

4. Zend\View\View: Response

5. Zend\Mvc\Application: Finish

In our next acivity, we will try to set a new layout for muliple controllers using the shared
event manager in Zend Framework.

Time for action – setting module layout using ZF events
Perform the following steps for seing the module layout using ZF events:

1. Create a new layout for the My Account page and save it under CommunicationApp/
module/Users/view/layout/myaccount-layout.phtml.

2. Add the layout to the CommunicationApp/module/Users/config/module.

config.php ile under view_manager -> template_map:
'layout/myaccount' => __DIR__ . '/../view/layout/myaccount-layout.
phtml',

3. Open the CommunicationApp/module/Users/module.php ile and add
references to MvcEvent:
use Zend\Mvc\MvcEvent;

http:///

Chapter 5

[101]

4. Overwrite the onBootStrap() method with the following code:
public function onBootstrap($e)

{

 $eventManager = $e->getApplication()->getEventManager();

 $moduleRouteListener = new ModuleRouteListener();

 $moduleRouteListener->attach($eventManager);

 $sharedEventManager = $eventManager->getSharedManager(); // The
shared event manager

 $sharedEventManager->attach(__NAMESPACE__, MvcEvent::EVENT_
DISPATCH, function($e) {

 $controller = $e->getTarget(); // The controller which is
dispatched

 $controllerName = $controller->getEvent()

 ->getRouteMatch()->getParam('controller');

 if (!in_array($controllerName,

 array('Users\Controller\Index', 'Users\Controller\
Register', 'Users\Controller\Login'))) {

 $controller->layout('layout/myaccount');

 }

 });

}

5. Open the Communicaion Applicaion page in any web browser; make a note
of the layout:

http:///

Chat and E-mail

[102]

6. Log in to the applicaion and see the new layout being applied:

What just happened?
We have used the Zend Framework event manager to atach a listener to the Dispatch event
of the module. So every ime the controller is dispatched, this event is triggered. The callback
checks if the controller is valid and if the controller is not among the list of controllers that have
the default layout, then the myaccount layout is applied to these controllers.

Pop quiz – chat and e-mail
Q1. Which of the following helpers can be used to deine/atach CSS styles inside the HTML
head secion?

1. HeadLink

2. HeadScript

3. HeadCss

4. HeadStyle

Q2. Which of the following are valid mail transports supported by Zend Framework 2?

1. Zend\Mail\Transport\Pop

2. Zend\Mail\Transport\Smtp

3. Zend\Mail\Transport\Imap

4. Zend\Mail\Transport\File

http:///

Chapter 5

[103]

Summary

We have covered a wide range of topics in this chapter; irst we learned about making
use of external JavaScripts. Next we created a simple group chat applicaion and then we
learned about Zend\Mail and implemented a simple mailing form. Towards the end, we
learned about events and how to make use of these events in Zend Framework. In the next
chapter we will be working on media sharing using Zend Framework by working with various
media-sharing APIs.

http:///

http:///

6
Media Sharing

Uploading and managing images/videos on the Internet has become very
common with the advent of social media. More and more applications now
allow you to share and retrieve media with external media hosts/services such
as Google, Flickr, and YouTube. In Zend Framework 1.0, the Zend_Service

package offered a large number of third-party integrations. This has changed
with ZF2 and the new module framework.

In this chapter, we will use various external Zend Framework 2.0 modules to manage images
and videos. Let's quickly look at the topics that we will be learning in this chapter:

 � Installing external modules in the Zend Framework applicaion

 � Seing up a simple photo gallery

 � Resizing and manipulaing images using WebinoImageThumb

 � Introducion to the Zend GData API

 � Using the GData API to fetch albums from Google Photos and YouTube

External modules

One of the most important features of Zend Framework 2.0 is the ability to integrate
external modules in your PHP applicaion, and this integraion is completely managed
using a dependency management tool (in our case, Composer).

This feature allows development of PHP applicaions without having to worry about
maintaining external libraries inside your applicaion. Libraries and applicaions can be
decoupled and maintained separately.

http:///

Media Sharing

[106]

In this chapter, we will be using an external module for resizing images; we will also make
use of external libraries for connecing to Google services.

Composer
Composer is the one of the dependency management soluions used in Zend
Framework. Composer allows developers to declare the dependencies needed
for their applicaion and will handle the installaion of those libraries. The
dependency coniguraion is stored in a ile named composer.json.

Resizing images

Zend Framework 1.0 had a resize ilter that allowed images to be resized on upload; with
Zend Framework 2.0, this opion no longer exists. Our next task will be to ind a simple
image-resizing module and install it in our applicaion. So let's get started.

Time for action – resizing images using modules
Carry out the following steps:

1. Go to the Zend Framework 2 module's site:
http://modules.zendframework.com/

2. Run a search for WebinoImageThumb.

3. To install this module, you will need to update composer.json in the applicaion
root and include this module as a required module.

4. To do this, edit CommunicationApp/composer.json and modify the
required secion:
"require": {

 "php": ">=5.3.3",

 "zendframework/zendframework": "2.0.*",

 "webino/webino-image-thumb": "1.*",

}

5. Now run composer.phar update to install the newly added dependency.
$ php composer.phar update

Loading composer repositories with package information

Updating dependencies

 - Installing webino/webino-image-thumb (1.0.0)

http:///

Chapter 6

[107]

 Downloading: 100%

Writing lock file

Generating autoload files

6. You will be able to see the newly installed modules in the vendor folder as follows:

7. Now that the module is downloaded, we will need to acivate the module
in CommunicationApp/config/application.config.php by adding
'WebinoImageThumb' to the modules array.

return array(

 'modules' => array(

 'Application',

 'WebinoImageThumb',

 'Users',

),

http:///

Media Sharing

[108]

What just happened?
We have installed an external module into our applicaion using the dependency
management tool, Composer. We have also acivated the module in our applicaion
so that the module is accessible across the applicaion.

Have a go hero

Now that you know how to install new modules in the Zend Framework 2 applicaion, here
is a simple task for you. Install the Zend GData package on this applicaion. Instrucions for
installing this package are available at https://packages.zendframework.com/. We
will be using this module in the subsequent secions of this chapter.

The Photo gallery application

Let us get started with implemening our custom photo gallery using Zend Framework 2.
Since we have already implemented a ile management interface, we will use a similar
interface to implement a photo gallery.

The schema for a photo gallery will be similar to the Upload enity; addiionally, we will have

a ield to store the thumbnail ilename, which is generated during upload. Both the images
and the generated thumbnails will be stored in the <Module>\data\images folder. We will
use a custom acion to display the images in the browser.

Before we get started, let's quickly review some of the important methods that are
supported by WebinoImageThumb:

 � resize ($maxWidth = 0, $maxHeight = 0): This funcion resizes the image

to the speciied height and width; if either of the values is set to 0, that dimension
will not be considered as a limiter

 � adaptiveResize ($width, $height): This funcion atempts to get the image
as close to the provided dimensions as possible, and then crops the remaining
overlow (from the center) to get the image to be the size speciied

 � crop ($startX, $startY, $cropWidth, $cropHeight): This funcion crops
the images from the given coordinates to the speciied width and height

 � rotateImage ($direction = 'CW'): Rotates the image by 90 degrees
clockwise or counterclockwise

 � rotateImageNDegrees ($degrees): Rotates the image by the speciied degrees

 � save ($fileName, $format = null): Saves the image by the speciied ilename

http:///

Chapter 6

[109]

Time for action – implementing a simple photo gallery
Carry out the following steps:

1. Create a new enity called ImageUpload with the following table structure:
 CREATE TABLE IF NOT EXISTS image_uploads (

 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,

 filename VARCHAR(255) NOT NULL ,

 thumbnail VARCHAR(255) NOT NULL ,

 label VARCHAR(255) NOT NULL ,

 user_id INT NOT NULL,

 UNIQUE KEY (filename)

);

2. Create the relevant ImageUpload enity in the src/Users/Model/
ImageUpload.php ile, the TableGateway object in the src/Users/Model/
ImageUploadTable.php ile, and the Controller (MediaManagerController)

inside the module (CommunicationApp/module/Users) in the src/Users/
Controller/MediaManagerController.php ile.

3. In the Upload form's Submit process, generate the thumbnail by using a new
method called generateThumbnail(); this method will take the ilename of the
exising image as the parameter. The resize method resizes the image to 75x75 px
and saves it to the image upload directory with a tn_ preix.

This method needs to be placed in the MediaManagerController ile, src/
Users/Controller/MediaManagerController.php.
 public function generateThumbnail($imageFileName)

 {

 $path = $this->getFileUploadLocation();

 $sourceImageFileName = $path . '/' . $imageFileName;

 $thumbnailFileName = 'tn_' . $imageFileName;

 $imageThumb = $this->getServiceLocator()

 ->get('WebinoImageThumb');

 $thumb = $imageThumb->create(
 $sourceImageFileName,
 $options = array());

 $thumb->resize(75, 75);

 $thumb->save($path . '/' . $thumbnailFileName);

 return $thumbnailFileName;

 }

http:///

Media Sharing

[110]

4. Our next step is to write an acion to render the image in the Full and Thumbnail

modes; for this we will need to create a custom route that will take the action,
id, and subaction parameters. This is achieved by the following route deiniion
in the module coniguraion ile, CommunicationApp/module/Users/config/
module.config.php:
 'media' => array(

 'type' => 'Segment',

 'options' => array(

 'route' => '/media[/:action[/:id[/:subaction]]]',

 'constraints' => array(

 'action' => '[a-zA-Z][a-zA-Z0-9_-]*',

 'id' => '[a-zA-Z0-9_-]*',

 'subaction' => '[a-zA-Z][a-zA-Z0-9_-]*',

),

 'defaults' => array(

 'controller' => 'Users\Controller\MediaManager',

 'action' => 'index',

),

),

),

5. Our next step is to write an acion that will respond to the various image
requests. This acion needs to be placed in the MediaManagerController

ile, src/Users/Controller/MediaManagerController.php.
 public function showImageAction()

 {

 $uploadId = $this->params()->fromRoute('id');

 $uploadTable = $this->getServiceLocator()

 ->get('ImageUploadTable');

 $upload = $uploadTable->getUpload($uploadId);

 // Fetch Configuration from Module Config

 $uploadPath = $this->getFileUploadLocation();

 if ($this->params()->fromRoute('subaction') == 'thumb')

 {

 $filename = $uploadPath ."/" . $upload->thumbnail;

 } else {

 $filename = $uploadPath ."/" . $upload->filename;

 }

 $file = file_get_contents($filename);

 // Directly return the Response

 $response = $this->getEvent()->getResponse();

http:///

Chapter 6

[111]

 $response->getHeaders()->addHeaders(array(

 'Content-Type' => 'application/octet-stream',

 'Content-Disposition' => 'attachment;filename="'
 .$upload->filename . '"',

));

 $response->setContent($file);

 return $response;

 }

6. Make sure the process works completely, from uploading the picture to
the gallery to displaying it in the photo page. See the following code for the
usage of showImageAction() in the upload view in the media manager,
CommunicationApp/module/Users/view/users/media-manager/view.

phtml:
 <section class="upload">

 <h2><?php echo $this->escapeHtml($upload->label);?></h2>

 <h4><?php echo $this->escapeHtml($upload->filename);?></h4>

 <img src="<?php echo $this->url('users/media',

 array('action'=>'showImage',

 'id' => $upload->id,

 'subaction' => 'full'));?>" />

 </section>

 <a href="<?php echo $this->url('users/media');?>">

 » Show Gallery

7. Now test the applicaion on a browser of your choice. The image upload page should
look like the following screenshot:

http:///

Media Sharing

[112]

Once the image upload form is successfully submited, the image will be resized and shown
in the gallery as shown in the following screenshot:

The View Image link on top of the resized image takes you to a page with the full-sized image:

http:///

Chapter 6

[113]

What just happened?
We have implemented a simple photo gallery by making use of an external image manipulaion
library. We uilized the resize funcion to create thumbnails and we created a custom acion
to handle image rendering in the web browser.

Have a go hero

Now that you understand how to work with the WebinoImageThumb module, your next
task will be to extend the photo gallery to support the rotate funcion. Add a rotate

funcion to the View Image page and allow the user to rotate the image both clockwise
and aniclockwise.

Google Data APIs

Google Data APIs provide a simple interface for applicaions to read and write data into
various Google services. The Data APIs use a protocol similar to the Atom Publishing Protocol
for data transfer. All the services are implemented in the package called ZendGdata.

Some of the most frequently used Google services that are supported by the ZendGdata API
are listed as follows:

 � Picasa Web Albums

 � YouTube

 � Google Calendar

 � Google Spreadsheets

 � Google Documents

 � Google Provisioning

 � Google Analyics

 � Google Blogger

 � Google CodeSearch

 � Google Notebook

Since ZendGdata is not provided with the default Zend Framework installaion, this
needs to be installed manually. This can be performed using Composer and by fetching
"zendframework/zendgdata": "2.*".

http:///

Media Sharing

[114]

The Google Photos API
The Google Photos API allows you to fetch, edit, and manage your photos and albums in
your Picasa or Google+ accounts. The Data API provides all kinds of services; some of the
key funcions are listed as follows:

 � getUserFeed(): Gets all the associated albums for that user

 � insertAlbumEntry(): Creates a new album

 � getAlbumFeed(): Fetches the speciied album

 � insertPhotoEntry(): Creates a new photo

 � getPhotoFeed(): Fetches the speciied photo

 � insertCommentEntry(): Creates a new comment

 � getCommentEntry(): Fetches the speciied comment

 � insertTagEntry(): Creates a new tag

 � getTagEntry(): Fetches the speciied tag

 � deleteAlbumEntry(): Deletes the album

 � deletePhotoEntry(): Deletes the photo

 � deleteCommentEntry(): Deletes the comment

 � deleteTagEntry(): Deletes the tag

In this example we will fetch the user's exising albums and the photos stored inside
those albums.

Before moving on, ensure that the ZendGdata library is installed in your
applicaion using Composer. Refer to the following installaion instrucions:

 � Add the following line to the requires section of
CommunicationApp/composer.json:

"zendframework/zendgdata": "2.*"

 � Update the application dependencies using Composer:
$ php composer.phar update

Before geing started, make sure you have uploaded some photos on your Google
Photos account.

http:///

Chapter 6

[115]

Time for action – fetching photos from Google Photos
Follow these steps to fetch photos from your Google Photos account:

1. Create a method, getGooglePhotos(), in your controller that will connect to
Google Photos and fetch all albums from Google Photos. This method needs to
be placed in the MediaManagerController ile, src/Users/Controller/
MediaManagerController.php.

2. Set up the API client to make use of the Curl request with the opion to disable
sslverifypeer.
 $adapter = new \Zend\Http\Client\Adapter\Curl();

 $adapter->setOptions(array(

 'curloptions' => array(

 CURLOPT_SSL_VERIFYPEER => false,

)

));

 $httpClient = new \ZendGData\HttpClient();

 $httpClient->setAdapter($adapter);

 $client = \ZendGData\ClientLogin::getHttpClient(

 self::GOOGLE_USER_ID,

 self::GOOGLE_PASSWORD,

 \ZendGData\Photos::AUTH_SERVICE_NAME,

 $httpClient);

3. Now create a new Google Photos client using the API client.
 $gp = new \ZendGData\Photos($client);

4. Now fetch the list of albums using getUserFeed() and get the list of images inside

the album using getAlbumFeed().
 $userFeed = $gp->getUserFeed(self::GOOGLE_USER_ID);

 foreach ($userFeed as $userEntry) {

 $albumId = $userEntry->getGphotoId()->getText();

 $gAlbums[$albumId]['label'] = $userEntry->getTitle()-
 >getText();

 $query = $gp->newAlbumQuery();

 $query->setUser(self::GOOGLE_USER_ID);

 $query->setAlbumId($albumId);

http:///

Media Sharing

[116]

 $albumFeed = $gp->getAlbumFeed($query);

 foreach ($albumFeed as $photoEntry) {

 $photoId = $photoEntry->getGphotoId()->getText();

 if ($photoEntry->getMediaGroup()->getContent() != null) {

 $mediaContentArray = $photoEntry->getMediaGroup()-
 >getContent();

 $photoUrl = $mediaContentArray[0]->getUrl();

 }

 if ($photoEntry->getMediaGroup()->getThumbnail() != null)
{

 $mediaThumbnailArray = $photoEntry->getMediaGroup()-
 >getThumbnail();

 $thumbUrl = $mediaThumbnailArray[0]->getUrl();

 }

 $albumPhoto = array();

 $albumPhoto['id'] = $photoId;

 $albumPhoto['photoUrl'] = $photoUrl;

 $albumPhoto['thumbUrl'] = $thumbUrl;

 $gAlbums[$albumId]['photos'][] =$albumPhoto;

 }

 }

// Return the consolidated array back to the view for rendering

return $gAlbums;

5. The following code block in the album view is used to render the albums; this can
be placed in the media manager's index view, CommunicationApp/module/
Users/view/users/media-manager/index.phtml:
 <?php foreach ($googleAlbums as $googleAlbum) : ?>

 <h4> <?php echo $this->escapeHtml($googleAlbum['label']);?>
 </h4>

 <?php foreach ($googleAlbum['photos'] as $googleAlbumPhoto) : ?>

 <div class = "googleAlbumPhoto"
 style="padding:10px; display:inline">

 <a href="<?php echo $this->escapeHtml($googleAlbumPhoto['p
 hotoUrl']);?>">

 <img src="<?php echo $this->escapeHtml($googleAlbumPhoto['
 thumbUrl']);?>" />

http:///

Chapter 6

[117]

 </div>

 <?php endforeach; ?>

 <?php endforeach; ?>

 <hr />

6. Upload pictures to your Google Photos album:

http:///

Media Sharing

[118]

7. Open the page in a browser window; you should be able to see all available albums
and photos inside the album:

What just happened?
We have successfully used Google Data APIs to fetch Picasa upload informaion from Google
and used that informaion to render galleries in our applicaion.

Have a go hero

Your next task will be to implement the photo upload opion using Google Data APIs when
viewing a photo in the photo gallery; you will have a buton that will allow you to upload the
photo to Google Photos.

http:///

Chapter 6

[119]

YouTube Data API

The YouTube Data API allows access to YouTube content; you can use this API to fetch videos,
playlists, channels, post comments, and upload and manage videos. Users are allowed
to perform unauthenicated requests for the retrieval of feeds on popular videos, post
comments, and so on.

Some of the most frequently used YouTube API methods are listed as follows:

 � getVideoFeed(): Retrieve videos from a video query

 � getTopRatedVideoFeed(): Retrieve top-rated videos for the speciic video query

 � getUserUploads(): Retrieve the user's uploaded videos

 � getUserFavorites(): Retrieve the user's favorite videos

 � getVideoResponseFeed(): Get video responses for a speciic video

 � getVideoCommentFeed(): Get comments for a speciic video

 � getPlaylistListFeed(): Get a user's playlists

 � getSubscriptionFeed(): Get a user's subscripions

 � insertEntry(): Upload a video to YouTube

In this example, we will be retrieving videos for a speciic keyword and then render them in
the web page.

Time for action – listing YouTube videos for a keyword
Perform the following steps for lising YouTube videos for a keyword:

1. Create a funcion that will get the YouTube videos for the Zend Framework keyword.

2. Establish the connecion in a similar way to the previous connecion made for
Google Photos. This needs to be placed in a new method, getYoutubeVideos(),
in the MediaManagerController ile, src/Users/Controller/
MediaManagerController.php:
 $adapter = new \Zend\Http\Client\Adapter\Curl();

 $adapter->setOptions(array(

 'curloptions' => array(

 CURLOPT_SSL_VERIFYPEER => false,

)

));

 $httpClient = new \ZendGData\HttpClient();

http:///

Media Sharing

[120]

 $httpClient->setAdapter($adapter);

 $client = \ZendGData\ClientLogin::getHttpClient(

 self::GOOGLE_USER_ID,

 self::GOOGLE_PASSWORD,

 \ZendGData\YouTube::AUTH_SERVICE_NAME,

 $httpClient);

3. Iniialize the YouTube client and execute a video query for the keyword
Zend Framework:
 $yt = new \ZendGData\YouTube($client);

 $yt->setMajorProtocolVersion(2);

 $query = $yt->newVideoQuery();

 $query->setOrderBy('relevance');

 $query->setSafeSearch('none');

 $query->setVideoQuery('Zend Framework');

4. Parse the query results and store it in an array:
 $videoFeed = $yt->getVideoFeed($query->getQueryUrl(2));

 $yVideos = array();

 foreach ($videoFeed as $videoEntry) {

 $yVideo = array();

 $yVideo['videoTitle'] = $videoEntry->getVideoTitle();

 $yVideo['videoDescription'] =
 $videoEntry->getVideoDescription();

 $yVideo['watchPage'] = $videoEntry->getVideoWatchPageUrl();

 $yVideo['duration'] = $videoEntry->getVideoDuration();

 $videoThumbnails = $videoEntry->getVideoThumbnails();

 $yVideo['thumbnailUrl'] = $videoThumbnails[0]['url'];

 $yVideos[] = $yVideo;

 }

 return $yVideos;

http:///

Chapter 6

[121]

5. The resuling content is rendered in the view and a video lising as shown in the
following screenshot:

What just happened?
We have uilized the ZendGData API's YouTube APIs to retrieve a simple list of videos from
YouTube for a speciic keyword.

Pop quiz – media sharing
Q1. Which command is used in Composer to install a newly conigured dependency?

1. php composer.phar setup

2. php composer.phar self-update

3. php composer.phar show

4. php composer.phar update

http:///

Media Sharing

[122]

Q2. Which of the following is a valid method to upload a new photo to Google Photos?

1. uploadPhoto()

2. insertPhoto()

3. uploadNewPhoto()

4. insertPhotoEntry()

Summary

In this chapter, we have learned various techniques to manage media; iniially we started
with implemening our own photo gallery and later on we moved on to using Google GData
APIs to retrieve and store media on the Web.

In our next chapter, we will be working on implemening a simple search interface.

http:///

7
Search Using Lucene

More often than not, we will come across web applications that need support
for built-in search capabilities. Sometimes the search could involve searching a
simple field in a MySQL table, or at times you may want to search a document
or a plain text file; there are multiple ways to address the search requirements
using various search libraries. Lucene is one such library that offers excellent
search capabilities for implementing full text search.

In this chapter we will be using Zend Framework's Lucene search implementaion. Zend
Framework 1.0 had a built-in Zend_Search_Lucene library which supported indexing
and searching with Lucene; in ZF 2.0, this library is available as ZendSearch\Lucene,
which can be downloaded and installed on your web applicaion. In this chapter, we will
be learning the fundamentals of implemening a full-text search using the Lucene search
library in the following topics:

 � Installing the ZendSearch library in your applicaion

 � Creaing data index for simple MySQL data

 � Querying the Lucene index

 � Adding new documents iles to the index

Introduction to Lucene

Lucene is a high-performance, scalable informaion retrieval (search) library developed
by Apache Foundaion, which can be used for implemening free-text search in web
applicaions. Lucene provides a simple-to-use API, which will provide powerful indexing
and searching capability to your web applicaion. To read more about Lucene visit
http://lucene.apache.org/.

http:///

Search Using Lucene

[124]

The most important components of the Lucene search library are explained as follows:

 � Index: Lucene index is the data store that holds all the indexed documents; queries
are executed against the index to fetch the documents.

 � Document: A document is the default building block for a Lucene index; documents
can be compared to records in a table. Each document holds a number of ields
upon which queries can be executed.

 � Field: Each Lucene document comprises of one or more ields; it is not necessary
that all the ields are indexed, ields can also be stored without indexing.

The Lucene search works based on the index, so it is necessary to have the index updated
with the latest content to get the best search results. The following diagram explains the
overview of the Lucene search:

Documents

Database

Other Text Data

Indexing

Index

User Query Results

Querying

Time for action – installing ZendSearch\Lucene
Perform the following steps for installing ZendSearch\Lucene:

1. ZendSearch\Lucene was not available as a composer package at the ime of
wriing this book. So, we will check out the source from the GitHub repository. The
repository is available at https://github.com/zendframework/ZendSearch.

2. Next we need to navigate to the vendor folder:
$ cd /var/www/CommunicationApp/vendor/

3. Clone the Zend search repository into the vendor folder:
$ git clone https://github.com/zendframework/ZendSearch.git
ZendSearch

http:///

Chapter 7

[125]

4. Next we should conigure the ZendSearch library using composer:
$ cd ZendSearch/

$ curl -s https://getcomposer.org/installer | php

$ php composer.phar install

5. Once the library is conigured, we will need to deine a module-level coniguraion
to store the index locaion. To do this, we need to modify CommunicationApp/
module/Users/config/module.config.php, and add a new coniguraion for
search_index:
 // MODULE CONFIGURATIONS

 'module_config' => array(

 'upload_location' => __DIR__ . '/../data/uploads',

 'image_upload_location' => __DIR__ . '/../data/images',

 'search_index' => __DIR__ . '/../data/search_index'

),

What just happened?
We have now downloaded and conigured the ZendSearch library for Zend Framework
2.0; the previous tutorial also provides us with a guideline for downloading and installing
packages which cannot be downloaded directly from Composer.

Now that we have the ZendSearch\Lucene search library installed, our next task
will be to create a Lucene index for some of the data that is already stored in our
communicaion applicaion.

Indexing

Indexing is a fairly straighforward process using ZendSearch\Lucene. All we need is to
create documents with ields and values, and keep adding the document to the index. You
can also remove documents, update documents, and clear an index. The following classes
are used in index generaion:

 � Field – The ZendSearch\Lucene\Document\Field class allows users to deine
a new document ield; this ield can be classiied into one the following types:

 � Field::keyword($name, $value, $encoding = 'UTF-8'): the
keyword field type is used to identify string fields that don't have to be
tokenized, yet need to be indexed and stored. For example, date and URL.

 � Field::unIndexed($name, $value, $encoding = 'UTF-8'): The
unIndexed field type is used to store fields in the index without having to
index/tokenize them. For example, ID fields.

http:///

Search Using Lucene

[126]

 � Field::binary($name, $value): The binary field type is used for
storing binary values in the index.

 � Field::text($name, $value, $encoding = 'UTF-8'): The text

field type is the most common field type used for describing short strings
which are tokenized and stored in the index.

 � Field::unStored($name, $value, $encoding = 'UTF-8'): The
unStored field type is used to identify fields that will be tokenized and
indexed, but not stored in the index.

 � Document – The ZendSearch\Lucene\Document class allows deiniion of a
new index document. Some of the most commonly-used methods in this class
are described as follows:

 � addField(Document\Field $field): Adds a new field to
the document

 � getFieldNames(): Used to retrieve all field names from the document

 � getField($fieldName): Used to retrieve a specific field from
the document

 � getFieldValue($fieldName): Used to retrieve a specific field value
from the document

 � Index – Index can be retrieved using the create() and open() methods
in the ZendSearch\Lucene class. Both the methods take the index path
as the parameter and return an index of type ZendSearch\Lucene\
SearchIndexInterface. The SearchIndexInterface provides
the following methods for manipulaing the documents inside the index:

 � addDocument(Document $document): Adds a new document to
the index

 � delete($id): Deletes the indexed document based on the internal
document ID

 � optimize(): Helps in optimizing the index, by merging all segments into a
single segment, thereby increasing the performance

 � commit(): Used to commit transactions to the search index

Now that we have learned about the methods that are used for index generaion,
let's get started and generate the index for the uploads table that is available in
our communicaion applicaion.

http:///

Chapter 7

[127]

Time for action – generating a Lucene index
Perform the following steps for generaing a Lucene index:

1. Create a new search controller, CommunicationApp/module/Users/src/
Users/Controller/SearchController.php, which will be used for searching
and generaing indexes.

2. Add references to ZendSearch\Lucene:
use ZendSearch\Lucene;

use ZendSearch\Lucene\Document;

use ZendSearch\Lucene\Index;

3. Add a method to fetch the index locaion from the module coniguraion:
public function getIndexLocation()

{

 // Fetch Configuration from Module Config

 $config = $this->getServiceLocator()->get('config');

 if ($config instanceof Traversable) {

 $config = ArrayUtils::iteratorToArray($config);

 }

 if (!empty($config['module_config']['search_index'])) {

 return $config['module_config']['search_index'];

 } else {

 return FALSE;

 }

}

4. The index document needs to be generated in the following format:

Index field Description

upload_id This is non-indexed field which will be used for retrieving the
uploaded file that gets returned in the search results

label This field is used to index the label field of the uploads table

owner This field is used to index the name field of the user who
uploaded the document

5. Create a new acion to generate the index:
public function generateIndexAction()

{

 $searchIndexLocation = $this->getIndexLocation();

 $index = Lucene\Lucene::create($searchIndexLocation);

 $userTable = $this->getServiceLocator()->get('UserTable');

http:///

Search Using Lucene

[128]

 $uploadTable = $this->getServiceLocator()->get('UploadTable');

 $allUploads = $uploadTable->fetchAll();

 foreach($allUploads as $fileUpload) {

 //

 $uploadOwner = $userTable->getUser($fileUpload->user_id);

 // create lucene fields

 $fileUploadId = Document\Field::unIndexed(

 'upload_id', $fileUpload->id);

 $label = Document\Field::Text(

 'label', $fileUpload->label);

 $owner = Document\Field::Text(

 'owner', $uploadOwner->name);

 // create a new document and add all fields

 $indexDoc = new Lucene\Document();

 $indexDoc->addField($label);

 $indexDoc->addField($owner);

 $indexDoc->addField($fileUploadId);

 $index->addDocument($indexDoc);

 }

 $index->commit();

}

6. Now open the acion URL (http://comm-app.local/users/search/
generateIndex) in your web browser, and if everything works as expected,
you will see that the index iles that created in the search_index folder.

The following screenshot shows the browser response upon a successful index update:

http:///

Chapter 7

[129]

You can see in the following screenshot that the index iles are generated and stored in the
search_index folder:

What just happened?
Now we have created a method to index the data stored in the MySQL table to the Lucene
data store; our next step will be to have some queries executed against the Lucene index
and to fetch and show the results.

Searching

Searching the index is relaively simple using ZendSearch\Lucene. The index needs to
be opened for querying and the query string needs to be passed to the find() method in
ZendSearch\Lucene\Index. The find methods return an array matching the hits for the
speciic query, and this in turn can be used to render the search results.

There are two opions for querying the index—you can pass the plain text query string to
the ind funcion or you can build your own Query object using ZendSearch\Lucene\
Search\Query.

To read more about various query opions in ZendSearch\Lucene, check the
following developer documentaion:
https://zf2.readthedocs.org/en/release-2.2.0/
modules/zendsearch.lucene.queries.html

http:///

Search Using Lucene

[130]

In the following example, we will be using plain text queries, and you can manipulate the
search results by using operators such as :,+,-, and ield searches. For example, see the
following list:

 � A search for all documents uploaded by Anne could be retrieved by the
following query:
owner:Anne

 � A search for all documents having the word report and uploaded by the user
named Anne could be retrieved by the following query:
report AND owner:Anne

 � A search for all documents having the word report and excluding the ones
uploaded by Anne could be retrieved by the following query:
report -owner:Anne

Time for action – displaying search results
Perform the following steps for displaying search results:

1. For displaying the search results, we will need to create a new form which will
display the search textbox and render the search results right below the search
form. The form will be placed in SearchController under CommunicationApp/
module/Users/src/Users/Controller/SearchController.php.

2. Create a new view which will be used for displaying the query window and also
rendering search results. This will be placed under CommunicationApp/module/
Users/view/users/search/index.phtml.
<h3>Document Search</h3>

<?php

// Search Form

echo $this->form()->openTag($form);

foreach ($form as $element) {

 echo $this->formElement($element);

 echo $this->formElementErrors($element);

}

echo $this->form()->closeTag();

// Search Results

if (count($searchResults)) {

?>

<h5>Results</h5>

<table style="width: 600px; border:1px solid #f5f5f5;">

 <tr>

http:///

Chapter 7

[131]

 <th width="30%" align="left"> Label</th>

 <th width="30%" align="left"> Owner</th>

 <th align="left"> File</th>

 </tr>

 <?php foreach ($searchResults as $searchResult) {

 ?>

 <tr>

 <td><?php echo $searchResult->label; ?></td>

 <td><?php echo $searchResult->owner; ?></td>

 <td><a href="<?php echo $this->escapeHtml($this->url('users/
 upload-manager',

 array('action'=>'fileDownload', 'id' =>
 $searchResult->upload_id)));?>">Download</td>

 </tr>

 <?php

 }

 ?>

</table>

<?php }?>

3. Now create a new acion which will display the Search form and also query the
Lucene index with the input provided in the Search form. This will be placed in
SearchController under CommunicationApp/module/Users/src/Users/
Controller/SearchController.php.
public function indexAction()

{

 $request = $this->getRequest();

 if ($request->isPost()) {

 $queryText = $request->getPost()->get('query');

 $searchIndexLocation = $this->getIndexLocation();

 $index = Lucene\Lucene::open($searchIndexLocation);

 $searchResults = $index->find($queryText);

 }

 // prepare search form

 $form = new \Zend\Form\Form();

 $form->add(array(

 'name' => 'query',

 'attributes' => array(

 'type' => 'text',

 'id' => 'queryText',

 'required' => 'required'

),

 'options' => array(

http:///

Search Using Lucene

[132]

 'label' => 'Search String',

),

));

 $form->add(array(

 'name' => 'submit',

 'attributes' => array(

 'type' => 'submit',

 'value' => 'Search'

),

));

 $viewModel = new ViewModel(array(

 'form' => $form,

 'searchResults' => $searchResults

)

);

 return $viewModel;

}

4. Test the page in your browser; you should be able to see search results for keywords
that are available in the label and owner ields:

http:///

Chapter 7

[133]

On searching using Owner Name, you will get the following search results:

What just happened?
We have now implemented the search results page, which allows us to query for uploaded
documents using their labels and owners. The retrieved search results are displayed in a
customized view which allows us to download the document from the search result.

Our next step will be to expand the search to search the contents of the uploaded

documents; for this we will need to make changes to the way we generate the index.

Indexing Microsoft Ofice documents
As we have seen in the previous example, it is usually insuicient to index the documents' meta
informaion. Most of the ime the query string is only present in the document's content. In
order to achieve that, we need to parse the document and index the content; ZendSearch\
Lucene provides support indexing the contents of the following document types:

 � For HTML documents the following are the index document creaion methods:
ZendSearch\Lucene\Document\Html::loadHTMLFile($filename)

ZendSearch\Lucene\Document\Html::loadHTML($htmlString)

 � For Word 2007 documents the following is the index document creaion method:
ZendSearch\Lucene\Document\Docx::loadDocxFile($filename)

http:///

Search Using Lucene

[134]

 � For Powerpoint 2007 documents the following is the index document
creaion method:
ZendSearch\Lucene\Document\Pptx::loadPptxFile($filename)

 � For Excel 2007 documents the following is the index document creaion method:
ZendSearch\Lucene\Document\Xlsx::loadXlsxFile($filename)

All these methods return a document of type ZendSearch\Lucene\Document, which can
be improvised further by adding more index ields to it.

So let's get started by indexing the documents that are available in the uploads secion.

Time for action – indexing document iles
Perform the following steps for indexing document iles:

1. To index oice documents, add a new uploads secion for sample Word and Excel
documents. In this case, we will upload a Word document and an Excel spreadsheet
as follows:

Sample Word 2007 document

http:///

Chapter 7

[135]

Sample Excel 2007 spreadsheet

2. Add the following lines to the indexing funcion present in SearchController,
which is present in CommunicationApp/module/Users/src/Users/
Controller/SearchController.php, so that the method picks up and indexes
Word documents and Excel spreadsheets separately:
if (substr_compare($fileUpload->filename,

 ".xlsx",

 strlen($fileUpload->filename) - strlen(".xlsx"),

 strlen(".xlsx")) === 0) {

 // index excel sheet

 $uploadPath = $this->getFileUploadLocation();

 $indexDoc = Lucene\Document\Xlsx::loadXlsxFile(

 $uploadPath ."/" . $fileUpload->filename);

} else if (substr_compare($fileUpload->filename,

 ".docx",

 strlen($fileUpload->filename) - strlen(".docx"),

 strlen(".docx")) === 0) {

 // index word doc

 $uploadPath= $this->getFileUploadLocation();

 $indexDoc = Lucene\Document\Docx::loadDocxFile(

 $uploadPath ."/" . $fileUpload->filename);

} else {

 $indexDoc = new Lucene\Document();

}

$indexDoc->addField($label);

http:///

Search Using Lucene

[136]

$indexDoc->addField($owner);

$indexDoc->addField($fileUploadId);

$index->addDocument($indexDoc);

3. Now update the index (navigate to http://comm-app.local/users/search/
generateIndex), come back to the Document Search page, and try searching for
keywords that are present in the document. You should be able to see the search
results as shown in the following screenshot:

Search results for the content inside Oice documents will be as shown in the
following screenshot:

What just happened?
In the last task we saw the implementaion of indexing and searching the content
of Microsot Oice documents. As you can see, it is relaively easy to implement
these features using ZendSearch\Lucene.

http:///

Chapter 7

[137]

Have a go hero

Here is a simple task for you before you move on to the next chapter. Now that we have
implemented indexing and searching, your task will be to modify the eniies so that the index
is updated each ime changes are made to uploads. If a new upload is made, a document
needs to be added to the index, and if an upload is deleted, it should be removed from the
index, and so on.

Pop quiz – search
Q1. Which of the following ield types is not tokenized, yet is indexed and stored?

1. keyword ()

2. unStored ()

3. text()

4. unIndexed()

Q2. Which of the following ile formats is not supported for ZendSearch\Lucene as a valid
document format for content indexing?

1. .docx

2. .pdf

3. .xslx

4. .html

Summary

In this chapter we have learned about implemening a simple search interface using
ZendSearch\Lucene. This would be very useful when implemening search in any web
applicaion that you work with. In the next chapter we will be learning about implemening
a simple e-commerce store using Zend Framework 2.0.

http:///

http:///

8
Creating a Simple Store

Over the last few years e-commerce has evolved from just online
advertisements to providing fully functional shopping experiences online. More
and more products and services are being made available online everyday
through the use of various online payment systems. The role of e-commerce
applications and payment gateways has become crucial in this environment.

In this chapter we will be building a simple online store to demonstrate the process
involved in seing up a simple shopping cart. We will be using PayPal Express Checkout as
our payment processer during this example. Some of the key topics that will be covered in
this chapter include:

 � Seing up a shopping cart

 � Creaing a online store administraion interface

 � Coniguring Zend Framework 2.0 for PayPal

 � An introducion to PayPal Express Checkout

 � The implementaion of PayPal Express Checkout

http:///

Creaing a Simple Store

[140]

Shopping cart

One of the irst things that have to be designed while seing up an online store is the
shopping cart. The shopping cart should ideally allow the end user to choose and add
muliple products to the cart and be able to check out from the website.

The checkout process is outlined as follows:

1. Customer visits the product lising page.

2. Customer selects a product; he/she is taken to the product detail page.

3. Customer then chooses to purchase the product; customer is expected to add the
desired quanity to the cart.

4. Customer is redirected to the shopping cart page; here the customer may make any
changes to the order if necessary.

5. Customer chooses the mode of payment and enters the payment informaion.

6. If successful, the customer is presented with an opion to update the shipping details.

7. Customer then conirms the order.

8. The order is received at the retailer; the retailer then goes ahead and processes
the order.

So let's get started and create our store front; our next step will be to design a table
structure which will support this store. For this we create the following two tables:

 � store_products: This table will store all product related informaion

 � store_orders: This table will store all order-related informaion

Time for action – creating a store front
For simplicity, we will shorten the Checkout process by skipping some steps. We have
modiied the process so that we can only have one product per order; we will also skip
the updaing of shipping details and the customer order conirmaion steps:

1. Create tables to hold the products and orders data:
CREATE TABLE IF NOT EXISTS store_products (

 id int(11) NOT NULL AUTO_INCREMENT,

 name varchar(255) NOT NULL,

 desc varchar(255) NOT NULL,

 cost float(9,2) NOT NULL,

 PRIMARY KEY (id)

http:///

Chapter 8

[141]

);

CREATE TABLE IF NOT EXISTS store_orders (

 id int(11) NOT NULL AUTO_INCREMENT,

 store_product_id int(11) NOT NULL,

 qty int(11) NOT NULL,

 total float(9,2) NOT NULL,

 status enum('new', 'completed',

 'shipped', 'cancelled') DEFAULT NULL,

 stamp timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,

 first_name varchar(255) DEFAULT NULL,

 last_name varchar(255) DEFAULT NULL,

 email varchar(255) DEFAULT NULL,

 ship_to_street varchar(255) DEFAULT NULL,

 ship_to_city varchar(255) DEFAULT NULL,

 ship_to_state varchar(2) DEFAULT NULL,

 ship_to_zip int(11) DEFAULT NULL,

 PRIMARY KEY (id)

);

2. Create eniies for StoreOrder and StoreProduct, and also create necessary
table gateway objects for data access.

3. Create a StoreController controller, which will be used as our shopping cart.

4. StoreController will support the following acions:

 � indexAction(): This action will list all products in the website

 � productDetailAction(): This will display the details of a specific

product; this will also allow the customer to add a product to the cart

 � shoppingCartAction(): This action is used to render the shopping cart
before leaving for the payment processing page

 � paypalExpressCheckoutAction(): This action will redirect the user to
the PayPal Express Checkout page

 � paymentConfirmAction(): This action will handle the redirection from
PayPal Express Checkout back to the shopping cart upon successful payment

 � paymentCancelAction(): This action will handle the redirection from

PayPal Express Checkout back to the shopping cart upon failed payment

5. Create the necessary views to display the content of the shopping cart.

6. Add the necessary methods to StoreOrder to calculate the order total upon
adding items to the orders.

http:///

Creaing a Simple Store

[142]

7. The inal user interface should look like the following screenshot. The product lising
page lists all products in the website/category; in this case, the two test products are
listed in the following screenshot:

The product detail page allows users to view details of a product, and also add the speciied
quanity to the shopping cart:

http:///

Chapter 8

[143]

The Shopping Cart page lists all products that are added to the cart along with their unit
price, quanity, and subtotal:

What just happened?
We have created a shopping cart interface for our new store; we will be modifying this
interface further in order to add support for the payment processor. But before we get to
that stage, let's create a simple store administraion interface to enable us to manage the
store and orders.

The store administration

The store administraion user interface is used to check the status of orders once they are
created and also to manage the list of products that are available for sale in the store. There
are two key aspects for the store administraion user interface:

 � The administrator should be able to add, remove, and manage products

 � The administrator should be able manage order and change statuses using
this interface

http:///

Creaing a Simple Store

[144]

Time for action – creating the Store Admin interface
Perform the following steps for creaing the Store Admin interface:

1. Create a new controller for store administraion, and name it
StoreAdminController.

2. This controller will have the following basic acions:

 � indexAction(): Used for listing all products

 � addProductAction(): Used for adding a new product

 � deleteProductAction(): Used for deleting an existing product

 � listOrdersAction(): Used for listing all orders

 � viewOrderAction(): Used for viewing a specific order

 � updateOrderStatusAction(): Used for updating order status

3. Create the necessary views, and map the acions accordingly.

4. Open phpMyadmin and create test records in both the store_products and
store_orders tables to test the funcionality for the administraion UI.

5. Open your favorite browser, log in to the applicaion, and open the eStore Admin

interface. The interface should look like the following one.

The Manage Products page lets you add, remove, and edit products from the
administraion interface:

http:///

Chapter 8

[145]

The orders lising page lists all orders placed in the store and allows you to view orders and
modify their statuses:

A screenshot of the Order Informaion page lising the order informaion and providing
opions to change their status is shown as follows:

http:///

Creaing a Simple Store

[146]

What just happened?
The store administraion UI is now ready, and our next step is to set up PayPal Express
checkout and to integrate it with our store, which will enable our user to make payments
using PayPal. Before we move on to the next secion, the following secion gives you a simple
task to try out.

Have a go hero

Now that you know how to integrate search into a Zend Framework 2.0 applicaion, try to
add free text search funcionality for the Manage Products secion of our store applicaion.

Payments with PayPal

PayPal is the most commonly used payment processor across the world; one of the key
contributors to PayPal's success is its easy-to-use API and exhausive documentaion that
supports this payment gateway. For any new merchant, PayPal ofers a wide range of opions
for seing up their payment processor, the most important being the types of integraions that
are ofered. PayPal ofers various products under Payment Processing; some of them include:

 � Express Checkout

 � PayPal Payments Standards (Website Payments Standards)

 � PayPal Payments Pro (Website Payments Pro)

We will be working with Express Checkout in this chapter, since it is the most basic
implementaion method of PayPal.

PayPal and Zend Framework 2.0
At the ime of wriing this book, there were no naive packages that were ofered by Zend
Framework which supported PayPal integraion. There are always third-party opions that
support this integraion. In this example, we have made use of one such third party package
called SpeckPaypal.

http:///

Chapter 8

[147]

Time for action – setting up PayPal
Perform the following steps for seing up PayPal:

1. Open https://packagist.org/, search for speckpaypal.

2. Get the repository details.

3. Modify the applicaion's Composer coniguraion ile to include the speckpaypal

repository:
"require": {

 "php": ">=5.3.3",

 "zendframework/zendframework": "2.0.*",

 "webino/webino-image-thumb": "1.0.0",

 "zendframework/zendgdata": "2.*",

 "speckcommerce/speck-paypal": "dev-master"

}

4. Update the project dependencies using the Composer update:
.

Loading composer repositories with package information

Updating dependencies

 - Removing zendframework/zendframework (2.0.7)

 - Installing zendframework/zendframework (2.0.8)

 Downloading: 100%

 - Installing speckcommerce/speck-paypal (dev-master d951518)

 Cloning d951518fd2c98148da5609e23a41697e6cfca06e

Writing lock file

Generating autoload files

5. Now we will need API credenials for accessing PayPal Express Checkout.
This can be accessed by logging into https://developer.paypal.com

with your PayPal credenials.

6. Open Sandbox Accounts from Applicaions.

http:///

Creaing a Simple Store

[148]

7. Choose the appropriate merchant account and select API Credenials in Proile.

8. Make a note of the API credenials.

9. Now create a new coniguraion in the config ile (CommunicationApp/module/
Users/config/module.config.php) in the module's coniguraion ile and
name the array index speck-paypal-api:
 'speck-paypal-api' => array(

 'username' => '',

 'password' => '',

 'signature' => '',

 'endpoint' => 'https://api-3t.sandbox.paypal.com/nvp'

)

10. Diferent PayPal services have diferent end points. For Express Checkout in Sandbox
this is https://api-3t.sandbox.paypal.com/nvp; if you are switching live/
producion environment, this needs to be changed to https://api-3t.paypal.
com/nvp.

What just happened?
Now we have conigured PayPal and SpeckPaypal in our applicaion, our next step is to test
receiving payments using PayPal Express Checkout.

http:///

Chapter 8

[149]

PayPal Express Checkout

PayPal Express Checkout allows sellers to receive credit card / PayPal payments on their
websites by redirecing them to PayPal Express Checkout for secure web payment and
returning them back to the merchant's website once the transacion is completed.

The worklow is explained as follows:

1. Customer on the Shopping Cart page chooses to pay by PayPal Express Checkout;
the merchant calls the SetExpressCheckout API call and gets the payment token.

2. Using the Payment token, the customer is redirected to the PayPal Express Checkout
login page; here the customer can enter his/her PayPal login informaion or get a
new PayPal account.

3. On the next page, the customer is presented with a Review opion to review the
payment informaion before proceeding to coninue the checkout with the merchant.

4. Now the customer is redirected back to the merchant page; the merchant then calls
the GetExpressCheckoutDetails API call and gets the customer informaion.
The customer reviews the order and conirms the order. The merchant then
completes the payment request using the DoExpressCheckoutPayment API call.

5. The customer is shown the transacion results along with the order summary.

SetExpressCheckout

Token

1

Shopping

Cart

PayPal

API

Server

301 Redirect + Token

2

PayPal

Login

Redirect

3

PayPal

Review

4

Order

Review

5

Order

Confirmation

Page

GetExpressCheckoutDetails

DoExpressCheckoutPayment

PayPal

API

Server

PayPal Express Checkout—overview

http:///

Creaing a Simple Store

[150]

More about PayPal Express Checkout
You can read more about PayPal Express Checkout at the PayPal website
https://www.paypal.com/webapps/mpp/express-checkout.

Developer documentaion on PayPal Express Checkout is available at:
https://developer.paypal.com/webapps/developer/
docs/classic/express-checkout/integration-guide/
ECGettingStarted/.

Time for action – accepting payments using PayPal
Preform the following steps for acceping payments using PayPal:

1. Now add a buton on the Shopping Cart page (opionally with Checkout by PayPal
Image). This buton should link to the paypalExpressCheckoutAction() funcion.

2. Add a method in the store controller which will be used to generate the
PayPal request:
protected function getPaypalRequest()

{

 $config = $this->getServiceLocator()->get('config');

 $paypalConfig = new \SpeckPaypal\Element\Config(

 $config['speck-paypal-api']);

 $adapter = new \Zend\Http\Client\Adapter\Curl();

 $adapter->setOptions(array(

 'curloptions' => array(

 CURLOPT_SSL_VERIFYPEER => false,

)

));

 $client = new \Zend\Http\Client;

 $client->setMethod('POST');

 $client->setAdapter($adapter);

 $paypalRequest = new \SpeckPaypal\Service\Request;

 $paypalRequest->setClient($client);

 $paypalRequest->setConfig($paypalConfig);

 return $paypalRequest;

}

http:///

Chapter 8

[151]

3. Modify the paypalExpressCheckoutAction() funcion to send the order
informaion to PayPal and redirect the user to PayPal Express Checkout:
public function paypalExpressCheckoutAction()

{

 $request = $this->getRequest();

 $orderId = $request->getPost()->get('orderId');

 $orderTable = $this->getServiceLocator()-
 >get('StoreOrdersTable');

 $order = $orderTable->getOrder($orderId);

 $paypalRequest = $this->getPaypalRequest();

 $paymentDetails = new \SpeckPaypal\Element\PaymentDetails

 (array('amt' => $order->total

));

 $express = new \SpeckPaypal\Request\SetExpressCheckout(

 array('paymentDetails' => $paymentDetails)

);

 $express->setReturnUrl(

 'http://comm-app.local/users/store/paymentConfirm');

 $express->setCancelUrl(

 'http://comm-app.local/users/store/paymentCancel');

 // Send Order information to PayPal

 $response = $paypalRequest->send($express);

 $token = $response->getToken();

 $paypalSession = new \Zend\Session\Container('paypal');

 $paypalSession->tokenId = $token;

 $paypalSession->orderId = $orderId;

 // Redirect user to PayPal Express Checkout

 $this->redirect()->toUrl('https://www.sandbox.paypal.com/
 webscr?cmd=_express-checkout&token=' . $token);

}

http:///

Creaing a Simple Store

[152]

4. Add a method to handle successful payment from Express Checkout—
paymentConfirmAction(); this method will capture the payment informaion
from PayPal, conirm the payment, and then update the order status in our system
using the code as shown in the following list:

 � Capture payment information from PayPal:
// To capture Payer Information from PayPal

$paypalSession = new \Zend\Session\Container('paypal');

$paypalRequest = $this->getPaypalRequest();

$expressCheckoutInfo =

 new \SpeckPaypal\Request\
GetExpressCheckoutDetails();

$expressCheckoutInfo->setToken($paypalSession->tokenId);

$response = $paypalRequest->send($expressCheckoutInfo);

 � Confirm order with PayPal:
//To capture express payment

$orderTable = $this->getServiceLocator()-
>get('StoreOrdersTable');

$order = $orderTable->getOrder($paypalSession->orderId);

$paymentDetails = new \SpeckPaypal\Element\
PaymentDetails(array(

 'amt' => $order->total

));

$token = $response->getToken();

$payerId = $response->getPayerId();

$captureExpress = new \SpeckPaypal\Request\
DoExpressCheckoutPayment(

 array(

 'token' => $token,

 'payerId' => $payerId,

 'paymentDetails' => $paymentDetails

));

$confirmPaymentResponse = $paypalRequest-
>send($captureExpress);

 � Save order with updated shipping/billing information:
//To Save Order Information

$order->first_name = $response->getFirstName();

$order->last_name = $response->getLastName();

$order->ship_to_street = $response->getShipToStreet();

http:///

Chapter 8

[153]

$order->ship_to_city = $response->getShipToCity();

$order->ship_to_state = $response->getShipToState();

$order->ship_to_zip = $response->getShipToZip();

$order->email = $response->getEmail();

$order->store_order_id = $paypalSession->orderId;

$order->status = 'completed';

$orderTable->saveOrder($order);

5. Finally add a method to handle failed payment from Express Checkout—
paymentCancelAction():
public function paymentCancelAction()

{

 $paypalSession = new \Zend\Session\Container('paypal');

 $storeOrdersTG = $this->getServiceLocator()

 ->get('StoreOrdersTableGateway');

 $storeOrdersTG->update(

 array('status' => 'cancelled'),

 array('id' => $paypalSession->orderId));

 $paypalSession->orderId = NULL;

 $paypalSession->tokenId = NULL;

 $view = new ViewModel();

 return $view;

}

6. Now log in to https://developer.paypal.com again.

7. Generate a new sandbox account of type PERSONAL.

8. Now access the store and try to purchase using the newly created Sandbox account.
The inal store should look like the following screenshot:

http:///

Creaing a Simple Store

[154]

Ater choosing the checkout from the Shopping Cart page, you will be redirected to
the Pay with my PayPal account login page as shown in the following screenshot:

http:///

Chapter 8

[155]

A screenshot of the PayPal Express Checkout's order reviewing page is shown in the
following screenshot; this page is used to review the payment that is being made to
the merchant from the customer's PayPal account:

http:///

Creaing a Simple Store

[156]

Once the order is successfully placed, the user is redirected to the order
conirmaion page as shown in the following screenshot:

9. Now log in to the Sandbox site for the merchant account to see if the payments
are credited:

http:///

Chapter 8

[157]

What just happened?
We just used PayPal Express Checkout to receive payments in our web applicaion and
complete the simple store applicaion. As you can see, the PayPal API makes it relaively
easy to set up the payment gateway.

Have a go hero

In your next task, make use of the DoDirectPayment API call to directly make a payment
on the website without having to redirect the user to the PayPal website and back again.

Pop quiz – creating a simple store
Q1. Which of the following methods is used to send the iniial payment informaion for
PayPal redirecion?

1. RedirectExpressCheckout

2. SetExpressCheckout

3. GetExpressCheckoutDetails

4. DoExpressCheckoutPayment

Q2. Which of the following ields is needed for requesing payment informaion from PayPal?

1. token

2. payerId

3. paymentDetails

4. orderID

Summary

In this chapter we have learned the basics of seing up a simple store online and trying
to receive payments using PayPal. As you can see from the previous example, Zend
Framework's use of modules simpliies applicaion development by giving developers the
ability to download and install external third-party modules based on their integraion needs.
In the next chapter, we will be working on HTML5 development with Zend Framework 2.0.

http:///

http:///

9
HTML5 Support

HTML5 is the latest version of HTML specification; the final draft is not likely to
be completed anywhere soon, but most browsers support a majority of features
that are specified in the latest working draft.

Some of the most important oferings of HTML5 are listed as follows:

 � Audio and video tags

 � CSS3 support

 � Support for drawing graphics using SVG and CSS3 2D and 3D

 � Local storage, Web/JS workers, and geo locaion

 � HTML5 form elements

For the scope of this book, we will be more focused on new form elements. HTML5
introduces a lot of new form elements. In previous versions of HTML, web developers were
limited to use just the standard input types provided in the earlier HTML speciicaions. Now
with the HTML5 speciicaion, we have diferent elements for various diferent user inputs.

http:///

HTML5 Support

[160]

The list of newly available input elements is listed as follows:

 � datetime

 � datetime-local

 � time

 � date

 � week

 � month

 � email

 � url

 � number

 � range

 � color

 � tel

 � search

HTML5 speciicaion
For further reading, please refer to the HTML5.0 speciicaion available
on the W3C website: http://www.w3.org/TR/html5/.
The following link points to speciicaion for the <input> element:
http://www.w3.org/TR/html5/forms.html#the-input-
element

In this chapter we will understand the usage of these input elements.

HTML5 input elements

Zend Framework 2.0 now supports all of the newly speciied HTML5 input types; these
inputs are available under Zend\Form\Element like any other input types. The following
table describes each of these elements along with their class names:

http:///

Chapter 9

[161]

Input type Description

datetime � Element: Zend\Form\Element\DateTime

 � Used to render the Date/Time Element input ield with the ime
zone set to UTC

 � HTML tag: <input type="datetime" name="element-
date-time">

 � The datetime element rendered in Opera 12.0 is shown in the
following screenshot:

datetime-local � Element: Zend\Form\Element\DateTimeLocal

 � Used to render the Date/Time Local Element input ield for the
client browser's ime zone

 � HTML tag: <input type="datetime-local"
name="element-date-time-local">

 � The datetime-local element rendered in Opera 12.0 is shown
in the following screenshot:

http:///

HTML5 Support

[162]

Input type Description

time � Element: Zend\Form\Element\Time

 � Used to render the Time Element ield

 � HTML tag: <input type="time" name="element-time">

 � The time element rendered in Opera 12.0 is shown in the following
screenshot:

date � Element: Zend\Form\Element\Date

 � Used to render the Date Element ield

 � HTML tag: <input type="date" name="element-date">

 � The date element rendered in Opera 12.0 is shown in the following
screenshot:

http:///

Chapter 9

[163]

Input type Description

week � Element: Zend\Form\Element\Week

 � Used to render the Week Element ield

 � HTML tag: <input type="week" name="element-week">

 � The week element rendered in Opera 12.0 is shown in the following
screenshot:

month � Element: Zend\Form\Element\Month

 � Used to render the Month Element ield

 � HTML tag: <input type="month" name="element-
month">

 � The month element rendered in Opera 12.0 is shown in the
following screenshot:

http:///

HTML5 Support

[164]

Input type Description

email � Element: Zend\Form\Element\Email

 � Used to render the Email input ield

 � HTML tag: <input type="email" name="element-
email">

url � Element: Zend\Form\Element\Url

 � Used to render the URL input ield

 � HTML tag: <input type="url" name="element-url">
number � Element: Zend\Form\Element\Number

 � Used to render the Number Element input ield

 � HTML tag: <input type="number" name="element-
number">

 � The number element rendered in Opera 12.0 is shown in the
following screenshot:

range � Element: Zend\Form\Element\Range

 � Used to render the Range Element input ield using slider control

 � HTML tag: <input type="range" name="element-
range">

 � The range element rendered in Opera 12.0 is shown in the
following screenshot:

http:///

Chapter 9

[165]

Input type Description

color � Element: Zend\Form\Element\Color

 � Used to render the Color Element input ield with a color picker

 � HTML tag: <input type="color" name="element-
color">

 � The color element rendered in Opera 12.0 is shown in the
following screenshot:

Time for action – HTML5 input elements
In this example we will be creaing a test HTML5 form for rendering various types of HTML5
input elements:

1. Create a test acion for rendering the form element formAction(); it can be
created under the new controller Html5TestController - module/Users/
src/Users/Controller/Html5TestController.php.

2. Add references to Zend\Form\Form and Zend\Form\Element:
use Zend\Form\Element;

use Zend\Form\Form;

3. Add various HTML5 form elements to the form:
$form = new Form();

// Date/Time Element

$dateTime = new Element\DateTime('element-date-time');

$dateTime

->setLabel('Date/Time Element')

->setAttributes(array(

 'min' => '2000-01-01T00:00:00Z',

 'max' => '2020-01-01T00:00:00Z',

 'step' => '1',

));

http:///

HTML5 Support

[166]

$form->add($dateTime);

// Date/Time Local Element

$dateTime = new Element\DateTimeLocal('element-date-time-local');

$dateTime

->setLabel('Date/Time Local Element')

->setAttributes(array(

 'min' => '2000-01-01T00:00:00Z',

 'max' => '2020-01-01T00:00:00Z',

 'step' => '1',

));

$form->add($dateTime);

// Time Element

$time = new Element\Time('element-time');

$time->setLabel('Time Element');

$form->add($time);

// Date Element

$date = new Element\Date('element-date');

$date

->setLabel('Date Element')

->setAttributes(array(

 'min' => '2000-01-01',

 'max' => '2020-01-01',

 'step' => '1',

));

$form->add($date);

// Week Element

$week = new Element\Week('element-week');

$week->setLabel('Week Element');

$form->add($week);

// Month Element

$month = new Element\Month('element-month');

$month->setLabel('Month Element');

$form->add($month);

// Email Element

$email = new Element\Email('element-email');

$email->setLabel('Email Element');

http:///

Chapter 9

[167]

$form->add($email);

// URL Element

$url = new Element\Url('element-url');

$url->setLabel('URL Element');

$form->add($url);

// Number Element

$number = new Element\Number('element-number');

$number->setLabel('Number Element');

$form->add($number);

// Range Element

$range = new Element\Range('element-range');

$range->setLabel('Range Element');

$form->add($range);

// Color Element

$color = new Element\Color('element-color');

$color->setLabel('Color Element');

$form->add($color);

What just happened?
We have created a simple form purely using HTML5 elements that are supported by Zend
Framework 2.0. The form in its current shape can be rendered by creaing the necessary
view. Our next task will be to build the view for this form with the use of HTML5 helpers and
render all the form elements that were added to the form.

HTML5 view helpers

Zend Framework provides view helpers for rendering all the form elements described in the
previous secion. The formElement() view helper can be used to render any kind of input
dynamically based on the input type, however it is not the suggested pracice.

http:///

HTML5 Support

[168]

The following table gives you the list of standard HTML5 helpers available for the HTML5
input elements:

Input type Helper Helper function
datetime Zend\Form\View\Helper\

FormDateTime
formDateTime()

datetime-
local

Zend\Form\View\Helper\
FormDateTimeLocal

formDateTimeLocal()

time Zend\Form\View\Helper\FormTime formTime()

date Zend\Form\View\Helper\FormDate formDate()

week Zend\Form\View\Helper\FormWeek formWeek()

month Zend\Form\View\Helper\FormMonth formMonth()

email Zend\Form\View\Helper\FormEmail formEmail()

url Zend\Form\View\Helper\FormUrl formUrl()

number Zend\Form\View\Helper\FormNumber formNumber()

range Zend\Form\View\Helper\FormRange formRange()

color Zend\Form\View\Helper\FormColor formColor()

Apart from the standard list of view helpers, Zend Framework also provides helpers for
the tel and search input types; these input types are an extension of the text input,
but certain browsers (especially mobile browsers) support stylized input opions in both
these elements.

The following table gives you the list of addiional HTML5 helpers available for the HTML5
input elements:

Input type Helper Helper function
tel Zend\Form\View\Helper\FormTel formTel()

search Zend\Form\View\Helper\FormSearch formSearch()

Time for action – HTML5 view helpers
In this task we will render all the form elements that we created in the previous task.
We will make use of ZF's HTML5 view helpers to render these elements. Perform the
following steps:

1. Create a simple view that can be used to render the form.

2. Make use of view helpers to render various form elements using the following code:
$this->formDateTime($form->get('element-date-time'));

$this->formDateTimeLocal($form->get('element-date-time-local'));

$this->formTime($form->get('element-time'));

http:///

Chapter 9

[169]

$this->formDate($form->get('element-date'));

$this->formWeek($form->get('element-week'));

$this->formMonth($form->get('element-month'));

$this->formEmail($form->get('element-email'));

$this->formUrl($form->get('element-url'));

$this->formNumber($form->get('element-number'));

$this->formRange($form->get('element-range'));

$this->formColor($form->get('element-color'));

3. Test the form in an HTML5-compaible browser such as Opera 12. You should be
able to see a form like the one shown in the following screenshot:

http:///

HTML5 Support

[170]

4. Now, test the same form in an HTML5 non-compaible browser such as IE 9.
You should be able to see a form like the one shown in the following screenshot.
You can see that the unsupported input elements are replaced with textboxes:

What just happened?
We have created our irst HTML5 form using ZF2 form elements. As of now, Opera 12 ofers

the best support for HTML5; other browsers such as Chrome and Safari are also good in
terms of support. So, if you are tesing your HTML5 forms, make sure that you are tesing
them in a browser that is compaible, such as Opera 12.

http:///

Chapter 9

[171]

HTML5 browser compaibility
Support for HTML5 speciicaions is inconsistent among various
browsers; Opera and Chrome seem to ofer best support in terms of
compliance, but none of them are fully compliant. With each new
browser version, there is addiional support for these features. There are
many resources available on the Internet that allow you to check your
browser's compaibility with HTML5.
http://html5test.com/ is a portal that ranks and compares
browsers based on their HTML5 support.
http://caniuse.com/ is also a great website that lets users check
if they can use a speciic HTML5 feature on a speciic browser.

Have a go hero

Here is a simple task for you before you move on to using advanced HTML5 atributes. Now

that you have created a form using all the standard HTML5 elements, try to extend the form
by using the view helpers to render the tel and search type inputs.

HTML5 attributes

You might have noiced in the beginning of the chapter that we were using new
atributes such as min, max, and step. These are new atributes that are deined
in the HTML5 speciicaion that allow developers to specify addiional coniguraion
on the input element. Some important atributes are discussed in the following list:

 � max: Applicable to the Number, Range, and Date ields; allows speciicaion of

maximum value in the input.

 � min: Applicable to the Number, Range, and Date ields; allows speciicaion of a

minimum value in the input.

 � step: Applicable to the Number, Range, and Date ields; allows speciicaion of an
increment value in the input.

 � list: Applicable to various textbox style inputs. Allows developers to map the ield
to a data list, thus allowing end users to pick them from the list.

 � placeholder: Applicable to various textbox style inputs. Allows developers to
show placeholder text unil the element gains focus.

 � pattern: Applicable to various textbox style inputs. Allows developers to validate
the user input against a regular express-and-throw-a-validaion error.

http:///

HTML5 Support

[172]

 � required: Prevents users from submiing the form with empty values in the
required ields.

 � multiple: Applicable to ile input; allows muliple ile uploads from a single
ile control.

Multiple ile uploads
For implemening muliple ile uploads, you will need to set the multiple atribute on the
ile input element to TRUE. If the browser supports muliple ile uploads, then the user will
be allowed to select muliple iles, otherwise the control will limit to just one ile selecion.

Time for action – HTML5 multiple ile uploads
Perform the following steps for HTML5 muliple ile uploads:

1. Create a new ImageUpload form; make sure that the multiple atribute for the
File element is set to TRUE:
<?php

// filename : module/Users/src/Users/Form/MultiImageUploadForm.php

namespace Users\Form;

use Zend\Form\Form;

use Zend\Form\Element;

use Zend\InputFilter;

class MultiImageUploadForm extends Form

{

 public function __construct($name = null, $options = array())

 {

 parent::__construct($name, $options);

 $this->addElements();

 $this->addInputFilter();

 }

 public function addElements()

 {

 $imageupload = new Element\File('imageupload');

 $imageupload->setLabel('Image Upload')

 ->setAttribute('id', 'imageupload')

 ->setAttribute('multiple', true);

 //Enables multiple file uploads

http:///

Chapter 9

[173]

 $this->add($imageupload);

 $submit = new Element\Submit('submit');

 $submit->setValue('Upload Now');

 $this->add($submit);

 }

 public function addInputFilter()

 {

 $inputFilter = new InputFilter\InputFilter();

 // File Input

 $fileInput = new InputFilter\FileInput('imageupload');

 $fileInput->setRequired(true);

 $fileInput->getFilterChain()->attachByName(

 'filerenameupload',

 array(

 'target' => './data/images/temp.jpg',

 'randomize' => true

)

);

 $inputFilter->add($fileInput);

 $this->setInputFilter($inputFilter);

 }

}

Zend\Filter\File\RenameUpload
The RenameUpload filter is used to rename and move the uploaded
file to a new path specified in the target. To find out more please refer
to the framework documentation at http://framework.zend.
com/manual/2.2/en/modules/zend.filter.file.rename-
upload.html.

2. Set up an acion to handle the ile uploads, and to redirect the user to an upload
conirmaion page:
public function multiUploadAction()

{

 // prepare form

 $form = $this->getServiceLocator()->get('MultiImageUploadForm');

 $request = $this->getRequest();

 if ($request->isPost()) {

 $post = array_merge_recursive(

 $request->getPost()->toArray(),

 $request->getFiles()->toArray()

http:///

HTML5 Support

[174]

);

 $form->setData($post);

 if ($form->isValid()) {

 $data = $form->getData();

 // Form is valid, save the form!

 return $this->redirect()->toRoute('users/html5-test',
array('action' => 'processMultiUpload'));

 }

 }

 $viewModel = new ViewModel(array('form' => $form));

 return $viewModel;

}

3. Now test the form in your browser that supports muliple ile uploads with HTML5,
for example, Opera 12. You will see that the ile selector interface allows the
selecion of more than one ile as shown in the following screenshot:

http:///

Chapter 9

[175]

4. Ater you choose Upload now and once the upload process is completed, you will
see the conirmaion page as shown in the following screenshot:

5. You can verify if the iles are uploaded successfully and the ilters are applied by
navigaing through the data/images directory and looking up for the uploaded

iles. You can see that all iles start with temp and have a _<random_number>

suix in their ilenames:

http:///

HTML5 Support

[176]

Filters with muliple ile uploads
When applying ilters with muliple ile uploads, the ilter(s) will be
applied to all the iles that are successfully uploaded with the same
ilter opion seings.

What just happened?
We have now created an HTML5 muliple ile upload form using HTML5 atributes and Zend
form elements. We have also applied a ilter to rename the uploaded iles and have also
seen how ilters work in muliple ile uploads.

Pop quiz – HTML5 support
Q1. Which of the following methods is a newly supported HTML5 input type?

1. text

2. radio

3. checkbox

4. number

Which of the following input types do not have a Form element deined in ZF 2.1?

1. tel

2. date

3. color

4. search

Summary

HTML5 is a very robust and powerful speciicaion of HTML which is sill parially supported
by most browsers. As newer versions of browsers come out in the market, you will get to see
much more enhanced support for this speciicaion. In our next chapter, we will be using ZF2
to build mobile web applicaions.

http:///

10
Building Mobile Applications

One of the major hurdles in mobile application development is the diversified
number of platforms that have to be targeted while building mobile
applications. Platforms such as PhoneGap and Titanium enable developers to
build cross-platform mobile applications, but one of the disadvantages with this
model is to manage multiple projects on different platforms for mobile and web
services. Zend, with the release of Zend Studio 10, has tried to address the same
gap by providing a development platform based on PhoneGap, which supports
end-to-end mobile apps in a cloud-based environment.

With the release of Zend Studio 10, Zend now ofers extremely simpliied mobile applicaion
development plaform using Zend Framework 2, known as Cloud Connected Mobile Tool.
In this chapter we will be learning about the basics of building cloud-connected mobile
applicaions using Zend Studio. Some of the key learning areas discussed are as follows:

 � Building your irst cloud-connected mobile (CCM) applicaion

 � Tesing as a naive applicaion

 � Implemening a simple search interface

Cloud-connected mobile applications

Zend Studio now ofers a CCM tool enabling developers to build naive mobile applicaions
using the cloud plaform. CCM supports development of RPC-based or REST-based web
services for the cloud using Zend Framework 2 and Zend Server Gateway.

http:///

Building Mobile Applicaions

[178]

CCM also ofers support for developing naive mobile applicaions by integraing with
various mobile SDKs (Android SDK/ADT for Android, Xcode for iOS, and Windows Phone
SDK for Windows Phone). This enables developers to build and test the applicaions in
naive environments/devices.

CCM tool also ofers a simple and easy-to-use mobile GUI editor which helps developers to

efortlessly build great user interfaces for their mobile applicaions.

Zend Studio 10
As a irst step towards building your mobile applicaion, please ensure that you install Zend
Studio 10 on your development machine. Zend Studio 10 ofers integrated support for
building cloud-connected mobile applicaions and allows developers to deploy their mobile
applicaion on the cloud.

Zend Studio 10 is available for purchase from the Zend Online Store; there is a free
30-day trial as well. For further informaion visit http://www.zend.com/en/products/
studio/.

phpCloud
Zend Developer Cloud is a cloud-based PHP development environment, which enables
developers to build and deploy applicaions on the cloud, without undergoing the
hassle of seing up a PHP development environment, and coniguring and maintaining
the environment.

This environment has Zend Framework 2 installed with a large set of PHP extensions;
developers can make use of various development tools such as Zend Studio, Eclipse PDT,
and CLI to build and deploy their applicaions on the developer cloud. Zend Developer Cloud
also provides capabiliies to push your applicaion to other external cloud services such as
Amazon and IBM SmartCloud.

Zend Developer Cloud is currently in free developer beta. For further informaion about Zend
Developer Cloud, please refer to their website: http://www.phpcloud.com/.

Time for action – coniguring your phpCloud account
In this task we will set up our phpCloud account and conigure the cloud environment in
Zend Studio 10 using the following steps:

1. Visit https://my.phpcloud.com/user/login, register for a new account, and

log in to your phpCloud account.

http:///

Chapter 10

[179]

2. Ater the login, you will be asked to create a container. You can specify a container
name which will be a part of the container URL; you can also choose to generate a
SSH key pair or use your own SSH keys; in this case, we will generate a new SSH key
pair. The following screenshot describes the container creaion screen:

3. Now download the SSH keys; we will be using these keys to set up our deployment
target in Zend Studio:

http:///

Building Mobile Applicaions

[180]

4. In Zend Studio, navigate to Window | Show View | Targets:

5. Click on the Add Target icon and choose phpcloud as shown in the following
screenshot:

6. On the phpcloud Target Details page, you will be asked to provide the
following details:

 � Username: Used to specify your Zend Developer Cloud username

 � Password: Used to specify your Zend Developer Cloud password

http:///

Chapter 10

[181]

 � SSH Private Key: Used to point to the SSH key that was just generated in the
phpcloud container creation screen

7. Ater you click on Finish, you will see that the new target is added to the list
of targets:

What just happened?
We have successfully created our irst mobile applicaion using Zend's cloud-connected
mobile applicaion projects. In the subsequent secions we will understand how to
extend these web services using Zend Framework 2 to build addiional funcionality
into mobile applicaions.

http:///

Building Mobile Applicaions

[182]

PhoneGap and Zend Studio
PhoneGap is a mobile applicaion development framework which allows developers to build
mobile applicaions using HTML, CSS, and JavaScript. The PhoneGap framework is used to

convert these applicaions into naive mobile applicaions, without having to rewrite the
applicaions in naive languages like Objecive-C for iOS.

Zend Studio 10 now integrates PhoneGap into the Zend Studio IDE; this enables developers
to easily build and test mobile applicaions without having to depend on external libraries.

For more informaion on cloud-connected mobile applicaions using Zend Studio 10; please
refer the following documentaion page:

http://files.zend.com/help/Zend-Studio-10/zend-studio.htm#cloud_

connect_mobile.htm

Time for action – building your irst cloud-connected mobile
application

Perform the following steps for building your irst cloud-connected mobile applicaion:

1. Choose the Cloud Connected Mobile Project opion from the New menu:

2. In the Project wizard, you will be asked to provide the following details:

 � Mobile Project Name: Name of the client-side mobile application project

 � Web Services Project Name: Name of the web services project for the
mobile application

 � Web Services Project Deployment Target: Deployment target for the mobile
application (you can choose the previously created phpcloud target here)

http:///

Chapter 10

[183]

Zend Studio 10 supports various deployment options; it can
automatically detect local Zend Server installation or deploy an
application to one of the targets— the local Zend Server, remote
Zend Server, Zend Developer Cloud (phpCloud), or OpenShift Cloud.

http:///

Building Mobile Applicaions

[184]

3. In the template selecion page, choose Simple Services as it will create a simple
project with a client/server-side example as shown in the following screenshot:

http:///

Chapter 10

[185]

4. Clicking on Finish will create the mobile and web services projects. The user
interface designer in the mobile project lets us easily make changes to the mobile
interface as shown in the following screenshot:

5. Now run the project from the Zend Studio IDE; it should launch a Zend emulator
interface as shown in the next screenshot:

The Get List button should return the list of customers from the
web services project via an RPC call. If the request doesn't return a
response and throws an error such as Ajax error. Error: Access is
denied. Trying static data!, then check the gatewayURL variable in
MobileApplication/www/js/my.js.
Make sure it points to the correct deployment URL as follows:
var gatewayURL = 'http://zf2cloudapp.my.phpcloud.
com/MobileService';

http:///

Building Mobile Applicaions

[186]

What just happened?
We have successfully created our irst mobile applicaion using Zend's cloud-connected
mobile applicaion projects. In the subsequent secions we will understand how to
extend these web services using Zend Framework 2 to build addiional funcionality
into mobile applicaions.

Native applications versus mobile web applications

Naive mobile applicaions provide great beneits over mobile web applicaions. Naive web
applicaions are run from the device memory, so there is litle need for network interacion;
these applicaions tend to load and run faster. One of the other key advantages of naive
mobile applicaions is that they have access to the device's naive features such as camera,
device informaion, and accelerometer; this gives naive applicaions an added advantage
over mobile web applicaions.

http:///

Chapter 10

[187]

Time for action – testing as a native application
In this task we will create a naive iOS applicaion using the Naive Applicaions secion of
Zend Studio. Before you get started, make sure that Xcode IDE in installed on your Mac.
Perform the following steps:

For Android applicaions, you will need to have Android Development
Tool (ADT) installed; this can be installed directly from Zend Studio.
For a Windows phone applicaion, the Windows Phone SDK needs to
be installed.

1. Now, from our mobile applicaion project choose Create iOS Applicaion:

2. You will be asked to provide the project details; please specify the Company Name

and Bundle Id values. The Bundle Id value refers to the unique name that is used
to idenify the applicaion; this is usually provided in the com.my-company-name.
my-application-name format. When you register the applicaion with the Apple
Store, ensure that the bundle ideniier matches with the one provided at Apple.

http:///

Building Mobile Applicaions

[188]

3. Now the new iOS project is created in the workspace as you can see in the
following screenshot:

Zend Studio allows for the creation of multiple dependent mobile application
projects. If you have to make any changes to the client code, the changes can
be made in the parent mobile project and that will automatically update all
dependent client projects.
For more information on creating native applications, please refer to the Zend
Studio documentation at the following link:
http://files.zend.com/help/Zend-Studio-10/zend-
studio.htm#creating_native_applications.htm

4. If you run the project, the applicaion will launch the iOS emulator and will launch
the mobile applicaion as shown in the following screenshot:

http:///

Chapter 10

[189]

What just happened?
We have created a new naive iOS applicaion using Zend Studio support for a naive
applicaion; in our next secion we will be using Zend Framework 2 to provide web
services for this applicaion.

Have a go hero

Now that you have created an iOS naive applicaion, try creaing an Android version
of the same applicaion using Zend Studio. For this, you will need to install the Android
Development Tool on your Zend Studio installaion.

http:///

Building Mobile Applicaions

[190]

Zend Server Gateway

Zend Server Gateway is a lightweight web services gateway based on Zend Framework 2,
which allows for the mapping of web service routes to various controller/acions of the web
services. Zend Server Gateway is responsible for authenicaion, validaion, iltering, and
rouing for RPC and RESTful APIs used in CCM projects.

The rouing coniguraions are mapped into config/gateway.xml; the routes and
coniguraions can be managed using the gateway editor interface provided in Zend Studio.

Time for action – creating a mobile search interface
In this task, we will be creaing a simple search interface for searching the exising customer
records by name using the following steps:

1. We will need to create a search funcion in the CustomerRepository model
(MyMobileService\src\MyCompany\Model\CustomerRepository.php):
 public function getSearch($query)

 {

 $where = new \Zend\Db\Sql\Where();

 $where->like('name', "%$query%");

 return $this->customerTable->select($where)->toArray();

 }

2. Add a new acion in RpcController (MyMobileService\src\MyCompany\
Controller\RpcController.php); this will handle the web service request:
 public function getSearchCustomersAction ($query)

 {

 $cr = new CustomerRepository();

 return $cr->getSearch($query);

 }

3. In the gateway editor, create a new RPC service; set the following opions:

 � URL: /search

 � Method: GET

 � Request Parameters(Add): Name – query; Source – Route

 � Handler Method: MyCompany\Controller\RpcController::getSear
chCustomersAction

http:///

Chapter 10

[191]

4. You can test the RPC service by right-clicking on the service and choosing Test
Service. On the right-hand side you will be presented with an interface to provide
test input and validate the service response:

5. In the mobile GUI editor, create a new page searchCustomers, and add the
following elements:

 � Text Box: custsearchinput

 � Button: searchbutton

 � List View: custlistview

6. In the binding secion of the Search buton, bind the buton with the GET /
search:query() web service. Map the custsearchinput textbox to the query

route parameter in the data secion. This acion will bind the search text to the
query route parameter. Note that the query route parameter is already mapped to
getSearchCsutomerAction.

http:///

Building Mobile Applicaions

[192]

7. Modify the onGetSearchquery JavaScript method in MyMobileApp/www/js/
my.js to handle the RPC response:
function onGetSearchquery(response) {

 // TODO Custom logic to handle server response

 customers = response;

 var newCustomers = '';

 $.each(customers, function(index, item) {

 newCustomers += '<li data-theme="">'

 + '<a href="#page2?empId=' + index

 + '" data-transition="none">' + item.name + '' +
 '';

 });

 $('#custlistview li[role!=heading]').remove();

 $('#custlistview').append(newCustomers).listview('refresh');

}

8. Make sure that you link the Search page from the index page using a buton.

9. Now run the project in naive mode; you will be able to see the search page, like the
one shown in the following screenshot:

http:///

Chapter 10

[193]

What just happened?
We have now created new web services for the exising cloud-connected mobile applicaion
and have tested the mobile app in a naive emulator. With Zend Studio 10, you can see the
simplicity in building mobile apps which are supported by web services running on the cloud.

Pop quiz – building mobile applications
Q1. Which of the following plaforms are supported in Zend Studio 10 for naive mobile
applicaion development?

1. Android

2. Firefox OS

3. MeeGo

4. Brew

Q2. Which of the following web services are not supported by Zend Server Gateway for
building cloud-connected mobile applicaions?

1. RPC

2. SOAP

3. REST

Summary

Cloud-connected mobile applicaions are a great step by Zend towards enabling PHP
developers to build and support mobile apps using the cloud plaform. With CCM, Zend is
ofering an extremely robust, yet simple-to-use plaform for building these applicaions.

Having completed this chapter, you have come to the end of this book. You have covered a
lot of ground in various diferent applicaions of Zend Framework through this book and have
accomplished a number of tasks. This book has shown you the building blocks for developing
applicaions using Zend Framework 2; there is lot more to learn in Zend Framework, most of
which is explained in an extremely detailed manner in the Zend Framework documentaion
(http://framework.zend.com/manual/2.2/en/index.html).

Thanks for reading. Feel free to give your feedback on how you felt reading this book.

http:///

http:///

Pop Quiz Answers

Chapter 1, Getting Started with Zend Framework 2.0
Pop quiz – Zend Framework 2.0

Q1 3

Q2 4

Chapter 2, Building Your First Zend Framework
Application

Pop quiz – Zend Framework 2.0

Q1 2

Q2 4

Chapter 3, Creating a Communication Application
Pop quiz – Zend Framework 2.0

Q1 2

Q2 1

http:///

Pop Quiz Answers

[196]

Chapter 4, Data Management and Document Sharing
Pop quiz – data management and document sharing

Q1 4

Q2 3

Chapter 5, Chat and E-mail
Pop quiz – chat and e-mail

Q1 1 and 2

Q2 2 and 4

Chapter 6, Media Sharing
Pop quiz – media sharing

Q1 4

Q2 4

Chapter 7, Search Using Lucene
Pop quiz – search

Q1 1

Q2 4

http:///

Appendix

[197]

Chapter 8, Creating a Simple Store
Pop quiz – creating a simple store

Q1 2

Q2 1

Chapter 9, HTML5 Support
Pop quiz – HTML5 Support

Q1 4

Q2 1 and 4

Chapter 10, Building Mobile Applications
Pop quiz – building mobile applications

Q1 1

Q2 2

http:///

http:///

Index
Symbols
$features parameter 54
$form->setInputFilter() method 50
$ sudo service zend-server restart command 10
$table parameter 54
$this->add() method 47
.htaccess 26
<input> element

URL 160
<link> tag 85
<script> tag 86

A

a2ensite comm-appp.local command 24
abstract_factories, ServiceManager 59
Adapter $adapter parameter 54
adapiveResize ($width, $height) funcion 108
addBcc() method 96
addCc() method 96
addDocument(Document $document)

method 126
addProductAcion() acion 144
Add Share 79
addSharing() funcion 77
Add Target icon 180
Administraion Interface, Zend Server CE 11
admin UI

implemening, for managing users 65-70
album view 116
aliases, ServiceManager 59
Android Development Tool (ADT) 187

appendFile funcion 89
appendStylesheet funcion 89
atach() 99
atributes, HTML5

list atribute 171
max atribute 171
min atribute 171
muliple atribute 172
patern atribute 171
placeholder atribute 171
required atribute 172
step atribute 171

autoload_classmap.php ile 33
Autoloader coniguraion 34

B
basePath() 89
BasePath helper 85
Bundle Id value 187

C

CCM applicaion
about 177, 178
building 182-186
phpCloud 178
Zend Studio 10 178

CCM Tool 177
cloud-connected mobile (CCM) 177, 178
code

migraing, to ServiceManager 61-63
color element 165

http:///

[200]

commit() method 126
Communicaion Applicaion page 101
Company Name value 187
composer

about 21, 106
installing 22

composer.json ile 106
concrete placeholder helpers

HeadLink helper 85
HeadMeta helper 86
HeadScript helper 86
HeadStyle helper 87
HeadTitle helper 87
implemening 85
jQuery UI, using in simple page 88-90

conig/applicaion.conig.php ile 36
conig component 31
conig ile 148
conig/module.conig.php ile 33
ConirmAcion funcion 57
conirm_password ield 41
Conirm Password ield 42, 48
controller layer 30
controllers

about 34
creaing 31-33

Create operaion. See CRUD
create module command 30
create operaion 66, 67
crop ($startX, $startY, $cropWidth, $cropHeight)

funcion 108
CRUD 63
CurrentTime module 38

seing up 38
custsearchinput textbox 191

D

Data API

deleteAlbumEntry() funcion 114
deleteCommentEntry() funcion 114
deletePhotoEntry() funcion 114
deleteTagEntry() funcion 114
funcions 114
getAlbumFeed() funcion 114
getCommentEntry() funcion 114
getPhotoFeed() funcion 114

getTagEntry() funcion 114
getUserFeed() funcion 114
insertAlbumEntry() funcion 114
insertCommentEntry() funcion 114
insertPhotoEntry() funcion 114
insertTagEntry() funcion 114

database
creaing 16-18
creaing, in MySQL Server 15

database operaion
CRUD 63

data/images directory 175
data secion 191
date element 162
Date ield 171
dateime element 161
dateime-local element 161
Delete operaion. See CRUD
delete($id) method 126
delete($where) method 64
deleteAcion() acion 67
deleteAlbumEntry() funcion 114
deleteCommentEntry() funcion 114
Delete opion 75
deletePhotoEntry() funcion 114
deleteProductAcion() acion 144
deleteTagEntry() funcion 114
deleteUpload() method 72
deleteUser($id) funcion 65
Delete user link 69
Dependency Injecion (DI) 7
Dispatch event 102
Document class 126
Document component 124
document iles

indexing 134-137
document management

ile upload form, creaing 71-75
DoDirectPayment 157

E
editAcion() acion 66
Edit user link 69
Email Address ield 46, 47
EmailAddress ield 40
email element 164

http:///

[201]

email ield 42, 58
e-mail form

creaing 97, 99
etExpressCheckout 149
Event 99
Event manager object 99
exchangeArray() method 50, 52
external modules 105

F
factories, ServiceManager 60
fetchAll() funcion 65
fetchAll() method 72
Field class 125
Field component 124
ile download

implemening 80
ileDownloadAcion() funcion 79
File element 172
ile_get_contents() method 80
ile sharing

implemening 76-81
managing 76

File transfer adapter 71
File upload form element 71
Filters

with muliple ile uploads 176
ind() method 129
Finish buton 181
form

validaing 46
formAcion() 165
FormElement 45
formElement() view helper 167
form object 42
Form object 45
Form View Helpers

URL 45
framework

documentaion, URL 173
Full mode 110
funcions, HeadLink helper 85
funcions, HeadMeta helper 86
funcions, HeadScript helper 86
funcions, HeadStyle helper 87

G

gatewayURL variable 185
generateThumbnail() method 109
getAlbumFeed() 115
getAlbumFeed() funcion 114
getAuthService() funcion 63
getAutoloaderConig() method 33
getCommentEntry() funcion 114
get(‘conig’) method 73
getConig() method 33
GetExpressCheckoutDetails 149
getGooglePhotos() method 115
getLastInsertValue() method 65
Get List buton 185
getPhotoFeed() funcion 114
getPlaylistListFeed() method 119
getSearchCsutomerAcion 191
getServiceConig() method 60
getSharedUploadsForUserId() funcion 77
getSharedUsers() funcion 77
getSharedUsers()method 78
getSubscripionFeed() method 119
getTable() method 64
getTagEntry() funcion 114
getTopRatedVideoFeed() method 119
getUpload() method 72
getUser($id) funcion 65
getUserByEmail($userEmail) funcion 65
getUserFavorites() method 119
getUserFeed() 115
getUserFeed() funcion 114
getUserUploads() method 119
getVideoCommentFeed() method 119
getVideoFeed() method 119
getVideoResponseFeed() method 119
getYoutubeVideos() method 119
Git

about 11, 21
installaion, URL 11
installing 22
URL 11, 21
used, for Zend Framework 2.0 11

Google Data API 113
Google Photos

photos, fetching 115-118

http:///

[202]

Google Photos API 114
Google services

Google Analyics 113
Google Blogger 113
Google Calendar 113
Google CodeSearch 113
Google Documents 113
Google Notebook 113
Google Provisioning 113
Google Spreadsheets 113
Picasa Web Albums 113
YouTube 113

group chat
building 90

group chat applicaion
creaing 90-95

H
HeadLink helper

about 85
funcions 85

HeadMeta helper
about 86
funcions 86

HeadScript helper
about 86
funcions 86

headScript() view helper 89, 90
HeadStyle helper

about 87
funcions 87

headTitle() helper 87
HeadTitle helper 87
HTML5

about 159
atributes 171
browser, compaibility 171
browser compaibility, URL 171
elements 160
feature, URL 171
input elements 160-167
muliple ile uploads 172-175
oferings 159
URL 160
view helpers 167-171

I

iframe tag 95
images

resizing, modules used 106-108
ImageUpload enity 109
index 124
index acion 34
indexAcion() acion 66, 141, 144
indexAcion funcion 94
Index class

about 126
addDocument(Document $document) method

126
commit() method 126
delete($id) method 126
opimize() method 126

IndexController ile 31
indexing process

about 125
Document class 126
Field class 125
Index class 126
Lucene index, generaing 127-129
ZendSearch\Lucene, using 125

index, searching
ZendSearch\Lucene, using 129-133

index view 116
input elements, HTML5

color element 165
date element 162
dateime element 161
dateime-local element 161
email element 164
month element 163
number element 164
range element 164
ime element 162
url element 164
week element 163

InputFilter class
about 46-48, 50
validaion, adding to registraion form 47-50

insert($set) method 64
insertAlbumEntry() funcion 114
insertCommentEntry() funcion 114

http:///

[203]

insertEntry() method 119
insertPhotoEntry() funcion 114
insertTagEntry() funcion 114
insert value 65
invokables array 68
invokables, ServiceManager 60
isValid() method 50

J
jQuery UI

URL 90
using, in simple page 88-90

JSON helper 85

L

label ield 132
label index ield 127
layouts 83
list atribute 171
Listener 99
listOrdersAcion() acion 144
localhost value 18
Login buton 89
Lucene

about 123
components 124
Document 124
Field 124
index component 124
overview diagram 124
used, for searching 123
ZendSearch\Lucene, installing 124, 125

Lucene index
generaing 127-129
label ield 127
owner ield 127
upload_id ield 127

M

mails
sending 95

mails, sending
Zend\Mail\Message 96
Zend\Mail\Transport 96
Zend\Mime\Message 96

Zend\Mime\Part 96
Mail transport 96
Manage Documents 78
max atribute 171
media

sharing 105
MediaManagerController ile 110, 115, 119
MediaManagerController ile method 109
messageList acion 92
meta tags 86
Microsot Oice documents

document iles, indexing 134-137
indexing 133, 135, 136

min atribute 171
mobile search interface

creaing 190-193
mobile web applicaion

versus naive applicaion 186-189
model layer 30
models

creaing 51-55
modify operaion 65
mod_rewrite 26
module

creaing 29
creaing, ZFTool used 30
used, for resizing images 106-108

module coniguraion
about 34
controllers 34
modifying 34-38
routes 34
views 34

Module.php ile 29, 33, 62
month element 163
muliple atribute 172
MVC layer

about 30, 31
controller layer 30
model layer 30
view layer 30

MySQL
about 14
database, creaing 16-19
installing 15
phpMyAdmin 16
URL 14

http:///

[204]

MySQL Server
database, creaing 15

N

Name ield 42, 47
namespaces

about 63
using 63

naive applicaion
tesing as 187-189
versus mobile web applicaion 186-189

number element 164
Number ield 171

O
onBootStrap() method 101
onGetSearchquery method 192
opimize() method 126
owner ield 132
owner index ield 127

P

password ield 41, 42, 58
patern atribute 171
paymentCancelAcion() acion 141
paymentCancelAcion() method 153
paymentConirmAcion() acion 141
paymentConirmAcion() method 152
payments

acceping, PayPal used 150-157
PayPal

about 146
and Zend Framework 2.0 146
seing up 147, 148
URL 147, 153
used, for acceping payments 150-157
used, for payments 146

PayPal Express Checkout
developer documentaion, URL 150
PayPal, used for acceping payments 150-157
URL 150
worklow 149-157

paypalExpressCheckoutAcion()
funcion 150, 151

peckpaypal
URL 147

PhoneGap

about 182
CCM applicaion, building 182-186

photo gallery
applicaion 108
implemening 109-113

phpCloud
about 178
account, coniguring 179-181
PhoneGap 182
URL 178
Zend Studio 182

phpCloud account
coniguring 178
registering, URL 178

PHP Command line
installing 22

phpMyAdmin
about 16
installaion, URL 16
URL 16

placeholder atribute 171
processAcion() acion 67
processAcion method 48
processAcion() method 54, 56
productDetailAcion() acion 141

Q
query route parameter 191

R

range element 164
Range ield 171
Read operaion. See CRUD
receive() method 71
Refresh buton 95
Register buton 89
RegisterController class 43, 48, 53
RegisterFilter class 47
RegisterForm class 40, 45, 50
registraion form

coniguraion 44
controller 43

http:///

[205]

creaing 40-45
display, URL 44
form 40, 41
validaion, adding 47-50
views 41
views, conirmaion page 43
views, registraion page 41

removeSharing() funcion 77
RenameUpload ilter 173
required atribute 172
required ield 46
resize ($maxWidth = 0, $maxHeight = 0)

funcion 108
resize method 109
ResultSet $resultSetPrototype parameter 54
Review opion 149
rotate funcion 113
rotateImage ($direcion = ‘CW’) funcion 108
rotateImageNDegrees ($degrees) funcion 108
routes 34

S

save ($ileName, $format = null) funcion 108
saveUpload() method 72
Search buton 191
search results

displaying 130-133
select($where = null) method 64
Sendmail transport 97
sendMessage() method 93, 94
send() method 96
ServiceManager

coniguraion 59, 60
exising code, migraing 61-63
key factories 61-63

ServiceManager, coniguraion type
abstract_factories 59
aliases 59
factories 60
invokables 60
services 60
shared 60

services, ServiceManager 60
setBody() method 96
setDesinaion() method 71
SetExpressCheckout 149

setFrom() method 96
setHeaders method 96
setParts() method 96
setPassword() method 52
setSubject() method 96
setTerminal() 80
setTo() method 96
shared, ServiceManager 60
shopping cart

about 140
checkout process 140
store front, creaing 140-143

shoppingCartAcion() acion 141
Shopping Cart page 154
showImageAcion() 111
SMTP transport

URL 97
speckpaypal repository 147
Sql $sql parameter 54
src component 31
src/Users/Model/ImageUpload.php ile 109
src/Users/Model/ImageUploadTable.php

ile 109
step atribute 171
store

creaing 139
StoreAdminController

about 144
addProductAcion() acion 144
deleteProductAcion() acion 144
indexAcion() acion 144
listOrdersAcion() acion 144
updateOrderStatusAcion() acion 144
viewOrderAcion() acion 144

store administraion user interface
creaing 144-146
key aspects 143

StoreController
about 141
indexAcion() acion 141
paymentCancelAcion() acion 141
paymentConirmAcion() acion 141
productDetailAcion() acion 141
shoppingCartAcion() acion 141

store front

creaing 140-143
store_orders table 140

http:///

[206]

store_products table 140
subacion parameter 110
Submit buton 45
submit ield 41
Submit ield 42

T
TabelGateway object 76
TableGateway 50

admin UI, implemening for user
management 65

form, saving 51-55
model, creaing 51-55
URL 54

TableGateway class
about 64
admin UI, implemening for user management

66-70
delete($where) method 64
getLastInsertValue() method 65
getTable() method 64
insert($set) method 64
select($where = null) method 64
update($set, $where = null) method 64

TableGateway constructor
$features parameter 54
$table parameter 54
about 54
Adapter $adapter parameter 54
ResultSet $resultSetPrototype parameter 54
Sql $sql parameter 54

TableGateway object 50, 109
thumbnail ilename 108
Thumbnail mode 110
ime element 162
trigger() 99

U
ui-buton class 88
Update operaion. See CRUD
update($set, $where = null) method 64
updateOrderStatusAcion() acion 144
Upload enity 108
upload_id index ield 127
UploadManager controller 74

UploadManagerController 72
Upload now 175
upload_sharing 76
Upload Sharing page 79
UploadTable class

about 76, 77, 81
addSharing() funcion 77
getSharedUploadsForUserId() funcion 77
getSharedUsers() funcion 77
removeSharing() funcion 77

UploadTable factory 76
UploadTable object 78
url element 164
URL helper 84
use keyword 63
user

authenicaing 56, 58
User class 52
UserManagerController

about 66
deleteAcion() acion 67
editAcion() acion 66
indexAcion() acion 66
processAcion() acion 67

users

create operaion 66, 67
managing, admin UI implemented 65-69
modify operaion 65
UserManagerController 66

Users module 29, 34
UserTable enity 52

V

validaion
adding, to registraion form 47-50

view component 31
view helper

about 84
BasePath helper 85
JSON helper 85
URL helper 84

view helpers, HTML5
for input elements 168

View Image link 112
View Image page 113
view layer 30

http:///

[207]

viewOrderAcion() acion 144
views

about 34, 83
errror messages 41
view helpers 41
view logic 41

View Source link 89

W

WebinoImageThumb
about 105
adapiveResize ($width, $height) funcion 108
crop ($startX, $startY, $cropWidth, $cropHeight)

funcion 108
resize ($maxWidth = 0, $maxHeight = 0)

funcion 108
rotateImage ($direcion = ‘CW’) funcion 108
rotateImageNDegrees ($degrees) funcion 108
save ($ileName, $format = null) funcion 108

week element 163
where condiion 64

Y
YouTube Data API

about 119
getPlaylistListFeed() method 119
getSubscripionFeed() method 119
getTopRatedVideoFeed() method 119
getUserFavorites() method 119
getUserUploads() method 119
getVideoCommentFeed() method 119
getVideoFeed() method 119
getVideoResponseFeed() method 119
insertEntry() method 119
videos, lising for keyword 119, 121

Z
Zend\Authenicaion

about 55
user authenicaion 56-58

Zend\EventManager
Event 99
event low 100
Event manager 99
Listener 99

module layout seing, ZF events used 100, 102
Zend\Form

about 39
registraion form, creaing 40-45

Zend Framework
components 71

Zend Framework 2.0
about 7, 8, 27
and PayPal 146
Git, using 11

Zend Framework 2.0 module
about 27
advantages 27
conig component 31
coniguring 33
creaing 29
src component 31
view component 31

Zend Framework 2.0 project
folder layout 28
prerequisites 21

Zend Framework 2 module
URL 106

Zend Framework 2 ServiceManager. See ZF2
ServiceManager

Zend Framework, components
File transfer adapter 71
File upload form element 71

Zend Framework keyword 119
Zend Framework project

creaing 22-26
URL 27

ZendGdata library 114
Zend GData package

installing, URL 108
Zend\Htp\Response\Stream() 80
Zend\InputFilter 46
Zend\Mail 96
Zend\Mail\Message 96
Zend\Mail object 99
Zend\Mail\Transport 96
Zend\Mime\Message 96
Zend\Mime\Part 96
ZendSearch\Lucene

about 124
installing 124, 125
used, for indexing 125

http:///

[208]

ZendSkeletonModule 29, 34, 38
Zend Studio

about 182
CCM applicaion, building 182-186
documentaion, URL 188
URL 182

Zend Studio 10
about 178, 183
URL 178

ZF2 ServiceManager 59
ZF events

used, for seing module layout 100-102
zf_pass value 18
ZFTool

about 30
URL 30
used, for creaing module 30

zf_user value 18

used, for searching index 129-133
Zend Server CE

about 8
coniguring 11-14
installing 8-10
system requisites 8
system requisites, URL 8
URL 8

Zend Server CE, coniguring
Administraion Interface 11

Zend Server Community Ediion. See Zend
Server CE

Zend Server Gateway
about 190
mobile search interface, creaing 190-193

Zend_Service package 105
ZendSkeletonApplicaion

about 22-28
URL 22

http:///

Thank you for buying
Zend Framework 2.0 by Example Beginner's Guide

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Efecive
MySQL Management" in April 2004 and subsequently coninued to specialize in publishing
highly focused books on speciic technologies and soluions.

Our books and publicaions share the experiences of your fellow IT professionals in adaping
and customizing today's systems, applicaions, and frameworks. Our soluion based books
give you the knowledge and power to customize the sotware and technologies you're
using to get the job done. Packt books are more speciic and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
informaion, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cuing-edge books for communiies of developers, administrators, and newbies alike. For
more informaion, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to coninue its focus on specializaion. This book is part of the Packt Open Source brand,
home to books published on sotware built around Open Source licences, and ofering
informaion to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose sotware a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is sill at an early stage and you
would like to discuss it irst before wriing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no wriing
experience, our experienced editors can help you develop a wriing career, or simply get
some addiional reward for your experise.

http:///

PHP Application Development with NetBeans:

Beginner's Guide

ISBN: 978-1-84951-580-1 Paperback: 302 pages

Boost your PHP development skills with this
step-by-step pracical guide

1. Clear step-by-step instrucions with lots of pracical
examples

2. Develop cuing-edge PHP applicaions like never
before with the help of this popular IDE, through
quick and simple techniques

3. Experience exciing features of PHP applicaion
development with real-life PHP projects

Ext JS 4 Web Application Development Cookbook

ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced applicaion design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applicaions with
the latest version of the Ext JS framework in a
cookbook style

2. From creaing forms to theming your interface, you
will learn the building blocks for developing the
perfect web applicaion

3. Easy to follow recipes step through pracical and
detailed examples which are all fully backed up with
code, illustraions, and ips

Please check www.PacktPub.com for information on our titles

http:///

Socket.IO Real-time Web Application Development

ISBN: 978-1-78216-078-6 Paperback: 140 pages

Build modern real-ime web applicaions powered
by Socket.IO

1. Understand the usage of various socket.io features
like rooms, namespaces, and sessions

2. Secure the socket.io communicaion

3. Deploy and scale your socket.io and Node.js
applicaions in producion

4. A pracical guide that quickly gets you up and
running with socket.io

CouchDB and PHP Web Development Beginner's

Guide

ISBN: 978-1-84951-358-6 Paperback: 304 pages

Get your PHP applicaion from concepion to
deployment by leveraging CouchDB's robust features

1. Build and deploy a lexible Social Networking
applicaion using PHP and leveraging key features of
CouchDB to do the heavy liting

2. Explore the features and funcionality of CouchDB,
by taking a deep look into Documents, Views,
Replicaion, and much more.

3. Conceptualize a lightweight PHP framework from
scratch and write code that can easily port to other
frameworks

Please check www.PacktPub.com for information on our titles

http:///

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Started with
Zend Framework 2.0
	Zend Framework 2.0
	Introduction to Zend Server Community Edition (CE)
	Zend Server CE – system requirements

	Time for action – installing Zend Server CE
	Configuring Zend Server CE
	Zend Server CE – Administration Interface

	Time for action – configuring Zend Server CE
	MySQL
	Time for action – installing MySQL
	phpMyAdmin

	Time for action – creating a database
	Summary

	Chapter 2:
Building Your First Zend
Framework Application
	Prerequisites
	ZendSkeletonApplication
	Time for action – creating a Zend Framework project
	Zend Framework 2.0 – modules
	Zend Framework 2.0 – project folder structure

	Time for action – creating a module
	MVC layer
	Zend Framework module – folder structure
	Time for action – creating controllers and views
	Zend Framework module – configuration
	Time for action – modifying module configuration
	Summary

	Chapter 3:
Creating a Communication Application
	Zend\Form
	Time for action – creating a registration form
	Form validation
	Zend\InputFilter

	Time for action – adding validation to the registration form
	Models and database access
	TableGateway

	Time for action – creating models and saving the form
	Zend\Authentication

	Time for action – user authentication
	Summary

	Chapter 4:
Data Management and
Document Sharing
	Zend Framework 2 ServiceManager
	Time for action – migrating existing code to ServiceManager
	Database operations
	More on TableGateway

	Time for action – implementing an admin UI to manage users
	Document management
	Time for action – creating a file upload form
	Managing file sharing
	Time for action – implementing a file sharing system
	Summary

	Chapter 5:
Chat and E-mail
	Layouts and views
	View helpers
	The URL helper
	The BasePath helper
	The JSON helper

	Concrete placeholder implementations
	The HeadLink helper
	The HeadMeta helper
	The HeadScript helper
	The HeadStyle helper
	The HeadTitle helper

	Time for action – using jQuery UI in a simple page
	Building a simple group chat
	Time for action – creating a simple group chat application
	Sending mails
	Zend\Mail\Transport
	Zend\Mail\Message
	Zend\Mime\Message and Zend\Mime\Part

	Time for action – creating a simple e-mail form
	Zend\EventManager
	Time for action – setting module layout using ZF events
	Summary

	Chapter 6:
Media Sharing
	External modules
	Resizing images
	Time for action – resizing images using modules
	The Photo gallery application
	Time for action – implementing a simple photo gallery
	Google Data APIs
	The Google Photos API

	Time for action – fetching photos from Google Photos
	YouTube Data API
	Time for action – listing YouTube videos for a keyword
	Summary

	Chapter 7:
Search Using Lucene
	Introduction to Lucene
	Time for action – installing ZendSearch\Lucene
	Indexing
	Time for action – generating a Lucene index
	Searching
	Time for action – displaying search results
	Indexing Microsoft Office documents
	Time for action – indexing document files
	Summary

	Chapter 8:
Creating a Simple Store
	Shopping cart
	Time for action – creating a store front
	The Store administration
	Time for action – creating the Store Admin interface
	Payments with PayPal
	PayPal and Zend Framework 2.0

	Time for action – setting up PayPal
	PayPal Express Checkout
	Time for action – accepting payments using PayPal
	Summary

	Chapter 9:
HTML5 Support
	HTML5 input elements
	Time for action – HTML5 input elements
	HTML5 view helpers
	Time for action – HTML5 view helpers
	HTML5 attributes
	Multiple file uploads

	Time for action – HTML5 multiple file uploads
	Summary

	Chapter 10:
Building Mobile Applications
	Cloud-connected mobile applications
	Zend Studio 10
	phpCloud

	Time for action – configuring your phpCloud account
	PhoneGap and Zend Studio

	Time for action – building your first cloud-connected mobile application
	Native applications versus mobile web applications
	Time for action – testing as a native application
	Zend Server Gateway
	Time for action – creating a mobile search interface
	Summary

	Appendix:
Pop Quiz Answers
	Chapter 1, Getting Started with Zend Framework 2.0
	Chapter 2, Building Your First Zend Framework Application
	Chapter 3, Creating a Communication Application
	Chapter 4, Data Management and Document Sharing
	Chapter 5, Chat and E-mail
	Chapter 6, Media Sharing
	Chapter 7, Search Using Lucene
	Chapter 8, Creating a Simple Store
	Chapter 9, HTML5 Support
	Chapter 10, Building Mobile Applications

	Index

