' Learn by dollng Iess theory, more results

Zend Framework 2.0
by Example

A step-by-step guide to help you build full-scale web
applications using Zend Framework 2.0

Beginner's Guide

Krishna Shasankar V [ ] open source
]

PUBLISHING


http:///
http://www.allitebooks.org

Zend Framework 2.0 by Example
Beginner's Guide

A step-by-step guide to help you build full-scale web
applications using Zend Framework 2.0

Krishna Shasankar V

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Zend Framework 2.0 hy Example Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013
Production Reference: 1180713

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-192-9
www . packtpub.com

Cover Image by Abhishek Dhir (abhishekdhirimages@gmail . com)

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Author
Krishna Shasankar V

Reviewers
Wenbert S. Del Rosario

Alex (Shurf) Frenkel

Islam Mohamed Abdel-aziz

Acquisition Editor

Antony Lowe

Lead Technical Editor

Neeshma Ramakrishnan

Technical Editor

Veena Pagare

Project Coordinator

Anugya Khurana

Proofreader
Maria Gould

Indexer

Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Krishna Shasankar V is a web developer with 7 years of extensive development
experience in PHP. He leads a team of engineers at Lister Technologies developing
enterprise class retail and e-commerce solutions.

He is a Zend Certified Engineer in PHP 5 and Zend Framework. He also has a Bachelor's
degree in Information Technology from Anna University, Chennai, and a Master's degree
in Software Systems from Birla Institute of Technology and Science, Pilani.

In his spare time, he enjoys music, photography, and travel (especially when combined). You
can contact Krishna and leave some comments on his blog (www.clickoffline.com).

I would like to thank my parents, my brother, and all my friends who
encouraged and supported me throughout my life.

Thanks to Mukund Deverajan for his full and enthusiastic support, without
which, this book would not have existed. Thanks to Apoorv Bhargava,
Jayabharathi and Souvik Sengupta for motivating me and helping me
rework a majority of the book's content. Special thanks to my amazing
team at Lister Technologies for their wonderful support and all the fun.
You guys are awesome!

Thanks to the reviewers Wenbert S. Del Rosario, Alex (Shurf) Frenkel, and
Islam Mohamed Abdel-aziz for providing me with valuable feedback during
the review stages.

Finally, the awesome team, Antony Lowe, Neeshma Ramakrishnan, Veena
Pagare, and everyone else at Packt Publishing who had contributed to this
book, ensuring quality at each level. | am indebted to Anugya Khurana at
Packt Publishing, without her patience and persistence, this book would
have stalled many times. Special thanks to Veena Manjrekar for giving me
this opportunity, for which | am grateful.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Wenbert Del Rosario is a web developer with a couple of years of experience working
with open source technologies (Linux, CakePHP, Code Igniter, MySQL, jQuery, Knockout JS,
and WordPress). In his free time, he loves to work on personal projects. He also does some
freelance and consulting work.

Wenbert has also reviewed a couple of books for Packt Publishing:

¢ Zend Framework 1.8 Web Application Development Keith Pope
o CouchDB and PHP Web Development Beginner's Guide, Tim Juravich

He shares his ideas, solutions, and day-to-day encounters at work through his blog at
http://blog.ekini.net. You can also follow him on Twitter @wenbert.

For Noeme and our baby Lucas.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Alex Frenkel has been working in the field of web application development since 1998
(the beginning of PHP 3.X) and has extensive experience in system analysis and project
management. Alex is a PHP 5.3 Zend Certified Engineer and is considered to be one of
the most prominent LAMP developers in Israel.

In the past, Alex was the CTO of ReutNet, one of the leading Israeli web technology
based companies, and also worked as the CEO/CTO of Openlview LTD., a company built
around an innovative idea of breaching IBM Mainframe business with PHP applications.
He also provided expert consulting services to different companies in various aspects of
web-related technology.

Alex is a CTO of a startup called GBooking and the owner of a small consulting company,
Frenkel-Online.

GBooking allows consumers to search, compare, and book a wide range of services on the
Web, while optimizing prices according to the demand, creating discounts during the weak
hours of businesses and propagating them to partners' sites.

Frenkel-Online is a project-based company, working with a number of professional
freelance consultants in Israel and abroad. Currently their permanent staff comprises of
several consultants in Israel and abroad for the company's PHP projects, and an altering
number of specialists in other programming languages for the rest of the projects.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Islam Abdel-Aziz is a senior open source software engineer, and Zend Framework
contributor. He has been a Zend Certified Engineer since 2009.

Islam spent 9 years teaching and consulting on the latest web and enterprise technologies.

He is involved in development techniques, including the NO-SQL databases, the scalability of
the web, parallel/distributed processing using map/reduce model.

He has contributed to many open source projects in the last 7 years, and he has experience
in most open source technologies including PHP5, Python, and Java.

Islam joined Oracle in 2008 as a senior software engineer. He was one of the team for
developing the most stable cloud-computing platform in Python.

Islam currently holds the title of Arabic Team Lead in the ADVFN, the most popular financial
software company in UK. He is the one who is responsible for the engineering of ME versions
of the ADVFN products.

I would like to thank my wife for standing by me while | reviewed this book.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

You might want to visit www . PacktPub. com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www. PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[@jPACKT

http://PacktLib.PacktPub.com

®@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscrihe?

¢ Fully searchable across every book published by Packt
¢ Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

If you have an account with Packt at www . PacktPub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

[vww allitebooks.cond



http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http:///
http://www.allitebooks.org

vww allitebooks.conl



http:///
http://www.allitebooks.org



http:///

To my parents Paramajothi and Anuragalatha whose unconditional love and
sacrifice resulted in where | stand today.


http:///



http:///

Tahle of Contents

Preface 1
Chapter 1: Getting Started with Zend Framework 2.0 7
Zend Framework 2.0 7
Introduction to Zend Server Community Edition (CE) 8
Zend Server CE — system requirements 8
Time for action — installing Zend Server CE 8
Configuring Zend Server CE 11
Zend Server CE — Administration Interface 11
Time for action - configuring Zend Server CE 12
MysQL 14
Time for action — installing MySQL 15
phpMyAdmin 16
Time for action — creating a database 16
Summary 20
Chapter 2: Building Your First Zend Framework Application 21
Prerequisites 21
ZendSkeletonApplication 22
Time for action — creating a Zend Framework project 22
Zend Framework 2.0 — modules 27
Zend Framework 2.0 — project folder structure 28
Time for action — creating a module 29
MVC layer 30
Zend Framework module - folder structure 31
Time for action — creating controllers and views 31
Zend Framework module — configuration 33
Time for action — modifying module configuration 34

Summary 38


http:///

Table of Contents

Chapter 3: Creating a Communication Application 39
Zend\Form 39
Time for action — creating a registration form 40
Form validation 46

Zend\InputFilter 46
Time for action — adding validation to the registration form 47
Models and database access 50

TableGateway 50
Time for action — creating models and saving the form 51

Zend\Authentication 55
Time for action — user authentication 56
Summary 58

Chapter 4: Data Management and Document Sharing 59
Zend Framework 2 ServiceManager 59
Time for action — migrating existing code to ServiceManager 61
Database operations 63

More on TableGateway 64
Time for action — implementing an admin Ul to manage users 65
Document management 71
Time for action — creating a file upload form 71
Managing file sharing 76
Time for action — implementing a file sharing system 76
Summary 82

Chapter 5: Chat and E-mail 83

Layouts and views 83

View helpers 84
The URL helper 84

The BasePath helper 85

The JSON helper 85
Concrete placeholder implementations 85
The HeadLink helper 85

The HeadMeta helper 86

The HeadScript helper 86

The HeadStyle helper 87

The HeadTitle helper 87
Time for action — using jQuery Ul in a simple page 88
Building a simple group chat 90
Time for action — creating a simple group chat application 90
Sending mails 95

Zend\Mail\Transport 96

Zend\Mail\Message 96

Zend\Mime\Message and Zend\Mime\Part 96



http:///

Table of Contents

Time for action — creating a simple e-mail form 97
Zend\EventManager 99
Time for action — setting module layout using ZF events 100
Summary 103
Chapter 6: Media Sharing 105
External modules 105
Resizing images 106
Time for action — resizing images using modules 106
The Photo gallery application 108
Time for action — implementing a simple photo gallery 109
Google Data APIs 113
The Google Photos API 114
Time for action — fetching photos from Google Photos 115
YouTube Data API 119
Time for action - listing YouTube videos for a keyword 119
Summary 122
Chapter 7: Search Using Lucene 123
Introduction to Lucene 123
Time for action - installing ZendSearch\Lucene 124
Indexing 125
Time for action — generating a Lucene index 127
Searching 129
Time for action — displaying search results 130
Indexing Microsoft Office documents 133
Time for action — indexing document files 134
Summary 137
Chapter 8: Creating a Simple Store 139
Shopping cart 140
Time for action — creating a store front 140
The store administration 143
Time for action — creating the Store Admin interface 144
Payments with PayPal 146
PayPal and Zend Framework 2.0 146
Time for action — setting up PayPal 147
PayPal Express Checkout 149
Time for action — accepting payments using PayPal 150
Summary 157



http:///

Table of Contents

Chapter 9: HTML5 Support 159
HTML5 input elements 160
Time for action — HTMLS5 input elements 165
HTML5 view helpers 167
Time for action — HTMLS5 view helpers 168
HTML5 attributes 171

Multiple file uploads 172
Time for action — HTML5 multiple file uploads 172
Summary 176

Chapter 10: Building Mobile Applications 177

Cloud-connected mobile applications 177
Zend Studio 10 178
phpCloud 178

Time for action — configuring your phpCloud account 178
PhoneGap and Zend Studio 182

Time for action — building your first cloud-connected mobile application 182

Native applications versus mobile web applications 186

Time for action — testing as a native application 187

Zend Server Gateway 190

Time for action — creating a mobile search interface 190

Summary 193

Appendix: Pop Quiz Answers 195
Chapter 1, Getting Started with Zend Framework 2.0 195
Chapter 2, Building Your First Zend Framework Application 195
Chapter 3, Creating a Communication Application 195
Chapter 4, Data Management and Document Sharing 196
Chapter 5, Chat and E-mail 196
Chapter 6, Media Sharing 196
Chapter 7, Search Using Lucene 196
Chapter 8, Creating a Simple Store 197
Chapter 9, HTML5 Support 197
Chapter 10, Building Mobile Applications 197

Index 199



http:///

Zend Framework 2 is the latest update to the well-known Zend Framework. This version
has considerably eased the process of building complex web applications with minimal
development effort using plug and play components. Zend Framework 2 also provides a
highly robust and scalable framework for developing web applications.

This book will guide you through the process of developing powerful web applications using
ZF2. It covers all aspects of Zend Framework application development right from installation
and configuration; the tasks are designed in a way that readers can easily understand and
use them to build their own applications with ease.

This book begins with basic installation and configuration of the Zend Framework. As you
progress through the exercises, you will become thoroughly acquainted with ZF2. With
this book, you will learn about the basic concepts of building solid MVC web applications
using Zend Framework 2. The detailed step-by-step instructions will enable you to build
functionality such as a group chat, a file and media sharing service, search, and a simple
store, to name a few. You will also use a wide range of external modules to implement
features that are not natively available.

By the end of the book, you will be well versed in building complex and functionality-rich
web applications using Zend Framework 2.

Chapter 1, Getting Started with Zend Framework 2.0, introduces you to the configuration of
the development environment. In this chapter, we will set up a PHP application server, install
MySQL, and create a development database which will be used in subsequent chapters for
our Zend Framework learning exercises.


http:///

Preface

Chapter 2, Building Your First Zend Framework Application, explains the creation of the Zend
Framework 2 project; we will be reviewing some of the key aspects of building a ZF2 MVC
application by creating modules, controllers, and views. We will be creating our own custom
module in Zend Framework which will be enhanced further in subsequent chapters of

this book.

Chapter 3, Creating a Communication Application, introduces you to Zend\Form. In this
chapter we will create our first registration form, and set up login and authentication for
registered users using Zend Framework components.

Chapter 4, Data Management and Document Sharing, covers some of Zend Framework's
data and file management concepts. In this chapter, we will learn various aspects of Zend
Framework including ServiceManager, the TableGateway pattern, handling uploads, and
file sharing.

Chapter 5, Chat and E-mail, covers the use of JavaScript in your application. This chapter uses
a simple group chat implementation as an example for explaining the usage of JavaScript in
your applications; you will also be introduced to sending e-mails using Zend\Mail and the ZF2
event manager.

Chapter 6, Media Sharing, explains the management and sharing of images and videos using
Zend Framework. In this chapter, we will use of various external Zend Framework 2 modules
to work with images and videos.

Chapter 7, Search using Lucene, introduces you to the Lucene search implementation
using Zend Framework. This chapter begins by explaining the users about the installation
of ZendSearch\Lucene module, we then cover the details of implementing search for
database records and also document files.

Chapter 8, Creating a Simple Store, introduces you to e-commerce. In this chapter, we will
be building a simple online store to demonstrate the process involved in development of
a shopping cart. We will be using PayPal Express Checkout as our payment processer in
this chapter.

Chapter 9, HTML5 Support, introduces you to HTML5 support in Zend Framework 2. When
compared to the previous version, ZF2 offers exhaustive support for various HTMLS5 features;
this chapter covers two major aspects of ZF2's HTML5 support—new input types and
multiple file uploads.

Chapter 10, Building Mobile Applications, introduces you to the development of native
mobile applications with the help of Zend Framework 2 and Zend Studio 10. In this chapter,
we will learn the fundamentals of building cloud-connected mobile applications using Zend
Framework; we will also learn about the setup of Zend PHP developer cloud environment.

[2]



http:///

Preface

What you need for this hook

You will need a system that is capable of running Zend Server CE along with MySQL.
The prerequisite software that is required for working with tasks to be performance
in the book is covered in Chapter 1, Getting Started with Zend Framework 2.0.

If you are a PHP developer who is new to Zend Framework, but you want to get hands-on with
the product quickly, this book is for you. Basic knowledge of object-oriented programming with
PHP is expected.

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Action1l
2. Action?2
3. Action3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple-choice questions intended to help you test your own understanding.

[31]

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Preface

These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The TableGateway class extends
AbstractTableGateway Which implements TableGatewayInterface."

A block of code is set as follows:

// Add Document to index

SindexDoc = new Lucene\Document () ;
$indexDoc->addField (slabel) ;
$indexDoc->addField (Sowner) ;
$indexDoc->addField ($fileUploadlId) ;
$index->addDocument ($indexDoc) ;

!
// Commit Index
$index->commit () ;

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

// Add Document to index

SindexDoc = new Lucene\Document () ;
$indexDoc->addField (Slabel) ;
$indexDoc->addField (Sowner) ;
$indexDoc->addField ($fileUploadlId) ;
$index->addDocument ($indexDoc) ;

!
// Commit Index
$index->commit () ;

Any command-line input or output is written as follows:

$ sudo apt-get install php5-cli

$ sudo apt-get install git

$ curl -s https://getcomposer.org/installer | php

New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "On the Select Destination
Location screen, click on Next to accept the default destination."

[4]



http:///

Preface

% Warnings or important notes appear in a box like this.

a1

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
| book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

[5]


http:///

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[6]


http:///

Getting Started with
Zend Framework 2.0

In this chapter we will get our development environment set up and configured
in order to start development with Zend Framework 2.0. We will set up a PHP
Application Server, install MySQL, and create a development database that will
be used in subsequent chapters for our Zend Framework learning exercises. So,
let's get started.

Zend Framework 2.0

The last major release of Zend Framework, which happened in 2007, was version 1.0;
during the last five years, Zend Framework has undergone a lot of changes to be a
successful PHP-based framework. But by merely updating the framework, Zend Framework
has retained some of the issues that were inherently present in Zend Framework 1.0.

Zend Framework 2.0 is an attempt to make Zend Framework better by rearchitecting the
framework right from the core. Some of the key features of Zend Framework 2.0 over its
previous version are listed as follows:

L 4

L 2
*
L 2

PHP 5.3 features such as namespaces and closures
A modular application architecture

Event manager

Dependency Injection (Dl)

We will get to know about implementing the new features of Zend Framework 2.0 in the
coming chapters.


http:///

Getting Started with Zend Framework 2.0

In this chapter we will cover the installation and configuration of some of the prerequisites
of Zend Framework 2.0. ZF2 can be installed on most PHP-enabled web servers that support
PHP 5.3.3 or later.

We have used Zend Server Community Edition as our default web server; however, any other
PHP stack that supports PHP 5.3.3 can be used. Alternatively, you can also download Apache
and PHP separately and install PHP over Apache.

To simplify the installation process, | am using Linux as the primary development
environment in this book. All the tools used in this book are available for Windows
and can be used to perform the same activity.

Introduction to Zend Server Community Edition (CE)

Zend Server Community Edition is the free version of the popular Zend Server stack. The
Zend Server stack provides a pre-integrated PHP application stack that could be used across
development, testing, and production. This enables application development teams to have
a consistent environment across all stages of development.

Zend Server CE also provides features such as Zend Optimizer+ for PHP bytecode caching and
Zend Guard for encoding files.

Iend Server GE — system requirements

Zend Server offers installers for Windows, Mac OS X, and a universal installation package
compatible with most Linux distributions.

More details on the installation requirements can be found at http://www. zend.com/en/
products/server/system-requirements.

Time for action - installing Zend Server GE

Our next step will be to download and install Zend Server CE; | am running Ubuntu 12.04
Precise Pangolin. The installation procedure for other operating systems could be different;
you can always refer to the Zend Server website for installation instructions. The following
are the steps to install the Zend Server CE:

1. \Visit the Zend Server Community Edition website (http://www.zend.com/en/
community/zend-server-ce) and download the latest version of Zend Server
that is applicable to your operating system. In this case, we will be downloading the
Linux installer.



http:///

Chapter 1

2. Once the installer is downloaded, extract the contents of the installer to a
temporary location:

$ tar -zxvf ZendServer-5.6.0-RepositoryInstaller-linux.tar.gz

3. After extracting, the installer needs to be started with administrator privileges:
$ cd ZendServer-RepositoryInstaller-linux/

$ sudo ./install zs.sh 5.3 ce

_ We are passing two parameters to the installer. The first one is the version of
% PHP that needs to be installed; in this case itis 5. 3. The second parameter
e identifies the edition of Zend Server that needs to be installed; in this case it
is ce for Community Edition.

4. During the installation, the installer will request you to download various packages:

krishnav@ubuntu: ~/Downloads/ZendServer-Repositorylnstaller-linux

krishnav@ubuntu:~/Downloads/ZendServer-RepositoryInstaller-linux$ sudo ./install_zs.sh 5.3 ce
Running this script will perform the following:

* Configure your package manager to use Zend Server repository

* Install Zend Server on your system using your package manager h

Hit ENTER to install Zend Server, or Ctrl+C to abort now.

5. Zend Server will be installed into /usr/local/zend by default; the default
document root will point to /var/www. You can use the following files to make
configuration changes to the Zend Server instance:

o Apache master configuration is available in /etc/apache2/apache2.
conf

o PHP configuration is controlled by /var/local/zend/etc/php.ini



http:///

Getting Started with Zend Framework 2.0

The following screenshot shows the installed location of Zend Server:

» [ include
» [ lib

v | local

» [ bin

b [l etc bin doc etc
» [l games
» [l include
» [ lib

B usr local zend & Q, search

A
i
i

gui include lib

» [l man

» [ sbin

P [ share
> [ src

L
L
L

share tmp var

» [ gui
» [l include
» [l lib
P [ share
P i tmp
b [ var

P [ sbin

S AL .

6. Once the installation is completed, you should be able to open http://localhost
on your web browser. This should take you to a test page like the one shown in the
following screenshot:

Mozilla Firefox

ttp://localhost/

- @ [~ a o

@ Modzilla Firefox is free and open source software from the non-profit Mozilla Foundation. | Know your rights... ! ®

It works!

This is the default web page for this server.

The web server software is running but no content has been added, yet.

sl \
‘Q To restart Zend Server, use the $ sudo service

zend-server restart command.

[101



http:///

Chapter 1

What just happened?

Zend Server CE is installed and ready to be used. Now we have a web server and a
compatible version of PHP running—this satisfies the core requirements for running
Zend Framework 2.0.

We will be using Git to check out Zend Framework from Github; one of the major changes that
happened to Zend Framework 2.0 is that the source control has changed from SVN to Git.

Your next task will be to install Git. We will be making use of Git when we are setting up our
Zend Framework project.

Git binaries can either be downloaded from http://www.git-scm.com/

a1 or installed from your operating system's repositories.

Q Installation instructions for Git can be found at the following link:

http: //git-scm.com/book/en/Getting-Started-
Installing-Git

Our next step will be to set up Zend Server CE and make some configuration changes that
will enable us to run other PHP applications.

Zend Server CE - Administration Interface

Zend Server CE's Administration Interface is a web-based user interface that provides the
following features:

Managing PHP extensions

Configuring PHP directives

Managing Zend Server components

* 6 o o

Monitoring PHP status, extension status, and application/server logs

In our next task, we will be making a configuration change to Zend Server by using its
Administration Interface.

nl


http:///

Getting Started with Zend Framework 2.0

Time for action - configuring Zend Server GE

The Zend Server needs to be configured after the installation is completed. The following are
the steps for configuring Zend Server CE:

1. Open the admin console of Zend Server in your default browser
(http://localhost:10081/).

M The Zend Server Ul console runs on port 10081 while the web server
Q runs on port 80. This is why we need to implicitly specify the port
number in the URL for accessing the Ul console.

2. When opening the Zend Server Administration Interface for the first time, you
will be presented with a configuration wizard. Review and accept the terms and
conditions of Zend's End User License Agreement page:

Zend Server Community Edition - Mozilla Firefox
("} Zend Server Community Edition
& |} localhost

@ Mozilla Firefox is free and open source software from the non-profit Mozilla Foundation.

Step 1 of 3 : End User License Agreement

Please read and accept the following terms before using Zend Server Community Edition:

Zend Technologies Ltd

End-User License Agreement

This End-User License Agreement (this "Agreement”) is a legal contract between
you, as either an individual or a single business entity, and Zend Technologies
Ltd. and its affiliates ("Zend").

READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY
BEFORE DOWNLOADING OR INSTALLING ZEND'S PROPRIETARY
SOFTWARE (THE "SOFTWARE") OR OBTAINING A LICENSE KEY TO THE
SOFTWARE OR USING THE SOFTWARE. THE SOFTWARE IS FURTHER
DEFINED IN AN ORDER DOCUMENT (AN "ORDER"), ENTERED INTO
BETWEEN YOU AND ZEND OR YOU AND AZEND RESELLER, WHICH SETS
FORTH COMMERCIAL TERMS APPLICABLE TO YOUR PURCHASE OF THE
SOFTWARE.

) Ihave read and agree to the end user license agreement terms

121


http:///

Chapter 1

3. Asshown in the following screenshot, you will be asked to set the password for the
Zend Server installation:

Zend Server Community Edition - Mozilla Firefox

Zend Server Community Edition

@ | localhost

@ Mozilla Firefox is free and open source software from the non-profit Mozilla Foundation. | Know your rights... | %

server

Step 2 of 3 : Set Password

Enter Password

Retype Password

the Administration Interfa

4. After the initial configuration wizard is completed, you will be redirected to the Zend
Server Administration Interface's home page.

Zend Server Community Edition - Mozilla Firefox
{_iZend Server Community Edition
@& | localhost

Help | About | Logout

or  Monitor Appli E]l Ruie Management

Dashboard Evenis Jobs Code Tracing Server Info PHP Info

System Overview
View PHPinfo page PHP Version 5314
Load or Unload PHP Extensions Zend Framework Version 1.12.0

Configure Zend Server Components mare

Change PHP directive Values Zend Server Community Edition

Learn how to start with Zend Server and PHP Zend Data Cache E3
Zend Debugger E3

Zend Guard Loader

Zend Java Bridge

Zend Optimizer+

“® Restartop 4

1131

vww allitebooks.conl



http:///
http://www.allitebooks.org

Getting Started with Zend Framework 2.0

5. We need to set the session save path. In order to do this, perform the
following steps:

1. Navigate to Directives in Server Setup.

2. Search for session.save path.

3. Setthe value to /tmp.

4. Click on Save Changes and then Restart PHP.

= Zend Server Community Edition - Mozilla Firefox
[} Zend Server Community Edition
& | £ @ localhost:

SEIVEr Community Edition Help | About | Logout

Wl Monitar &' Applicatio Rule Management 2, Server Setup

Components Extensions Directives Debugger

View: Popular Al session.save_path S, “Save Changes

session

session.save_path - Argument which is passed to the save handler

What just happened?

We have successfully modified a server configuration using Zend Server's Administration
Interface and we have restarted the PHP instance running on Zend Server.

MySOL

MySQL doesn't need an introduction—it is the world's most widely used open source database
application. It's free and is available on the Internet to individuals and businesses that wish to
develop their websites and applications using the MySQL database.

Zend Framework 2.0 has driver support for MySQL along with SQLite, PostgreSQL, and
Microsoft SQL Server.

Our next exercise will be to install MySQL on our development machine. MySQL is available
for download from all Linux repositories. Windows and Mac users will have to download the
installer from the MySQL website (http://dev.mysgl.com/downloads/).

(14l


http:///

Chapter 1

\ Windows and Mac users can skip this section if they have chosen to install
5 MySQL Server as a part of their Zend Server CE installation. The Zend Server
Q installer allows Windows and Mac users to download and install MySQL
Server as a part of the installation.

Time for action - installing MySQL

MySQL Server and Client need to be installed using the following steps; we will be using
MySQL as our primary database in this book:

1. Inastandard Ubuntu installation, MySQL can be installed by executing the following
command in the shell prompt:

$ sudo apt-get install mysgl-server mysgl-client

2. After the installation is complete, MySQL Server will start automatically. To check if
MySQL Server is running, run the following command:

$ sudo netstat -tap | grep mysql

3. The command should give an output that is similar to the following; this means that
the MySQL daemon is running:

tep 0 0 localhost:mysqgl ok LISTEN 923 /mysqgld

4. If, for some reason, MySQL Server is not running, you can start the server by running
the restart command:

$ sudo service mysql restart

What just happened?

We have just installed MySQL; we have the LAMP stack ready too. Our next step will be to
create a database in MySQL Server.

Since we are using Zend Server, we don't need to install the php5-mysqgl

package. If you are using a stack that doesn't have MySQL support enabled
by default, you will have to install the necessary packages manually.

151


http:///

Getting Started with Zend Framework 2.0

Having gone through this section, feel free to attempt the task in the following section.

phpMyAdmin

phpMyAdmin is a free, open source web-based database administration tool written in PHP.
phpMyAdmin provides a web-based Ul to manage MySQL Database Server; add / remove /
manage databases, users, privileges; and so on. In this book, we will be using phpMyAdmin
as the database Administration Interface for managing our database(s).

Now that we have Apache, PHP, and MySQL installed, our next step will be to create a blank
database in MySQL Server.

For doing this, we need to install and configure phpMyAdmin in the Zend Server.

phpMyAdmin can either be downloaded from http://www.phpmyadmin.
s net/ orinstalled from your operating system's repositories.

Q Installation instructions for phpMyAdmin can be found at the following link:

http://docs.phpmyadmin.net/en/latest/setup.html

In our next task we will be creating a MySQL database, creating users in the MySQL
server and also grant them access permissions to connect to the database and perform
database operations.

Time for action - creating a database

To create a new database, open an instance of phpMyAdmin in your web browser and follow
the steps described here:

1. Open phpMyAdmin in your web browser by visiting http://localhost/
phpmyadmin:

1161


http:///

Chapter 1

localhost / localhost | phpMyAdmin 3.4.10.1deb1 - Mozilla Firefox

4 localhost / localhost | phpMy:

& |

@ localhost/p!

phpMyAdmin | Ik
i/ Databases p:J‘ soL 4. Status 45 Processes 2= Privileges [i& Export ¥ More

8300 ¢

2 information_schema

1 mysql Change password » Server: Localhost via UNIX socket
* Server version:
5.5.24-0ubuntu0.12.04.1

= Protocol version: 10

4 performance_schema

MySQL connection collation & :| utf8_general_ci

4 phpmyadmin

3l test « User: root@localhost

* MySQL charset: UTF-8 Unicode (utfg)

=) [ .
& Language & | English j : =
“@ Theme / style:| pmahomme ||
« Fontsize:| 82% | + Apache/2.2.22 (Ubuntu)
) ) * MySQL client version: 5.0.51a
& More settings « PHP extension: mysqli &
N
=l
» Version information: 3.4.10.1debl
= Documentation
= Wiki
= Official Homepage
s Contribute =

2. Choose Databases, enter the name of the new database as zf_app in Create new
database, and click on Create:

localhost / localhost | phpMyAdmin 3.4.10.1deb1 - Mozilla Firefox

4k localhost / localhost | phpMyA...
<2 rs, localhost/r

hpmye

XIHEE al &

phpMyAdmin

1 Databases L} saL |4y Status “# Processes =3 Privileges & Export ¥ More

& 830 ¢
i information_schema Databases

[ mysql

4 performance_schema .
‘b Create new database g

2 phpmyadmin T = g
zf app | collation A heate

3l test
Database .
information_schema 85 Check Privileges 3
mysql a3 Check Privileges

71 performance_schema =5 Check Privileges

[ phpmyadmin 23| Check Privileges
[ test 55 Check Privileges
Total: 5

Check All / Uncheck All With selected:  [5] Drop

ih Enable Statistics

.. Note: Enabling the database statistics here might cause heavy traffic between the web server and the
~— MySQL server.

[111



http:///

Getting Started with Zend Framework 2.0

3. After creating the database, create a database user for this database; this can be
done by selecting Add a new user from Privileges. Provide the following details:

User field Value

User name zf_user
Host localhost
Password zf pass

After doing this you will get the following screen:

localhost / localhost | phpMyAdmin 3.4.10.1deb1 - Mozilla Firefox

A localhost / localhost | phpMyA...
& | @ localhost

-C|[3- Ql &
|
4 | |
php
Add a new User
o 8 3 e g
| information_schema Login Information
mysql
rf h User name: c a
performance_schema " Use text field: J [t user
phpmyadmin
| test 535 Any| o You have added a new user.
zf_app
Password: | s text field: =
Re-type:
pl
Database for user
@® None
| Create database with same name and grant all privileges
1 Grant all privileges on wildcard name (username'_%}) -
Cancel : Create User :
v

4. After the user is created, go to the Privileges section and choose Edit Privileges for
the zf_user.

5.

In the Database-specific privileges section, select the z£ _app database.

[181



http:///

Chapter 1

6. You will be redirected to the privileges section of the zf_app database for the
zf user user. Choose Check All and click on Go.

localhost / localhost | phpMyAdmin 3.4.10.1deb1 - Mozilla Firefox

4 localhost / localhost | phpMyA...
<3 localhost +@ 4~ Q @
Edit Privileges: User ‘zf user'@'%'- Database zfl_app

. Database-specific privileges (Check All / Uncheck all)
@ 8l 3 @ ¢
loipsioy ieE Note: MySQL privilege names are expressed in English
mysql
performance_schema Data Structure Administration
phpmyadmin
et & sELECT & crETE & GRanT
es| = = e
& InsERT & aLTER & Lock TABLES
zf_app & uroatE & noEX [ Rererences
& oeLETE & oror
[& CREATE TEMPORARY TABLES
& sHow vIEw

[&f CREATE ROUTINE
& ALTER ROUTINE
& execute

& creATE vIEW
[ EvENT

& TRIGGER

ﬁn

You can now test the database by logging out of phpMyAdmin and logging in again with the
user credentials of z£_user. You should now be able to see only the zf£_app database.

What just happened?

We just created our first database in MySQL. We have also created a user in the database
and mapped the user to the database with administrative rights; we can now use these
credentials in the application that we will be building in our next chapters.

Now that you have the PHP web server up and running and also have a MySQL database,
create a simple table called students and add a few records to the table using phpMyAdmin.

Your task will be to create a simple PHP web page that will display all the records in the
Students table in the page.

1191



http:///

Getting Started with Zend Framework 2.0

Pop quiz -2end Framework 2.0

Q1. What is the minimum version of PHP needed to run Zend Framework 2.0?

1. PHP 4.3 and above

2. PHP5.2.0 and above
3. PHP5.3.3 and above
4. PHP5.4.7 and above

Q2. What is the default location of php . ini in the new Zend Server installation?

1. /home/<users>/etc/php/php.inc
2. /etc/php/php.ini

3. /var/www/php.ini

4, /usr/local/zend/etc/php.ini

Summary

In this chapter we have learned the setup and configuration of Zend Server's PHP application
stack. We went on to install MySQL Server and created our first database. In your exercises,
you have learned about the installation of Git and phpMyAdmin.

In the next chapter, we will learn about the structure of a Zend Framework project and core
MVC components such as views and controllers.

[201


http:///

Building Your First Zend
Framework Application

In this chapter, we are going to create our first Zend Framework 2.0 project; we
will be reviewing some of the key aspects of building a ZF2 MVC Application by
creating modules, controllers, and views. We will be creating our own custom
module in Zend Framework which will be enhanced further in subsequent
chapters of this book.

Before you get started with setting up your first ZF2 Project, make sure that you have the
following software installed and configured in your development environment:

PHP Command Line Interface

Git: Git is needed to check out source code from various github. com repositories

Composer: Composer is the dependency management tool used for managing PHP
dependencies


http:///

Building Your First Zend Framework Application

The following commands will be useful for installing the necessary tools to setup
a ZF2 Project:

& Toinstall PHP Command Line Interface:
$ sudo apt-get install php5-cli

¢ Toinstall Git:
$ sudo apt-get install git

a1

& Toinstall Composer:

$ curl -s https://getcomposer.org/installer | php

ZendSkeletonApplication provides a sample skeleton application that can be used
by developers as a starting point to get started with Zend Framework 2.0. The skeleton
application makes use of ZF2 MVC, including a new module system.

ZendSkeletonApplication can be downloaded from GitHub
(https://github.com/zendframework/ZendSkeletonApplication).

Time for action - creating a Zend Framework project

To set up a new Zend Framework project, we will need to download the latest version of
ZendSkeletonApplication and set up a virtual host to point to the newly created Zend
Framework project. The steps are given as follows:

1. Navigate to a folder location where you want to set up the new Zend
Framework project:

$ cd /var/www/

2. Clone the zendSkeletonApplication app from GitHub:

$ git clone git://github.com/zendframework/
ZendSkeletonApplication.git CommunicationApp

[22]


http:///

Chapter 2

CommunicationApp

L3

ey B var www CommunicationApp  x=
» [ backups
» [l cache =
» il crash j J J
> & games config data module
» [ lib 1
» [l local J J
> &l lock public vendor composer.json
> [ log -
> [ mail / / i
> i Dpt |Redis
¥ i v composer.phar init_autoloader.php LICENSE.kxE
» [ spool 20y
P |l Emp Tt oo
README.md

'» F CommunicationApp

3.

Install dependencies using Composer:
$ cd CommunicationApp/

$ php composer.phar self-update
$ php composer.phar install

In some Linux configurations, necessary permissions may not be available to
the current user for writing to /var/www. In such cases, you can use any folder
that is writable and make necessary changes to the virtual host configuration.

The following screenshot shows how Composer downloads and installs the

necessary dependencies:

krishnav@ubuntu: /var/www/CommunicationAppS php composer.phar self-update
Updating to version 172414a.

Downloading: 10¢
krishnav@ubuntu: /var/www/CommunicationAppS$ php composer.phar install
Loading composer repositories with package information
Installing dependencies

- Installing zendframework/zendframework (2.0.3)
Downloading: 16¢

zendframework/zendframework
zendframework/zendframework
zendframework/zendframework
zendframework/zendframework
zendframework/zendframework

suggests
suggests
suggests
suggests
suggests

as in Zend\Captcha and/or Zend\Form)

Writing lock file
Generating autoload files

installing
installing
installing
installing
installing

krishnav@ubuntu: /var/www/CommunicationAppS

doctrine/common (Doctrine\Common >=2
ext-intl (ext/intl for i18n features
pecl-weakref (Implementation of weak
zendframework/zendpdf (ZendPdf for c
zendframework/zendservice-recaptcha

[231

vww allitebooks.conl



http:///
http://www.allitebooks.org

Building Your First Zend Framework Application

4. Before adding a virtual host entry we need to set up a hostname entry in our hosts
file so that the system points to the local machine whenever the new hostname is
used. In Linux this can be done by adding an entry to the /etc/hosts file:

$ sudo vim /etc/hosts

sl . o
~ In Windows, this file can be accessed at $SystemRoot %\
system32\drivers\etc\hosts.

5. Add the following line to the hosts file:
127.0.0.1 comm-app.local

The final hosts file should look like the following:

127.0.0.1 localhost
127.0.1.1 ubuntu
127.0.0.1 comm-app.local

# The following lines are desirable for IPv6 capable hosts
384l ip6-localhost ip6-loopback

fe@0::0 ip6-localnet

ffeo::0 ip6-mcastprefix

ffe2::1 ip6-allnodes

ffe2::2 ip6-allrouters

6. Our next step would be to add a virtual host entry on our web server; this can be
done by creating a new virtual host's configuration file:

$ sudo vim /usr/local/zend/etc/sites.d/vhost comm-app-80.conf

This new virtual host filename could be different for you depending upon the
web server that you use; please check out your web server documentation
for setting up new virtual hosts.

For example, if you have Apache2 running on Linux, you will need to create
the new virtual host file in /etc/apache2/sites-available and
enable the site using the command a2ensite comm-app.local.

7. Add the following configuration to the virtual host file:

<VirtualHost *:80>
ServerName comm-app.local
DocumentRoot /var/www/CommunicationApp/public
SetEnv APPLICATION_ ENV "development"
<Directory /var/www/CommunicationApp/publics

[24]


http:///

Chapter 2

DirectoryIndex index.php
AllowOverride All
Order allow,deny
Allow from all
</Directory>
</VirtualHost>

M If you are using a different path for checking out the
Q ZendSkeletonApplication project make sure that you include
that path for both DocumentRoot and Directory directives.

8. After configuring the virtual host file, the web server needs to be restarted:

$ sudo service zend-server restart

9. Once the installation is completed, you should be able to open http://comm-app.
local on your web browser. This should take you to the following test page :

-~

ZF2 Skeleton Application - Mozilla Firefox

= ZF2 Skeleton Application
L

27 ZF2 Skeleton Application

comm-app.local

Home

Welcome to Zend Framework
2

Congratulations! You have successfully installed the ZF2 Skeleton Application. You are currently

running Zend Framework version 2.0.3. This skeleton can serve as a simple starting point for you to
begin building your application on ZF2. [N

Fork Zend Framework 2 on GitHub »

Follow Development Discover Modules Help & Support

Zend Framework 2 is under active The community is working on developing a If you need any help or support while
development. If you are interested in following community site to serve as a repository and developing with ZF2, you may reach us via -
— E— — _— - e ——

1251



http:///

Building Your First Zend Framework Application

Test rewrite rules

' In some cases, mod_rewrite may not have been enabled in your web server
N by default; to check if the URL redirects are working properly, try to navigate
Q to aninvalid URL such as http://comm-app.local/12345; if you get an
Apache 404 page, then the . htaccess rewrite rules are not working; they
will need to be fixed, otherwise if you get a page like the following one, you
can be sure of the URL working as expected. -

[ comm-app.local/12345|

Home

A 404 error occurred
Page not found.

The requested URL could not be matched by routing.

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved.

What just happened?

We have successfully created a new ZF2 project by checking out ZendSkeletonApplication
from GitHub and have used Composer to download the necessary dependencies including
Zend Framework 2.0. We have also created a virtual host configuration that points to the
project's public folder and tested the project in a web browser.

Downloading the example code

purchased from your account at http://www.packtpub. com. If you
purchased this book elsewhere, you can visit http: //www.packtpub.
com/support and register to have the files e-mailed directly to you.

.\'Q You can download the example code files for all Packt books you have

1261


http:///

Chapter 2

Alternate installation options

We have seen just one of the methods of installing
ZendSkeletonApplication; there are other ways of doing this.
You can use Composer to directly download the skeleton application and
create the project using the following command:

$ php composer.phar create-project --repository-
url="http://packages.zendframework.com" zendframework/
skeleton-application path/to/install

You can also use a recursive Git clone to create the same project:

$ git clone git://github.com/zendframework/
ZendSkeletonApplication.git --recursive

Refer to:

http://framework.zend.com/downloads/skeleton-app

Zend Framework 2.0 - modules

In Zend Framework, a module can be defined as a unit of software that is portable and reusable

and can be interconnected to other modules to construct a larger, complex application.

Modules are not new in Zend Framework, but with ZF2, there is a complete overhaul in the
way modules are used in Zend Framework. With ZF2, modules can be shared across various
systems, and they can be repackaged and distributed with relative ease. One of the other
major changes coming into ZF2 is that even the main application is now converted into a
module; that is, the application module.

Some of the key advantages of Zend Framework 2.0 modules are listed as follows:

* 6 o o

Self-contained, portable, reusable

Dependency management

Lightweight and fast

Support for Phar packaging and Pyrus distribution

[21]


http:///

Building Your First Zend Framework Application

Zend Framework 2.0 - project folder structure

The folder layout of a ZF2 project is shown as follows:

b |l spool .
= t:*np B var www CommunicationApp public €« Q, search
¥ el WWW — =
» [l config config data module
P> [l data :
v i module i i
b [ Application bli " .
= _DUDIIE publc venaor composer.json
P [ css £ ] ’
= & ! !
b |l images
> [ js composer.lock composer.phar init_autoloader.php
¥ | vendor Capyr Zends
P [ bin Mmlr
_ Redis |Intra
> (W composar LICENSE.txt README.md
w |l zendframework
¥ i zendframework
» [ bin
P @ demos
» [ library
P> [ resources %
> il tests
» | vendor
> [ zF2
Folder name Description
config Used for managing application configuration.
data Used as a temporary storage location for storing application
data including cache files, session files, logs, and indexes.
module Used to manage all application code.
module/Application This is the default application module that is provided with
ZendSkeletonApplication.
public Serves as an entry point to the application; the website's
document root points here. All web resources including CSS
files, images, and JavaScripts are stored here.
vendor Used to manage common libraries that are used by the
application. Zend Framework is also installed in this folder.
vendor/zendframework Zend Framework 2.0 is installed here.

[281



http:///

Chapter 2

Time for action - creating a module

Our next activity will be about creating a new Users module in Zend Framework 2.0. The
Users module will be used for managing users including user registration, authentication, and
so on. We will be making use of ZendSkeletonModule provided by Zend, shown as follows:

1. Navigate to the application's module folder:
$ cd /var/www/CommunicationApp/
$ cd module/

2. Clone ZendSkeletonModule into a desired module name, in this case it is Users:
$ git clone git://github.com/zendframework/ZendSkeletonModule.git
Users

3. After the checkout is complete, the folder structure should look like the
following screenshot:

config src tests
P Users ' ;
» [ config hJ :
view autoload_classmap. autoload_Function.
w i src php php
v | ZendSkeletonModule
b [l Controller
» [ tests Redls
: autoload_register. LICENSE.Exk Module.php
v i view ohp
v | zend-skeleton-module s
P |l skeleton
README.md
4. Edit Module .php; this file will be located in the Users folder under modules

(CommunicationApp/module/Users/module.php) and change the namespace to
Users. Replace namespace ZendSkeletonModule; with namespace Users;.

1291



http:///

Building Your First Zend Framework Application

5. The following folders can be removed because we will not be using them in
our project:

* Users/src/ZendSkeletonModule

* Users/view/zend-skeleton-module

What just happened?

We have installed a skeleton module for Zend Framework; this is just an empty module, and
we will need to extend this by creating custom controllers and views. In our next activity, we
will focus on creating new controllers and views for this module.

Creating a module using ZFTool

ZFTool is a utility for managing Zend Framework applications/
projects, and it can also be used for creating new modules; in order to
do that, you will need to install ZFTool and use the create module
command to create the module using ZFTool:

\\l $ php composer.phar require zendframework/
zftool:dev-master
$ cd vendor/zendframework/zftool/
$ php zf.php create module Users2 /var/www/
CommunicationApp

Read more about ZFTool at the following link:

http://framework.zend.com/manual/2.0/en/modules/
zendtool .introduction.html

MVUC layer

The fundamental goal of any MVC Framework is to enable easier segregation of three layers
of the MVC, namely, model, view, and controller. Before we get to the details of creating
modules, let's quickly try to understand how these three layers work in an MVC Framework:

¢ Model: The model is a representation of data; the model also holds the business
logic for various application transactions.

¢ View: The view contains the display logic that is used to display the various user
interface elements in the web browser.

¢ Controller: The controller controls the application logic in any MVC application; all
actions and events are handled at the controller layer. The controller layer serves
as a communication interface between the model and the view by controlling the
model state and also by representing the changes to the view. The controller also
provides an entry point for accessing the application.



http:///

Chapter 2

¢ Inthe new ZF2 MVC structure, all the models, views, and controllers are grouped by
modules. Each module will have its own set of models, views, and controllers, and
will share some components with other modules.

The folder structure of Zend Framework 2.0 module has three vital components—the
configurations, the module logic, and the views. The following table describes how contents
in a module are organized:

Folder name Description

config Used for managing module configuration

src Contains all module source code, including all controllers and models
view Used to store all the views used in the module

Time for action - creating controllers and views

Now that we have created the module, our next step would be having our own controllers
and views defined. In this section, we will create two simple views and will write a controller
to switch between them:

1. Navigate to the module location:

$ cd /var/www/CommunicationApp/module/Users

2. Create the folder for controllers:
$ mkdir -p src/Users/Controller/

3. Create a new IndexController file, < ModuleName >/src/<ModuleNames/
Controller/:
$ cd src/Users/Controller/

$ vim IndexController.php

4. Add the following code to the IndexController file:
<?php
namespace Users\Controller;
use Zend\Mvc\Controller\AbstractActionController;
use Zend\View\Model\ViewModel;
class IndexController extends AbstractActionController

{

public function indexAction ()

{

[311



http:///

Building Your First Zend Framework Application

Sview = new ViewModel () ;
return Sview;

}

public function registerAction()

{

Sview = new ViewModel () ;
Sview->setTemplate ('users/index/new-user') ;
return Sview;

}

public function loginAction ()

{

Sview = new ViewModel () ;
Sview->gsetTemplate ('users/index/login') ;
return Sview;

}

5. The preceding code will do the following actions; if the user visits the home page,
the user is shown the default view; if the user arrives with an action register, the
user is shown the new-user template; and if the user arrives with an action set to
login, then the 1ogin template is rendered.

6. Now that we have created the controller, we will have to create necessary views to
render for each of the controller actions.

7. Create the folder for views:
$ cd /var/www/CommunicationApp/module/Users

$ mkdir -p view/users/index/

8. Navigate to the views folder, <Module>/view/<module-name>/index:

$ cd view/users/index/

9. Create the following view files:
0 index
o login

a new-user

1. Forcreating the view/users/index/index.phtml file, use the
following code:

<hl>Welcome to Users Module</hls>
<a href="/users/index/login">Login</a> | <a href="/users/
index/register">New User Registration</a>

[321



http:///

Chapter 2

For creating the view/users/index/login.phtml file, use the
following code:

<h2> Login </h2>

<p> This page will hold the content for the login form </p>
<a href="/users"><< Back to Home</a>

For creating the view/users/index/new-user.phtml file, use the
following code:

<h2> New User Registration </h2>

<p> This page will hold the content for the registration
form </p>

<a href="/users"><< Back to Home</a>

What just happened?

We have now created a new controller and views for our new Zend Framework module;
the modaule is still not in a shape to be tested. To make the module fully functional we will
need to make changes to the module's configuration, and also enable the module in the
application's configuration.

Zend Framework 2.0 module configuration is spread across a series of files which can be
found in the skeleton module. Some of the configuration files are described as follows:

L 4

Module.php: The Zend Framework 2 module manager looks for the Module.php

file in the module's root folder. The module manager uses the Module . php file to

configure the module and invokes the getAutoloaderConfig () and getConfig()

methods.

autoload_classmap.php: The getAutoloaderConfig () method in

the skeleton module loads autoload classmap.php to include any custom
overrides other than the classes loaded using the standard autoloader format.
Entries can be added or removed to the autoload classmap.php file to
manage these custom overrides.

config/module.config.php: The getConfig () method loads
config/module.config.php; this file is used for configuring various
module configuration options including routes, controllers, layouts, and
various other configurations.

[vww allitebooks.cond



http:///
http://www.allitebooks.org

Building Your First Zend Framework Application

Time for action — modifying module configuration

In this section will make configuration changes to the Users module to enable it to work
with the newly created controller and views using the following steps:

1. Autoloader configuration — The default autoloader configuration provided by
the ZendSkeletonModule needs to be disabled; this can be done by editing
autoload classmap.php and replacing it with the following content:

<?php
return array() ;

2. Module configuration — The module configuration file can be found in
config/module.config.php; this file needs to be updated to reflect
the new controllers and views that have been created, as follows:

o Controllers — The default controller mapping points to the
ZendSkeletonModule; this needs to be replaced with the
mapping shown in the following snippet:

'controllers' => array(
'invokables' => array(

'Users\Controller\Index' =>
'Users\Controller\IndexController',

)/
)/

o Views — The views for the module have to be mapped to the appropriate
view location. Make sure that the view uses lowercase names separated by a
hyphen (for example, ZendSkeleton will be referred to as zend-skeleton):

'view_manager' => array(
'template_path_stack' => array(
'users' => _DIR . '/../view',
),
),

o Routes — The last module configuration is to define a route for accessing
this module from the browser; in this case we are defining the route as
/users, which will point to the index action in the Index controller of
the Users module:

'router' => array(
'routes' => array(
'users' => array(
'type' => 'Literal',
'options' => array(
'route' => !'/users',

341



http:///

Chapter 2

'defaults' => array(
' NAMESPACE 'o=>
'E;ers\Contrgiler',
'controller' => 'Index',
'action' => 'index',

),
),

3. After making all the configuration changes as detailed in the previous sections,
the final configuration file, config/module.config.php, should look like
the following:

<?php
return array(
'controllers' => array(
'invokables' => array(

'Users\Controller\Index' =>
'Users\Controller\IndexController',
),
),

'router' => array(
'routes' => array(
'users' => array(
'type' => 'Literal’',
'options' => array(

// Change this to something specific to
your module

'route' => '/users',
'defaults' => array(

// Change this value to reflect the
namespace in which

// the controllers for your module are

found
' _NAMESPACE_ ' => 'Users\Controller',
'controller' => 'Index',
'action' => 'index',
)

)

'may terminate' => true,

'child routes' => array(

// This route is a sane default when
developing a module;

// as you solidify the routes for your module,
however,

// you may want to remove it and replace it
with more



http:///

Building Your First Zend Framework Application

// specific routes.
'default' => array(
'type' => 'Segment',
'options' => array(
'route' =>
'/ [:controller[/:action]]"',
'constraints' => array(
'controller!' =>
' [a-zA-Z] [a-2A-Z0-9 -1*',
'action' =>
' [a-zA-Z] [a-2A-Z0-9_ -]*',
),

'defaults' => array(
),
),
),
),
),
),
),
'view manager' => array(
'template path stack' => array(
'users' => DIR . '/../view',

),
),
)i

4. Application configuration — Enable the module in the application's configuration—
this can be done by modifying the application's config/application.config.
php file, and adding Users to the list of enabled modules:

'modules' => array(
'Application',
'Users',

) ’

5. To test the module in a web browser, open http://comm-app.local/users/ in
your web browser; you should be able to navigate within the module.



http:///

Chapter 2

The module home page is shown as follows:

ZF2 skeleton Application - Mozilla Firefox

= ZF2 Skeleton Application

&= comm-app.local ~@| '~ Q @

Welcome to Users Module

Login | New User Registration

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved.

The registration page is shown as follows:

ZF ZF2 Skeleton Application

& comm-app.local ~@| 1y~ Q @

New User Registration

This page will hold the content for the registration form

<< Back to Home

© 2005 - 2012 by Zend Technologies Lid. All rights reserved.

[311



http:///

Building Your First Zend Framework Application

What just happened?

We have modified the configuration of ZendSkeletonModule to work with the new
controller and views created for the Users module. Now we have a fully-functional
module up and running using the new ZF module system.

Now that we have the knowledge to create and configure own modules, your next task
would be to set up a new CurrentTime module. The requirement for this module is to
render the current time and date in the following format:

Time: 14:00:00 GMT Date: 12-Oct-2012

Pop yuiz-2end Framework 2.0

Q1. What is the tool used by ZendSkeletonApplication for managing dependencies
in PHP?

Git

Composer

PHP Command Line Interface

H wnN e

Pyrus
Q2. What is the filename of a module's configuration file?

<App>/module/<Modules>/config. inc
<App>/<Module>/config/config.php
<App>/module/<Module>/module.config.php

A

<App>/module/<Module>/config/module.config.php

sSummary

We have now learned about setting up a new Zend Framework project using Zend's skeleton
application and module. In our next chapters, we will be focusing on further development on
this module and extending it into a fully-fledged application.



http:///

In the previous chapter, we covered creating controllers and views in a new
Zend Framework module. In this chapter we will create our first registration
form, and set up login and authentication for registered users using Zend
Framework components.

Some of the key components that we will focus on in this chapter are listed as follows:

Zend\Form
Zend\InputFilter

Zend\Validator

* 6 o o

Models and Zend\Db

Zend\Form

Forms are usually built by creating the HTML page for the form, writing separate validation
and filtering for various form events, and finally writing the controllers and actions for the
form actions. With Zend Framework, the Zend\ Form component provides all the previously
stated features in a single component.

Zend\Form allows developers to programmatically create and handle forms in your
applications. zend\ Form supports form rendering, form handling, input filtering and
validation, and form configurations. In our next task we will set up our first form in ZF2.


http:///

Creating a Communication Application

Time for action - creating a registration form

To create our first registration form, we will create a new controller to display a registration
form; we will also create new forms and views. We need to make the following changes to
the Users module:

1. Form - We will also need to create a registration form under src/Users/Form/
RegisterForm.php:

1.

The RegisterForm class extends Zend\ Form\ Form; the form's
configuration is added to the constructor:

<?php

// filename : module/Users/src/Users/Form/RegisterForm.php
namespace Users\Form;

use Zend\Form\Form;

class RegisterForm extends Form

{

public function __ construct ($name = null)

{

parent:: construct ('Register');
Sthis->setAttribute ('method', 'post');
Sthis->setAttribute ('enctype', 'multipart/form-
data') ;

All fields are added to the form using the sthis->add () method on the
form's constructor:

Sthis->add(array (

'name' => 'name',

'attributes' => array(
'type' => 'text',

),

'options' => array(

'label' => 'Full Name',
)!
))

Additional validators/filters can be added to the fields while declaring
the fields in the form. In this case we are adding special validation for
the EmailAddress field:

Sthis->add(array (
'name' => 'email',
'attributes' => array(
'type' => 'email',
)

[401



http:///

Chapter 3

'options' => array(
'label' => 'Email',
),
'attributes' => array(
'required' => 'required'
),
'filters' => array(
array('name' => 'StringTrim'),
),
'validators' => array(
array (
'name' => 'EmailAddress',
'options' => array(
'messages' => array(
\Zend\Validator\

EmailAddress: :INVALID FORMAT => 'Email address format is
invalid’

) )

4. Use the same method to add password, confirm password, and
submit fields; password and confirm password will be of type
password, whereas submit will be of type button.

Views — The following views will have to be created to support the
registration process:

1. Registration page: The view for registration page is created in src/view/
users/register/index.phtml.

2. The view consists of three main sections—the section to display error
messages, the view logic which is used to generate the form tag, and the
view helpers used to generate the actual form elements. The following logic
is used to display error messages:

<section class="register"s
<h2>Register</h2>
<?php if ($this-serror): ?>
<p class="error"s>

There were one or more issues with your submission.
Please correct them as

indicated below.
</p>
<?php endif 2>

[al



http:///

Creating a Communication Application

3. The following block is used to generate the <form> HTML tag using the
form object assigned to the view in the controller:
<?php
Sform = Sthis->form;
Sform-s>prepare () ;
sform->getAttribute ('action', $this->url (NULL,
array ('controller'=>'Register', 'action' => 'process')));
Sform->setAttribute ('method', 'post');
echo s$this->form()->openTag ($form) ;

?>

4. The following section is used to generate individual form elements for the
Name, Email, Password, Confirm Password, and Submit fields:

<dl class="zend form">
<dt><?php echo $this->formLabel ($form->get ('name')); ?></dt>
<dd><?php

echo $this->formElement ($form->get ('name')) ;

echo $this->formElementErrors ($form->get ('name')) ;
?></dd>
<dt><?php echo S$this->formLabel ($form->get ('email')); ?></
dt>
<dd><?php

echo $this->formElement ($form->get ('email')) ;

echo $this->formElementErrors ($form->get ('email')) ;
?></dd>
<dt><?php echo S$this->formLabel ($form->get ('password!')) ;
?></dt>
<dd><?php

echo $this->formElement ($form->get ('password')) ;

echo $this->formElementErrors ($form->get ('password')) ;
?></dd>
<dt><?php echo $this->formLabel ($form->get ('confirm
password')); ?></dt>
<dd><?php

echo $this->formElement ($form->get ('confirm password')) ;

echo $this->formElementErrors ($form->get ('confirm
password') ) ;
?></dd>
<dd><?php

echo $this->formElement ($form->get ('submit')) ;

echo $this->formElementErrors ($form->get ('submit')) ;
?></dd>
</dl>

[42]


http:///

Chapter 3

5. Finally the form HTML tag needs to be closed:

<?php echo $this->form()->closeTag() ?>
</section>

6. Confirmation page: The view for the confirmation page is pretty
straightforward, the view is created in src/view/users/register/
confirm.phtml.

<section class="register-confirm">
<h2>Register Sucessfull</h2>

<p> Thank you for your registration. </p>
</section>

Controller — Now that we have the form and views ready, our next step will be to
have a controller in place, which will help us to access this form. We will create a
new RegisterController class and load the newly created form in its index
action. The new controller will be created in the src/Users/Controller/
RegisterController.php file:

<?php

namespace Users\Controller;

use Zend\Mvc\Controller\AbstractActionController;

use Zend\View\Model\ViewModel;

use Users\Form\RegisterForm;

class RegisterController extends AbstractActionController

{

public function indexAction ()
{
Sform = new RegisterForm() ;

SviewModel = new ViewModel (array('form' =>
$form)) ;

return SviewModel;

}

public function confirmAction ()

{

SviewModel = new ViewModel () ;
return SviewModel;

[431

vww allitebooks.conl



http:///
http://www.allitebooks.org

Creating a Communication Application

4. Configuration — Now we have created all the necessary components to display our
form, we need to add our controller to the invokables list in the module config
(config/module.config.php):

'controllers' => array(
'invokables' => array(
'Users\Controller\Index' =>

'Users\Controller\IndexController"',

'Users\Controller\Register' =>
'Users\Controller\RegisterController',

) !
5. To test the registration form's display, open any web browser and try accessing the
following URL:
http://comm-app.local/users/register

The registration form should look like the following:

Register

Full Name

Email

Password

Confirm Password

Register

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved.

(441



http:///

Chapter 3

What just happened?

Until now we have created a form that can be used to display all the necessary fields that

can be used during the registration process. Let us try to understand how the form is being
rendered. When we invoke the http://comm-app.local/users/register page, the
controller creates a new instance of the RegisterForm class and displays it on the web
browser. We have added the following fields to the RegisterForm class using its constructor:
Name

Email

Password

Confirm Password

The Submit button

* 6 6 o o

These fields are added to the newly created Form object. The ViewModel pattern renders
the form, and the form object gets passed over to the view for rendering, and each field is
rendered as per the logic in the view using the FormElement view helper.

FormElement works as a magic helper to render any form field based on
W the type of the Zend\ Form\Element tag that is passed on to it. There
~ are individual helpers for rendering specific form fields. The complete
Q list of form view helpers can be obtained from the ZF documentation
on Form View Helpers found at http: //framework. zend.com/
manual/2.0/en/modules/zend.form.view.helpers.html.

Before we move on to the next section, please create a login form in the same way that we
used to create the registration form. The form will contain the following fields:

¢ Email
¢ Password
¢ The Submit button

We will be using this login form to perform authentication towards the end of this chapter.

451


http:///

Creating a Communication Application

If you had taken a closer look at the form code, you would have noticed that we have added
some validation for the Email Address field as shown in the following snippet:

'attributes' => array(
'required' => 'required'
)
'filters' => array(
array ('name' => 'StringTrim'),
)
'validators' => array(
array (
'name' => 'EmailAddress',
'options' => array(
'messages' => array(

\Zend\Validator\EmailAddress: : INVALID
FORMAT => 'Email address format is
invalid'

So, we added the following:

¢ An attribute to make the field a required field
¢ Afilter to trim the string that is passed

¢ Avalidator to verify if the e-mail address is in the valid format

With the introduction on Zend Framework's InputFilter, we can validate entire forms

instead of attaching validation to each and every form field. This allows much cleaner code
and better scalability of Zend Forms. So effectively we can have the same form being used

in multiple sections of the website, each having its own set of validation rules that are not
dependant on the form's validation. In our next section we will set up a new validator for the
registration form.

Zend\InputFilter

Validation for forms and various other inputs can be performed by making use of Zend\
InputFilter. This component allows filtering and validation of generic sets of input data.
For specific form elements you can apply validation and filtering on the specific elements,
but if we have to filter an input set like a $_GET request or a $_POST request, this can be
implemented using the InputFilter class.

In our next task, we will be adding the InputFilter class to our registration form.

[461



http:///

Chapter 3

Time for action - adding validation to the registration form

To add an InputFilter class to an existing form, we need to create a new InputFilter
class and use it during form submission for validation, as shown in the following steps:

1. Createanew InputFilter classin src/Users/Form/RegisterFilter.php.
The RegisterFilter class will extend the Zend\InputFilter\InputFilter
class and will add all the necessary validators in its constructor:
<?php
namespace Users\Form;
use Zend\InputFilter\InputFilter;

class RegisterFilter extends InputFilter

{

public function __ construct ()

{

2. Usingthe $this->add () method, we can add various filter options to the
registration form:

1. Forthe Email Address field, we will add a validator to check if the value
entered is a valid e-mail address:

Sthis->add(array (

'name' => 'email',

'required' => true,

'validators' => array(

array (
'name' => 'EmailAddress’',
'options' => array(
'domain' => true,

2. For the Name field, we will add a validator to limit the size between 2 to
140 characters and will also add a filter to strip the HTML tags:

Sthis->add(array(

'name'’ => 'name',
'required' => true,
'filters' => array(
array (
'name' => 'StripTags',

) ’

(11



http:///

Creating a Communication Application

),
'validators' => array(
array (
'name' => 'StringLength',
'options' => array/(
'encoding' => 'UTF-8',
'min' => 2,
"max' => 140,

3. For the Password and Confirm Password fields, we will not add any
validators but will make them mandatory:

'password'’ ))
Sthis->add(array (
'name'’ => 'confirm password',
'required' => true,

))

3. This InputFilter class is not mapped to the RegisterForm class yet; we will
be performing the validation during form submission. We need to modify the
RegisterController class to enable the processAction method and validate
the form upon submission.

4. Modify the RegisterController class to enable the processAction method:

public function processAction()
if (!$this->request->isPost()) {
return Sthis->redirect () ->toRoute (NULL ,
array( 'controller' => 'register',
'action' => ‘'index!'
)) i

Spost = Sthis->request->getPost () ;
Sform = new RegisterForm() ;
SinputFilter = new RegisterFilter() ;
Sform->setInputFilter (SinputFilter) ;
Sform->setData (Spost) ;

if (!$form->isvalid()) {
Smodel = new ViewModel (array (
'error' => true,
'form' => $form,

)) i
1481



http:///

Chapter 3

Smodel->setTemplate ('users/register/index') ;
return Smodel;

return $this->redirect()->toRoute (NULL , array (
'controller' => 'register',
'action' => ‘'confirm'

))
!

5. Now open the registration page in your web browser and test the validation:

Register

There were one or more isues with your submission. Please correct them as
indicated below.

Full Name
Terry Smith
Email

terry_smith@yahoo

* 'yahoo' is not a valid hostname for the email address

* The input does not match the expected structure for a DNS hostname

* The input appears to be a local network name but local network names
are not allowed

Password

Confirm Password

Register

1491



http:///

Creating a Communication Application

What just happened?

We have now enabled validation on the registration form. In the processaAction ()
function of the RegisterController class, you will see that a new instance of the
RegisterFromclass is created and RegisterFilter is applied to the form using the
$form->setInputFilter () method. The data entered as input to the form is added again
and validation is performed by using the isvalid () method. Error messages are rendered
in the form using the FormElementErrors view helper.

We need to ensure that the names in the InputFilter class properly map to the names in
the form while adding validation to InputFilter.

You've just learned about adding a custom InputFilter class to a Zend form using the
previous task; before you move on to the next section, set up a validation InputFilter
for the Login form that you have built in your previous exercise.

Models provide a representation of data in the MVC application. There is no Zend\Model
component that is provided by Zend Framework, so developers have to decide on the
implementation part of models. Models by themselves cannot talk to databases and fetch
or process data, so they are usually connected to mapper objects or use ORM to connect
to databases. For this example, we will be using a TableGateway pattern for storing data
in the database.

TableGateway is a built-in Zend Framework 2 DB pattern which acts as a

gateway to a database table, having access to all table rows for performing
various SQL operations including select, insert, update, and delete.

TableGateway

The TableGateway pattern is used for creating an object that represents a table in the
database; in this example, we will need a TableGateway object for the User table.

M The exchangeArray () method needs to be declared
Q in the model if the model uses TableGateway for
database storage.



http:///

Chapter 3

Time for action - creating models and saving the form

In this task, we will be creating a new user model, creating a table in MySQL database to save
the registration data using TableGateway to store registration data to the table. We will,
finally, connect our registration form to UserTable so that new registrations are stored in
the database. Perform the following steps to do so:

1. Anew table needs to be created to store the registration information in the
MySQL database:

CREATE TABLE user (
id INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,
name TEXT NOT NULL,
email VARCHAR (255) NOT NULL,
password TEXT NOT NULL,
PRIMARY KEY (id),
UNIQUE INDEX idx email (email)
)

2. The application's global configuration needs to be modified to add references to
the database connection as shown in the following snippet. This is available under
<Application Home>/config/autoload/global.php.
return array (

'db' => array(

"driver' => 'Pdo’',

'dsn' => 'mysqgl:dbname=test;host=1localhost',
'username' => 'db user',

'password’ => '",

'"driver options' => array(

PDO: :MYSQL ATTR_INIT COMMAND => 'SET NAMES \'UTF8\ "'
),
),
'service manager' => array(
'factories' => array(
'Zend\Db\Adapter\Adapter'
=> 'Zend\Db\Adapter\AdapterServiceFactory',

[51]



http:///

Creating a Communication Application

3.

Create a new model for the User class. This needs to be created under
src/Users/Model /User.php.
<?php
namespace Users\Model;
class User
{
public $id;
public $name;
public Semail;
public S$password;

}

The User model will define the setPassword () and the exchangeArray ()
methods:

1. Implement a setPassword () method which will assign a MD5 version
password to the UserTable entity for storage:

public function setPassword($clear password)

{

$this->password = md5($Sclear password) ;

}

2. Implement the exchangeArray () method; this method is used while
mapping the User entity to the UserTable entity:

function exchangeArray ($data)

{

Sthis->name = (isset($datal['name'])) ?
Sdata['name'] : null;

Sthis->email = (isset(sdatal'email'])) ?
Sdatal['email'] : null;

if (isset(Sdatal["password"]))

{

Sthis->setPassword($data["password"]) ;

}

Create a new table reference for User. This needs to be created under src/Users/
Model /UserTable.php:

<?php

namespace Users\Model;

use Zend\Db\Adapter\Adapter;

use Zend\Db\ResultSet\ResultSet;

use Zend\Db\TableGateway\TableGateway;

class UserTable

521



http:///

Chapter 3

6.

protected StableGateway;
public function __ construct (TableGateway S$tableGateway)
{
Sthis->tableGateway = StableGateway;
}
public function saveUser (User S$Suser)
{
Sdata = array(
'email' => Suser->email,
'name' => Suser->name,
'password' => Suser->password,
) ;
$id = (int) Suser->id;
if ($id == 0) {
Sthis->tableGateway->insert ($data) ;
} else {
if ($this->getUser($id))
Sthis->tableGateway->update ($data, array('id' => $id));
} else {
throw new \Exception ('User ID does not exist');

}

public function getUser ($id)

{
$id = (int) $id;
Srowset = Sthis->tableGateway->select (array('id' => $id));
Srow = Srowset->current () ;
if (!$row)
throw new \Exception ("Could not find row $id");

}

return Srow;

}

Now we can use UserTable to save new registrations to the database. To save
registrations, we need to make changes to the RegisterController class. First,
we will create a new function for saving user registration:

protected function createUser (array S$data)

{

$sm = sSthis->getServicelLocator() ;
$dbAdapter = $sm->get ('Zend\Db\Adapter\Adapter') ;
SresultSetPrototype = new \Zend\Db\ResultSet\ResultSet () ;

vww allitebooks.conl



http:///
http://www.allitebooks.org

Creating a Communication Application

SresultSetPrototype->setArrayObjectPrototype (new
\Users\Model\User) ;

StableGateway = new \Zend\Db\TableGateway\TableGateway ('user',
$dbAdapter, null, S$SresultSetPrototype);

Suser = new User () ;
Suser-s>exchangeArray ($data) ;

SuserTable = new UserTable (StableGateway) ;
SuserTable->saveUser (Suser) ;

return true;

The TableGateway constructor takes the following parameters and
generates a TableGateway object in response:

¢ S$table: Used to provide the table name for the TableGateway
object.
¢ Adapter $adapter: Used to provide the database adapter
name.
¢ S$features (optional): TableGateway Feature API allows the
A extension of the TableGateway functionality without having
% to extend the base class. The features can be specified here.
~ ¢ ResultSet $resultSetPrototype (optional): Used to
provide the ResultSet type.
¢ Sqgl $sqgl (optional): Used to provide any additional SQL criteria;
make sure that the SQL object is bound to the same table as in
Stable.

& For more information refer to:
http://framework.zend.com/manual/2.0/en/
modules/zend.db.table-gateway.html#zend-db-
tablegateway

7. Next, we need to make sure that the processaction () method calls this function
before redirecting to the confirmation page:

// Create user
Sthis->createUser (Sform->getDatal()) ;

[541



http:///

Chapter 3

8. Open the registration page in your favourite browser and use the MySQL database
to check if the registration information is properly stored in the database. The
registration confirmation page should look like the following screenshot:

Register Sucessfull

Thank you for your registration.

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved.

You can check the MySQL database to see if the records have been inserted properly:

mysql> SELECT id, name, email, password FROM user;

John Smith
Mani Raj
Test User

4 rows in set (0.08 sec

mysql> ]

What just happened?

We have now modified the form to save new user registrations to the database; our next
step will be to set up authentication based on the information stored in the database.

Zend\Authentication

Zend\Authentication is an authentication component provided by Zend Framework
which can be used for authentication against a wide number of authentication mechanisms
including database table, HTTP authentication, and LDAP authentication. The component
also lets you store the session information to a wide range of storages.

In this example, we will be using the Zend\Authentication component to validate the
user credentials submitted in the login form.

[551



http:///

Creating a Communication Application

Time for action - user authentication

In this task we will be authenticating the login form using the Zend\Authentication
component using the following steps:

1.

Add a function to return the authentication service in the login controller src/
Users/Controller/LoginController.php:

// References
use Zend\Authentication\AuthenticationService;
use Zend\Authentication\Adapter\DbTable as DbTableAuthAdapter;
// Class definition
public function getAuthService ()
{
if (! $this-s>authservice) ({
$dbAdapter = $this->getServicelLocator () ->get ('Zend\Db\Adapter\
Adapter') ;
$dbTableAuthAdapter = new DbTableAuthAdapter ($dbAdapter,
'user', 'email', 'password', 'MD5(?)');
SauthService = new AuthenticationService() ;
SauthService->setAdapter ($dbTableAuthAdapter) ;
Sthis->authservice = SauthService;

}

return S$this-sauthservice;

}

Inthe processAction () method for LoginController, check if the form
submission is valid, and use the AuthService method to validate the credentials
using the authenticate method:

public function processAction()
//
Sthis->getAuthService () ->getAdapter ()

->setIdentity($Sthis->request-
>getPost ('email'))

->setCredential ($Sthis->request-
>getPost ('password')) ;

Sresult = Sthis->getAuthService () ->authenticate();
if ($result->isvalid())

Sthis->getAuthService () ->getStorage () ->write ($Sthis->request-
>getPost ('email')) ;

return $this->redirect()->toRoute (NULL , array (
'controller' => 'login',
'action' => 'confirm'

))



http:///

Chapter 3

3. The ConfirmAction function will render the logged in user's welcome screen:

public function confirmAction ()

{

Suser email = $this->getAuthService()->getStorage()->read() ;
SviewModel = new ViewModel (array (
'user email' => Suser email

)) i

return SviewModel;

}

4. The view for the user's home page created under /view/users/login/confirm.
phtml will be as follows:

<section class="login-confirm">

<h2>Login Successful</h2>

<p> Welcome! <?php echo $this-suser email; ?> </p>
</section>

5. Open the login page in your browser and try to log in with the credentials that you
used during registration. The login form should look like the following:

Login

Email

test.user@email.com

Password

snsannnsl

Login

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved.

[571



http:///

Creating a Communication Application

Upon successful login, you will be redirected to the login success page as shown below.

* C

Skeleton Application

Login Sucessfull

Welcome! test.user@email.com

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved.

What just happened?

We created a new database table authentication adapter for the user table to validate
the email and password fields. Using the authentication adapter we have been able to
perform authentication for registered users.

Pop yuiz-2end Framework 2.0

Q1. Which file should be modified to store the database credentials application-wide?

<App>/module/<Module>/config. inc
<App>/config/autoload/global.php
<App>/module/<Module>/module.config.php

PN e

<App>/module/<Modules>/config/module.config.php
Q2. What is the correct method to assign an input filter to a form?

Sform->setInputFilter ($inputFilter)
Sform->useInputFilter ($inputFilter)

Sform->assignInputFilter ($SinputFilter)

A w N

Sform->mapInputFilter ($inputFilter)

In this chapter we have learned creating forms, doing basic validations, storing form data
to the database, using models, and authenticating with the database. In the next chapter
we will be learning about advanced database operations, which will be based on the
TableGateway pattern that we have covered in this chapter.



http:///

After getting ready to write your own basic models in the previous chapters,
you can now learn how to make the most out of your Zend Framework's data
and file management concepts in this chapter.

In this chapter we will cover the following key topics:

¢ Zend Framework 2 ServiceManager
¢ The TableGateway pattern

¢ File uploads and file sharing using Zend Framework

Zend Framework 2 ServiceManager

The ZF2 ServiceManager implements the service locator design pattern. The service locator
is a service/object locator used for retrieving other objects.

The ServiceManager configurations are classified into six main categories; your
application/module configuration will fall under one or more of the categories
listed in the following table:

Configuration type Description

abstract_factories Used to define an array of abstract classes.

aliases Used to define an associative array of alias name / target name pairs.



http:///

Data Management and Document Sharing

Configuration type Description

factories Used to define an array of service name / factory class name pairs.
The factory classes defined here should either implement Zend/
ServiceManager/Factorylnterface or invokable classes.

invokables Used to define an array of service name / class name pairs. The classes
listed here may be directly instantiated without any constructor
arguments.

services Used to define an array of service name / object pairs. The service is

basically an instance of a class. Services can be used to register classes
which are already initialized.

shared Used to define an array of service name / Boolean pairs, indicating
whether or not a service should be shared. All services are shared by
default; this ServiceManager option can be used to disable sharing on
specific services.

The ServiceManager configuration can be stored either in the application configuration or
in the module configuration; this can be chosen according to the needs, application, or
module. Usually, the configuration, which is static across the application, is stored in the
application-level configuration; all other information is stored at a module level.

The configuration for ServiceManager is merged in the following order:

1. Module configuration provided by the Module lass using the getServiceConfig ()
method. This will be processed in the same order in which the modules are processed:

public function getServiceConfig/()

{
return array (
'abstract factories' => array(),
'aliases' => array(),
'factories' => array(),
'invokables' => array(),
'services' => array(),
'shared' => array(),
) ;
}

2. Module configuration is present in the service manager key; again, this is
processed in the same order in which the modules are processed.

3. Application configuration is present in various configuration files in the
config/autoload/ directory in the order in which they are processed:

<?php
return array (
'service manager' => array(



http:///

Chapter 4

'abstract factories' => array(),
'aliases' => array(),
'factories' => array(),
'invokables' => array(),
'services' => arrayl(),

'shared' => array(),

Time for action — migrating existing code to ServiceManager

Our next step will be to migrate existing code blocks to make use of ServiceManager. Some
of the key factories that can be moved into ServiceManager are as follows:

Database connections

Models and table gateways

Forms and filters

* & o o

Authentication service

If you review the existing code, you will be able to figure out that all the database connections
are already using the Zend Framework 2 ServiceManager model for storing credentials. We
will take one step forward and move the rest of the factories into ServiceManager using the
following steps:

1. Modify Module . php and add a new function to load the ServiceManager configuration:

public function getServiceConfig()

{

return array(

'abstract factories' => array(),
'aliases' => array(),
'factories' => array(

// DB

'UserTable' => function($sm)

StableGateway = S$sm->get ('UserTableGateway') ;
Stable = new UserTable (StableGateway) ;
return Stable;

b

'UserTableGateway' => function (Ssm) {
$dbAdapter = $sm->get ('Zend\Db\Adapter\Adapter') ;
SresultSetPrototype = new ResultSet () ;
SresultSetPrototype->setArrayObjectPrototype (new User()) ;

611



http:///

Data Management and Document Sharing

return new TableGateway('user',6 S$dbAdapter, null,
SresultSetPrototype) ;

b

// FORMS

'LoginForm' => function ($sm)
$form = new \Users\Form\LoginForm/() ;
Sform->setInputFilter ($sm->get ('LoginFilter')) ;
return Sform;

b

'RegisterForm' => function ($sm) {
$form = new \Users\Form\RegisterForm() ;
Sform->setInputFilter ($sm->get ('RegisterFilter'));
return Sform;

b

// FILTERS
'LoginFilter' => function ($sm)
return new \Users\Form\LoginFilter () ;
I
'RegisterFilter' => function ($sm) {
return new \Users\Form\RegisterFilter () ;
b
),
'invokables' => array(),
'services' => array(),
'shared' => array(),
)i
}

2. Make sure that the Module . php file includes all the necessary namespaces:

use Users\Model\User;
use Users\Model\UserTable;

use Zend\Db\ResultSet\ResultSet;
use Zend\Db\TableGateway\TableGateway;

[621



http:///

Chapter 4

Using namespaces

Namespaces can be utilized by making use of PHP 5.3's namespace and
use keywords. All ZF2 classes have a namespace which directly matches
with the folder structure of the folder holding that class; all classes stored
~ within that folder are directly determined by their namespace.
Q By default, the use keyword creates an alias for the last segment of
the namespace, and this can be changed by using the as option on the
keyword. For example, see the following code:

use Zend\Form\Element as Element;

use Zend\Form\Element; // same as previous line
3. Make necessary changes to the controllers to fetch the instances from
ServiceManager:

// to get Login Form
Sform = $this->getServicelocator () ->get ('LoginForm') ;

// to get User Table
SuserTable = $this->getServicelLocator()->get ('UserTable');

4. To check if the changes are working as expected, try to register and log in with
new credentials.

What just happened?

We have migrated our code to make use of Zend's ServiceManager framework.
ServiceManager provides enormous benefits in terms of a cleaner code, highly
effective refactoring ability, and a centralized register for core application components.

Now that you have understood Zend ServiceManager functionality, here is a simple

task for you. The login controller (CommunicationApp/module/Users/src/Users/
Controller/LoginController.php) makes use of getAuthService () for the
authentication service. Modify the function, so that the authentication service is obtained
from ServiceManger.

In the previous chapter we learned how to implement a basic database operation, namely,
table insert. In this section, you will learn all the basic database operations necessary
for building a simple CRUD (Create, Read, Update and Delete) interface.



http:///

Data Management and Document Sharing

More on TahleGateway

The TableGateway class extends AbstractTableGateway, Which implements
TableGatewayInterface. The interface definition of TableGatewayInterface
is provided in the following code snippet; all the basic table operations are defined
in the interface:

interface Zend\Db\TableGateway\TableGatewayInterface

{

public function getTable() ;

public function select ($where = null);
public function insert ($set) ;

public function update ($set, $where = null);
public function delete ($where) ;

}

The TableGateway class offers a wide range of methods to perform basic database
operations; some of the most frequently used methods are explained in the following section:

& getTable (): Returns a string which contains the table name mapped with the
TableGateway object. For example, see the following code:

SmyTableName = S$SmyTableGateway->getTable() ;

¢ select ($where = null): Used to select a set of rows with the criteria specified
in $where; it can either be a where condition based on Zend\Db\Sgl\Where or an
array of criteria. For example, see the following code:

Srowset = sSmyTableGateway->select( array('id' => 2));

¢ insert ($set): Used to insert the data defined in $set into the table as a new
record. For example, see the following code:

SmyTableGateway->insert ( array('id' => 2, 'name'=>'Ravi'));

¢ update($set, S$where = null): Used to update a set of rows with the criteria
specified in Swhere; it can either be a where condition based on Zend\Db\Sgl\
Where or an array of criteria. $set holds the data that will be updated for all the
records matched with $where. For example, see the following code:

Srowset = sSmyTableGateway->update (array('name' => 'Jerry') ,
array('id' => 2));

¢ delete ($where): Used to delete a set of rows with the criteria specified in
$where; it can either be a where condition based on Zend\Db\Sgl\Where
or an array of criteria. For example, see the following code:

SmyTableGateway->delete( array('id' => 2));

[6a1


http:///

Chapter 4

¢ getLastInsertValue ():Returnsthe last insert value for the table's primary
key. the return type is an integer. For example, see the following code:

SmyTableGateway->insert ( array('name'=>'Ravi')) ;
$insertId = $myTableGateway-> getLastInsertValue () ;

Time for action - implementing an admin Ul to manage users

In this task we will be creating an administration user interface for managing users in our
application. The following operations will include listing all users, editing existing users,
deleting users, and adding users:

1. Modify CommunicationApp/module/Users/src/Users/Model /UserTable.
php using the following code. Add the following functions:

o fetchall()
O getUser(sid)
O getUserByEmail (SuserEmail)

0 deleteUser($id)
public function fetchall ()

SresultSet = $this->tableGateway->select();
return SresultSet;

public function getUser ($id)
{
$id = (int) $id;
Srowset = Sthis->tableGateway->select (array('id' => $id));
Srow = Srowset->current () ;
if (!$row)
throw new \Exception ("Could not find row $id");

}

return Srow;

public function getUserByEmail (SuserEmail)

{

Srowset = Sthis->tableGateway->select (array('email' =>
SuserEmail) ) ;

Srow = Srowset->current () ;
if (!$row)
throw new \Exception ("Could not find row $ userEmail");



http:///

Data Management and Document Sharing

return Srow;

public function deleteUser ($id)

{

Sthis->tableGateway->delete (array('id' => $id));

}
2. Create a new controller for user management under CommunicationApp/
module/Users/src/Users/Controller/UserManagerController.php.
3. The UserManagerController controller will have the following actions:

o indexAction (): Thisis used to render all available users in the system,
and we will also render links to add/edit and delete links as shown in the
following code:

SuserTable = $this->getServiceLocator ()
->get ('UserTable!') ;
$viewModel = new ViewModel (array (
'users' => SuserTable->fetchaAll()));

return SviewModel;

o editAction (): This action is used to render the edit form to modify the
information related to the user:

SuserTable = $this->getServiceLocator ()
->get ('UserTable!') ;

Suser = $userTable->getUser (
Sthis->params () ->fromRoute ('id')) ;
$form = $this->getServicelocator ()

->get ('UserEditForm') ;
Sform->bind (Suser) ;
$viewModel = new ViewModel (array (
'form' => $form,
'user id' => $this->params () ->fromRoute ('id")
))

return SviewModel;



http:///

Chapter 4

The bind method

The bind method used in the Form function allows the mapping of the
model to a form. The function works in two directions—it updates the form
in the view with the data from the model and it updates the model with the
form submission data if the form is validated, that is, Sform->isvValid ().
Read more here:

http://framework.zend.com/manual/2.2/en/modules/zend.
form.quick-start.html#binding-an-object

0 processAction():The processAction action is used when the user
edit form is submitted; processAction saves the updated record and

returns to indexAction:

// Get User ID from POST
$post = Sthis->request->getPost () ;
SuserTable = S$this->getServicelLocator ()
->get ('UserTable') ;
// Load User entity
Suser = S$SuserTable->getUser ($post->id) ;

// Bind User entity to Form
Sform = $this->getServicelocator ()
->get ('UserEditForm') ;
Sform->bind (Suser) ;
Sform->setData (Spost) ;

// Save user
Sthis->getServicelocator ()
->get ('UserTable') ->saveUser (Suser) ;

o deleteAction(): This action is used to delete the user record:

Sthis->getServicelLocator () ->get ('UserTable')
->deleteUser ($Sthis->params ()
->fromRoute ('id')) ;

Create the necessary views and modify the module's config/module.config.

php file to specify a unique child route to access this controller:

'user-manager' => array(
'type' => 'Segment',
'options' => array(
'route' => '/user-manager[/:action[/:1id]]"',
'constraints' => array(
'action' => '[a-2zA-Z] [a-2A-Z0-9 -]*',
rid! => '[a-zA-Z20-9 -]*',

611



http:///

Data Management and Document Sharing

),
'defaults' => array(
'controller' => 'Users\Controller\UserManager',
'action' => 'index',
),
),

).

5. Finally add the new controller to the invokables array:

'Users\Controller\UserManager' => 'Users\Controller\
UserManagerController',

6. Now open your web browser and access the controller, log in to your application,
and open http://comm. -app.local/users/user-manager. You should be
able to see a page similar to the one given in the following screenshot:

Users &
Name User ID/Email
Test User test@localhost com Edit | Delete
Anne Hunter anne_hunter@mail.com Edit | Delete
Jake Bower jake bower@mail com Edit | Delete
Abigail Morgan abigail. morgan@mail.com Edit | Delete
Rachel Wright rachel wright@mail.com Edit | Delete
Benjamin Abraham benjamin.abraham@mail.com Edit | Delete
Grace Springer grace springer@mail.com Edit | Delete
Piers Mitchell piers.mitchell@mail.com Edit | Delete
Leonard Davidson leonard.davidson@mail.com Edit | Delete
EITRRNIELS I RES SR TmT TN =ERERRIEISEE



http:///

Chapter 4

The Edit user link should redirect you to an user edit form like the one in the
following screenshot:

Communication Application  Home

Edit User Information

Full Name

Jake Bower
Email

jake.bower@mail.com

b

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved.

The Delete user link can be used to remove the user from the user list:

: Communication Application  Home

Users

Name User ID/Email

Test User test@localhost com Edit | Delete

Anne Hunter anne_hunter@mail.com Edit | Delete

Jake Bower jake.bower@mail.com Edit | Dele{:%

Abigail Morgan Edit | Delete
g g Confirm from Web Page Xl LDekie

Rachel Wright Edit | Delete

Benjamin Abraham 9 A yausured Edit | Delete

Grace Springer Edit | Delete

Cancel

Piers Mitchell = Edit | Delete

Leonard Davidson lecnard.davidson@mail.com Edit | Delete

ENER oo, TR



http:///

Data Management and Document Sharing

What just happened?

We have now created an administration user interface for adding, modifying, and removing
users from our communication application. We have utilized all the core functionalities of
the TableGateway model and created functions for performing CRUD operations on the
table access objects.

Going forward, we will be making use of some of the more advanced applications
of TableGateway.

Before we move on to the next section, here is a small task for you to practice. Your task for
this section will be to create a new Add User form. Refer to the following screenshot:

Jake Walsh jake.walsh@mail.com Edit | Delete
Andrea Slater andrea slater@mail.com Edit | Delete
Sean Powell sean.powell@mail.com Edit | Delete
Adrian Amold adrian.amold@mail.com Edit | Delete
Gavin Miller gavin.miller@mail.com Edit | Delete
» Add User
am
| = d
Register

This form will be similar to the Register Formthat we created in the previous chapter.
Once the form is submitted, the user will be taken back to the user listing page. A link to this
form will have to be added in the user listing page.

701



http:///

Chapter 4

Document management

In this section we will create a new document management interface. The document
management interface will allow users to upload documents, manage uploads, and share
uploaded documents with other users. The user interface will also allow users to manage
sharing, and add/remove shares.

In this section, we will focus on providing users with options to create file uploads and
manage those uploads. We will be using the filesystem to store the uploaded file and the
relative path of the uploaded file will be stored in the database mapped to the user who
uploaded the file.

Some of the important Zend Framework components used in file uploads are:

¢ File upload form element (Zend\Form\Element\File): The File upload element
is used in the upload form to display a file input box. This element is an equivalent of
the <input type='file'../> style elementin HTML used for allowing users to
upload files. The file input element can be rendered by setting 'type' => 'file’
in the form definition.

¢ File transfer adapter (Zend\File\Transfer\Adapter\Http): The file transfer
adapter handle file uploads upon form submission. The setDestination ()
method in the file transfer adapter allows the user to set a destination and receive
the file in that destination. The receive () method is used to initiate the transfer.

Time for action - creating a file upload form

In this task, we will be creating a new document upload form; file uploads will be stored in
the filesystem, and the information regarding the file upload will be stored in the database
in a table named uploads. The file uploads are stored in a folder location defined in the
module configuration. Perform the following steps to do so:

1. oOurfirst step will be to define a location where files can be uploaded in the
module's configuration (config/module.config.php):
<?php
return array (
// Other configurations
//
//
// MODULE CONFIGURATIONS
'module config' => array(
'upload location' => DIR . '/../data/uploads',
)
)

ni


http:///

Data Management and Document Sharing

2. Next, we need to create a table which will store the upload information:

CREATE TABLE IF NOT EXISTS uploads (
id INT NOT NULL AUTO_ INCREMENT PRIMARY KEY ,
filename VARCHAR( 255 ) NOT NULL ,
label VARCHAR( 255 ) NOT NULL ,
user id INT NOT NULL,
UNIQUE KEY (filename)
) ;

3. Create the Upload and UploadTable classes for interacting with the uploads
table. Add default methods such as saveUpload (), fetchAll (), getUpload(),
and deleteUpload (). Also, add a method to get uploads made by a specific user
getUploadsByUserId (SuserId):

public function getUploadsByUserId(SuserId)

{

SuserId = (int) SuserId;
Srowset = Sthis->tableGateway->select (
array('user id' => S$userId));

return Srowset;

}

4. Create an UploadManagerController controller for managing file uploads. Add
indexAction () to display the list of uploads done by the user:

SuploadTable = Sthis->getServicelLocator ()

->get ('UploadTable"') ;
SuserTable = $this->getServiceLocator ()

->get ('UserTable') ;
// Get User Info from Session

SuserEmail = $this->getAuthService ()

->getStorage () ->read () ;
Suser = SuserTable->getUserByEmail (SuserEmail) ;
SviewModel = new ViewModel ( array(

'myUploads' => SuploadTable->getUploadsByUserld(Suser->id),
))

return SviewModel;

121



http:///

Chapter 4

5. Create an upload form with a file input as described in the following code snippet:
Sthis->add(array (

'name' => 'fileupload',
'attributes' => array(
'type' => 'file',

),
'options' => array/(

'label' => 'File Upload',

Communication Application

Upload

File Description| Sample Document

File Upload Choose File | Sample Pdf
Upload Now %

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved.

Upload form

6. Create views for the file upload form, and the index action. Now we have all the
necessary elements to handle a file upload. We need to read the configuration for
the file upload path and use the Zend HTTP file transfer adapter to receive the file
in the configuration location. The get ('config') method on the service locator is
used to retrieve the configuration. The following code is used to read the file upload
location from the configuration:

public function getFileUploadLocation ()

{

// Fetch Configuration from Module Config
Sconfig = Sthis->getServicelLocator()->get('config') ;
return S$config['module config'] ['upload location'];

}

131



http:///

Data Management and Document Sharing

7. The last step is to handle the file upload process. There are two actions that need to
happen once the form is successfully submitted:

1. The uploaded file has to be moved to the file upload locations.

2. Anentry needs to be added describing the upload in the 'uploads' table
using the following code:

SuploadFile = Sthis-s>params()->fromFiles('fileupload') ;
Sform->setData (Srequest->getPost () ) ;

if ($form->isvalid())
// Fetch Configuration from Module Config
SuploadPath = Sthis->getFileUploadLocation() ;

// Save Uploaded file
Sadapter = new \Zend\File\Transfer\Adapter\Http() ;
Sadapter->setDestination (SuploadPath) ;
if ($Sadapter->receive (SuploadFile['name'])) {
// File upload sucessfull
$exchange data = array();

$exchange data['label']l = $request->getPost ()

->get ('label!') ;
Sexchange data['filename'] = $SuploadFile['name'];
Sexchange data['user id'l = Suser->id;

Supload->exchangeArray ($exchange data) ;
SuploadTable = S$this->getServiceLocator ()

->get ('UploadTable') ;
SuploadTable->saveUpload (Supload) ;

return Sthis->redirect ()
->toRoute ('users/upload-manager' |,
array('action' => 'index'

)) i

}

8. Add a child route (upload manger) for the UploadManager controller and the
controller to the invokables list.

9. Open the web browser and test the upload form.

nl



http:///

Chapter 4

The final form will look like the following screenshot:

Communication Application

My Uploads

Label

Corporate Report

» Add Upload

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

Filename

Sample Pdf

What just happened?

We have now created a file upload process, which allows users to upload files into the

application and view the files that are uploaded. We have used Zend Framework's file upload
handling components to handle a file upload. In our next section, we will set up a file sharing
mechanism such that the documents can be shared with different users. Before we move on

to implement file sharing, please complete the following task.

Your next task will be to add a Delete option that allows users to delete uploaded files as
shown in the following screenshot. Also, ensure that the file is removed from the filesystem

when the delete action is triggered.

My Uploads

Label

Corporate Report

Filename

Sample.Pdf

Actions

Del

=

e

17151



http:///

Data Management and Document Sharing

Now that we have a fully functional document management section, our next task is to extend
this document management system to support file sharing with other users. The most important
part of implementing a file sharing mechanism is to store the information about upload sharing;
we do this by linking documents with user IDs in a table called upload sharing.

Time for action - implementing a file sharing system

For implementing file sharing, we will need to create a new table called upload sharing
and store all sharing-related information in that table. The following steps will explain how
this is implemented in our application:

1.

Create a new table called upload sharing; this table will hold the relationship
about uploads shared with users:
CREATE TABLE IF NOT EXISTS uploads sharing (
id INT NOT NULL AUTO_ INCREMENT PRIMARY KEY ,
upload id INT NOT NULL ,
user id INT NOT NULL,
UNIQUE KEY (upload id, user id)
)

In the module definition Module.php, add a simple TableGateway object for the
uploads_sharing table:
'UploadSharingTableGateway' => function ($sm) {

$dbAdapter = $sm->get ('Zend\Db\Adapter\Adapter') ;

return new TableGateway ('uploads sharing', $dbAdapter);

b

Modify the constructor of the UploadTable class to take in an additional
parameter of the upload sharing TableGateway object:

public function __ construct (TableGateway S$tableGateway,
TableGateway SuploadSharingTableGateway)

Sthis->tableGateway = StableGateway;
Sthis->uploadSharingTableGateway = S$SuploadSharingTableGateway;

}

Modify the module configuration (Module .php) for the UploadTable factory to
support UploadSharingTableGateway:

'UploadTable' => function($sm)
StableGateway = $sm->get ('UploadTableGateway') ;

1761


http:///

Chapter 4

SuploadSharingTableGateway = $sm->get ('UploadSharingTableGatew
ay');

Stable = new UploadTable ($tableGateway,
SuploadSharingTableGateway) ;

return Stable;

b

Modify the UploadTable class to support the following file sharing functions:

o addSharing():Adds a new sharing permission for the given upload with
the user

o removeSharing (): Removes the sharing permission for the specific
upload/user combination

o getSharedUsers (): Gets the list of users for which the upload is shared

0 getSharedUploadsForUserId(): Gets the list of uploads that are shared
for that user

This can be done using the following code:

public function addSharing(SuploadId, sSuserId)

{
Sdata = array(
'upload_id' => (int) $uploadId,
'user_id' => (int)S$userlId,
)
Sthis->uploadSharingTableGateway->insert ($data) ;

public function removeSharing(SuploadId, SuserId)

{

Sdata = array(

'upload_id' => (int) $uploadId,

'user_id' => (int)$userlId,
)
Sthis->uploadSharingTableGateway->delete ($data) ;

public function getSharedUsers (SuploadId)

{
SuploadId = (int) SuploadId;
Srowset = Sthis->uploadSharingTableGateway->select (
array ('upload id' => suploadId)) ;
return Srowset;

V)]



http:///

Data Management and Document Sharing

}
public function getSharedUploadsForUserId (SuserId)
{

SuserId = (int) SuserId;

Srowset = Sthis->uploadSharingTableGateway->select (
function (Select $select) use ($userId)
$select->columns (array())
->where (array ('uploads_sharing.user id'=>$userId))
->join('uploads', 'uploads_ sharing.upload id = uploads.id');

3N

return Srowset;

}

The Manage Documents section lists all uploads for a specific user and also lists
uploads shared by others with the user:

Communication Application Home

My Uploads
Label Filename Actions

Corporate Report Sample_Pdf Edit | Delete

Shared Uploads N

Label Filename Shared By

» Add Upload

© 2005 - 2012 by Zend Technologies Lid. All rights reserved.

6. Modify the edit upload form to display the list of users the upload is shared with;
this can be achieved by passing the upload ID to the getSharedUsers () method of
the UploadTable object.

7181



http:///

Chapter 4

Add a new section in the edit upload form which allows the addition of new
shares; this is achieved by displaying the list of all users in the systemin a
drop-down list. When the user clicks on Add Share, a new record is added
to the upload sharing table:

SuserTable = $this->getServiceLocator ()
->get ('UserTable!') ;
SuploadTable = $this->getServiceLocator ()
->get ('UploadTable') ;
Sform = $this->getServicelLocator () ->get ('UploadForm') ;
Srequest = S$this->getRequest () ;
if ($request->isPost())
SuserId = S$request->getPost()->get('user id');
SuploadId = $request->getPost()->get('upload id') ;
SuploadTable->addSharing (SuploadId, S$userId) ;

}

The following screenshot shows the Upload Sharing page with a drop-down list to
add shares:

Communication Application  Home

Upload Sharing

Shared User Actions

Abigail Morgan Delete [
Add Sharing
Choose User Test User E
Add Share

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved.

8.

The last section of the file sharing implementation is to allow an option for users to
download shared files. This is provided by the fileDownloadAction () function
defined in our file sharing application:

public function fileDownloadAction ()
{
SuploadId = $this-s>params()->fromRoute('id') ;
SuploadTable = $this->getServicelLocator ()
->get ('UploadTable') ;

17191



http:///

Data Management and Document Sharing

Supload = SuploadTable->getUpload (SuploadId) ;

// Fetch Configuration from Module Config
SuploadPath = S$this->getFileUploadLocation() ;
$file = file get contents(SuploadPath ."/" . S$upload->filename) ;

// Directly return the Response

Sresponse = $this->getEvent () ->getResponse () ;

Sresponse->getHeaders () ->addHeaders (array (
'Content-Type' => 'application/octet-stream',
'Content-Disposition' => 'attachment;filename=""
.Supload->filename . '"',

))

Sresponse->setContent ($file) ;

return Sresponse;

File download

For implementing a file download, we need to disable the layout. This can be
achieved by directly providing the HTTP response object as output for that
particular action as shown in the previous code. This can also be achieved by
setTerminal (), as shown in the following code:

.)‘ $result = new ViewModel () ;
Sresult->setTerminal (true) ;
return Sresult;

Large file downloads

The file get contents () method is capable of handling small file
uploads and consume a lot of memory when processing large files. For
better performance, you can create a stream HTTP response object Zend\
Http\Response\Stream () and stream the file download.

9. Now we have a fully functional file sharing system in place. Test the file
sharing system; start by sharing the file with different users, and log in
and out as different users.



http:///

Chapter 4

The final form should look like the following screenshot:

Communication Application  Home  Mana

My Uploads

Label Filename Actions

b

Shared Uploads

Label Filename Shared By

Corporate Report Download Gavin Miller

Sales Report Download Anne Hunter
» Add Upload

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

What just happened?

You created a table that can store user and upload relationships; you modified the
UploadTable class to support additional sharing functions. You created controllers and
views to enable file sharing, and finally you provided the ability for the user to download the
shared file using a file download script. With this, you have successfully implemented the file
sharing system, where users can now upload, edit, and share documents within the system.

Pop yuiz - data management and document sharing

Ql. In TableGateway, Which function is used to determine the last inserted record ID?

getLastId()
getLastInsertId()

get ('last_insert id')

e

getLastInsertValue ()
Q2. Which method can be used to disable layouts in a view model?

SviewModel->setNoLayouts (true)
S viewModel->Layouts (false)

SviewModel->setTerminal (true)

Bl S

SviewModel->setLayouts (false)

811



http:///

Data Management and Document Sharing

In this chapter, we have discussed several topics in the context of data and file management.
First, we elaborated on the usage of the TableGateway database pattern. We then
implemented a simple file upload service by making use of Zend Framework's file transfer
components. Finally, we implemented a simple file sharing service by utilizing both Zend
Framework's file transfer components and the TableGateway pattern. In the next chapter,
we will be working closely on the frontend, especially with JavaScript and AJAX calls.

1821


http:///

In any web application development, there will be very high dependency on
client-side scripts primarily including JavaScript and CSS. The MVC model of
Zend Framework provides basic support of controlling the output that is sent
across to the browser. The view helper classes in Zend Framework 2 offer
maximum control over the content that gets rendered in the client browser.

In this chapter we will focus on building a simple group chat and e-mail component which
will make use of various frontend capabilities of Zend Framework 2.0. Some of the important
topics covered in this chapter include:

Using external JavaScript libraries in the Zend Framework 2 application

Implementing a simple group chat application using Zend Framework 2
and JavaScript

Using Zend\Mail to send e-mails

Introduction to the Zend Framework event manager

Layouts and views

Zend Framework MVC uses layouts and views to render pages in the web browser; the
overall page content is controlled by the layout specification, and the view level information
is contained in the views. The concept is to minimize the amount of redundant HTML code
that needs to be generated for each of these views.

By using layouts, the application can have a consistent user interface, which is also easy
to customize; the views offer the flexibility to modify the targeted content and allow
customization to the maximum possible extent. This is also known as two-step view.


http:///

Chat and E-mail

When a new view is generated, the appropriate layout is identified from the layout
definitions in the view manager configuration and the view is rendered with that layout.

Layout
<HTML>
<HEAD>
</HEAD>
<BODY >
1d=" 1
<DIV id='content'> View

</DIV>

. FOOTER ...
</HTML>

The preceding schematic explains how the layout and view are combined to form an HTML
page, so for each and every view, the view part changes and the layout part remains static.

Zend Framework 2 offers a wide range of view helpers that help us perform complex
operations on views; if the included helpers are not sufficient, you can define your own
custom helper by implementing the interface zend\vView\HelperInterface.

In this section, we will quickly review some of the included helpers in Zend Framework 2.

The URL helper

The syntax for this helper is url ($name, $urlParams, $routeOptions = array(),
SreuseMatchedParams = array()).

The URL helper is used to generate the URL for a specific route. The route's segment match
parameters can be passed over the URL helper to form a URL based on the route option; for
example, see the following:

<a href="<?php $this->url('users/upload-manager’,
array('action'=>'edit', 'id' => 10));">Edit</a>

This code will generate <a href="/users/upload-manager/edit/10">Edit</a> if
the route definition is as follows:

'route' => '/user-manager|[/:action[/:1id]]"

[8a1



http:///

Chapter 5

The BasePath helper

The syntax for this helper is basePath ().

The BasePath helper returns the base URL of the view, this can be used by developers to
prepend to their custom URLs and form links for various resources.

The JSON helper

The syntax for this helper is json ($jsonData = array()).

The JSON helper is used to render PHP arrays as JSON-encoded data. Most AJAX libraries
classify JSON content by its content header, and this helper also sets the content type header
to application/json.

Concrete placeholder implementations

Zend Framework makes use of placeholder helpers to perform some standard operations on
the HTML head sections including adding/removing references to new JavaScript libraries,
linking with new styles, adding and cross referencing scripts, and adding/removing HTML
head section's meta content.

This is achieved by the following list of helpers called as concrete placeholder helpers. The
reason why they are called placeholder helpers is because the helpers themselves don't make
any changes to the way in which the content is rendered. For example, if you add <?php
echo $this->headLink(); ?>tothe HTML code, this won't do anything, until you add
something to the headLink helper by using appendstylesheet or some other function.

The HeadLink helper

The HeadLink helper is used to modify the <1ink> tag in the HTML head section; this
helper is used to attach or manage external CSSs.

Some of the most-used functions in this helper are listed as follows:

& appendStylesheet ($href, $media, $SconditionalStylesheet, S$extras)

& offsetSetStylesheet ($index, Shref, sSmedia,
SconditionalStylesheet, $extras)

& prependStylesheet (Shref, Smedia, $SconditionalStylesheet,
Sextras)

& setStylesheet (Shref, S$media, SconditionalStylesheet, Sextras)

1851


http:///

Chat and E-mail

To render the Link tags in an HTML layout/view, use the following script:
- <?php echo $this->headLink(); 2>

The HeadMeta helper

The HeadMeta helper is used to modify the <metas tag in the HTML head section; this
helper is used to manipulate the HTML meta information.

Some of the most-used functions in this helper are listed as follows:

*
L 4
*
L 4
*
L 4

*

appendName (SkeyValue, $content, $SconditionalName)
offsetSetName ($index, S$keyValue, $content, S$conditionalName)
prependName (SkeyValue, $content, $conditionalName)

setName ($keyValue, Scontent, $modifiers)

appendHttpEquiv (SkeyValue, $content, $conditionalHttpEquiv)

offsetSetHttpEquiv ($index, SkeyValue, S$content,
SconditionalHttpEquiv)

prependHttpEquiv ($SkeyValue, S$Scontent, S$conditionalHttpEquiv)
setHttpEquiv ($keyValue, $content, Smodifiers)

setCharset (Scharset)

To render the meta tags in an HTML layout/view, use the following script:
e <?php echo $this->headMeta(); ?>

The HeadScrint helper

The HeadScript helper is used to modify the <script > tag in the HTML head section; this
helper is used to attach external JavaScript and also add the <script> tags to the HTML
head section.

Some of the most-used functions in this helper are listed as follows:

L 4
L 4

appendFile (Ssrc, Stype = 'text/javascript',6 Sattrs = array())
offsetSetFile ($index, $src, S$type = 'text/javascript', S$attrs =
array())

prependFile ($src, Stype = 'text/javascript', S$Sattrs = array())
setFile($src, Stype = 'text/javascript', Sattrs = array())
appendScript ($script, S$type = 'text/javascript',6 S$Sattrs =
array())



http:///

Chapter 5

& offsetSetScript ($index, S$script, Stype = 'text/javascript',
Sattrs = array())

¢ prependScript ($script, Stype = 'text/javascript', Sattrs =
array())

¢ setScript (Sscript, Stype = 'text/javascript', Sattrs = array())

To render the Script tags in an HTML layout/view use the following script:
- <?php echo $this->headScript(); 2>

The HeadStyle helper
The HeadStyle helper is used to modify the <styles> tag in HTML head section; this helper
is used to add internal styles by adding the <style> tags to the HTML head section.

Some of the most-used functions in this helper are listed as follows:

& appendStyle(Scontent, S$attributes = array())

& offsetSetStyle($index, Scontent, S$Sattributes = array())
& prependStyle ($Scontent, Sattributes = array())
L 2

setStyle ($Scontent, Sattributes = array())

To render the Style tags in an HTML layout/view use the following script:
/S <?php echo $this->headstyle(); ?>

The HeadTitle helper

The HeadTitle helperis used to render title in the <title> tags on the HTML head
section; multiple calls to a headTitle () helper create a list of titles which are rendered
when tag is outputted in the layout/view. The optional parameter $setType can be set
to override the pre-existing array of titles, the default is APPEND, it can be overridden to
PREPEND or SET(overwrite).

The syntax for this helper is headTitle ($title, $setType = null) ;.

To render the Title tags in an HTML layout/view, use the following script:
"~ <?php echo $this->headTitle(); ?>

1811



http:///

Chat and E-mail

Time for action - using jQuery Ul in a simple page

In this task we will be converting some of our existing pages to make use of the jQuery Ul
library and render buttons in that page using jQuery Ul:

1. View the existing application home page as shown in the following screenshot; our
next task is to convert the Login and Register links to render as jQuery Ul buttons:

Welcome to Users Module

Existing Users

Login

New Users

Al
42}
w0
[*7]
v
41}

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

Existing application home page

2. Replace the Login and Register links in the index view (module/Users/view/
users/index/index.html), and add the ui-button class to the links as shown
in the following code snippet:

<a href="/users/login" class='ui-button'>Login</a>
<a href="/users/register" class='ui-button'>Register</a>

3. Add external references to jQuery Ul towards the beginning of the view:
// Attached jQuery UI Scripts
$this->headScript ()

->appendFile ('http://code.jquery.com/jquery-1.8.3.js', 'text/
javascript!') ;

$this->headScript ()
->appendFile ('http://code.jquery.com/ui/1.10.0/jquery-ui.
js', 'text/javascript') ;

// Attach jQuery UI Styles

$this->headLink () ->appendStylesheet ('http://code.jquery.com/
ui/1.10.0/themes/base/jquery-ui.css') ;



http:///

Chapter 5

Referencing custom JavaScript libraries

K Instead of directly referencing the external scripts, you can also optionally
~ download the scripts to the /public folder in your application and pass
Q relative links as parameters to the appendFile and appendStylesheet
functions. You can also make use of the basePath () helper to prepend the
base URL.

4. Add a Ul initialization script to apply the button look and feel to both the links:
// UI Initializer for buttons
Sthis->headScript () ->appendScript (

'$ (function() {
S("a.ui-button") .button() ;
})iv, 'text/javascript');

5. Preview the home page in the browser now, and you will be able to see that
both the Login and Register buttons are styled using jQuery Ul as shown in
the following screenshot:

Welcome to Users Module
Existing Users

Login

New Users

Register

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

A View Source link on the index page will reveal the application of headScript () as shown
in the following code:

<!DOCTYPE htmls>
<html lang="en">

<script type="text/javascript" src="http://code.jquery.com/jquery-
1.8.3.js8"></script>

<script type="text/javascript" src="http://code.jquery.com/ui/1.10.0/
jquery-ui.js"></script>
<script type="text/javascript"s>

//<t--



http:///

Chat and E-mail

$ (function()
S("a.ui-button") .button() ;
13N,

//-->

</script>
</html>

What just happened?

We have made use of Zend Framework's view helpers to connect to the external
JavaScript library; we then added custom JavaScript to the HTML head section
using the headScript () view helper.

Now we have integrated our application with an external JavaScript; in the next exercise we
will learn a little bit more on how scripts can be added to the HTML head section.

Before we move on to building the Group Chat interface, here is a simple task for you to
complete. Now that you have understood how to link external JavaScript libraries, you can
download jQuery Ul from its website, extract it to the public/ folder, and modify the
previously listed page to use the downloaded version of jQuery UL.

jQuery Ul can be downloaded from http://jqueryui.com/.

Building a simple group chat

Our next task is to build a simple group chat application that allows multiple users to log in to
our system and chat with each other. The backend for this tool is pretty straightforward. We
need to create a table that will store all user messages and render them in a separate view;
we will create a simple form that will allow users to send messages.

Time for action - creating a simple group chat application

1. Createanew chat_messages table to store all user messages:

CREATE TABLE IF NOT EXISTS chat messages (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
user_id INT NOT NULL,
message VARCHAR( 255 ) NOT NULL ,
stamp TIMESTAMP DEFAULT CURRENT_ TIMESTAMP



http:///

Chapter 5

Create a controller for group chat in CommunicationApp/module/Users/src/
Users/Controller/GroupChatController.php.

Make necessary changes to CommunicationApp/module/Users/config/
module.config.php and add the new controller to invokables and routes:

// Invokable
'Users\Controller\GroupChat' => 'Users\Controller\

GroupChatController',
// Route
'group-chat' => array(
'type'! => 'Segment',
'options' => array(
'route' => '/group-chat[/:action[/:1id]]",
'constraints' => array(
'action' => '[a-zA-Z] [a-2A-Z0-9 -]*',
rid! => '[a-zA-Z20-9 -]*',

)

'defaults' => array(
'controller' => 'Users\Controller\GroupChat',
'action' => 'index',

)
)

Create a new view in CommunicationApp/module/Users/view/users/group-
chat/index.phtml:
<?php
Sthis->headScript () ->appendScript (
'$ (function()
$( "#btnRefresh" )
.click (function( event ) {

document .getElementById ("messagelListFrame") .contentWindow.
location.reload (true) ;

3]

}iv, 'text/javascript');

Sthis->headStyle () ->appendStyle ('
#userName { width:100px; margin-top:10px; display: inline}
#messageText { width:700px; margin-top:10px;}

')

?>
<h3>Group Chat</h3>
<iframe src="<?php echo Sthis->url ('users/group-chat', array(

91l


http:///

Chat and E-mail

'action' => 'messageList'
)) ?>" width="80%" height="400px"
id="messagelListFrame"></iframe>

<?php
// Render the opening tag
echo $this->form() ->openTag ($form) ;

// ...loop through and render the form elements...
echo '<label id="userName">'. SuserName .': </label>';
foreach ($form as $element)
echo Sthis->formElement (Selement) ; // <-- Magic!
echo $this->formElementErrors (Selement) ;

// Render the closing tag
echo $this->form()->closeTag() ;

?>

Add the messageList action to GroupChatController -
CommunicationApp/module/Users/src/Users/Controller/
GroupChatController.php; this action will query the chat messages table
and get all the records from that table and pass that on to the view:

public function messageListAction()
{
SuserTable = $this->getServicelLocator () ->get ('UserTable');
SchatMessageTG = $this->getServicelLocator () ->get ('ChatMessagesTa
bleGateway') ;
$chatMessages = $chatMessageTG->select () ;

Smessagelist = array();

foreach ($chatMessages as $chatMessage) ({
$fromUser = $SuserTable->getUser ($chatMessage->user id) ;
SmessageData = array() ;
SmessageData['user'] = $SfromUser-s>name;
SmessageDatal['time'] = S$SchatMessage->stamp;
SmessageData['data']l = S$chatMessage->message;
SmessagelList [] = $messageData;

}

$viewModel = new ViewModel (array ('messagelist' =>

SmessageList)) ;

$viewModel->setTemplate ('users/group-chat/message-list') ;
SviewModel->setTerminal (true) ;
return SviewModel;

}
1921



http:///

Chapter 5

Create a simple message listing view, CommunicationApp/module/Users/view/
users/group-chat/message-1list.phtml, which will list messages from the
SmessageList array:

<!DOCTYPE htmls>
<html lang="en"s>
<body>
<section id="messages" >
<?php foreach (SmessagelList as Smesg) : ?>
<div class="message" style="clear:both;">
<span class='msg-time'>
[<?php echo $this->escapeHtml (Smesg['time']) ;?>]
</span>
<span class='msg-user's>
<?php echo $this->escapeHtml (Smesg['user']);?>:
</span>
<span class='msg-data's>
<?php echo $this->escapeHtml ($Smesg['data']l);?>
</span>
</divs>
<?php endforeach; ?>
</section>
</body>
</html>

Create a method called sendMessage (), which is called when a user sends a
message to store the message in the database, as shown in the following code.

This needs to be placed in the group chat controller CommunicationApp/module/
Users/src/Users/Controller/GroupChatController.php.

protected function sendMessage ($SmessageTest S$SfromUserId)
{
SchatMessageTG = $this->getServiceLocator ()
->get ('ChatMessagesTableGateway') ;
Sdata = array(
'user_ id' => $fromUserlId,
'message' => S$messageTest,
'stamp' => NULL
) ;
SchatMessageTG->insert (Sdata) ;
return true;



http:///

Chat and E-mail

8. Modify the indexAction function to display a Send Message form and to call
sendMessage () on form submission. This needs to be placed in the group chat
controller CommunicationApp/module/Users/src/Users/Controller/
GroupChatController.php.

public function indexAction (
{
Suser = $this->getLoggedInUser () ;
Srequest = S$this->getRequest () ;
if ($request->isPost())
SmessageTest = S$Srequest->getPost () ->get ('message') ;
SfromUserId = Suser->id;
Sthis->sendMessage ($messageTest, $fromUserId) ;
// to prevent duplicate entries on refresh
return Sthis-s>redirect()->toRoute ('users/group-chat') ;

//Prepare Send Message Form
Sform = new \Zend\Form\Form() ;

$Sform->add (array (
'name' => 'message',
'attributes' => array(

'type' => 'text',
'id' => 'messageText',
'required' => 'required'
)
'options' => array(
'label' => 'Message’',

)
)) g

Sform->add (array (

'name' => 'submit',
'attributes' => array(
'type' => 'submit',

'value' => 'Send'
)
))

Sform->add (array (
'name' => 'refresh',
'attributes' => array(
'type' => 'button',
'id' => 'btnRefresh',

[9a1


http:///

Chapter 5

'value' => 'Refresh'

$viewModel = new ViewModel (array('form' => $form,
'userName' => Suser->name)) ;

return SviewModel;

}

9. To test the changes, log in to the browser from two different computers or two
different browsers using different credentials, and test the Group Chat interface.

Group Chat

[2013-01-27 01:00:16] Test User: Hi

[2013-01-27 01:08:38] Test User: This 1s a test message

[2013-01-27 10:58:44] Anne Hunter: Hello

2013-01-27 10:59:58] Jake Walsh: Hi Anne. How are you?

2013-01-27 11:00:32] Anne Hunter: I am doing great .. how are you Jake?

Uake Walsh: | am good | send || Refresh |

What just happened?

We have now successfully implemented a Group Chat interface using Zend Framework; the
interface is effective for multiple people chatting with each other in a group. Our next task
will need to build a mechanism to send e-mails to other users in the system; for that we will
be exhaustively using the Zend Framework's mailing capabilities.

Here is a simple exercise for you to try before you move on to the next section. In the Group
Chat interface, we have a Refresh button that reloads the i frame tag. Write some JavaScript
and attach it to the view, which will reload the IFrame every five seconds.

Zend Framework offers the Zend\Mail library to send and receive e-mails. In this section,
we will cover the basics of Zend Framework's mailing capabilities, and will also implement a
simple mailing script.



http:///

Chat and E-mail

Zend\Mail supports both plain text and MIME complaint multipart e-mail messages. The
framework by default supports Sendmail, SMTP, and File transports; new transports can be
implemented using Zend\Mail\Transport\TransportInterface

Iend\Mail\Transport
The Mail transport is used to send the e-mail message to recipients; Zzend\Mail supports
the following transports:
¢ Sendmail using Zend\Mail\Transport\Sendmail
¢ SMTP using Zend\Mail\Transport\Smtp
¢ File Transport using Zend\Mail\Transport\File
The Mail transport implements the send () method; this method accepts an object of type

Zend\Mail\Message as the parameter; this object (Zend\Mail\Message) contains all the
necessary information for an e-mail message; the message is sent using the transport.

Iend\Mail\Message

Zend\Mail\Message is used to compose the mail message in Zend Framework; this object
takes various parameters including the from address, to address, subject, and body. If the
message is a MIME complaint multipart message, then the body of the message can be set
to a Zend\Mime \Message mail message object using the setBody () method, and the
message can be sent. Some of the most frequently-used methods in Zend\Mail\Message
are listed as follows:

& setFrom()

& setHeaders

& setTo()

¢ addCc() and addBcc ()
& setSubject()

¢ setBody ()

Zend\Mime\Message and Zend\Mime\Part

For sending HTML or multi-part content, each message part is defined as a Zend\Mime\
Part object along with its type and associated to the Zend\Mime\Message object using
the setParts () method. The Zend\Mime\Message object is assigned to the Zend\Mail\
Message object using the setBody () method.



http:///

Chapter 5

Time for action - creating a simple e-mail form

In this activity, we will be creating an e-mail form making use of Zend's mailing capabilities:

1. Create asimple e-mail form with input fields for subject, message content,
and addressee.

2. Setup anew controller to display the form and write the necessary views.

w

Modify the controller so that it references the zend\Mail namespace.

use Zend\Mail;

4. Create a new controller method that does the actual e-mailing; this can be placed
within our group chat controller (CommunicationApp/module/Users/src/
Users/Controller/GroupChatController.php) using the following code:

protected function sendOfflineMessage (SmsgSubj,
SmsgText, $fromUserId, StoUserId)

SuserTable = S$this->getServicelLocator ()

->get ('UserTable') ;
SfromUser = $SuserTable->getUser ($SfromUserId) ;
StoUser = suserTable->getUser (stoUserId) ;

$mail = new Mail\Message () ;
Smail->setFrom($SfromUser->email, $fromUser-s>name) ;
Smail->addTo ($toUser->email, S$toUser-sname) ;
Smail->setSubject (SmsgSubj) ;

Smail->setBody (SmsgText) ;

Stransport = new Mail\Transport\Sendmail () ;
Stransport->send (Smail) ;

return true;

The Sendmail transport (Zend\Mail\Transport\Sendmail)is
available in Linux by default and can be used for sending e-mail messages.
Windows users can make use of SMTP transport (Zend\Mail\Transport\
~ Smtp) to connect an SMTP server to send e-mail messages. The following
Q reference link provides a quick example on using SMTP transport:

https://packages.zendframework.com/docs/latest/
manual/en/modules/zend.mail.transport.html#zend-mail-
transport-quick-start-smtp-usage

1971



http:///

Chat and E-mail

5. Preview the form in a web browser and test if the e-mail is being received; a
message similar to the following one would be received by the recipient:

Send Offline Message

From : Anne Hunter
To User

Test User(test@localhost.cor E|
Subject

Test Mesg
Message

Test Mail Message

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

@ Test Mesg - Mezilla Thunderbird = | & &

Eile Edit View Go Message Tools Help
& GetMail = # Write B Chat & Address Bock Tag =
4 Reply 4 Reply All| | =b Forward Archive
From Anne Hunter <anne.hunter@mail.com:
Subject Test Mesg 1/27/2013 8:22 PM
To Me Other Actions -

Test Message Content

iy



http:///

Chapter 5

What just happened?

We have used the Zend\Mail object to send e-mails within the system using the Sendmail
mail transport; we have also learned about how to send HTML or multi-part mail messages.

Before moving on to the next section, try to implement the e-mailing form for sending out
HTML e-mails.

Zend\EventManager

Zend Framework 2 is an event-driven framework; the event manager allows you to attach
events to almost any functionality. There are three main terms used in Zend Framework's
event management, which are as follows:

¢ Event manager: The EventManager object is the object that holds a collection of
listeners and their relative events
Listener: The listener is the callback that reacts to the triggered event
Event: The event is the action that is triggered by the event manager
The event manager provides attach () and trigger () to create and trigger events

respectively. Mostly we will be depending on MVC events for various operation, and the
sequence of execution of MVC application events is described in the following diagram:

Routing/Dispatch Error :]
 Dispatch View

%@ conoter

Application

The article at the following link explains the sequence of events in a

3 ZF2 application:
http://akrabat.com/zend-framework-2/a-1list-of-
zf2-events/



http:///

Chat and E-mail

Flow of events for successful execution is as follows:

Zend\Mvc\Application: Bootstrap
Zend\Mvc\Application: Route

Zend\Mvc\Application: Dispatch

Eal

Zend\Mvc\Controller\ActionController: Dispatch (if controller extends this
class)

Zend\Mvc\Application: Render
Zend\View\View: Renderer

Zend\View\View: Response

© N o w

Zend\Mvc\Application: Finish

In case of errors during dispatch (or) route, the flow of events will be as follows:
Zend\Mvc\Application: Dispatch.error

Zend\Mvc\Application: Render

Zend\View\View: Renderer

Zend\View\View: Response

A S

Zend\Mvc\Application: Finish

In our next activity, we will try to set a new layout for multiple controllers using the shared
event manager in Zend Framework.

Time for action - setting module layout using ZF events

Perform the following steps for setting the module layout using ZF events:

1. Create a new layout for the My Account page and save it under CommunicationApp/
module/Users/view/layout/myaccount-layout.phtml.

2. Add the layout to the CommunicationApp/module/Users/config/module.
config.php file under view manager -> template map:
'layout/myaccount' => DIR . '/../view/layout/myaccount-layout.
phtml',

3. Open the CommunicationApp/module/Users/module.php file and add
references to MvcEvent:

use Zend\Mvc\MvcEvent;

[100]



http:///

Chapter 5

4. Overwrite the onBootStrap () method with the following code:

public function onBootstrap (Se)
SeventManager = $Se->getApplication () ->getEventManager () ;
SmoduleRouteListener = new ModuleRouteListener () ;
$moduleRoutelListener->attach ($SeventManager) ;

$sharedEventManager = $eventManager->getSharedManager(); // The
shared event manager
$sharedEventManager->attach( NAMESPACE , MvcEvent::EVENT
DISPATCH, function($e) {
$controller = Se->getTarget(); // The controller which is
dispatched
ScontrollerName = Scontroller->getEvent ()
->getRouteMatch () ->getParam('controller') ;
if (!in array($controllerName,
array ('Users\Controller\Index', 'Users\Controller\
Register', 'Users\Controller\Login'))) {

$controller->layout ('layout/myaccount') ;

13N
}

5. Open the Communication Application page in any web browser; make a note
of the layout:

Z7 Communication Applicatl x

1.
m

& C [ comm-app.ocal

Communication Application  Home

Login

Email
anne.hunter@mail.com

Password

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

11011



http:///

Chat and E-mail

6. Login to the application and see the new layout being applied:

75 Communication Applicat %

€« c comm-app.local/users/upload-manage o] =

Z=F: Communication Application Groupchal  Manage Users  Manage Docyjjgents

My Uploads

Label Filename Actions
Sales Report Document doc Edit | Delete

Shared Uploads

Label Filename Shared By

» Add Upload

® 2005 - 2012 bv Zend Technolodies Ltd. All riahts reserved =

What just happened?

We have used the Zend Framework event manager to attach a listener to the Dispatch event
of the module. So every time the controller is dispatched, this event is triggered. The callback
checks if the controller is valid and if the controller is not among the list of controllers that have
the default layout, then the myaccount layout is applied to these controllers.

Q1. Which of the following helpers can be used to define/attach CSS styles inside the HTML
head section?

HeadLink
HeadScript

HeadCss

e

HeadStyle
Q2. Which of the following are valid mail transports supported by Zend Framework 2?

Zend\Mail\Transport\Pop
Zend\Mail\Transport\Smtp

Zend\Mail\Transport\Imap

Eal S

Zend\Mail\Transport\File

11021



http:///

Chapter 5

We have covered a wide range of topics in this chapter; first we learned about making

use of external JavaScripts. Next we created a simple group chat application and then we
learned about Zend\Mail and implemented a simple mailing form. Towards the end, we
learned about events and how to make use of these events in Zend Framework. In the next
chapter we will be working on media sharing using Zend Framework by working with various
media-sharing APls.

[1031


http:///



http:///

Uploading and managing images/videos on the Internet has become very
common with the advent of social media. More and more applications now
allow you to share and retrieve media with external media hosts/services such
as Google, Flickr, and YouTube. In Zend Framework 1.0, the Zend_Service
package offered a large number of third-party integrations. This has changed
with ZF2 and the new module framework.

In this chapter, we will use various external Zend Framework 2.0 modules to manage images
and videos. Let's quickly look at the topics that we will be learning in this chapter:

Installing external modules in the Zend Framework application

Setting up a simple photo gallery

Resizing and manipulating images using WebinoImageThumb

Introduction to the Zend GData API

* 6 6 o o

Using the GData API to fetch albums from Google Photos and YouTube

External modules

One of the most important features of Zend Framework 2.0 is the ability to integrate
external modules in your PHP application, and this integration is completely managed
using a dependency management tool (in our case, Composer).

This feature allows development of PHP applications without having to worry about
maintaining external libraries inside your application. Libraries and applications can be
decoupled and maintained separately.


http:///

Media Sharing

In this chapter, we will be using an external module for resizing images; we will also make
use of external libraries for connecting to Google services.

Composer

Framework. Composer allows developers to declare the dependencies needed
for their application and will handle the installation of those libraries. The
dependency configuration is stored in a file named composer. json.

é'Q Composer is the one of the dependency management solutions used in Zend

Zend Framework 1.0 had a resize filter that allowed images to be resized on upload; with
Zend Framework 2.0, this option no longer exists. Our next task will be to find a simple
image-resizing module and install it in our application. So let's get started.

Time for action - resizing images using modules

Carry out the following steps:

1. Gotothe Zend Framework 2 module's site:

http://modules.zendframework.com/

2. Run asearch for WebinoImageThumb.

3. Toinstall this module, you will need to update composer . json in the application
root and include this module as a required module.

4. To do this, edit CommunicationApp/composer.json and modify the
required section:

"require": {
"php": "s>=5.3.3",
"zendframework/zendframework": "2.0.*",
"webino/webino-image-thumb": "1.%",

}

5. Now run composer.phar update to install the newly added dependency.
$ php composer.phar update
Loading composer repositories with package information
Updating dependencies

- Installing webino/webino-image-thumb (1.0.0)

[1061]


http:///

Chapter 6

Downloading:

Writing lock file

Generating autolo

100%

ad files

6. You will be able to see the newly installed modules in the vendor folder as follows:

4 =z Comm

@
> [
8
@
“ 8

3

]

5

E

unicationfpp

4 # Commébpp

config
data
module
public
vendor
2 bin
[# composer
3 wehino
4 [ webino-image-thumb
> (8 src
: |B] autoload_classmap.php
> |P] autelead_functien.php
» |P] autcload_register.php
E composerjson
2l LICENSE et
: |B] Modulephp
= README.md

+ [ zendframework

|B] autolead.php
=] README.md
COMpOSEr.json
composerlock

=| composer.phar

7. Now that the module is downloaded, we will need to activate the module
in CommunicationApp/config/application.config.php by adding

'WebinoImageThumb' to the modules array.

return array (
'modules' =>
'Applicat
'WebinoImag
'Users',

)y

array (
ion',
eThumb',

11071



http:///

Media Sharing

What just happened?

We have installed an external module into our application using the dependency
management tool, Composer. We have also activated the module in our application
so that the module is accessible across the application.

Now that you know how to install new modules in the Zend Framework 2 application, here
is a simple task for you. Install the Zend GData package on this application. Instructions for
installing this package are available at https://packages.zendframework.com/. We
will be using this module in the subsequent sections of this chapter.

The Photo gallery application

Let us get started with implementing our custom photo gallery using Zend Framework 2.
Since we have already implemented a file management interface, we will use a similar
interface to implement a photo gallery.

The schema for a photo gallery will be similar to the Upload entity; additionally, we will have
a field to store the thumbnail filename, which is generated during upload. Both the images
and the generated thumbnails will be stored in the <Module>\data\images folder. We will
use a custom action to display the images in the browser.

Before we get started, let's quickly review some of the important methods that are
supported by WebinoImageThumb:

*

resize ($maxWidth = 0, $maxHeight = 0): This function resizes the image
to the specified height and width; if either of the values is set to 0, that dimension
will not be considered as a limiter

adaptiveResize (Swidth, $height): This function attempts to get the image
as close to the provided dimensions as possible, and then crops the remaining
overflow (from the center) to get the image to be the size specified

crop ($startX, $start¥Y, S$ScropWidth, S$cropHeight): This function crops
the images from the given coordinates to the specified width and height

rotateImage ($direction = 'CW'):Rotatesthe image by 90 degrees
clockwise or counterclockwise

rotateImageNDegrees ($degrees): Rotates the image by the specified degrees

save ($fileName, $format = null):Savesthe image by the specified filename

[108]


http:///

Chapter 6

Time for action - implementing a simpie photo gallery

Carry out the following steps:

1. Create a new entity called ImageUpload with the following table structure:

CREATE TABLE IF NOT EXISTS image uploads (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
filename VARCHAR( 255 ) NOT NULL ,
thumbnail VARCHAR( 255 ) NOT NULL ,
label VARCHAR( 255 ) NOT NULL ,
user_id INT NOT NULL,
UNIQUE KEY (filename)

)

2. Create the relevant ImageUpload entity in the src/Users/Model/
ImageUpload.php file, the TableGateway object in the src/Users/Model/
ImageUploadTable.php file, and the Controller (MediaManagerController)
inside the module (CommunicationApp/module/Users)in the src/Users/
Controller/MediaManagerController.php file.

3. Inthe Upload form's Submit process, generate the thumbnail by using a new
method called generateThumbnail () ; this method will take the filename of the
existing image as the parameter. The resize method resizes the image to 75x75 px
and saves it to the image upload directory with a tn_ prefix.

This method needs to be placed in the MediaManagerController file, src/
Users/Controller/MediaManagerController.php.

public function generateThumbnail ($imageFileName)

{

Spath = $this->getFileUploadLocation() ;

$sourceImageFileName = $path . '/' . $imageFileName;
SthumbnailFileName = 'tn ' . $imageFileName;
S$imageThumb = $this->getServiceLocator ()

->get ('WebinoImageThumb') ;

Sthumb = $imageThumb-s>create (
SsourceImageFileName,

Soptions = array());
$thumb->resize (75, 75);
$thumb->save($path . '/' . $thumbnailFileName) ;

return SthumbnailFileName;

(1091



http:///

Media Sharing

4. Our next step is to write an action to render the image in the Full and Thumbnail
modes; for this we will need to create a custom route that will take the action,
id, and subaction parameters. This is achieved by the following route definition
in the module configuration file, CommunicationApp/module/Users/config/
module.config.php:

'media' => array(
'type'! => 'Segment',
'options' => array(
'route' => '/medial[/:action[/:id[/:subaction]]]’',
'constraints' => array(
'action' => '[a-2A-Z] [a-2A-Z0-9 -]*',
vig => '[a-zA-Z0-9 -]1*',
'subaction' => '[a-2A-Z] [a-2A-Z0-9 -]*',
)
'defaults' => array(
'controller' => 'Users\Controller\MediaManager',
'action' => 'index',

)I
)I

5. Our next step is to write an action that will respond to the various image
requests. This action needs to be placed in the MediaManagerController
file, src/Users/Controller/MediaManagerController.php.

public function showImageAction ()
{
SuploadId = $this->params()->fromRoute('id') ;
SuploadTable = $this->getServiceLocator ()
->get (' ImageUploadTable') ;
Supload = SuploadTable->getUpload (SuploadId) ;

// Fetch Configuration from Module Config

SuploadPath = S$this->getFileUploadLocation() ;
if ($this->params()->fromRoute('subaction') == 'thumb')
{

$filename = $uploadPath ."/" . $upload->thumbnail;
} else {
$filename = $uploadPath ."/" . $upload->filename;

}

$file = file_get_contents ($filename) ;

// Directly return the Response
Sresponse = $this->getEvent () ->getResponse () ;

(1101



http:///

Chapter 6

Sresponse->getHeaders () ->addHeaders (array (
'Content-Type' => 'application/octet-stream',
'Content-Disposition' => 'attachment;filename=""
.Supload->filename . '"',

))
Sresponse->setContent ($file) ;
return Sresponse;

}

6. Make sure the process works completely, from uploading the picture to
the gallery to displaying it in the photo page. See the following code for the
usage of showImageAction () inthe upload view in the media manager,
CommunicationApp/module/Users/view/users/media-manager/view.
phtml:
<section class="upload"s>
<h2><?php echo $this->escapeHtml (Supload->label) ;?></h2>
<h4><?php echo $this->escapeHtml (Supload->filename);?></hd>
<img src="<?php echo $this->url('users/media’,
array('action'=>'showImage',
'id' => $upload->id,
'subaction' => 'full'));?>" />
</section>
<a href="<?php echo $this->url ('users/media');?>">
&raquo; Show Gallery</a>

7. Now test the application on a browser of your choice. The image upload page should
look like the following screenshot:

Communication Application  Groupchat  Mana cuments  Media

Upload

Image Description| City
Image Upload [‘choose File | City-JPG

Upload Now |

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

[l



http:///

Media Sharing

Once the image upload form is successfully submitted, the image will be resized and shown
in the gallery as shown in the following screenshot:

Gallery
Image Actions
Delete
City

» Upload Image

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

The View Image link on top of the resized image takes you to a page with the full-sized image:

City

City.JPG

» Show GaHE&

1121



http:///

Chapter 6

What just happened?

We have implemented a simple photo gallery by making use of an external image manipulation
library. We utilized the resize function to create thumbnails and we created a custom action
to handle image rendering in the web browser.

Now that you understand how to work with the WebinoImageThumb module, your next
task will be to extend the photo gallery to support the rotate function. Add a rotate
function to the View Image page and allow the user to rotate the image both clockwise
and anticlockwise.

Google Data APIs

Google Data APIs provide a simple interface for applications to read and write data into
various Google services. The Data APIs use a protocol similar to the Atom Publishing Protocol
for data transfer. All the services are implemented in the package called ZendGdata.

Some of the most frequently used Google services that are supported by the ZendGdata API
are listed as follows:

Picasa Web Albums
YouTube

Google Calendar
Google Spreadsheets
Google Documents
Google Provisioning
Google Analytics
Google Blogger
Google CodeSearch

L 2R 2R 2R K 2 R R R R 4

Google Notebook

Since zendGdata is not provided with the default Zend Framework installation, this
needs to be installed manually. This can be performed using Composer and by fetching
"zendframework/zendgdata": "2.*",

131


http:///

Media Sharing

The Google Photos API

The Google Photos API allows you to fetch, edit, and manage your photos and albums in
your Picasa or Google+ accounts. The Data API provides all kinds of services; some of the
key functions are listed as follows:

getUserFeed () : Gets all the associated albums for that user
insertAlbumEntry () : Creates a new album

getAlbumFeed () : Fetches the specified album

insertPhotoEntry (): Creates a new photo

getPhotoFeed () : Fetches the specified photo

insertCommentEntry (): Creates a new comment

getCommentEntry () : Fetches the specified comment

insertTagEntry () : Creates a new tag

getTagEntry () : Fetches the specified tag

deleteAlbumEntry (): Deletes the album

deletePhotoEntry () : Deletes the photo

deleteCommentEntry () : Deletes the comment

® 6 6 6 6 0 O 6 0 O 0 0 o

deleteTagEntry (): Deletes the tag

In this example we will fetch the user's existing albums and the photos stored inside
those albumes.

Before moving on, ensure that the ZendGdata library is installed in your
application using Composer. Refer to the following installation instructions:

Al & Add the following line to the requires section of
CommunicationApp/composer.json:

"zendframework/zendgdata": "2.*"

& Update the application dependencies using Composer:
$ php composer.phar update

Before getting started, make sure you have uploaded some photos on your Google
Photos account.

(14l



http:///

Chapter 6

Time for action - fetching photos from Google Photos

Follow these steps to fetch photos from your Google Photos account:

1.

3.

4.

Create a method, getGooglePhotos (), in your controller that will connect to
Google Photos and fetch all albums from Google Photos. This method needs to
be placed in the MediaManagerController file, src/Users/Controller/
MediaManagerController.php.

Set up the API client to make use of the Curl request with the option to disable
sslverifypeer

Sadapter = new \Zend\Http\Client\Adapter\Curl () ;
Sadapter->setOptions (array (

'curloptions' => array(
CURLOPT SSL VERIFYPEER => false,
)

))

ShttpClient = new \ZendGData\HttpClient () ;
ShttpClient->setAdapter ($Sadapter) ;

Sclient = \ZendGData\ClientLogin::getHttpClient (

self::GO0OGLE USER ID,

self: :GOOGLE PASSWORD,
\ZendGData\PhOtOS::AUTH_SERVICE_NAME,
ShttpClient) ;

Now create a new Google Photos client using the API client.
$gp = new \ZendGData\Photos (Sclient) ;

Now fetch the list of albums using getUserFeed () and get the list of images inside
the album using getAlbumFeed ().

SuserFeed = $gp->getUserFeed( self::GOOGLE_USER_ID ) ;
foreach (SuserFeed as $userEntry) {

SalbumId = SuserEntry->getGphotoId()->getText () ;
SgAlbums [$SalbumId] ['label'] = SuserEntry->getTitle() -
>getText () ;

Squery = $Sgp->newAlbumQuery () ;

Squery->setUser( self::GOOGLE_USER_ID ) ;
Squery->setAlbumId( $albumId );

(1151



http:///

Media Sharing

SalbumFeed = $gp->getAlbumFeed (Squery) ;

foreach ($albumFeed as $photoEntry) {
SphotoId = S$photoEntry->getGphotoId() ->getText () ;

if ($photoEntry->getMediaGroup () ->getContent () != null)
SmediaContentArray = $photoEntry->getMediaGroup () -
>getContent () ;

$photoUrl = $mediaContentArray[0]->getUrl () ;

if ($photoEntry->getMediaGroup () ->getThumbnail () != null)
$SmediaThumbnailArray = S$SphotoEntry->getMediaGroup () -

>getThumbnail () ;
SthumbUrl = $mediaThumbnailArray[0]->getUrl () ;

$albumPhoto = array () ;

$albumPhoto['id'] = $photold;
$albumPhoto [ 'photoUrl'] = S$SphotoUrl;
SalbumPhoto ['thumbUrl'] = S$thumbUrl;
$gAlbums [$albumId] ['photos'] [] =$albumPhoto;

}

// Return the consolidated array back to the view for rendering

return $gAlbums;

5. The following code block in the album view is used to render the albums; this can
be placed in the media manager's index view, CommunicationApp/module/
Users/view/users/media-manager/index.phtml:

<?php foreach ($googleAlbums as SgoogleAlbum) : ?>

<h4> <?php echo Sthis->escapeHtml (SgoogleAlbum|['label']) ;?>

</h4>

<?php foreach ($googleAlbum|['photos'] as $googleAlbumPhoto) : ?>
<div class = "googleAlbumPhoto"

style="padding:10px; display:inline">
<a href="<?php echo Sthis->escapeHtml (SgoogleAlbumPhoto['p

hotoUrl']);?>">
<img src="<?php echo $this->escapeHtml ($googleAlbumPhoto [’
thumbUrl']) ;?>" />

(1161



http:///

Chapter 6

</a>
</div>
<?php endforeach; ?>
<?php endforeach; ?>
<hr />

6. Upload pictures to your Google Photos album:

Images mail

GORJSIG"' “ Zend Framework n + Share

Instant Upload Albums From posts Photos of you ° -

Test Album m Add photos slideshow More ~
n. - Febr v 19 2013

Visible to: Limited (@) Unlocked)- 3

Photos

©2013 Google - Terms - Map data @ 2013 : Terms of Use - Content Policy - Privacy - English (United States} / Set region - Create a page

(1111



http:///

Media Sharing

7. Open the page in a browser window; you should be able to see all available albums
and photos inside the album:

Z=: Communication Application  croup chat

Gallery

Image Actions

Delete

Delete

‘R
{ I

Niagara Falls

» Upload Image

Google Photos - Albums
Test Album

m
an B2 70

© 2003 - 2012 by Zend Technologies Ltd. All rights reserved

What just happened?

We have successfully used Google Data APIs to fetch Picasa upload information from Google
and used that information to render galleries in our application.

Your next task will be to implement the photo upload option using Google Data APls when
viewing a photo in the photo gallery; you will have a button that will allow you to upload the

photo to Google Photos.

(1181



http:///

Chapter 6

YouTube Data API

The YouTube Data API allows access to YouTube content; you can use this API to fetch videos,
playlists, channels, post comments, and upload and manage videos. Users are allowed

to perform unauthenticated requests for the retrieval of feeds on popular videos, post
comments, and so on.

Some of the most frequently used YouTube API methods are listed as follows:

getVideoFeed () : Retrieve videos from a video query

getTopRatedvVideoFeed () : Retrieve top-rated videos for the specific video query
getUserUploads () : Retrieve the user's uploaded videos

getUserFavorites (): Retrieve the user's favorite videos
getVideoResponseFeed () : Get video responses for a specific video
getVideoCommentFeed (): Get comments for a specific video
getPlaylistListFeed (): Get a user's playlists

getSubscriptionFeed (): Get a user's subscriptions

® 6 6 6 6 O o o o

insertEntry (): Upload a video to YouTube

In this example, we will be retrieving videos for a specific keyword and then render them in
the web page.

Time for action - listing YouTuhe videos for a keyword

Perform the following steps for listing YouTube videos for a keyword:

1. Create a function that will get the YouTube videos for the Zend Framework keyword.

2. Establish the connection in a similar way to the previous connection made for
Google Photos. This needs to be placed in a new method, getYoutubevVideos (),
in the MediaManagerController file, src/Users/Controller/
MediaManagerController.php:

$adapter = new \Zend\Http\Client\Adapter\Curl() ;
Sadapter->setOptions (array (
'curloptions' => array(
CURLOPT SSL_VERIFYPEER => false,
)
))

ShttpClient = new \ZendGData\HttpClient () ;

(19l



http:///

Media Sharing

ShttpClient->setAdapter ($adapter) ;

$client = \ZendGData\ClientLogin::getHttpClient (
self::GO0GLE_USER ID,
self: :GOOGLE_PASSWORD,
\ZendGData\YouTube: : AUTH_SERVICE NAME,
ShttpClient) ;

3. Initialize the YouTube client and execute a video query for the keyword
Zend Framework:

Syt = new \ZendGData\YouTube ($Sclient) ;
Syt->setMajorProtocolVersion (2) ;

Squery = $yt-s>newVideoQuery () ;
Squery->setOrderBy ('relevance') ;
Squery->setSafeSearch('none') ;
Squery->setVideoQuery ('Zend Framework') ;

4. Parse the query results and store it in an array:

$videoFeed = $yt->getVideoFeed ($Squery->getQueryUrl(2)) ;

SyVideos = array();

foreach ($videoFeed as S$SvideoEntry) {
$yVideo = array() ;
SyVideo['videoTitle'] = $videoEntry->getVideoTitle() ;
SyVideo['videoDescription'] =
S$videoEntry->getVideoDescription() ;
SyVideo['watchPage']l = $videoEntry->getVideoWatchPageUrl () ;
SyVideo['duration'] = $videoEntry->getVideoDuration() ;
$videoThumbnails = SvideoEntry->getVideoThumbnails() ;

SyVideo['thumbnailUrl'] = $videoThumbnails([0] ['url'];
SyVideos[] = $yVideo;

}

return S$yVideos;

1201



http:///

Chapter 6

5. The resulting content is rendered in the view and a video listing as shown in the
following screenshot:

Communication Application

Zend Framework | 1 - Instalacéo e Configuracéao

SERIE ZEND FRAMEWORK 1 = OI&, quem vos fala & Welsiton Ferreira e nesse tutorial eu irei
mostrar como fazer o download, instalag8o e configuracio do Zend F

Duration - 1002 secs

Zend Framework Tutorial: Quickstart (2)

Im using version 1.11. After installing Zend Framework. follow this tutorial to see how we do some
basic things like makes controllers and layouts. http://jr

Duration : 473 secs

Zend Framework 2 Overview

Duration : 3247 secs

Why choose the Zend Framework over other PHP Frameworks?

http: i killersites.com - In this video | go over the reasons why | choose the Zend framework
over the other PHP frameworks that are out there. We've only

Duration : 489 secs

What just happened?

We have utilized the zendGData API's YouTube APIs to retrieve a simple list of videos from
YouTube for a specific keyword.

Q1. Which command is used in Composer to install a newly configured dependency?

1
2
3.
4

php
php
php
php

composer
composer
composer

composer

.phar
.phar
.phar
.phar

setup
self-update
show

update

[1211


http:///

Media Sharing

Q2. Which of the following is a valid method to upload a new photo to Google Photos?

1. uploadPhoto()
2. insertPhoto ()
3. uploadNewPhoto ()
4

insertPhotoEntry ()

In this chapter, we have learned various techniques to manage media; initially we started
with implementing our own photo gallery and later on we moved on to using Google GData
APIs to retrieve and store media on the Web.

In our next chapter, we will be working on implementing a simple search interface.

11221



http:///

Search Using Lucene

More often than not, we will come across web applications that need support
for built-in search capabilities. Sometimes the search could involve searching a
simple field in a MySQL table, or at times you may want to search a document
or a plain text file; there are multiple ways to address the search requirements
using various search libraries. Lucene is one such library that offers excellent
search capabilities for implementing full text search.

In this chapter we will be using Zend Framework's Lucene search implementation. Zend
Framework 1.0 had a built-in Zend_Search Lucene library which supported indexing
and searching with Lucene; in ZF 2.0, this library is available as zendSearch\Lucene,
which can be downloaded and installed on your web application. In this chapter, we will
be learning the fundamentals of implementing a full-text search using the Lucene search
library in the following topics:

Installing the ZendSearch library in your application
Creating data index for simple MySQL data

Querying the Lucene index

* 6 o o

Adding new documents files to the index

Introduction to Lucene

Lucene is a high-performance, scalable information retrieval (search) library developed
by Apache Foundation, which can be used for implementing free-text search in web
applications. Lucene provides a simple-to-use API, which will provide powerful indexing
and searching capability to your web application. To read more about Lucene visit
http://lucene.apache.org/.


http:///

Search Using Lucene

The most important components of the Lucene search library are explained as follows:

*

Index: Lucene index is the data store that holds all the indexed documents; queries
are executed against the index to fetch the documents.

Document: A document is the default building block for a Lucene index; documents
can be compared to records in a table. Each document holds a number of fields
upon which queries can be executed.

Field: Each Lucene document comprises of one or more fields; it is not necessary
that all the fields are indexed, fields can also be stored without indexing.

The Lucene search works based on the index, so it is necessary to have the index updated
with the latest content to get the best search results. The following diagram explains the
overview of the Lucene search:

Documents

Database

User Query ‘ ’ Results

Indexing Querying

4

Time for action - installing ZendSearch\Lucene

Perform the following steps for installing ZzendSearch\Lucene:

1.

2.

ZendSearch\Lucene was not available as a composer package at the time of
writing this book. So, we will check out the source from the GitHub repository. The
repository is available at https://github.com/zendframework/ZendSearch.

Next we need to navigate to the vendor folder:

$ cd /var/www/CommunicationApp/vendor/

Clone the Zend search repository into the vendor folder:

$ git clone https://github.com/zendframework/ZendSearch.git
ZendSearch

[124]



http:///

Chapter 7

4. Next we should configure the ZendSearch library using composer:
$ cd ZendSearch/
$ curl -s https://getcomposer.org/installer | php
$ php composer.phar install

5. Once the library is configured, we will need to define a module-level configuration
to store the index location. To do this, we need to modify CommunicationApp/
module/Users/config/module.config.php, and add a new configuration for
search index:

// MODULE CONFIGURATIONS

'module config' => array(
'upload_ location' => DIR . '/../data/uploads',
'image _upload location' => DIR . '/../data/images',
'search index' => DIR . '/../data/search index'
)
What just happened?

We have now downloaded and configured the ZendSearch library for Zend Framework
2.0; the previous tutorial also provides us with a guideline for downloading and installing
packages which cannot be downloaded directly from Composer.

Now that we have the ZendSearch\Lucene search library installed, our next task
will be to create a Lucene index for some of the data that is already stored in our
communication application.

Indexing is a fairly straightforward process using ZendSearch\Lucene. All we need is to
create documents with fields and values, and keep adding the document to the index. You
can also remove documents, update documents, and clear an index. The following classes
are used in index generation:

¢ Field-The ZendSearch\Lucene\Document\Field class allows users to define
a new document field; this field can be classified into one the following types:

0 Field::keyword($name, $value, $encoding = 'UTF-8'):the
keyword field type is used to identify string fields that don't have to be
tokenized, yet need to be indexed and stored. For example, date and URL.

0 Field::unIndexed($name, $value, S$encoding = 'UTF-8'):The
unIndexed field type is used to store fields in the index without having to
index/tokenize them. For example, ID fields.

11251



http:///

Search Using Lucene

[u]

Field::binary($name, $value):The binary field type is used for
storing binary values in the index.

Field::text (Sname, $value, S$Sencoding = 'UTF-8'):The text
field type is the most common field type used for describing short strings
which are tokenized and stored in the index.

Field: :unStored ($name, $value, $encoding = 'UTF-8'):The
unStored field type is used to identify fields that will be tokenized and
indexed, but not stored in the index.

¢ Document —The ZendSearch\Lucene\Document class allows definition of a
new index document. Some of the most commonly-used methods in this class
are described as follows:

Q

addField (Document\Field $field):Adds a new field to
the document

getFieldNames () : Used to retrieve all field names from the document

getField ($fieldName): Used to retrieve a specific field from
the document

getFieldvalue ($fieldName) : Used to retrieve a specific field value
from the document

¢ Index— Index can be retrieved using the create () and open () methods
in the ZendSearch\Lucene class. Both the methods take the index path
as the parameter and return an index of type ZendSearch\Lucene\
SearchIndexInterface. The SearchIndexInterface provides
the following methods for manipulating the documents inside the index:

[m]

[m]

addDocument (Document $document):Adds a new document to
the index

delete ($id): Deletes the indexed document based on the internal
document ID

optimize (): Helps in optimizing the index, by merging all segments into a
single segment, thereby increasing the performance

commit (): Used to commit transactions to the search index

Now that we have learned about the methods that are used for index generation,
let's get started and generate the index for the uploads table that is available in
our communication application.

11261


http:///

Chapter 7

Time for action - generating a Lucene index

Perform the following steps for generating a Lucene index:

1. Create a new search controller, CommunicationApp/module/Users/src/
Users/Controller/SearchController.php, which will be used for searching
and generating indexes.

2. Add references to ZendSearch\Lucene:

use ZendSearch\Lucene;
use ZendSearch\Lucene\Document ;
use ZendSearch\Lucene\Index;

3. Add amethod to fetch the index location from the module configuration:

public function getIndexLocation ()
{
// Fetch Configuration from Module Config
Sconfig = Sthis->getServicelLocator()->get('config') ;
if ($config instanceof Traversable) ({
Sconfig = ArrayUtils::iteratorToArray ($config);
}
if (lempty(Sconfig['module config'] ['search index'])) ({
return $config['module config'] ['search index'];
} else {
return FALSE;

}

4. Theindex document needs to be generated in the following format:

Index field Description

upload_id This is non-indexed field which will be used for retrieving the
uploaded file that gets returned in the search results

label This field is used to index the 1abel field of the uploads table

owner This field is used to index the name field of the user who

uploaded the document

5. Create a new action to generate the index:

public function generateIndexAction ()

{

$searchIndexLocation = $this->getIndexLocation() ;
$index = Lucene\Lucene: :create ($searchIndexLocation) ;

SuserTable = $this->getServicelLocator()->get ('UserTable');

1211



http:///

Search Using Lucene

SuploadTable = S$this->getServicelLocator () ->get ('UploadTable') ;
$allUploads = SuploadTable->fetchAll () ;
foreach($allUploads as $fileUpload)

//
SuploadOwner = SuserTable->getUser($fileUpload->user id);

// create lucene fields
$fileUploadIld = Document\Field: :unIndexed (
'upload_id', $fileUpload->id) ;
$label = Document\Field::Text (
'label', s$fileUpload->label) ;
Sowner = Document\Field::Text (
'owner', S$SuploadOwner->name) ;

// create a new document and add all fields
$indexDoc = new Lucene\Document () ;
$indexDoc->addField ($label) ;
$indexDoc->addField (Sowner) ;
$indexDoc->addField ($fileUploadId) ;
$index->addDocument ($indexDoc) ;

}

$index->commit () ;

}

6. Now open the action URL (http://comm-app.local/users/search/
generateIndex) in your web browser, and if everything works as expected,
you will see that the index files that created in the search index folder.

The following screenshot shows the browser response upon a successful index update:

Communication Application - Mozilla Firefox

i_i Communication Application

& comm-app.local +@| [B~ cooge Q| I @

Index updated sucessfully

© 2005 - 2012 by Zend Technologies Lid. All rights reserved.

11281



http:///

Chapter 7

You can see in the following screenshot that the index files are generated and stored in the
search index folder:

4 3 sers
[ config
4 2 data
[ images

4 [ search_index
_J.uxcfs
]
optimization.lock.file
read-lock-processing.lock.file
read.lock.file
segments_k
segments.gen
writglock.file

What just happened?

Now we have created a method to index the data stored in the MySQL table to the Lucene
data store; our next step will be to have some queries executed against the Lucene index
and to fetch and show the results.

Searching the index is relatively simple using ZendSearch\Lucene. The index needs to

be opened for querying and the query string needs to be passed to the £ind () method in
ZendSearch\Lucene\Index. The £ind methods return an array matching the hits for the
specific query, and this in turn can be used to render the search results.

There are two options for querying the index—you can pass the plain text query string to
the find function or you can build your own Query object using ZendSearch\Lucene\
Search\Query.

. To read more about various query options in ZendSearch\Lucene, check the
~‘Q following developer documentation:

https://zf2.readthedocs.org/en/release-2.2.0/
modules/zendsearch.lucene.queries.html

11291



http:///

Search Using Lucene

In the following example, we will be using plain text queries, and you can manipulate the
search results by using operators such as :,+,-, and field searches. For example, see the
following list:

*

A search for all documents uploaded by Anne could be retrieved by the
following query:

owner :Anne

A search for all documents having the word report and uploaded by the user
named Anne could be retrieved by the following query:

report AND owner:Anne

A search for all documents having the word report and excluding the ones
uploaded by Anne could be retrieved by the following query:

report -owner:Anne

Time for action - displaying search resuits

Perform the following steps for displaying search results:

1.

For displaying the search results, we will need to create a new form which will
display the search textbox and render the search results right below the search
form. The form will be placed in SearchController under CommunicationApp/
module/Users/src/Users/Controller/SearchController.php.

Create a new view which will be used for displaying the query window and also
rendering search results. This will be placed under CommunicationApp/module/
Users/view/users/search/index.phtml.

<h3>Document Search</h3>
<?php
// Search Form
echo $Sthis->form() ->openTag(sform) ;
foreach ($form as Selement) {
echo $this->formElement (Selement) ;
echo $this->formElementErrors (Selement) ;

}

echo $Sthis->form()->closeTag() ;

// Search Results

if (count ($SsearchResults)) {
?>
<h5>Results</h5>

<table style="width: 600px; border:1px solid #f5f5f5;">
<tr>

[130]


http:///

Chapter 7

<th width="30%" align="left"> Label</th>
<th width="30%" align="left"> Owner</th>
<th align="left"> File</th>
</tr>
<?php foreach ($searchResults as $searchResult)
?>
<tr>
<td><?php echo $searchResult->label; ?></td>
<td><?php echo $searchResult-sowner; ?></td>

<td><a href="<?php echo Sthis->escapeHtml ($Sthis->url ('users/

upload-manager',

array('action'=>'fileDownload', 'id' =>
$searchResult->upload_id))) ;?>">Download</a></td>
</tr>
<?php
}
?>
</table>
<?php }?>

Now create a new action which will display the Search form and also query the
Lucene index with the input provided in the Search form. This will be placed in
SearchController under CommunicationApp/module/Users/src/Users/
Controller/SearchController.php.

public function indexAction ()

{

Srequest = Sthis->getRequest () ;

if ($request->isPost())
$SqueryText = $request->getPost()->get('query');
$searchIndexLocation = $this->getIndexLocation();
$index = Lucene\Lucene: :open($searchIndexLocation) ;
$searchResults = $index->find($queryText);

}

// prepare search form
$form = new \Zend\Form\Form() ;
Sform->add (array (

'name' => 'query',
'attributes' => array(
'type' => 'text',
'id' => 'queryText',
'required' => 'required'
)
'options' => array(

11311



http:///

Search Using Lucene

}

'label' => 'Search String',
),
))
Sform->add (array (
'name' => 'submit',
'attributes' => array(
'type' => 'submit',
'value' => 'Search’
),
))

$viewModel = new ViewModel (array (
'form' => $form,
'searchResults' => $searchResults
)
)i

return SviewModel;

4. Test the page in your browser; you should be able to see search results for keywords
that are available in the 1abel and owner fields:

Communication Application

Document Search

Results

Label Owner File
Corporate Report Gavin Miller Download
Sales Report Anne Hunter Download

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

11321



http:///

Chapter 7

On searching using Owner Name, you will get the following search results:

Communication .Application Group chat Wanage Users Manage Documents Media

Document Search

Miller Search

Results
Label Owner File
Corporate Report Gavin Miller Download

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

What just happened?

We have now implemented the search results page, which allows us to query for uploaded
documents using their labels and owners. The retrieved search results are displayed in a
customized view which allows us to download the document from the search result.

Our next step will be to expand the search to search the contents of the uploaded
documents; for this we will need to make changes to the way we generate the index.

Indexing Microsoft Office documents

As we have seen in the previous example, it is usually insufficient to index the documents' meta
information. Most of the time the query string is only present in the document's content. In
order to achieve that, we need to parse the document and index the content; ZendSearch\
Lucene provides support indexing the contents of the following document types:

¢ For HTML documents the following are the index document creation methods:

ZendSearch\Lucene\Document \Html: : loadHTMLFile (Sfilename)
ZendSearch\Lucene\Document \Html : : 1loadHTML ($ShtmlString)

¢ For Word 2007 documents the following is the index document creation method:

ZendSearch\Lucene\Document \Docx: : loadDocxFile ($filename)

[1331



http:///

Search Using Lucene

¢ For Powerpoint 2007 documents the following is the index document
creation method:

ZendSearch\Lucene\Document \Pptx: : loadPptxFile ($filename)

¢ For Excel 2007 documents the following is the index document creation method:

ZendSearch\Lucene\Document\X1lsx: :loadXlsxFile ($Sfilename)

All these methods return a document of type ZendSearch\Lucene\Document, which can
be improvised further by adding more index fields to it.

So let's get started by indexing the documents that are available in the uploads section.

Time for action - indexing document files

Perform the following steps for indexing document files:

1. Toindex office documents, add a new uploads section for sample Word and Excel
documents. In this case, we will upload a Word document and an Excel spreadsheet

as follows:
() H9-0 )+ SampleDocument - Microsoft Word =6 =
et :
- Home Insert Page Layout References Mailings Review View L7}
b= Calibri (Body) - a8  — As
=} e e AaBbCeDc | AaBbCcDc AaBbCi /4 #
Pavste 7 ||[F7=~ é_' | i | Tnormal |17 No Spaci.. Headingl gg?;'ff EdiEing
Clipboard Font Paragraph Fl Styles !
Ll
& -
The quick brown fox T
- -
jumps over the lazy dog :
=]
¥
Page:1 of 3 | Words: 9 \3: EEEEE " .;: 1] @ -
1
)

Sample Word 2007 document

(1341



http:///

Chapter 7

=] : SampleReport - Microsoft Excel = 8] 2
— Home Insert Page Layout Formulas Data Review View '@ - O X
= 7 i e ([ = = .
& e L o ot .| [y CoMditional Formatting o= Insert z % \;a
Ee] (g% Format as Table ~ I Delete ~ @'
Paste - - ||| o e ‘,1-0-3 ;ﬂg| : L Sort & Find &
ST =) - 2 00 >-0]1| [ e Styles ~ B Format = || (2~ Fiter~ select~
Clipboard = Font ] Alignment ] Number F] Styles Cells Editing
K7 - o | =
A B o
1
2 CORPORATE REPORT 2012-2013
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce pharetra sollicitudin odio a suscipit. Mauris fermentum cursus odio a
facilisis. Suspendisse fringilla eros ac nibh ornare ullamcorper. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed sed
iaculis felis. Vestibulum vitae sapien leo. Quisgue odio sem, malesuada eu egestas eget, sollicitudin vel eros. Pellentesgue mollis,
quam a gravida egestas, metus mi molestie sapien, sed lacinia libero purus nec mauris. Nam dapibus euismod placerat. Mauris
3 pharetra pharetra nulla, eget posuere mi scelerisgue non. Etiam luctus euismod nunc, in sodales turpis pellentesque nec. =
4
Nulla enim lacus, sollicitudin nec ullamcorper ac, posuere at ipsum. Donec sodales tempor nulla, venenatis laoreet metus
consectetur sit amet. Nulla eu urna nec nulla sollicitudin bibendum ac a nisl. Phasellus quis purus sapien, ut elementum arcu.
Maecenas libero erat, sollicitudin non venenatis ut, dictum eu ante. Curabitur tincidunt pellentesque euismod. Aenean cursus mi id

Sample Excel 2007 spreadsheet

2. Add the following lines to the indexing function present in SearchController,
which is present in CommunicationApp/module/Users/src/Users/
Controller/SearchController.php, so that the method picks up and indexes
Word documents and Excel spreadsheets separately:

if (substr_compare($fileUpload->filename,

"oxlsx",
strlen($fileUpload->filename) - strlen(".xlsx"),
strlen(".xlsx")) === 0) f{

// index excel sheet
SuploadPath = $this->getFileUploadLocation() ;

$indexDoc = Lucene\Document\Xlsx::loadXlsxFile (

$uploadPath ."/" . $fileUpload->filename) ;
} else if (substr_compare ($fileUpload->filename,

".docx",
strlen($fileUpload->filename) - strlen(".docx"),
strlen(".docx")) === 0) f{

// index word doc
SuploadPath= $this->getFileUploadLocation() ;
$indexDoc = Lucene\Document\Docx: :loadDocxFile (

$uploadPath ."/" . $fileUpload->filename) ;
} else {

$indexDoc = new Lucene\Document () ;

$indexDoc->addField ($label) ;

[1351



http:///

Search Using Lucene

$indexDoc->addField (Sowner) ;
$indexDoc->addField ($fileUploadId) ;
$index->addDocument ($indexDoc) ;

3. Now update the index (navigate to http://comm-app.local /users/search/
generateIndex), come back to the Document Search page, and try searching for
keywords that are present in the document. You should be able to see the search

results as shown in the following screenshot:

Communication Application

Document Search

fox Search

Results
Label Owner
Sample Document Test User

File
Download

Search results for the content inside Office documents will be as shown in the

following screenshot:

Communication Application

Document Search

lorem Search

Results

Label Owner File

Corporate Report Gavin Miller Download
What just happened?

In the last task we saw the implementation of indexing and searching the content
of Microsoft Office documents. As you can see, it is relatively easy to implement

these features using ZendSearch\Lucene.

[1361



http:///

Chapter 7

Here is a simple task for you before you move on to the next chapter. Now that we have
implemented indexing and searching, your task will be to modify the entities so that the index
is updated each time changes are made to uploads. If a new upload is made, a document
needs to be added to the index, and if an upload is deleted, it should be removed from the
index, and so on.

Pop quiz - search

Q1. Which of the following field types is not tokenized, yet is indexed and stored?

keyword ()
unStored ()

text ()

A w N e

unIndexed ()

Q2. Which of the following file formats is not supported for ZendSearch\Lucene as a valid
document format for content indexing?

.docx

.pdf

.xslx

.html

A w N

Summary

In this chapter we have learned about implementing a simple search interface using
ZendSearch\Lucene. This would be very useful when implementing search in any web
application that you work with. In the next chapter we will be learning about implementing
a simple e-commerce store using Zend Framework 2.0.

11311


http:///



http:///

Over the last few years e-commerce has evolved from just online
advertisements to providing fully functional shopping experiences online. More
and more products and services are being made available online everyday
through the use of various online payment systems. The role of e-commerce
applications and payment gateways has become crucial in this environment.

In this chapter we will be building a simple online store to demonstrate the process
involved in setting up a simple shopping cart. We will be using PayPal Express Checkout as
our payment processer during this example. Some of the key topics that will be covered in
this chapter include:

Setting up a shopping cart

Creating a online store administration interface

Configuring Zend Framework 2.0 for PayPal

An introduction to PayPal Express Checkout

* 6 & o o

The implementation of PayPal Express Checkout


http:///

Creating a Simple Store

Shonping cart

One of the first things that have to be designed while setting up an online store is the
shopping cart. The shopping cart should ideally allow the end user to choose and add
multiple products to the cart and be able to check out from the website.

The checkout process is outlined as follows:

1. Customer visits the product listing page.
2. Customer selects a product; he/she is taken to the product detail page.

3. Customer then chooses to purchase the product; customer is expected to add the
desired quantity to the cart.

4. Customer is redirected to the shopping cart page; here the customer may make any
changes to the order if necessary.

Customer chooses the mode of payment and enters the payment information.
If successful, the customer is presented with an option to update the shipping details.

Customer then confirms the order.

© N o v

The order is received at the retailer; the retailer then goes ahead and processes
the order.

So let's get started and create our store front; our next step will be to design a table
structure which will support this store. For this we create the following two tables:

¢ store products: This table will store all product related information

& store orders: This table will store all order-related information

Time for action - creating a store front

For simplicity, we will shorten the Checkout process by skipping some steps. We have
modified the process so that we can only have one product per order; we will also skip
the updating of shipping details and the customer order confirmation steps:

1. Create tables to hold the products and orders data:

CREATE TABLE IF NOT EXISTS store products (
id int(11) NOT NULL AUTO_ INCREMENT,
name varchar (255) NOT NULL,
desc varchar (255) NOT NULL,
cost float(9,2) NOT NULL,
PRIMARY KEY (id)

(1101


http:///

Chapter 8

5.

)i

CREATE TABLE IF NOT EXISTS store orders (

)i

id int (11) NOT NULL AUTO_ INCREMENT,
store product id int(11) NOT NULL,
gty int (11) NOT NULL,

total float(9,2) NOT NULL,

status enum('new', 'completed',

'shipped', 'cancelled') DEFAULT NULL,
stamp timestamp NOT NULL DEFAULT CURRENT TIMESTAMP,
first name varchar (255) DEFAULT NULL,
last name varchar (255) DEFAULT NULL,
email varchar (255) DEFAULT NULL,
ship to street varchar(255) DEFAULT NULL,
ship to city varchar(255) DEFAULT NULL,
ship to state varchar(2) DEFAULT NULL,
ship_to_zip int (11) DEFAULT NULL,

PRIMARY KEY (id)

Create entities for StoreOrder and StoreProduct, and also create necessary
table gateway objects for data access.

Create a StoreController controller, which will be used as our shopping cart.

StoreController will support the following actions:

0 indexAction (): This action will list all products in the website

o productDetailAction (): This will display the details of a specific
product; this will also allow the customer to add a product to the cart

o shoppingCartAction (): This action is used to render the shopping cart
before leaving for the payment processing page

o paypalExpressCheckoutAction (): This action will redirect the user to
the PayPal Express Checkout page

o paymentConfirmAction (): This action will handle the redirection from
PayPal Express Checkout back to the shopping cart upon successful payment

0 paymentCancelAction (): This action will handle the redirection from
PayPal Express Checkout back to the shopping cart upon failed payment

Create the necessary views to display the content of the shopping cart.

6. Add the necessary methods to StoreOrder to calculate the order total upon
adding items to the orders.

(a1l



http:///

Creating a Simple Store

7. The final user interface should look like the following screenshot. The product listing
page lists all products in the website/category; in this case, the two test products are
listed in the following screenshot:

Communication Application ome ogin r  eStore

Test Product 1 Test Product 2

Description of Test Product 1 Description of Test Product 2
Cost: $7.50 Cost: $10.00

View Product View Product

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

The product detail page allows users to view details of a product, and also add the specified
quantity to the shopping cart:

Communication Application ome ogin - eStore

Product Info

Test Product 1

Description of Test Product 1

Cost: $7.50

Quantity 3
Purchase

© 2003 - 2012 by Zend Technologies Lid. All rights reserved

[142]



http:///

Chapter 8

The Shopping Cart page lists all products that are added to the cart along with their unit
price, quantity, and subtotal:

Communication Application

Shopping Cart

Order Details

Name Qty Unit Cost Total
Test Product 1 3 7.50 22.50
Total: 22.50

Payment Options

\ CHECKOUT

= NOwW

s

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

What just happened?

We have created a shopping cart interface for our new store; we will be modifying this
interface further in order to add support for the payment processor. But before we get to
that stage, let's create a simple store administration interface to enable us to manage the
store and orders.

The store administration

The store administration user interface is used to check the status of orders once they are
created and also to manage the list of products that are available for sale in the store. There
are two key aspects for the store administration user interface:

¢ The administrator should be able to add, remove, and manage products

¢ The administrator should be able manage order and change statuses using
this interface

(1431


http:///

Creating a Simple Store

Time for action - creating the Store Admin interface

Perform the following steps for creating the Store Admin interface:

1. Create a new controller for store administration, and name it
StoreAdminController.

2. This controller will have the following basic actions:
o indexAction (): Used for listing all products
0 addProductAction (): Used for adding a new product
o deleteProductAction (): Used for deleting an existing product
o listOrdersAction(): Used for listing all orders
o viewOrderAction (): Used for viewing a specific order

o updateOrderStatusAction (): Used for updating order status

3. Create the necessary views, and map the actions accordingly.

4. Open phpMyadmin and create test records in both the store_products and
store_ orders tables to test the functionality for the administration Ul.

5. Open your favorite browser, log in to the application, and open the eStore Admin
interface. The interface should look like the following one.

The Manage Products page lets you add, remove, and edit products from the
administration interface:

Communication Application  Groupchat  va ers  Ma c eStore Admin.j,

View Products | View Orders

Manage Products

D Product Name Description Cost Actions

1 Test Product 1 Description of Test Product 1 7.50 Modify | Delete
2 Test Product 2 Description of Test Product 2 10.00 Modify | Delete
Add Product

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

[114]



http:///

Chapter 8

The orders listing page lists all orders placed in the store and allows you to view orders and
modify their statuses:

Communicatio

View Products | View

Store Orders

ID Date Total Status Actions

1 2013-04-01 21:38:30 15.00 cancelled View Order
2 2013-04-02 08:25:58 30.00 cancelled View Order
3 2013-04-03 21:20:49 637.50 cancelled View Order
8 2013-04-03 22:16:15 15.00 cancelled View Order
9 2013-04-03 22:36:32 37 50 cancelled View Order
10 2013-04-03 22:40.59 7.50 shipped View Order
1 2013-04-03 22:44.37 20.00 completed View Order
20 2013-04-04 00:36:31 22.50 new View Order

@ 2005 - 2012 by Zend Technologies Ltd. All rights reserved

A screenshot of the Order Information page listing the order information and providing
options to change their status is shown as follows:

Communicati

View Products | View Orders

Order Information

Order Num # 11

Status : completed

Shipping/Billing Information

Test User
lzendframework2development@gmail com
1 Main St

San Jose, CA

95131

Order Details

| Name | Qty ‘ Unit Cost ‘ Total ‘
|Test Product 2 l2 [10.00 20.00 |

Update Order Status

Set as New | Set as Complete | Set as Shipped | Set as Cancelled

11451



http:///

Creating a Simple Store

What just happened?

The store administration Ul is now ready, and our next step is to set up PayPal Express
checkout and to integrate it with our store, which will enable our user to make payments
using PayPal. Before we move on to the next section, the following section gives you a simple
task to try out.

Now that you know how to integrate search into a Zend Framework 2.0 application, try to
add free text search functionality for the Manage Products section of our store application.

Payments with PayPal

PayPal is the most commonly used payment processor across the world; one of the key
contributors to PayPal's success is its easy-to-use APl and exhaustive documentation that
supports this payment gateway. For any new merchant, PayPal offers a wide range of options
for setting up their payment processor, the most important being the types of integrations that
are offered. PayPal offers various products under Payment Processing; some of them include:

¢ Express Checkout
¢ PayPal Payments Standards (Website Payments Standards)
¢ PayPal Payments Pro (Website Payments Pro)

We will be working with Express Checkout in this chapter, since it is the most basic
implementation method of PayPal.

PayPal and Zend Framework 2.0

At the time of writing this book, there were no native packages that were offered by Zend
Framework which supported PayPal integration. There are always third-party options that
support this integration. In this example, we have made use of one such third party package
called speckPaypal.

(1461



http:///

Chapter 8

Time for action - setting up PayPal

Perform the following steps for setting up PayPal:

1.
2.
3.

Open https://packagist.org/, search for speckpaypal.
Get the repository details.

Modify the application's Composer configuration file to include the speckpaypal

repository:

"require": {
"php": ">=5.3.3",
"zendframework/zendframework": "2.0.%",
"webino/webino-image-thumb": "1.0.0",
"zendframework/zendgdata": "2.*",
"speckcommerce/speck-paypal": "dev-master"

}

Update the project dependencies using the Composer update:

Loading composer repositories with package information
Updating dependencies

- Removing zendframework/zendframework (2.0.7)

- Installing zendframework/zendframework (2.0.8)

Downloading: 100%

- Installing speckcommerce/speck-paypal (dev-master d951518)

Cloning d951518£d2c98148da5609e23a41697e6cfcalbe

Writing lock file

Generating autoload files

Now we will need API credentials for accessing PayPal Express Checkout.
This can be accessed by logging into https://developer.paypal .com
with your PayPal credentials.

Open Sandbox Accounts from Applications.

(1411



http:///

Creating a Simple Store

7.

10.

Choose the appropriate merchant account and select API Credentials in Profile.

Account details

Profile API credentials Funding Settings

Classic TEST API credentials

Username:  zf2book-facilitator_api1 gmail.com
Password: 12233445566

Signature:  ZXIK4AS0YDVmaNMNKAOLPs342sBKAWELjgkHD
BAatuqckW23EGML.KEJ

Make a note of the API credentials.

Now create a new configuration in the config file (CommunicationApp/module/
Users/config/module.config.php)in the module's configuration file and
name the array index speck-paypal-api:

'speck-paypal-api' => array(

'username' => '',
'password' => '',
'signature' => '',
'endpoint' => 'https://api-3t.sandbox.paypal.com/nvp'

)

Different PayPal services have different end points. For Express Checkout in Sandbox
this is https://api-3t.sandbox.paypal .com/nvp; if you are switching live/
production environment, this needs to be changed to https://api-3t.paypal.
com/nvp.

What just happened?

Now we have configured PayPal and SpeckPaypal in our application, our next step is to test
receiving payments using PayPal Express Checkout.

(181



http:///

Chapter 8

PayPal Express Checkout

PayPal Express Checkout allows sellers to receive credit card / PayPal payments on their
websites by redirecting them to PayPal Express Checkout for secure web payment and
returning them back to the merchant's website once the transaction is completed.

The workflow is explained as follows:

1.

Customer on the Shopping Cart page chooses to pay by PayPal Express Checkout;
the merchant calls the SetExpressCheckout API call and gets the payment token.

Using the Payment token, the customer is redirected to the PayPal Express Checkout
login page; here the customer can enter his/her PayPal login information or get a
new PayPal account.

On the next page, the customer is presented with a Review option to review the
payment information before proceeding to continue the checkout with the merchant.

Now the customer is redirected back to the merchant page; the merchant then calls
the GetExpressCheckoutDetails API call and gets the customer information.
The customer reviews the order and confirms the order. The merchant then
completes the payment request using the DoExpressCheckoutPayment API call.

The customer is shown the transaction results along with the order summary.

SetExpressCheckout o
»

1
Shopping
Cart < Token
2
301 Redirect + Token
PayPal
Login
3
Redirect
PayPal
Review
4 GetExpressCheckoutDetails
Order DoExpressCheckoutPayment _
Review >
Y
5
Order
Confirmation
Page

PayPal Express Checkout—overview

11491



http:///

Creating a Simple Store

More about PayPal Express Checkout

You can read more about PayPal Express Checkout at the PayPal website
M https://www.paypal .com/webapps/mpp/express-checkout.
Q Developer documentation on PayPal Express Checkout is available at:

https://developer.paypal.com/webapps/developer/
docs/classic/express-checkout/integration-guide/
ECGettingStarted/.

Time for action — accepting payments using PayPal

Preform the following steps for accepting payments using PayPal:

1. Now add a button on the Shopping Cart page (optionally with Checkout by PayPal
Image). This button should link to the paypalExpressCheckoutAction () function.

2. Add a method in the store controller which will be used to generate the
PayPal request:

protected function getPaypalRequest ()
{
Sconfig = sthis->getServicelLocator()->get('config');
$paypalConfig = new \SpeckPaypal\Element\Config(
Sconfig['speck-paypal-api'l) ;

Sadapter = new \Zend\Http\Client\Adapter\Curl () ;
Sadapter->setOptions (array (
'curloptions' => array(
CURLOPT_ SSL_VERIFYPEER => false,
)
)) i

$client = new \Zend\Http\Client;
Sclient->setMethod ('POST') ;
Sclient->setAdapter ($Sadapter) ;

$SpaypalRequest = new \SpeckPaypal\Service\Request;
SpaypalRequest->setClient ($Sclient) ;

$SpaypalRequest->setConfig(SpaypalConfig) ;

return S$paypalRequest;

[1501


http:///

Chapter 8

3. Modify the paypalExpressCheckoutAction () function to send the order
information to PayPal and redirect the user to PayPal Express Checkout:

public function paypalExpressCheckoutAction ()

{

Srequest = S$this->getRequest () ;
SorderId = S$request->getPost ()->get ('orderId');

SorderTable = $this->getServiceLocator () -
>get ('StoreOrdersTable') ;
Sorder = $orderTable->getOrder ($orderId) ;

SpaypalRequest = $this->getPaypalRequest () ;

$paymentDetails = new \SpeckPaypal\Element\PaymentDetails

(array('amt' => $Sorder->total

)) i

Sexpress = new \SpeckPaypal\Request\SetExpressCheckout (
array ('paymentDetails' => $paymentDetails)

)i

Sexpress->setReturnUrl (
'http://comm-app.local/users/store/paymentConfirm') ;

Sexpress->setCancelUrl (
'http://comm-app.local/users/store/paymentCancel') ;

// Send Order information to PayPal
Sresponse = $paypalRequest->send ($express) ;
Stoken = $response->getToken() ;

SpaypalSession = new \Zend\Session\Container ('paypal') ;
Stoken;
SpaypalSession->orderId = SorderId;

SpaypalSession->tokenId

// Redirect user to PayPal Express Checkout
Sthis->redirect () ->toUrl ('https://www.sandbox.paypal.com/
webscr?cmd=_express-checkout&token=' . $token);

[1511



http:///

Creating a Simple Store

4. Adda method to handle successful payment from Express Checkout—
paymentConfirmAction (); this method will capture the payment information
from PayPal, confirm the payment, and then update the order status in our system
using the code as shown in the following list:

o Capture payment information from PayPal:

// To capture Payer Information from PayPal
$SpaypalSession = new \Zend\Session\Container ('paypal') ;
SpaypalRequest = Sthis->getPaypalRequest () ;

$expressCheckoutInfo =

new \SpeckPaypal\Request\
GetExpressCheckoutDetails () ;

SexpressCheckoutInfo->setToken (SpaypalSession->tokenlId) ;
Sresponse = S$paypalRequest->send($SexpressCheckoutInfo) ;

o Confirm order with PayPal:

//To capture express payment

SorderTable = $this->getServicelLocator() -
>get ('StoreOrdersTable!') ;

Sorder = S$orderTable->getOrder (SpaypalSession->orderId) ;

$SpaymentDetails = new \SpeckPaypal\Element\
PaymentDetails (array (

'amt' => Sorder->total

))

Stoken = S$response->getToken () ;
SpayerId = S$Sresponse-s>getPayerId() ;

$captureExpress = new \SpeckPaypal\Request)\
DoExpressCheckoutPayment (

array (
'token!' => S$token,
'payerId’ => $payerld,
'paymentDetails' => $paymentDetails
))
SconfirmPaymentResponse = S$paypalRequest-

>send (ScaptureExpress) ;

o Save order with updated shipping/billing information:

//To Save Order Information

Sorder->first name = S$response->getFirstName() ;
Sorder->last name = $response->getLastName () ;
Sorder->ship to street = $response->getShipToStreet () ;

[1521


http:///

Chapter 8

Sorder->ship to city = S$response->getShipToCity () ;
Sorder->ship to state = S$response->getShipToState() ;
Sorder->ship to zip = S$Sresponse->getShipToZip() ;

Sorder->email = S$response->getEmail () ;
Sorder->store_order id = $paypalSession->orderId;
Sorder->status = 'completed';

SorderTable->saveOrder (Sorder) ;

5. Finally add a method to handle failed payment from Express Checkout—
paymentCancelAction():

public function paymentCancelAction ()

{

$SpaypalSession = new \Zend\Session\Container ('paypal') ;

$storeOrdersTG Sthis->getServicelLocator ()

->get ('StoreOrdersTableGateway') ;
$storeOrdersTG->update (

array('status' => 'cancelled'),

array('id' => $paypalSession->orderId)) ;
SpaypalSession->orderId = NULL;
SpaypalSession->tokenId = NULL;

Sview = new ViewModel () ;
return Sview;

}
6. Nowlogintohttps://developer.paypal .com again.
7. Generate a new sandbox account of type PERSONAL.

8. Now access the store and try to purchase using the newly created Sandbox account.
The final store should look like the following screenshot:

Communication Application hgin Register  eStore

Shopping Cart

Order Details

Name Qty Unit Cost Total

Test Product 2 6 10.00 60.00
Total: 60.00

Payment Options

Chﬁuul m’paf

The safer, easier way to pay

[1531



http:///

Creating a Simple Store

After choosing the checkout from the Shopping Cart page, you will be redirected to
the Pay with my PayPal account login page as shown in the following screenshot:

Choose a way to pay
Your order summary

Descriptions .
Pay with my PayPal account
Current purchase Login to your accountto complete the purchase
“ou'll be able to see your order detailz Email

befers you pay. zendframework2developmentg

PayPal password

Log In

Forgot vour email address or password?

Create a PayPal account

And pay with your debit or credit card

Cancel and return to Krishna Shasankar's Test Store.

(1541


http:///

Chapter 8

A screenshot of the PayPal Express Checkout's order reviewing page is shown in the
following screenshot; this page is used to review the payment that is being made to
the merchant from the customer's PayPal account:

Your order summary
Descriptions

Current purchase

“You'll be able to see your order details
before you pay.

Review your information

Continug Paypa’

Shipping address &7 Change

TestUser

1 Main 5t

San Jose, CA 95131
United States

Note to seller: Add

Payment methods & Change

PayPal Balance

PayPal gift card, certificate, reward, or other discount Redeem
View PayPal policies and your payment method rights.

Contact information
zendframework2development@amail.com

Caontinu

You're almost done. You will confirm your payment on Krishna Shasankar's Test Store.

Cancel and return to Krishna Shasankar's Test Store.

[1551]


http:///

Creating a Simple Store

Once the order is successfully placed, the user is redirected to the order
confirmation page as shown in the following screenshot:

Communicat ome ogin - eStore

Payment Confirmed

Order Num # 29

Status : completed

Shipping/Billing Information

Test User
zendframework2development@gmail.com
1 Main St

San Jose, CA

95131

Order Details

Name Qty Unit Cost Total
10.00 50.00

Test Product 2

[s3]

© 2005 - 2012 by Zend Technologies Ltd. All rights reserved

9. Now log in to the Sandbox site for the merchant account to see if the payments
are credited:

Account Limits: View Limits

PayPal balance: $173.88 USD

My recent activity | Payments received | Payments sent View all of my transactions

My recent activity - Last 7 days (Mar 31, 2013-Apr 7, 2013)

Archive | \What's thiz Payment status glossary
Date Type MName/Email Payment sialus Deetails Order statusfActions Gross
Apr7, 2013 Payment From  Test User Completed Details | Issue refund $60.00 USD
Apr7, 2013 Payment From  Test User Completed Details Issue refund $60.00 USD
Apr 7, 2013 Payment From  Test User Completed Details Issue refund $60.00 USD

(1561



http:///

Chapter 8

What just happened?

We just used PayPal Express Checkout to receive payments in our web application and
complete the simple store application. As you can see, the PayPal APl makes it relatively
easy to set up the payment gateway.

In your next task, make use of the DoDirectPayment API call to directly make a payment
on the website without having to redirect the user to the PayPal website and back again.

Pop quiz - creating a simple store

Q1. Which of the following methods is used to send the initial payment information for
PayPal redirection?

RedirectExpressCheckout

SetExpressCheckout

GetExpressCheckoutDetails

A w N e

DoExpressCheckoutPayment

Q2. Which of the following fields is needed for requesting payment information from PayPal?

1. token

2. payerld

3. paymentDetails
4

orderID

sSummary

In this chapter we have learned the basics of setting up a simple store online and trying

to receive payments using PayPal. As you can see from the previous example, Zend
Framework's use of modules simplifies application development by giving developers the
ability to download and install external third-party modules based on their integration needs.
In the next chapter, we will be working on HTML5 development with Zend Framework 2.0.

1571


http:///



http:///

HTMLS Support

HTMLS5 is the latest version of HTML specification; the final draft is not likely to
be completed anywhere soon, but most browsers support a majority of features
that are specified in the latest working draft.

Some of the most important offerings of HTMLS are listed as follows:

Audio and video tags
CSS3 support
Support for drawing graphics using SVG and CSS3 2D and 3D

Local storage, Web/JS workers, and geo location

* 6 6 o o

HTMLS5 form elements

For the scope of this book, we will be more focused on new form elements. HTML5
introduces a lot of new form elements. In previous versions of HTML, web developers were
limited to use just the standard input types provided in the earlier HTML specifications. Now
with the HTMLS5 specification, we have different elements for various different user inputs.


http:///

HTML5 Support

The list of newly available input elements is listed as follows:

datetime
datetime-local
time

date

week

month
email
url
number
range
color

tel

® 6 6 6 6 O 6 6 6 O O o o

search

HTMLS5 specification

For further reading, please refer to the HTML5.0 specification available
M on the W3C website: http://www.w3.org/TR/html5/.
Q The following link points to specification for the <input > element:

http://www.w3.0org/TR/html5/forms.html#the-input-
element

In this chapter we will understand the usage of these input elements.

HTMLS input elements

Zend Framework 2.0 now supports all of the newly specified HTML5 input types; these
inputs are available under Zend\Form\Element like any other input types. The following
table describes each of these elements along with their class names:

[160]



http:///

Chapter 9

Input type Description

datetime ¢ Element: Zend\Form\Element\DateTime

¢ Used to render the Date/Time Element input field with the time
zone set to UTC

& HTMLtag: <input type="datetime" name="element-
date-time">

& The datetime element rendered in Opera 12.0 is shown in the
following screenshot:

Date/Time Element

{ #
K July |[2013 2}
Mon Tue Wed Thu Fri Sat Sun
1 2 3 4 5 6 7
8 9 10 11 12 13 14
1 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 A

Today |

datetime-local

*

Element: Zend\Form\Element \DateTimeLocal

¢ Used to render the Date/Time Local Element input field for the
client browser's time zone

& HTMLtag: <input type="datetime-local"
name="element-date-time-local">

¢ Thedatetime-local element rendered in Opera 12.0 is shown
in the following screenshot:

Date/Time Local Element

| Bl
4] July DEEE
Mon Tue Wed Thu Fri Sat Sun
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
20 30 31

Today |

11611


http:///

HTML5 Support

Input type Description
time ¢ Element: Zend\Form\Element\Time
& Used to render the Time Element field
& HTMLtag: <input type="time" name="element-time">
& The time element rendered in Opera 12.0 is shown in the following
screenshot:
Time Element
11:45| i’
date ¢ Element: Zend\Form\Element\Date
¢ Used to render the Date Element field
& HTMLtag: <input type="date" name="element-date">
& The date element rendered in Opera 12.0 is shown in the following

screenshot:

Date Element

[]

Mon Tue
1 2
8 9
15 16
22 23
20 30

July

Wed Thu

3
10
17
24
31

4
11
18

25

0 | ESTEE
Fri Sat Sun
5 6 7
12 13 14
19 20 21
260 2T 28

Today |

11621



http:///

Chapter 9

Input type Description
week ¢ Element: Zend\Form\Element \Week
& Used to render the Week Element field
¢ HTMLtag: <input type="week" name="element-week">
& The week element rendered in Opera 12.0 is shown in the following
screenshot:
Week Element
<] July > |[2013" 2
Week  Mon Tue Wed Thu Fri Sat Sun
27 1 2 3 4 5 & 7
28 8 9 10 11 12 13 14
29 15 16 17 18 19 20 21
30 22 23 24 25 26 27 28
31 29 30 3
32
Today
month & Element: Zend\Form\Element\Month
& Used to render the Month Element field
¢ HTMLtag: <input type="month" name="element-
month">
& Themonth element rendered in Opera 12.0 is shown in the

following screenshot:

Month Element

2013-07 j

W Wy E=n
Mon Tue Wed Thu Fri Sat Sun
1 2 = 4 5 B 7
8 9 10 11 12 13 14
15 16 117 18 19 20 21
22 23 24 25 26 27 28

29 30 M

Today |

11631


http:///

HTML5 Support

Input type Description
email ¢ Element: Zend\Form\Element\Email
& Used to render the Email input field
¢ HTMLtag: <input type="email" name="element-
email">
url & Element: Zend\Form\Element\Url
¢ Used to render the URL input field
& HTMLtag: <input type="url" name="element-url"s>
number & Element: Zend\Form\Element \Number
¢ Used to render the Number Element input field
& HTMLtag: <input type="number" name="element-
number" >
& The number element rendered in Opera 12.0 is shown in the
following screenshot:
Number Element
1
=
range & Element: Zend\Form\Element \Range
¢ Used to render the Range Element input field using slider control
& HTMLtag: <input type="range" name="element-
range" >
& The range element rendered in Opera 12.0 is shown in the

following screenshot:

Range Element

|
|

11641


http:///

Chapter 9

Input type Description

color

¢ Element: Zend\Form\Element\Color
& Used to render the Color Element input field with a color picker

¢ HTMLtag: <input type="color" name="element-
color">

¢ The color element rendered in Opera 12.0 is shown in the
following screenshot:

Color Element

#edlic24
Other...

Time

for action — HTMLY input elements

In this example we will be creating a test HTMLS5 form for rendering various types of HTML5
input elements:

1.

2.

Create a test action for rendering the form element formAction (); it can be
created under the new controller Htm15TestController - module/Users/
src/Users/Controller/Html5TestController. php.

Add references to Zend\Form\Form and Zend\Form\Element

use Zend\Form\Element;
use Zend\Form\Form;

Add various HTMLS5 form elements to the form:

Sform = new Form() ;

// Date/Time Element
$dateTime = new Element\DateTime ('element-date-time') ;
SdateTime
->setLabel ('Date/Time Element')
->setAttributes (array (
'min' => '2000-01-01T00:00:00Z",
'max' => '2020-01-01T00:00:00Z",
'step' => '1',
))

(1651



http:///

HTML5 Support

Sform->add (SdateTime) ;

// Date/Time Local Element
SdateTime = new Element\DateTimeLocal ('element-date-time-local') ;
SdateTime
->setLabel ('Date/Time Local Element')
->setAttributes (array(
'min' => '2000-01-01T00:00:00Z2",
'max’' => '2020-01-01T00:00:00Z2",
'step' => '1l",
))
Sform->add (SdateTime) ;

// Time Element

Stime = new Element\Time ('element-time') ;
Stime->setLabel ('Time Element') ;
Sform->add (Stime) ;

// Date Element
Sdate = new Element\Date ('element-date') ;
Sdate
->setLabel ('Date Element')
->setAttributes (array(
'min' => '2000-01-01",
'max' => '2020-01-01",
'step' => '1l",
))
Sform->add (Sdate) ;

// Week Element

Sweek = new Element\Week ('element-week') ;
Sweek->setLabel ('Week Element') ;
Sform->add (Sweek) ;

// Month Element

Smonth = new Element\Month ('element-month') ;
Smonth->setLabel ('Month Element') ;
Sform->add (Smonth) ;

// Email Element

Semail = new Element\Email ('element-email') ;
Semail->setLabel ('Email Element') ;

(1661



http:///

Chapter 9

Sform->add ($Semail) ;

// URL Element

Surl = new Element\Url('element-url');
Surl->setLabel ('URL Element') ;
Sform->add (Surl) ;

// Number Element

Snumber = new Element\Number ('element-number') ;
Snumber->setLabel ('Number Element') ;

Sform->add ($Snumber) ;

// Range Element

Srange = new Element\Range ('element-range') ;
Srange->setLabel ('Range Element') ;
Sform->add ($Srange) ;

// Color Element

Scolor = new Element\Color ('element-color');
Scolor->setLabel ('Color Element') ;
Sform->add ($Scolor) ;

What just happened?

We have created a simple form purely using HTML5 elements that are supported by Zend
Framework 2.0. The form in its current shape can be rendered by creating the necessary
view. Our next task will be to build the view for this form with the use of HTML5 helpers and
render all the form elements that were added to the form.

HTMLS view helpers

Zend Framework provides view helpers for rendering all the form elements described in the
previous section. The formElement () view helper can be used to render any kind of input
dynamically based on the input type, however it is not the suggested practice.

11671



http:///

HTML5 Support

The following table gives you the list of standard HTMLS5 helpers available for the HTML5
input elements:

Input type Helper Helper function
datetime Zend\Form\View\Helper\ formDateTime ()
FormDateTime
datetime- Zend\Form\View\Helper\ formDateTimeLocal ()
local FormDateTimeLocal
time Zend\Form\View\Helper\FormTime formTime ()
date Zend\Form\View\Helper\FormDate formDhate ()
week Zend\Form\View\Helper\FormWeek formWeek ()
month Zend\Form\View\Helper\FormMonth formMonth ()
email Zend\Form\View\Helper\FormEmail formEmail ()
url Zend\Form\View\Helper\FormUrl formUrl ()
number Zend\Form\View\Helper\FormNumber formNumber ()
range Zend\Form\View\Helper\FormRange formRange ()
color Zend\Form\View\Helper\FormColor formColor ()

Apart from the standard list of view helpers, Zend Framework also provides helpers for
the tel and search input types; these input types are an extension of the text input,
but certain browsers (especially mobile browsers) support stylized input options in both

these elements.

The following table gives you the list of additional HTML5 helpers available for the HTML5
input elements:

Input type Helper Helper function
tel Zend\Form\View\Helper\FormTel formTel ()
search Zend\Form\View\Helper\FormSearch formSearch ()

Time for action — HTML3 view helpers

In this task we will render all the form elements that we created in the previous task.
We will make use of ZF's HTMLS5 view helpers to render these elements. Perform the
following steps:

1. Create a simple view that can be used to render the form.

2. Make use of view helpers to render various form elements using the following code:

Sthis->formDateTime ($form->get ('element-date-time')) ;
Sthis->formDateTimeLocal ($form->get ('element-date-time-local')) ;
Sthis->formTime ($form->get ('element-time')) ;

(1681



http:///

Chapter 9

7

Sthis->formDate ($form->get ('element-date')
Sthis->formWeek ($form->get ('element-week'")
Sthis->formMonth ($form->get ('element-month
Sthis->formEmail ($form->get ('element-email’

)
)
"))
))
Sthis->formUrl (Sform->get ('element-url'));
Sthis->formNumber ($form->get ('element-number')) ;
Sthis->formRange ($form->get ('element-range')) ;

Sthis->formColor ($form->get ('element-color')) ;

3. Test the form in an HTML5-compatible browser such as Opera 12. You should be
able to see a form like the one shown in the following screenshot:

) Communication Application - Opera oo S
File Edit View Boockmarks Tools Help

‘z.-' Communication Appli... | +

« 2 ®

H ~ Search with Google

Communication Application

HTMLS5 Test Form

HTMLS Test Form
Date/Time Element

Date/Time Local Element

|

a(0|

utc

alo|

Time Element
)]

=

Date Element

Lo

Week Element

L

Month Element

Lo

Email Element

URL Element

MNumber Element

Range Element

i}
Color Element %
| submit |
0 & & a ——

(1691



http:///

HTML5 Support

4. Now, test the same form in an HTML5 non-compatible browser such as IE 9.
You should be able to see a form like the one shown in the following screenshot.
You can see that the unsupported input elements are replaced with textboxes:

Communication Application

HTML5 Test Form

HTMLS Test Form
Date/Time Element

Date/Time Local Element
Time Element

Date Element

Week Element

IMonth Element

Email Element

URL Element

Number Element

Range Element

Color Element

What just happened?

We have created our first HTML5 form using ZF2 form elements. As of now, Opera 12 offers
the best support for HTMLS5; other browsers such as Chrome and Safari are also good in
terms of support. So, if you are testing your HTML5 forms, make sure that you are testing
them in a browser that is compatible, such as Opera 12.

(1701


http:///

Chapter 9

HTML5 browser compatibility

Support for HTMLS5 specifications is inconsistent among various

browsers; Opera and Chrome seem to offer best support in terms of

compliance, but none of them are fully compliant. With each new

browser version, there is additional support for these features. There are
% many resources available on the Internet that allow you to check your

~ browser's compatibility with HTML5.

http://html5test.com/ is a portal that ranks and compares

browsers based on their HTML5 support.

http://caniuse.com/ is also a great website that lets users check

if they can use a specific HTMLS5 feature on a specific browser.

Here is a simple task for you before you move on to using advanced HTMLS5 attributes. Now
that you have created a form using all the standard HTMLS elements, try to extend the form
by using the view helpers to render the tel and search type inputs.

HTMLO attributes

You might have noticed in the beginning of the chapter that we were using new
attributes such as min, max, and step. These are new attributes that are defined

in the HTMLS5 specification that allow developers to specify additional configuration
on the input element. Some important attributes are discussed in the following list:

¢ max: Applicable to the Number, Range, and Date fields; allows specification of
maximum value in the input.

¢ min: Applicable to the Number, Range, and Date fields; allows specification of a
minimum value in the input.

¢ step: Applicable to the Number, Range, and Date fields; allows specification of an
increment value in the input.

¢ list: Applicable to various textbox style inputs. Allows developers to map the field
to a data list, thus allowing end users to pick them from the list.

¢ placeholder: Applicable to various textbox style inputs. Allows developers to
show placeholder text until the element gains focus.

¢ pattern: Applicable to various textbox style inputs. Allows developers to validate
the user input against a regular express-and-throw-a-validation error.

1l


http:///

HTML5 Support

¢ required: Prevents users from submitting the form with empty values in the
required fields.

¢ multiple: Applicable to file input; allows multiple file uploads from a single
file control.

For implementing multiple file uploads, you will need to set the multiple attribute on the
file input element to TRUE. If the browser supports multiple file uploads, then the user will
be allowed to select multiple files, otherwise the control will limit to just one file selection.

Time for action — HTMLS multiple file uploads

Perform the following steps for HTML5 multiple file uploads:

1. Create a new ImageUpload form; make sure that the multiple attribute for the
File elementis set to TRUE:
<?php
// filename : module/Users/src/Users/Form/MultiImageUploadForm.php
namespace Users\Form;

use Zend\Form\Form;
use Zend\Form\Element;
use Zend\InputFilter;

class MultiImageUploadForm extends Form

{

public function _ construct ($name = null, $options = array())
{
parent:: construct ($name, S$options) ;
Sthis->addElements () ;
Sthis->addInputFilter () ;

public function addElements ()
{
$imageupload = new Element\File ('imageupload') ;
$imageupload->setLabel ('Image Upload')
->setAttribute ('id', 'imageupload')
->setAttribute('multiple', true);
//Enables multiple file uploads

[17121



http:///

Chapter 9

Sthis->add($imageupload) ;

$submit = new Element\Submit ('submit') ;
$submit->setValue ('Upload Now') ;
Sthis->add ($submit) ;

public function addInputFilter ()
{
$inputFilter = new InputFilter\InputFilter () ;
// File Input
$fileInput = new InputFilter\FileInput ('imageupload') ;
$fileInput->setRequired(true) ;
$fileInput->getFilterChain () ->attachByName (
'filerenameupload',
array (
'target' => './data/images/temp.jpg’',
'randomize' => true
)
)i
SinputFilter->add($filelInput) ;
Sthis->setInputFilter (SinputFilter) ;

Zend\Filter\File\RenameUpload

The RenameUpload filter is used to rename and move the uploaded
file to a new path specified in the target. To find out more please refer
to the framework documentation at http://framework. zend.
com/manual/2.2/en/modules/zend.filter.file.rename-
upload.html.

2. Setup an action to handle the file uploads, and to redirect the user to an upload
confirmation page:

public function multiUploadAction ()

{

// prepare form
Sform = $this->getServicelocator () ->get ('MultiImageUploadForm') ;
Srequest = Sthis->getRequest () ;
if ($request->isPost())
$post = array merge recursive (
Srequest->getPost () ->toArray (),
Srequest->getFiles () ->toArray ()

(1131



http:///

HTML5 Support

)i
$form->setData (Spost) ;
if ($form->isvalid())
$data = $form->getDatal() ;

// Form is valid, save the form!
return $this-s>redirect()->toRoute ('users/html5-test',
'processMultiUpload')) ;

array('action' =>

}
}

$viewModel = => s$form)) ;

new ViewModel (array ('form'

return SviewModel;

}

Now test the form in your browser that supports multiple file uploads with HTMLS5,
for example, Opera 12. You will see that the file selector interface allows the
selection of more than one file as shown in the following screenshot:

W! 7= Communication Application
€)? |

(@ Disable- & Cookies- # €55

comm-app.lacal/us

0 .c

L Google

pa

File Upload
p

» Libraries » Pictures » Public Pictures » Sample Pictures

~ [ 43 [ Search sampte

Organize »  New folder
¢ Favorites . Pictures library .
Arrange by:  Folder *
HTML5 Test Form s Sample Pictures R
& Downloads
Multi Upload Test Form % Dropbox P L) L
Image Upload %] Recent Places | 37 | f
Upload Now [ Photo Stream Chrysanthemum Desert Koala Penguins Jellyfish
3 Libraries o h% a3
2 % R~
© 2005 - 2012 by Zend Technologies Lid. All rights (= Daciments ”
@' Music Tulips Hydrangeas Lighthouse
) Pictures
B Videos

@ Homegroup

File name: "Chrysanthemum" "Desert’ "Tulips” "Hydrangeas”

1l



http:///

Chapter 9

4. After you choose Upload now and once the upload process is completed, you will
see the confirmation page as shown in the following screenshot:

[ = communicaion Appicaon B . & 8

@ comm-app.local/users/html5-test/processMultiUpload

@ Disable- & Cookiesw # €55 [J] Forms [E Images @ Information- [5] Miscellaneous- / Outline~ f Resize™ 4

Communication

HTML5 Test Form

Multi Upload Test Form
Upload Sucessfull

© 203 - 2012 by Zend Technologies Ltd. All rights reserved.

5. You can verify if the files are uploaded successfully and the filters are applied by
navigating through the data/images directory and looking up for the uploaded
files. You can see that all files start with temp and have a _<random number>
suffix in their filenames:

T WA W W

municationApp » CommApp » data » images

ith = Slide show Burn Mew folder
_—

temp_51897bc73  temp_51897bc73  temp_51897bc?3 temp_51897bci3
6a30 G4bb T8ha T11f

(1151



http:///

HTML5 Support

. Filters with multiple file uploads
S

~ When applying filters with multiple file uploads, the filter(s) will be
applied to all the files that are successfully uploaded with the same
filter option settings.

What just happened?

We have now created an HTML5 multiple file upload form using HTML5 attributes and Zend
form elements. We have also applied a filter to rename the uploaded files and have also
seen how filters work in multiple file uploads.

Pop quiz - HTMLS support

Q1. Which of the following methods is a newly supported HTMLS input type?

1. text

2. radio
3. checkbox
4

number
Which of the following input types do not have a Form element defined in ZF 2.1?

1. tel
2. date
3. color
4

search

Summary

HTMLS is a very robust and powerful specification of HTML which is still partially supported
by most browsers. As newer versions of browsers come out in the market, you will get to see
much more enhanced support for this specification. In our next chapter, we will be using ZF2
to build mobile web applications.

(1761



http:///

10

One of the major hurdles in mobile application development is the diversified
number of platforms that have to be targeted while building mobile
applications. Platforms such as PhoneGap and Titanium enable developers to
build cross-platform mobile applications, but one of the disadvantages with this
model is to manage multiple projects on different platforms for mobile and web
services. Zend, with the release of Zend Studio 10, has tried to address the same
gap by providing a development platform based on PhoneGap, which supports
end-to-end mobile apps in a cloud-based environment.

With the release of Zend Studio 10, Zend now offers extremely simplified mobile application
development platform using Zend Framework 2, known as Cloud Connected Mobile Tool.
In this chapter we will be learning about the basics of building cloud-connected mobile
applications using Zend Studio. Some of the key learning areas discussed are as follows:

¢ Building your first cloud-connected mobile (CCM) application

¢ Testing as a native application

¢ Implementing a simple search interface

Cloud-connected mohile applications

Zend Studio now offers a CCM tool enabling developers to build native mobile applications
using the cloud platform. CCM supports development of RPC-based or REST-based web
services for the cloud using Zend Framework 2 and Zend Server Gateway.


http:///

Building Mobile Applications

CCM also offers support for developing native mobile applications by integrating with
various mobile SDKs (Android SDK/ADT for Android, Xcode for iOS, and Windows Phone
SDK for Windows Phone). This enables developers to build and test the applications in
native environments/devices.

CCM tool also offers a simple and easy-to-use mobile GUI editor which helps developers to
effortlessly build great user interfaces for their mobile applications.

Zend Studio 10

As a first step towards building your mobile application, please ensure that you install Zend
Studio 10 on your development machine. Zend Studio 10 offers integrated support for
building cloud-connected mobile applications and allows developers to deploy their mobile
application on the cloud.

Zend Studio 10 is available for purchase from the Zend Online Store; there is a free
30-day trial as well. For further information visit http://www. zend.com/en/products/
studio/.

Zend Developer Cloud is a cloud-based PHP development environment, which enables
developers to build and deploy applications on the cloud, without undergoing the
hassle of setting up a PHP development environment, and configuring and maintaining
the environment.

This environment has Zend Framework 2 installed with a large set of PHP extensions;
developers can make use of various development tools such as Zend Studio, Eclipse PDT,
and CLI to build and deploy their applications on the developer cloud. Zend Developer Cloud
also provides capabilities to push your application to other external cloud services such as
Amazon and IBM SmartCloud.

Zend Developer Cloud is currently in free developer beta. For further information about Zend
Developer Cloud, please refer to their website: http://www.phpcloud.com/.

Time for action - configuring your phpGloud account

In this task we will set up our phpCloud account and configure the cloud environment in
Zend Studio 10 using the following steps:

1. Visithttps://my.phpcloud.com/user/login, register for a new account, and
log in to your phpCloud account.

(1181



http:///

Chapter 10

2. After the login, you will be asked to create a container. You can specify a container
name which will be a part of the container URL; you can also choose to generate a
SSH key pair or use your own SSH keys; in this case, we will generate a new SSH key
pair. The following screenshot describes the container creation screen:

My Account

Access Keys
Change Password

My Containers

Get More Containers

During beta

ou can get

free access han one
application container!

Click here to man

containers and create

container.

How do |

Deploy my application code

\ccess my MySQL database
instance

Debug my application

All help & tutorials »

Create Container

*Caontainer Name

*Container Passwaord

*Repeat Password

*Accass Keys

*Container Version

*Debugger Extension

i}

.my.phpcloud.com @
Field must start with a letter, be 4-16 characters long and contain Latin alphanumeric values only

@

vill be used for MySQL DB access and Zend Server GUI access

@ Generate an RSA keypair and give me the private key
_) Upload an existing RSA public key in OpenSSH format

@ Zend Server G- PHP 5.3

) Zend Server 6-PHP 5.4
@ 7end Debugger (debug (Only with PHP 5.3) I}

Configure outgoing email server (SMTP)

Check this if you want to be able to send emails from your application container

Create Container

Al fields with * are reguired.

3.

target in Zend Studio:

Now download the SSH keys; we will be using these keys to set up our deployment

Hew 55H keypair created

Please download your S5H key file and save itin a secure location. This is your private key, and
it must remain secret. We will not store this key, and it is up to you to secure it. If this private key
has been compromised or lost, you should revoke the keypair and create a new one.

@) Linux/Mac OS X users: for Security reasons you must run “chmod 600" on the file
immediately after downloading it.

- Download private key in PEM format
far use with OpensSH and most clients on Linux and Mac 08 X

“ Download private key in PPK Format

T Ay TARS A NSt ar ey |

for use with Win2CP and PuTTY on Windows

s

(191


http:///

Building Mobile Applications

4. |n Zend Studio, navigate to Window | Show View | Targets:

t Problems E Console JJE Remote Systems 4 Targets 23 i& ri'c'

5. Click on the Add Target icon and choose phpcloud as shown in the following

screenshot:

Add Target

Add Target
Select target type.

Create a New Target:

zend
Server ®

Zend Server phpcloud Openshift Detect Local

@:I < Back [ MNext> | | Cancel | Finish

6. On the phpcloud Target Details page, you will be asked to provide the
following details:

o Username: Used to specify your Zend Developer Cloud username

o Password: Used to specify your Zend Developer Cloud password

[1801]



http:///

Chapter 10

o SSH Private Key: Used to point to the SSH key that was just generated in the
phpcloud container creation screen

Add Phpcloud Target

Phpcloud Target Details il
Specify target details. | j
Username: zf2.book@gmail.com

Password: EEEERAEEERREE AR | Restore |

Browse || Generate |

SSH Private Key: | fUsers/krishna/.ssh/id_rsa

In order to debug and connect to your container without a password, you need to specify a
SSH private key that enables authentication via asymmetric cryptography. You can either
browse to an existing key or generate a new one.

@ [ <Back | | New> | [ Cancel | [ Finish |
l
7. After you click on Finish, you will see that the new target is added to the list
of targets:
[‘_ Problems E Console J!E Remote Systems & Targets &3 s@ E" ¥ =0

bﬁ https:/ fzf2cloudapp.my.phpcloud.com:10082 (Id: 0_0)

=4 o

What just happened?

We have successfully created our first mobile application using Zend's cloud-connected
mobile application projects. In the subsequent sections we will understand how to
extend these web services using Zend Framework 2 to build additional functionality
into mobile applications.

11811



http:///

Building Mobile Applications

PhoneGap is a mobile application development framework which allows developers to build
mobile applications using HTML, CSS, and JavaScript. The PhoneGap framework is used to
convert these applications into native mobile applications, without having to rewrite the
applications in native languages like Objective-C for iOS.

Zend Studio 10 now integrates PhoneGap into the Zend Studio IDE; this enables developers
to easily build and test mobile applications without having to depend on external libraries.

For more information on cloud-connected mobile applications using Zend Studio 10; please
refer the following documentation page:

http://files.zend.com/help/Zend-Studio-10/zend-studio.htm#cloud
connect _mobile.htm

Time for action - building your first cloud-connected mobile

Perform the following steps for building your first cloud-connected mobile application:

1. Choose the Cloud Connected Mobile Project option from the New menu:

® Zend Studio m Edit Refactor Source Navigate Search Project Run Window Help Zend Store
800 New > " Cloud Connected Mobile Project fauls
Ci- ool OpenFlle... ~& Web Services Project
I PHP Explorer 53 | Close HW %, PHP Project from Git
“  Close All o HW % PHP Project from GitHub [
Save 5 PHP Project from OpenShift
£svaiA:. [ PHP Project from Zend Developer Cloud
Save Al % PHP Project from SVN
Revert 2% Local PHP Project
12 PHP Project from Existing Directory =
Move... 12 PHP Project from Remote Server
Rename... F2 4 Project... new
& Refresh F5 udio
Convert Line Delimiters To > ET PHPUnit Test Case
e £t PHPUnit Test Suite
e @ Class

2. Inthe Project wizard, you will be asked to provide the following details:
o Mobile Project Name: Name of the client-side mobile application project

o Web Services Project Name: Name of the web services project for the
mobile application

o Web Services Project Deployment Target: Deployment target for the mobile
application (you can choose the previously created phpcloud target here)

11821


http:///

Chapter 10

K Zend Studio 10 supports various deployment options; it can
~ automatically detect local Zend Server installation or deploy an
Q application to one of the targets— the local Zend Server, remote
Zend Server, Zend Developer Cloud (phpCloud), or OpenShift Cloud.

8.0 0 Mew Cloud Connected Mobile Project

Create a Cloud Connected Mobile Project.

Mobile Project

Create a Cloud Connected Mobile Project. =

MNarme: MyMobileApp

E Create web services project

Name: | MyMobileService| |
Location: ',.'Llsersfkrishﬂa,fi!end.-'wc:rkspaces.n'DefaulﬂNorkspal:e [+ |
Target: | https://zf2cloudapp.my.phpcoud.com:10082 (I14: 1_0) : || Add Targer |
@ < Back |  Mext= | | Cancel | [ Finish ]

[1831



http:///

Building Mobile Applications

3. Inthe template selection page, choose Simple Services as it will create a simple
project with a client/server-side example as shown in the following screenshot:

8 00 Mew Cloud Connected Mobile Project
Templates

Select a template to generate fully-functioning mobile and server projects. ! E
Available Templates:
Empty Projects |Select this template to create a Web Mobile client
MWative APls Example - side project that contains examples of how to

M consume native mobile APIs in your mobile
project, and a server side project containing
example implementation of Web services exposed
for the mobile client - side project.

On server side, the praject has a very simple APl
with two example RPC services and one RESTful

' service with a php handler class that implements
'storage and retrieval of customers from sglite.db
file.

On client side, mohile application is built of two

| screens, one with list of employees and the other
with employee details such as employee name,

| location, and phone number. Application fetches
'data from the server - side, but also has some
predefined sample static data to present when
|server - side doesn't work.

@ | <Back | Next = | cancel | E-—Hnleah-—a

(1841



http:///

Chapter 10

4. Clicking on Finish will create the mobile and web services projects. The user

interface designer in the mobile project lets us easily make changes to the mobile
interface as shown in the following screenshot:

8.0 PHP - MyMobileApp/mobile.appGUl - Zend Studio - [Users/krishna/Zendworkspaces [DefaultWorkspace S
r v Qv Qe vl . BP0 % B SR
P Explorer I =0 @ wecome L guewayami | 8 myvobiensn [ mobiieappcun £1 ami.m =@
& An outlineg i3 ney
availadle.
L yhtnb e Apn
P (v Comgnants
 configaml
s mobile sppCLl 5
15 MyMabileServce o
Customer1 PAGE: O |
Customer2 (7] e inden
| Thema | C defauit: Gray)
imsge | Choose...
Backgrouna | No repeat
Imasge
| — /messages/ Lo
e Comest 15 Sy
Padding
L -
pa——
l '
® Problems [ Consote 21 4 Remote Syatems | % Targets ]
Na cansales io display 2 this rime.

5. Now run the project from the Zend Studio IDE; it should launch a Zend emulator
interface as shown in the next screenshot:

The Get List button should return the list of customers from the

web services project via an RPC call. If the request doesn't return a
response and throws an error such as Ajax error. Error: Access is
denied. Trying static data!, then check the gatewayURL variable in
MobileApplication/www/js/my.js.

Make sure it points to the correct deployment URL as follows:

var gatewayURL = 'http://zf2cloudapp.my.phpcloud.
com/MobileService';

(1851



http:///

Building Mobile Applications

Customers

Get List

What just happened?

We have successfully created our first mobile application using Zend's cloud-connected
mobile application projects. In the subsequent sections we will understand how to
extend these web services using Zend Framework 2 to build additional functionality
into mobile applications.

Native applications versus mobile weh applications

Native mobile applications provide great benefits over mobile web applications. Native web
applications are run from the device memory, so there is little need for network interaction;
these applications tend to load and run faster. One of the other key advantages of native
mobile applications is that they have access to the device's native features such as camera,
device information, and accelerometer; this gives native applications an added advantage
over mobile web applications.

[1861]


http:///

Chapter 10

Time for action - testing as a native application

In this task we will create a native iOS application using the Native Applications section of

Zend Studio. Before you get started, make sure that Xcode IDE in installed on your Mac.
Perform the following steps:

. For Android applications, you will need to have Android Development
~Q Tool (ADT) installed; this can be installed directly from Zend Studio.

For a Windows phone application, the Windows Phone SDK needs to
be installed.

1. Now, from our mobile application project choose Create iOS Application:

800 | ' PHP - MyMobileApp/config.xml - Zend Studio - /Users/krishna/Zend /workspaces/DefaultWorkspace .
mpd W@ | G B |
IS PHP Explorer 53 = O || @ welcome £.J gateway.xml @ myMobileApp 53 = ]
5% ¥ || @ General Q)
¥ 12 MyMobileApp

(= www General Information

Native Applications
# config.xml

[ mobile.appGui
=5 MyMabileService

Enter your application's properties.

Select the mobile platform for your native application.
Name: MyMobileApp

Create Android Application
ld: com.phonegap.example

Version 1.0.0

105 create ios Application N
Version Code 1

@ Create Windows Phone Application
~ APIs

Review a list of PhoneGap AP features to be be inserted into your native

2. You will be asked to provide the project details; please specify the Company Name
and Bundle Id values. The Bundle Id value refers to the unique name that is used
to identify the application; this is usually provided in the com.my-company-name.
my-application-name format. When you register the application with the Apple
Store, ensure that the bundle identifier matches with the one provided at Apple.

[-HaNs! MNew i0S Application

Create an iOS Application

.
Create an i0S Application. ‘nq

Project Name: MyMobileApp_ios

Location: fUsers/krishna/Zend/workspaces/DefaultWorkspace v
Bundle 1d: com.phonegap.example

Company Name: My Company

Cancel | Finish |

11871



http:///

Building Mobile Applications

3. Now the new iOS project is created in the workspace as you can see in the
following screenshot:

8 00
L="_;1r ﬁ"' Gr QE' \;[:'t
[~ PHP Explorer 53 = O

EEN
¥ =2 MyMobileApp
P =i
& config.xmil
E’( mohile.appGUl

= MyMobileApp_los

b =5 MyMeobileService

Zend Studio allows for the creation of multiple dependent mobile application
projects. If you have to make any changes to the client code, the changes can
be made in the parent mobile project and that will automatically update all
dependent client projects.

For more information on creating native applications, please refer to the Zend
Studio documentation at the following link:

http://files.zend.com/help/Zend-Studio-10/zend-
studio.htmffcreating native applications.htm

4. If you run the project, the application will launch the iOS emulator and will launch
the mobile application as shown in the following screenshot:

[1881]


http:///

Chapter 10

Carrier = 11:39 PM p Carrier = 11:37 PM

Customers £ Back Details

Jane

Is currently walking in:

. Embank it
Get List P::ﬂ:\\ (e Eabonkran
2

%
2, dc
Iap ﬁ[a @201_}5}%27&

Make a call

What just happened?

We have created a new native iOS application using Zend Studio support for a native
application; in our next section we will be using Zend Framework 2 to provide web
services for this application.

Now that you have created an iOS native application, try creating an Android version
of the same application using Zend Studio. For this, you will need to install the Android
Development Tool on your Zend Studio installation.

(1891


http:///

Building Mobile Applications

Zend Server Gateway is a lightweight web services gateway based on Zend Framework 2,
which allows for the mapping of web service routes to various controller/actions of the web
services. Zend Server Gateway is responsible for authentication, validation, filtering, and
routing for RPC and RESTful APIs used in CCM projects.

The routing configurations are mapped into config/gateway.xml; the routes and
configurations can be managed using the gateway editor interface provided in Zend Studio.

Time for action - creating a mobile search interface

In this task, we will be creating a simple search interface for searching the existing customer
records by name using the following steps:

1. We will need to create a search function in the CustomerRepository model
(MyMobileService\src\MyCompany\Model\CustomerRepository.php):

public function getSearch (sSquery)

{

$Swhere = new \Zend\Db\Sgl\Where () ;
Swhere->1like ('name', "%$Squery%");
return $this->customerTable->select (Swhere) ->toArray () ;

}
2. Addanew action in RpcController (MyMobileService\src\MyCompany\
Controller\RpcController.php); this will handle the web service request:

public function getSearchCustomersAction (Squery)

{

Scr = new CustomerRepository() ;
return $cr->getSearch ($query) ;

}
3. Inthe gateway editor, create a new RPC service; set the following options:
o URL: /search
o Method: GET
o Request Parameters(Add): Name — query; Source — Route

o Handler Method: MyCompany\Controller\RpcController: :getSear
chCustomersAction

[1901]



http:///

Chapter 10

4.

You can test the RPC service by right-clicking on the service and choosing Test
Service. On the right-hand side you will be presented with an interface to provide

test input and validate the service response:

v.gm.;mi. &3 . |F| RpcController.php [5" mobile.appGul | my.js
'._v_.' ﬁ ' L
RPC RPC RESTful RPC
GET fcustomers GET /hellof:na... Jfoustomer{/:id] GET fsearch/:gu...
Validation
e 1H
| Render

In the mobile GUI editor, create a new page searchCustomers, and add the

following elements:
o Text Box: custsearchinput
o Button: searchbutton

o List View: custlistview

In the binding section of the Search button, bind the button with the GET /
search:query () web service. Map the custsearchinput textbox to the query
route parameter in the data section. This action will bind the search text to the
query route parameter. Note that the query route parameter is already mapped to

getSearchCsutomerAction.

11911



http:///

Building Mobile Applications

7. Modify the onGetSearchquery JavaScript method in MyMobileApp/www/js/
my . js to handle the RPC response:
function onGetSearchquery (response) {
// TODO Custom logic to handle server response
customers = response;

var newCustomers = '';
$.each(customers, function(index, item)
newCustomers += '<li data-theme="">'
+ '<a href="#page2?empId="' + index
+ '" data-transition="none">' + item.name + '</a>' +
'</1i>t;

3N

S ('#custlistview 1li[role!=heading]') .remove () ;
S ('#custlistview') .append (newCustomers) .listview('refresh');

}

8. Make sure that you link the Search page from the index page using a button.

9. Now run the project in native mode; you will be able to see the search page, like the
one shown in the following screenshot:

Carrier % 11:42 PM Carrier 7 11:43 PM

Customers Search

Search

Get List

Search

11921


http:///

Chapter 10

What just happened?

We have now created new web services for the existing cloud-connected mobile application
and have tested the mobile app in a native emulator. With Zend Studio 10, you can see the
simplicity in building mobile apps which are supported by web services running on the cloud.

Q1. Which of the following platforms are supported in Zend Studio 10 for native mobile
application development?

1. Android
2. Firefox OS
3. MeeGo

4. Brew

Q2. Which of the following web services are not supported by Zend Server Gateway for
building cloud-connected mobile applications?

1. RPC
2. SOAP
3. REST

summary

Cloud-connected mobile applications are a great step by Zend towards enabling PHP
developers to build and support mobile apps using the cloud platform. With CCM, Zend is
offering an extremely robust, yet simple-to-use platform for building these applications.

Having completed this chapter, you have come to the end of this book. You have covered a
lot of ground in various different applications of Zend Framework through this book and have
accomplished a number of tasks. This book has shown you the building blocks for developing
applications using Zend Framework 2; there is lot more to learn in Zend Framework, most of
which is explained in an extremely detailed manner in the Zend Framework documentation
(http://framework.zend.com/manual/2.2/en/index.html).

Thanks for reading. Feel free to give your feedback on how you felt reading this book.

[1931


http:///



http:///

Chapter 1, Getting Started with Zend Framework 2.0

Pop quiz -2end Framework 2.0

Q1
Q2 4

Chanter 2, Building Your First Zend Framework
Anplication

Pop quiz-2end Framework 2.0

Q1
Q2 4

Chapter 3, Creating a Communication Application

Pon yuiz-2end Framework 2.0

Q1 2
Q2 1



http:///

Pop Quiz Answers

Chapter 4, Data Management and Document Sharing

Pop quiz - data management and document sharing

Ql 4
Q2

Qi1 land?2
Q2 2and 4

Chapter 6, Media Sharing

Q1
Q2

Chapter 7, Search Using Lucene

[1961]



http:///

Appendix

Pop quiz - creating a simple store

Ql 2
Q2 1

Chapter 9, HTMLS Support

Ql 4
Q2 land 4

Chapter 10, Building Mobile Applications

Q1 1
Q2 2

11971



http:///



http:///

Symbols

Sfeatures parameter 54
$form->setinputFilter() method 50
S sudo service zend-server restart command 10
Stable parameter 54
Sthis->add() method 47
.htaccess 26
<input> element
URL 160
<link> tag 85
<script> tag 86

A

a2ensite comm-appp.local command 24
abstract_factories, ServiceManager 59
Adapter Sadapter parameter 54
adaptiveResize (Swidth, Sheight) function 108
addBcc() method 96
addCc() method 96
addDocument(Document $Sdocument)
method 126

addProductAction() action 144
Add Share 79
addSharing() function 77
Add Target icon 180
Administration Interface, Zend Server CE 11
admin Ul

implementing, for managing users 65-70
album view 116
aliases, ServiceManager 59
Android Development Tool (ADT) 187

appendFile function 89
appendStylesheet function 89
attach() 99
attributes, HTML5
list attribute 171
max attribute 171
min attribute 171
multiple attribute 172
pattern attribute 171
placeholder attribute 171
required attribute 172
step attribute 171
autoload_classmap.php file 33
Autoloader configuration 34

basePath() 89
BasePath helper 85
Bundle Id value 187

C

CCM application
about 177,178
building 182-186
phpCloud 178
Zend Studio 10 178

CCM Tool 177

cloud-connected mobile (CCM) 177, 178

code

migrating, to ServiceManager 61-63

color element 165

Index


http:///

commit() method 126
Communication Application page 101
Company Name value 187
composer

about 21, 106

installing 22
composer.json file 106
concrete placeholder helpers

HeadLlink helper 85

HeadMeta helper 86

HeadScript helper 86

HeadStyle helper 87

HeadTitle helper 87

implementing 85

jQuery Ul, using in simple page 88-90
config/application.config.php file 36
config component 31
config file 148
config/module.config.php file 33
ConfirmAction function 57
confirm_password field 41
Confirm Password field 42, 48
controller layer 30
controllers

about 34

creating 31-33
Create operation. See CRUD
create module command 30
create operation 66, 67
crop ($startX, SstartY, ScropWidth, ScropHeight)

function 108

CRUD 63

CurrentTime module 38
setting up 38

custsearchinput textbox 191

D

Data API

deleteAlbumEntry() function 114
deleteCommentEntry() function 114
deletePhotoEntry() function 114
deleteTagEntry() function 114
functions 114

getAlbumFeed() function 114
getCommentEntry() function 114
getPhotoFeed() function 114

getTagEntry() function 114
getUserFeed() function 114
insertAlbumEntry() function 114
insertCommentEntry() function 114
insertPhotoEntry() function 114
insertTagEntry() function 114
database
creating 16-18
creating, in MySQL Server 15
database operation
CRUD 63
data/images directory 175
data section 191
date element 162
Date field 171
datetime element 161
datetime-local element 161
Delete operation. See CRUD
delete(Sid) method 126
delete(Swhere) method 64
deleteAction() action 67
deleteAlbumEntry() function 114
deleteCommentEntry() function 114
Delete option 75
deletePhotoEntry() function 114
deleteProductAction() action 144
deleteTagEntry() function 114
deleteUpload() method 72
deleteUser(Sid) function 65
Delete user link 69
Dependency Injection (DI) 7
Dispatch event 102
Document class 126
Document component 124
document files
indexing 134-137
document management
file upload form, creating 71-75
DoDirectPayment 157

E

editAction() action 66
Edit user link 69

Email Address field 46, 47
EmailAddress field 40
email element 164

[200]



http:///

email field 42, 58 G

e-mail form
creating 97, 99 gatewayURL variable 185
etExpressCheckout 149 generateThumbnail() method 109
Event 99 getAlbumFeed() 115
Event manager object 99 getAlbumFeed() function 114
exchangeArray() method 50, 52 getAuthService() function 63
external modules 105 getAutoloaderConfig() method 33
getCommentEntry() function 114
F get(‘config’) method 73
getConfig() method 33
factories, ServiceManager 60 GetExpressCheckoutDetails 149
fetchAll() function 65 getGooglePhotos() method 115
fetchAll() method 72 getlastinsertValue() method 65
Field class 125 Get List button 185
Field component 124 getPhotoFeed() function 114
file download getPlaylistListFeed() method 119
implementing 80 getSearchCsutomerAction 191
fileDownloadAction() function 79 getServiceConfig() method 60
File element 172 getSharedUploadsForUserld() function 77
file_get_contents() method 80 getSharedUsers() function 77
file sharing getSharedUsers()method 78
implementing 76-81 getSubscriptionFeed() method 119
managing 76 getTable() method 64
File transfer adapter 71 getTagEntry() function 114
File upload form element 71 getTopRatedVideoFeed() method 119
Filters getUpload() method 72
with multiple file uploads 176 getUser($id) function 65
find() method 129 getUserByEmail($userEmail) function 65
Finish button 181 getUserFavorites() method 119
form getUserFeed() 115
validating 46 getUserFeed() function 114
formAction() 165 getUserUploads() method 119
FormElement 45 getVideoCommentFeed() method 119
formElement() view helper 167 getVideoFeed() method 119
form object 42 getVideoResponseFeed() method 119
Form object 45 getYoutubeVideos() method 119
Form View Helpers Git
URL 45 about 11,21
framework installation, URL 11
documentation, URL 173 installing 22
Full mode 110 URL 11, 21
functions, HeadLink helper 85 used, for Zend Framework 2.0 11
functions, HeadMeta helper 86 Google Data APl 113
functions, HeadScript helper 86 Google Photos
functions, HeadStyle helper 87 photos, fetching 115-118

[201]



http:///

Google Photos API 114 |
Google services

Google Analytics 113 iframe tag 95
Google Blogger 113 images
Google Calendar 113 resizing, modules used 106-108
Google CodeSearch 113 ImageUpload entity 109
Google Documents 113 index 124
Google Notebook 113 index action 34
Google Provisioning 113 indexAction() action 66, 141, 144
Google Spreadsheets 113 indexAction function 94
Picasa Web Albums 113 Index class
YouTube 113 about 126
group chat addDocument(Document Sdocument) method
building 90 126
group chat application commit() method 126
creating 90-95 delete($id) method 126
optimize() method 126
H IndexController file 31
indexing process
HeadLink helper about 125
about 85 Document class 126
functions 85 Field class 125
HeadMeta helper Index class 126
about 86 Lucene index, generating 127-129
functions 86 ZendSearch\Lucene, using 125
HeadScript helper index, searching
about 86 ZendSearch\Lucene, using 129-133
functions 86 index view 116
headScript() view helper 89, 90 input elements, HTML5
HeadStyle helper color element 165
about 87 date element 162
functions 87 datetime element 161
headTitle() helper 87 datetime-local element 161
HeadTitle helper 87 email element 164
HTML5 month element 163
about 159 number element 164
attributes 171 range element 164
browser, compatibility 171 time element 162
browser compatibility, URL 171 url element 164
elements 160 week element 163
feature, URL 171 InputFilter class
input elements 160-167 about 46-48, 50
multiple file uploads 172-175 validation, adding to registration form 47-50
offerings 159 insert($set) method 64
URL 160 insertAlbumEntry() function 114
view helpers 167-171 insertCommentEntry() function 114

[202]



http:///

inserténtry() method 119
insertPhotoEntry() function 114
insertTagEntry() function 114
insert value 65

invokables array 68

invokables, ServiceManager 60
isValid() method 50

J

jQuery Ul

URL 90

using, in simple page 88-90
JSON helper 85

L

label field 132
label index field 127
layouts 83
list attribute 171
Listener 99
listOrdersAction() action 144
localhost value 18
Login button 89
Lucene
about 123
components 124
Document 124
Field 124
index component 124
overview diagram 124
used, for searching 123
ZendSearch\Lucene, installing 124, 125
Lucene index
generating 127-129
label field 127
owner field 127
upload_id field 127

M

mails
sending 95

mails, sending
Zend\Mail\Message 96
Zend\Mail\Transport 96
Zend\Mime\Message 96

Zend\Mime\Part 96
Mail transport 96
Manage Documents 78
max attribute 171
media

sharing 105
MediaManagerController file 110, 115, 119
MediaManagerController file method 109
messagelist action 92
meta tags 86
Microsoft Office documents

document files, indexing 134-137

indexing 133, 135, 136
min attribute 171
mobile search interface

creating 190-193
mobile web application

versus native application 186-189
model layer 30
models

creating 51-55
modify operation 65
mod_rewrite 26
module

creating 29

creating, ZFTool used 30

used, for resizing images 106-108
module configuration

about 34

controllers 34

modifying 34-38

routes 34

views 34
Module.php file 29, 33, 62
month element 163
multiple attribute 172
MVC layer

about 30, 31

controller layer 30

model layer 30

view layer 30
MysaL

about 14

database, creating 16-19

installing 15

phpMyAdmin 16

URL 14

[203]



http:///

MySQLl Server
database, creating 15

N

Name field 42, 47
namespaces
about 63
using 63
native application
testing as 187-189
versus mobile web application 186-189
number element 164
Number field 171

(0

onBootStrap() method 101
onGetSearchquery method 192
optimize() method 126

owner field 132

owner index field 127

P

password field 41, 42, 58
pattern attribute 171
paymentCancelAction() action 141
paymentCancelAction() method 153
paymentConfirmAction() action 141
paymentConfirmAction() method 152
payments

accepting, PayPal used 150-157
PayPal

about 146

and Zend Framework 2.0 146

setting up 147, 148

URL 147, 153

used, for accepting payments 150-157

used, for payments 146
PayPal Express Checkout

developer documentation, URL 150

PayPal, used for accepting payments 150-157

URL 150
workflow 149-157
paypalExpressCheckoutAction()
function 150, 151

peckpaypal

URL 147
PhoneGap

about 182

CCM application, building 182-186
photo gallery

application 108

implementing 109-113
phpCloud

about 178

account, configuring 179-181

PhoneGap 182

URL 178

Zend Studio 182
phpCloud account

configuring 178

registering, URL 178
PHP Command line

installing 22
phpMyAdmin

about 16

installation, URL 16

URL 16
placeholder attribute 171
processAction() action 67
processAction method 48
processAction() method 54, 56
productDetailAction() action 141

Q

query route parameter 191

R

range element 164
Range field 171
Read operation. See CRUD
receive() method 71
Refresh button 95
Register button 89
RegisterController class 43, 48, 53
RegisterFilter class 47
RegisterForm class 40, 45, 50
registration form
configuration 44
controller 43

[204]



http:///

creating 40-45

display, URL 44

form 40, 41

validation, adding 47-50

views 41

views, confirmation page 43

views, registration page 41
removeSharing() function 77
RenameUpload filter 173
required attribute 172
required field 46
resize (SmaxWidth = 0, SmaxHeight = 0)

function 108

resize method 109
ResultSet SresultSetPrototype parameter 54
Review option 149
rotate function 113
rotatelmage ($direction = ‘CW’) function 108
rotatelmageNDegrees (Sdegrees) function 108
routes 34

S

save ($fileName, $format = null) function 108
saveUpload() method 72
Search button 191
search results

displaying 130-133
select(Swhere = null) method 64
Sendmail transport 97
sendMessage() method 93, 94
send() method 96
ServiceManager

configuration 59, 60

existing code, migrating 61-63

key factories 61-63
ServiceManager, configuration type

abstract_factories 59

aliases 59

factories 60

invokables 60

services 60

shared 60
services, ServiceManager 60
setBody() method 96
setDestination() method 71
SetExpressCheckout 149

setFrom() method 96
setHeaders method 96
setParts() method 96
setPassword() method 52
setSubject() method 96
setTerminal() 80
setTo() method 96
shared, ServiceManager 60
shopping cart
about 140
checkout process 140
store front, creating 140-143
shoppingCartAction() action 141
Shopping Cart page 154
showlmageAction() 111
SMTP transport
URL 97
speckpaypal repository 147
Sql $sql parameter 54
src component 31
src/Users/Model/ImageUpload.php file 109
src/Users/Model/ImageUploadTable.php
file 109
step attribute 171
store
creating 139
StoreAdminController
about 144
addProductAction() action 144
deleteProductAction() action 144
indexAction() action 144
listOrdersAction() action 144
updateOrderStatusAction() action 144
viewOrderAction() action 144
store administration user interface
creating 144-146
key aspects 143
StoreController
about 141
indexAction() action 141
paymentCancelAction() action 141
paymentConfirmAction() action 141
productDetailAction() action 141
shoppingCartAction() action 141
store front
creating 140-143
store_orders table 140

[205]



http:///

store_products table 140
subaction parameter 110
Submit button 45
submit field 41

Submit field 42

T

TabelGateway object 76
TableGateway 50
admin Ul, implementing for user
management 65
form, saving 51-55
model, creating 51-55
URL 54
TableGateway class
about 64
admin Ul, implementing for user management
66-70
delete(Swhere) method 64
getlLastinsertValue() method 65
getTable() method 64
insert(Sset) method 64
select(Swhere = null) method 64
update(Sset, Swhere = null) method 64
TableGateway constructor
Sfeatures parameter 54
Stable parameter 54
about 54
Adapter Sadapter parameter 54
ResultSet SresultSetPrototype parameter 54
Sql Ssql parameter 54
TableGateway object 50, 109
thumbnail filename 108
Thumbnail mode 110
time element 162
trigger() 99

U

ui-button class 88

Update operation. See CRUD
update(S$set, Swhere = null) method 64
updateOrderStatusAction() action 144
Upload entity 108

upload_id index field 127
UploadManager controller 74

UploadManagerController 72
Upload now 175
upload_sharing 76
Upload Sharing page 79
UploadTable class
about 76, 77, 81
addSharing() function 77
getSharedUploadsForUserld() function 77
getSharedUsers() function 77
removeSharing() function 77
UploadTable factory 76
UploadTable object 78
url element 164
URL helper 84
use keyword 63
user
authenticating 56, 58
User class 52
UserManagerController
about 66
deleteAction() action 67
editAction() action 66
indexAction() action 66
processAction() action 67
users
create operation 66, 67
managing, admin Ul implemented 65-69
modify operation 65
UserManagerController 66
Users module 29, 34
UserTable entity 52

\

validation

adding, to registration form 47-50
view component 31
view helper

about 84

BasePath helper 85

JSON helper 85

URL helper 84
view helpers, HTML5

for input elements 168
View Image link 112
View Image page 113
view layer 30

[206]



http:///

viewOrderAction() action 144 module layout setting, ZF events used 100, 102

views Zend\Form
about 34, 83 about 39
errror messages 41 registration form, creating 40-45
view helpers 41 Zend Framework
view logic 41 components 71
View Source link 89 Zend Framework 2.0
about 7, 8, 27
W and PayPal 146
Git, using 11
WebinolmageThumb Zend Framework 2.0 module
about 105 about 27
adaptiveResize (Swidth, Sheight) function 108 advantages 27

crop (SstartX, Sstarty, ScropWidth, ScropHeight) config component 31
function 108 configuring 33
resize (SmaxWidth = 0, SmaxHeight = 0) creating 29

function 108 src component 31

rotatelmage ($direction = ‘CW’) function 108 view component 31
rotatelmageNDegrees ($degrees) function 108  zend Framework 2.0 project
save (SfileName, $format = null) function 108 folder layout 28

week element 163

prerequisites 21
where condition 64

Zend Framework 2 module
URL 106

Y Zend Framework 2 ServiceManager. See ZF2

YouTube Data API ServiceManager
about 119 Zend Framework, components
getPlaylistListFeed() method 119 F!Ie transfer adapter 71
getSubscriptionFeed() method 119 File upload form element 71
getTopRatedVideoFeed() method 119 Zend Framework keyyvord 119
getUserFavorites() method 119 Zend Framework project
getUserUploads() method 119 creating 22-26
getVideoCommentFeed() method 119 URL 27 .
getVideoFeed() method 119 ZendGdata library 114
getVideoResponseFeed() method 119 Zend GData package

insertEntry() method 119 2 mzt\a:llirt\girl{JRL 108 \st 80
videos, listing for keyword 119, 121 en P .esponse ream()
Zend\InputFilter 46

y4 Zend\Mail 96
Zend\Mail\Message 96

Zend\Authentication Zend\Mail object 99
about 55 Zend\Mail\Transport 96
user authentication 56-58 Zend\Mime\Message 96

Zend\EventManager Zend\Mime\Part 96
Event 99 ZendSearch\Lucene
event flow 100 about 124
Event manager 99 installing 124, 125
Listener 99 used, for indexing 125

[207]



http:///

used, for searching index 129-133
Zend Server CE
about 8
configuring 11-14
installing 8-10
system requisites 8
system requisites, URL 8
URL 8
Zend Server CE, configuring
Administration Interface 11
Zend Server Community Edition. See Zend
Server CE
Zend Server Gateway
about 190
mobile search interface, creating 190-193
Zend_Service package 105
ZendSkeletonApplication
about 22-28
URL 22

ZendSkeletonModule 29, 34, 38
Zend Studio
about 182
CCM application, building 182-186
documentation, URL 188
URL 182
Zend Studio 10
about 178, 183
URL 178
ZF2 ServiceManager 59
ZF events
used, for setting module layout 100-102
zf_pass value 18
ZFTool
about 30
URL 30
used, for creating module 30
zf_user value 18

[208]



http:///

open source

community experience distilled

PUBLISHING

Thank you for buying
Zend Framework 2.0 hy Example Beginner's Guide

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're

using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.


http:///

open source

community experience distilled

PUBLISHING

PHP Application Development
with NetBeans

PHP Application Development with NetBeans:
Beginner's Guide

ISBN: 978-1-84951-580-1 Paperback: 302 pages

Boost your PHP development skills with this
step-by-step practical guide

1. Clear step-by-step instructions with lots of practical
examples

2. Develop cutting-edge PHP applications like never
before with the help of this popular IDE, through
quick and simple techniques

3. Experience exciting features of PHP application
development with real-life PHP projects

Ext JS 4 Web Application
Development Cookbook

Ext JS 4 Web Application Development Cookhook
ISBN: 978-1-84951-686-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications with
the latest version of the Ext JS framework in a
cookbook style

2. From creating forms to theming your interface, you
will learn the building blocks for developing the
perfect web application

3. Easy to follow recipes step through practical and
detailed examples which are all fully backed up with
code, illustrations, and tips

Please check www.PacktPub.com for information on our titles


http:///

open source

community experience distilled

PUBLISHING

Socket.lO Real-time Web
Application Development

Socket.10 Real-time Weh Application Development
ISBN: 978-1-78216-078-6 Paperback: 140 pages

Build modern real-time web applications powered
by Socket.lO

1. Understand the usage of various socket.io features
like rooms, namespaces, and sessions

2. Secure the socket.io communication

3. Deploy and scale your socket.io and Node.js
applications in production

4. A practical guide that quickly gets you up and
running with socket.io

CouchDB and PHP
Web Development

ISBN: 978-1-84951-358-6 Paperback: 304 pages

Get your PHP application from conception to
deployment by leveraging CouchDB's robust features

1. Build and deploy a flexible Social Networking
application using PHP and leveraging key features of
CouchDB to do the heavy lifting

2. Explore the features and functionality of CouchDB,
by taking a deep look into Documents, Views,
Replication, and much more.

3. Conceptualize a lightweight PHP framework from
scratch and write code that can easily port to other
frameworks

Please check www.PacktPub.com for information on our titles


http:///

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Started with 
Zend Framework 2.0
	Zend Framework 2.0
	Introduction to Zend Server Community Edition (CE)
	Zend Server CE – system requirements

	Time for action – installing Zend Server CE
	Configuring Zend Server CE
	Zend Server CE – Administration Interface


	Time for action – configuring Zend Server CE
	MySQL
	Time for action – installing MySQL
	phpMyAdmin

	Time for action – creating a database
	Summary

	Chapter 2:
Building Your First Zend 
Framework Application
	Prerequisites
	ZendSkeletonApplication
	Time for action – creating a Zend Framework project
	Zend Framework 2.0 – modules
	Zend Framework 2.0 – project folder structure

	Time for action – creating a module
	MVC layer
	Zend Framework module – folder structure
	Time for action – creating controllers and views
	Zend Framework module – configuration
	Time for action – modifying module configuration
	Summary

	Chapter 3:
Creating a Communication Application
	Zend\Form
	Time for action – creating a registration form
	Form validation
	Zend\InputFilter

	Time for action – adding validation to the registration form
	Models and database access
	TableGateway

	Time for action – creating models and saving the form
	Zend\Authentication

	Time for action – user authentication
	Summary

	Chapter 4:
Data Management and 
Document Sharing
	Zend Framework 2 ServiceManager
	Time for action – migrating existing code to ServiceManager
	Database operations
	More on TableGateway

	Time for action – implementing an admin UI to manage users
	Document management
	Time for action – creating a file upload form
	Managing file sharing
	Time for action – implementing a file sharing system
	Summary

	Chapter 5:
Chat and E-mail
	Layouts and views
	View helpers
	The URL helper
	The BasePath helper
	The JSON helper

	Concrete placeholder implementations
	The HeadLink helper
	The HeadMeta helper
	The HeadScript helper
	The HeadStyle helper
	The HeadTitle helper


	Time for action – using jQuery UI in a simple page
	Building a simple group chat
	Time for action – creating a simple group chat application
	Sending mails
	Zend\Mail\Transport
	Zend\Mail\Message
	Zend\Mime\Message and Zend\Mime\Part

	Time for action – creating a simple e-mail form
	Zend\EventManager
	Time for action – setting module layout using ZF events
	Summary

	Chapter 6:
Media Sharing
	External modules
	Resizing images
	Time for action – resizing images using modules
	The Photo gallery application
	Time for action – implementing a simple photo gallery
	Google Data APIs
	The Google Photos API

	Time for action – fetching photos from Google Photos
	YouTube Data API
	Time for action – listing YouTube videos for a keyword
	Summary

	Chapter 7:
Search Using Lucene
	Introduction to Lucene
	Time for action – installing ZendSearch\Lucene
	Indexing
	Time for action – generating a Lucene index
	Searching
	Time for action – displaying search results
	Indexing Microsoft Office documents
	Time for action – indexing document files
	Summary

	Chapter 8:
Creating a Simple Store
	Shopping cart
	Time for action – creating a store front
	The Store administration
	Time for action – creating the Store Admin interface
	Payments with PayPal
	PayPal and Zend Framework 2.0

	Time for action – setting up PayPal
	PayPal Express Checkout 
	Time for action – accepting payments using PayPal
	Summary

	Chapter 9:
HTML5 Support
	HTML5 input elements
	Time for action – HTML5 input elements
	HTML5 view helpers
	Time for action – HTML5 view helpers
	HTML5 attributes
	Multiple file uploads

	Time for action – HTML5 multiple file uploads
	Summary

	Chapter 10:
Building Mobile Applications
	Cloud-connected mobile applications
	Zend Studio 10
	phpCloud

	Time for action – configuring your phpCloud account
	PhoneGap and Zend Studio

	Time for action – building your first cloud-connected mobile application
	Native applications versus mobile web applications
	Time for action – testing as a native application
	Zend Server Gateway
	Time for action – creating a mobile search interface
	Summary 


	Appendix:
Pop Quiz Answers
	Chapter 1, Getting Started with Zend Framework 2.0
	Chapter 2, Building Your First Zend Framework Application
	Chapter 3, Creating a Communication Application
	Chapter 4, Data Management and Document Sharing
	Chapter 5, Chat and E-mail
	Chapter 6, Media Sharing
	Chapter 7, Search Using Lucene
	Chapter 8, Creating a Simple Store
	Chapter 9, HTML5 Support
	Chapter 10, Building Mobile Applications

	Index

