
www.allitebooks.com

http://www.allitebooks.org

Zenoss Core 3.x Network and
System Monitoring

A step-by-step guide to configuring, using, and adapting
this free Open Source network monitoring system

Michael Badger

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Zenoss Core 3.x Network and System Monitoring

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2011

Production Reference: 1120411

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849511-58-2

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Michael Badger

Reviewers
Andrea Consadori

Jonny Gerold

Duncan M. McGreggor

Charlie Schluting

Development Editor
Neha Mallik

Technical Editor
Conrad Sardinha

Indexer
Tejal Daruwale

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Jovita Pinto

Proofreader
Stephen Silk

Graphics
Nilesh Mohite

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Michael Badger is a freelance technical communicator with a knack for helping other
people understand and use their computer software and technology. In addition
to writing a previous book about Zenoss Core: Zenoss Core Network and System
Monitoring, Badger authored Scratch 1.4: Beginner's Guide, a Scratch programming
tutorial.

He lives in north central Pennsylvania (United States) on a small farm and has
recently taken to raising pastured chickens, honeybees, and pigs. Michael is
searching for a way to integrate Zenoss Core into the hen house so that he can
receive an alert each time an egg is laid.

For more information, visit www.badgerfiles.com/zenoss3.

There are so many people to thank, starting with my family. They
tolerate my late nights and weekend work.

My team at Packt deserves a nod for finally helping me get this
revision done. Thanks for the help Rakesh Shejwal and Jovita Pinto.

Then there are the reviewers. It's not easy to provide substantive
critique of another person's work because it takes time and
thoughtful consideration for you to want to make my work better.
You should know that even though I did not incorporate all your
suggestions, I considered them carefully.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Andrea Consadori is the lead technical support at Lais s.r.l. and has been working
with Zenoss to monitor customer IT infrastructures for the past four years.

He has been implementing simple zenpacks to integrate all of the vendors' products
he uses like Motorola Canopy/PTP, Alvarion, and so on.

Lais s.r.l. is a WISP and uses Zenoss to monitor its wireless infrastructure.

Earlier, he worked at Edslan s.p.a. (an Italian networking product distributor) where
he studied lots of networking brands.

Andrea is passionate about solving hard networking issues and enjoys working with
routing protocol and firewall rules.

I would like to thank Michela for her encouragement that makes my
skill and knowledge grow every day.

Jonny Gerold loves Open Source, enjoys working with Linux/Unix/Solaris, and
also enjoys dirt biking.

Duncan M. McGreggor started his programming career at the ripe old age of
11 in the early 80s. From his adventures in rewriting games on Kaypro's luggable
CP/M machine to the open source world, programming has been his passion. When
Duncan wasn't hacking, he was an Army MI linguist; worked his way up to sous
chef in a Massachusetts restaurant; studied quantum mechanics and mathematics as
a physics major; learned meditation while living with Tibetan monks; and started his
own software consulting company. His contract work included systems management
solutions for the U.S. Federal Government as well as Zenoss, Inc. After consulting for
several years, Duncan joined an engineering startup as the COO and eventually left
that position for Canonical where he manages teams in the Product Strategy group,
improving the Ubuntu Linux distribution.

www.allitebooks.com

http://www.allitebooks.org

Charlie Schluting, BS CS, MBA; is first a sysadmin, and second a technology
strategy connoisseur, currently working as the IS Operations Manager at Canonical
(the creators of Ubuntu Linux). Charlie also wrote Network Ninja, http://stores.
lulu.com/schluting, a book designed to educate sysadmins and mid-level
network engineers on the fundamentals of the protocols they work with. Charlie
can frequently be found dabbling in various technology startups, attempting to
change the world, when he's not touring off-road on his motorcycle (http://
charlierides.com).

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy & paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Network and System Monitoring with Zenoss Core	 7

Device management	 9
Availability and performance monitors	 10
Event management	 11
Plugin architecture	 12
System reports	 13

Custom device reports	 14
System architecture	 14
User layer	 15
Data layer	 16
Collection layer	 17

Device management daemons	 18
Performance and availability daemons	 18
Event daemons	 19

Summary	 20
Chapter 2: Discovering Devices	 21

Zenoss Core installation	 22
Preparing devices for monitoring	 22

SNMP	 23
SNMP versions	 24
Configuring SNMP on Linux	 25
Configuring SNMP and WMI on Windows	 26

Zenoss Plugins	 28
Installing Zenoss Plugins	 29

Port scan	 30
Opening monitoring-specific ports	 30

Configuring Linux firewalls	 31
Configuring Windows firewall	 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Zenoss Core setup wizard	 33
Step 1: Setting up users	 33
Step 2: Specify or discover devices to monitor	 34

Adding devices	 35
Manually find devices	 35
Autodiscover devices	 37

Our device inventory: A job well done	 38
Reviewing device creation job log	 40

Adding a single device	 42
Entering device attributes	 43

Importing a list of devices with zenbatchload	 46
Command line discovery with zendisc	 48
Summary	 49

Chapter 3: Device Setup and Administration	 51
Organizing devices in Zenoss Core	 52

Locations	 52
Systems and Groups	 54
Organizer details	 54

Editing organizers	 56
Moving organizers	 56

Classes	 56
Viewing a list of device classes	 57
Assigning devices to a class	 58

Modeling devices	 59
Modeler plugins gather device information	 60
Assigning modeler plugins	 62

Troubleshooting data collection	 62
Troubleshooting SNMP problems	 62

Running snmpwalk	 63
Is the SNMP daemon running on Linux servers?	 64
SNMP problems on Windows	 64

Troubleshooting WMI problems	 64
Zeneventlog—unable to connect to Windows	 65
Zenoss Core does not collect WMI data	 65

Troubleshooting Zenoss Plugins	 66
A class of its own	 66

Device administration	 67
Locking or unlocking a device	 67
Renaming a device	 68
Resetting the IP address	 69
Push changes	 70
Deleting devices	 70

Table of Contents

[iii]

zProperties defined	 71
Summary	 74

Chapter 4: Monitor Status and Performance	 75
Collectors collect	 76

Configuring the performance collector	 77
Monitoring components	 79

Interfaces	 80
OS Processes	 81

Add Process	 81
Viewing or editing the process details	 82
Configuration properties	 82
Monitoring OS Processes	 83

Services	 85
Enable monitoring for a service	 85
Configuration properties	 87
Monitoring exceptions for services	 87
Interactively monitor IP services	 88

File Systems	 89
Ignoring File Systems with zProperties	 89

Network Routes	 90
Networks	 91

Add Components	 92
Viewing and editing component details for a device	 93

Performance Graphs	 94
Interface template	 95

Performance Graphs	 96
Working with graphs	 97
Monitoring performance thresholds	 98

Summary	 98
Chapter 5: Custom Monitoring Templates	 99

Monitoring Templates	 99
Monitoring SNMP data sources	 101

Overriding templates	 101
Editing the /Server/Linux template	 103

Find OIDs for SNMP monitoring	 105
Monitoring with Nagios plugins	 108

Working with Nagios plugins	 111
Nagios return codes	 111
Nagios performance data	 111

Adding the Nagios plugin to Monitoring Templates	 112
Adding a Data Source	 114

Adding a Data Point	 116
RRDtool Data Point configurations	 117

Table of Contents

[iv]

Defining monitoring thresholds	 118
Graph definitions	 120

RRDtool Graph Point configurations	 123
Binding templates to the device class	 125
Adding a device to monitor using the Bogo template	 126

Monitoring with Cacti plugins	 127
Data Source parser	 128

Summary	 129
Chapter 6: Core Event Management	 131

Event Console	 132
Event severities defined	 133
Event statuses defined	 134

Acknowledging an event	 134
Viewing an event log	 135
Events consoles are everywhere	 137
Closing events	 137

Displaying historical events	 138
Event Manager	 138

Event Fields	 141
Event commands	 143

Creating a command	 143
Working with events	 145

Simulating an event	 145
Clearing the event	 147

Event mapping	 148
Event Classes	 148
Event class zProperties	 149
Mapping an event	 150
Event mapping sequence	 154

Event de-duplication	 154
Turning off event de-duplication	 155

Summary	 156
Chapter 7: Collecting Events	 157

Routing syslog messages to Zenoss Core	 157
Collecting Cisco router syslogs	 159
Testing syslog configuration with Logger	 160

Monitoring Windows event logs	 161
Windows event log severities	 162
Testing the event log configuration with Eventcreate	 163

Table of Contents

[v]

Incorporating event reporting into third-party scripts
via zensendevent	 163

Simple backup script with zensendevent	 165
Creating events by e-mail	 166

Zenmail	 167
Zenpop3	 169

Configuring alerting rules	 170
Alert filters	 172
Alert escalations	 173
Schedule	 174
Alert messages	 176

Event transformations	 177
Some event transformation examples	 178

Programming in zendmd, an interactive shell	 180
Summary	 182

Chapter 8: Settings and Administration	 183
Managing Zenoss Core users	 183

Administered Objects	 185
Event Views	 187
Groups	 189

Creating custom User Commands	 189
Adding a User Command	 192

System settings	 193
Configuring Zenoss Core's Monitoring Dashboard	 194

Locations portlet with Google Maps	 196
Device Issues portlet	 197
Zenoss Issues portlet	 198
Watch List portlet	 198
Root Organizers portlet	 199
Production States portlet	 199
Portlet permissions	 200

Meet the Zenoss Daemons	 200
Maintenance Windows	 202
Adding MIBs	 204
Backing up and restoring monitoring data	 205

Automating backups with zenbackup	 206
Restoring backups with zenrestore	 207

Updating Zenoss Core	 208
Summary	 209

Table of Contents

[vi]

Chapter 9: Extending Zenoss Core with ZenPacks	 211
Installing community ZenPacks	 211

Monitoring websites with HttpMonitor	 212
Viewing a list of installed ZenPack objects	 215
Configuring HttpMonitor	 216
Configuring HttpMonitor settings	 217

Creating a ZenPack	 218
Adding files and objects to the ZenPack	 221

Adding a new data source to the monitoring template	 222
Adding objects to a ZenPack	 223

Packaging the ZenPack	 224
ZenPack development mode	 225

Developer resources	 226
Summary	 226

Chapter 10: Reviewing Built-in Reports	 227
Report overview	 227
Device Reports	 228

New Devices	 229
Device Changes	 229
Model Collection Age	 229
Software Inventory	 230

Manufacturers and Products	 230
SNMP Status Issues	 231
Ping Status Issues	 232
All Devices	 232
All Monitored Components	 232

Event Reports	 233
All Event Classes	 233
All Event Mappings	 234
All Heartbeats	 234

Graph Reports	 234
Multi-Graph Reports	 237

Adding Collections	 238
Adding Graph Definitions	 240
Adding Graph Groups	 241

Performance Reports	 243
Aggregate Report	 244
Availability	 245
CPU Utilization	 246
Filesystem Utilization	 246
Interface Utilization	 247

Table of Contents

[vii]

Memory Utilization	 248
Threshold Summary	 248

User Reports	 249
Notification Schedules	 249

Summary	 249
Chapter 11: Writing Custom Device Reports	 251

Creating Custom Device Reports	 251
Custom Device Report fields	 253
Building Custom Device Report queries	 254

Using zendmd to test report queries	 255
Exploring data in Zope	 258
Using Python expressions in the columns	 260
Convenience functions	 261

convToUnits	 261
Scheduling reports for e-mail delivery	 262

Sending a CSV report	 263
Scheduling a cron job	 263

Summary	 263
Appendix A: Event Attributes	 265
Appendix B: Device Attributes	 269
Appendix C: Example snmpd.conf	 273
Index	 277

Preface
For system administrators, network engineers, and security analysts, it is essential to
keep a track of network traffic.

Zenoss Core is an enterprise-level systems and network monitoring solution that
can be as complex as you need it to be. While just about anyone can install it, turn it
on, and monitor "something", Zenoss Core has a complicated interface packed with
features. The interface has been drastically improved over version 2, but it's still not
the type of software you can use intuitively—in other words, a bit of guidance is
in order.

The role of this book is to serve as your Zenoss Core tour guide and save you hours,
days, maybe weeks of time.

This book will show you how to work with Zenoss and effectively adapt Zenoss
for System and Network monitoring. Starting with the Zenoss basics, it requires no
existing knowledge of systems management, and whether or not you can recite MIB
trees and OIDs from memory is irrelevant. Advanced users will be able to identify
ways in which they can customize the system to do more, while less advanced users
will appreciate the ease of use Zenoss provides. The book contains step-by-step
examples to demonstrate Zenoss Core's capabilities. The best approach to using
this book is to sit down with Zenoss and apply the examples found in these pages
to your system.

The book covers the monitoring basics: adding devices, monitoring for availability
and performance, processing events, and reviewing reports. It also dives into more
advanced customizations, such as custom device reports, external event handling
(for example, syslog server, zensendevent, and Windows Event Logs), custom
monitoring templates using SNMP data sources, along with Nagios, and Cacti
plugins. An example of a Nagios-style plugin is included and the book shows you
where to get an example of a Cacti-compatible plugin for use as a command data
source in monitoring templates.

Preface

[2]

In Zenoss Core, ZenPacks are modules that add monitoring functionality. Using
the Nagios plugin example, you will learn how to create, package, and distribute a
ZenPack. You also learn how to explore Zenoss Core's data model using zendmd so
that you can more effectively write event transformations and custom device reports.

Implement Zenoss Core and fit it into your security management environment using
this easy-to-understand tutorial guide.

What this book covers
Chapter 1, Network and System Monitoring with Zenoss Core, provides an overview of
Zenoss Core's monitoring capabilities and system architecture.

In Chapter 2, Discovering Devices, we prepare our monitoring environment by
configuring SNMP, WMI, SSH, and firewall ports. We'll add devices to Zenoss
Core via the setup wizard, zenbatchload, and zendisc.

Chapter 3, Device Setup and Administration, configures devices so that we ensure
we collect the proper monitoring information by organizing, configuring, and
troubleshooting the monitoring properties.

Chapter 4, Monitor Status and Performance, monitors and graphs the performance of
device components such as routes, windows services, IP services, processes, file
systems, and network interfaces.

Chapter 5, Custom Monitoring Templates, explores custom monitoring templates
by configuring various data sources, including SNMP, Nagios plugins, and Cacti
plugins.

Chapter 6, Core Event Management, introduces us to processing events via the Event
Console. We create custom event commands, learn how to create test events, and
perform event mapping.

Chapter 7, Collecting Events, allows Zenoss Core to receive and process events from
third-party sources, such as syslog, Windows Event Log, e-mail, and home-grown
system administration scripts.

Chapter 8, Settings and Administration, covers common Zenoss Core administration
tasks, such as managing users, the monitoring dashboard, backups, and updates.

Chapter 9, Extending Zenoss Core with ZenPacks, installs, creates, and packages add-on
modules. ZenPacks extend the functionality of Zenoss Core.

Preface

[3]

Chapter 10, Reviewing Built-in Reports, reviews each of Zenoss Core's included reports
to help us troubleshoot, analyze, and view our monitoring performance over time. It
also creates custom graph and multi-graph reports.

Chapter 11, Writing Custom Device Reports, provides an in-depth look at Zenoss Core's
custom device report functionality, including the use of zendmd to explore the
Zenoss data model.

Appendix A, Event Attributes, lists the available event attributes in Zenoss Core.

Appendix B, Device Attribute, lists the attributes that we may use when working with
our devices.

Appendix C, Example snmpd.conf, lists a sample snmpd.conf file.

What you need for this book
This book will work best if you have a working installation of Zenoss Core and some
network servers, routers, switches, and other devices to monitor. Zenoss Core can be
installed on Linux, Mac OS X, and Windows (via a virtual Zenoss Virtual Appliance
and VMware).

Who this book is for
This book is written primarily for network and systems administrators who are
monitoring their IT assets with Zenoss Core or who plan to monitor them. In reality,
this book will benefit anyone, regardless of job title, who recognizes the importance
of proactively monitoring the servers, routers, computers, websites, and devices that
connect companies to customers.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Before you make any changes, back up the
snmpd.conf file".

A block of code is set as follows:

syslocation Unknown (edit /etc/snmp/snmpd.local.conf)
syscontact Root <root@localhost> (configure
 /etc/snmp/snmpd.local.conf)

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Any command-line input or output is written as follows:

python setup.py build

python setup.py install

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Select
Simple Network Management Protocol and WMI".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Network and System
Monitoring with Zenoss Core

Whether it's internal or public-facing technology, businesses of all sizes depend
on the availability of their IT assets, which may include servers, routers, networks,
switches, and websites. If you're picking up this book, then you already know the
value of monitoring and more than likely have an installation of Zenoss
Core running.

Zenoss Core is an open source network and system monitoring platform that is
sponsored by Zenoss, Inc. Zenoss, Inc, develops two versions of Zenoss: Core and
Enterprise. Core belongs to the community and is supported by the community.

Enterprises adds some value-added features on top of the Core version, such as an
extended report library, synthetic web transactions, certified monitors (ZenPacks),
and a global dashboard for multiple Zenoss installations. The additional features
allow Zenoss Inc., to sell the enterprise version as a commercial software product
with support. As open source consumers, we're familiar with this business model.
Our focus in the book is on Zenoss Core, but the concepts will also apply to
Zenoss Enterprise.

Zenoss Core is a monitoring solution that can be as complex as you need it to be.
And while just about anyone can install it, turn it on, and monitor "something,"
Zenoss Core is packed with features in a complicated interface. The interface has
been drastically improved over version 2, but it's not the type of software you can
intuitively use—in other words, a bit of guidance is in order.

Network and System Monitoring with Zenoss Core

[8]

The role of this book is to serve as your Zenoss Core tour guide and save you
hours, days, maybe weeks of time. It's designed to quickly acquaint you with
the core features so you can customize Zenoss Core to your needs. It's loaded
with screenshots and provides a handy reference guide. Zenoss Core provides a
monitoring solution that incorporates the following:

•	 Device management
•	 Availability monitoring
•	 Performance graphs
•	 Event management
•	 User and alert management
•	 Plugin architecture
•	 Monitoring reports

To monitor your IT assets (servers, routers, switches, websites, and anything else
attached to your network), you install Zenoss Core to a server. Even though Zenoss
Core is intended to be installed on a Linux server, virtual appliances are available
that allow Macintosh and Windows users to install a working version of Zenoss Core
by using VMware.

After installation, you can manage your Zenoss Core installation and your
monitoring setup from a web-based interface. The following screenshot shows
a dashboard view:

Chapter 1

[9]

The web portal is the face of the Zenoss Core system and is the place where we
spend most of our time. It provides a single access point to the monitoring system
and requires no operating-system-specific knowledge to use. The web interface
features drag-and-drop dashboard portlets that display a customized view of the
network's health at any given time.

Device management
At the heart of the device management capabilities, Zenoss Core uses a configuration
management database (CMDB), which stores a model of the IT environment and its
change history. Zenoss Core supports adding IT assets (I'll switch out of "executive-
speak" and just refer to the "IT assets" as devices from this point on) to the CMDB
one at a time or by auto-discovering active devices by walking the routing tables.
Devices are then modeled via Simple Network Management Protocol (SNMP), SSH
(or Telnet), or port scans.

Zenoss Core allows us to organize devices by user-defined locations, groups, and
systems. One of Zenoss Core's most powerful organizational concepts is classes, which
allow us to define monitoring characteristics based on a hierarchical classification of
devices, which allows a device to inherit the monitoring properties of its parent class.

The following screenshot provides a look at a device status page:

Network and System Monitoring with Zenoss Core

[10]

Availability and performance monitors
By using ICMP and SNMP monitoring, Zenoss Core reports on the availability
of the following:

•	 Network devices
•	 TCP/IP services and ports
•	 URL availability
•	 Windows services and processes
•	 Linux/UNIX processes

Zenoss Core is Level-3 network topology aware, which reduces the amount of alert
chatter by creating an event about the problem device only and not about the devices
that depend on it.

Performance monitors collect time series data and provide us with a graphical
analysis of the following components:

•	 File system statistics
•	 CPU and memory usage
•	 JMX monitoring for J2EE servers (available via a ZenPack)
•	 Nagios and Cacti plugin support

The following screenshot shows a graph based on Zenoss Core's monitoring activity:

Chapter 1

[11]

Using the built-in event management system, we can configure Zenoss Core
to generate an event if a monitored device crosses a defined threshold.

Event management
Zenoss Core monitors a variety of sources for signs of trouble, including syslogs,
availability and performance monitors, SNMP traps, Windows event logs, and
custom scripts. Core features of the event management system include:

•	 Custom events
•	 Automatic event prioritization
•	 Event deduplication
•	 Up/down event correlation

Network and System Monitoring with Zenoss Core

[12]

The following screenshot shows the Event Console:

The event system mitigates duplicate events and auto-clears events when the status
of the event changes from down to up. Zenoss Core can also collect events from
custom scripts and external applications.

In response to events, Zenoss Core can send e-mail or pager alerts, run a script, or do
nothing. We configure how Zenoss Core responds to an event by defining alerting
rules. Alerting rules are defined on a per user or user-group basis.

Plugin architecture
Zenoss Core provides several ways for us to extend the base functionality:

•	 ZenPacks: Zenoss Core's add-on modules
•	 Nagios plugins
•	 Cacti plugins

We install and configure a Nagios plugin in Chapter 5, Custom Monitoring Templates.

Chapter 1

[13]

The information presented there will be valuable for those of you who want to
develop your own plugins.

The ZenPack architecture allows us to package plugins and configurations for
distribution to other users and the community at-large. Chapter 9, Extending Zenoss
Core with ZenPacks walks you through the steps of installing a community ZenPack,
and how to create your own ZenPack as well.

System reports
Zenoss Core packages a set of standard reports that allow us to view what is
happening right now, as well as what has happened in the past. The reports integrate
with the device management, performance monitors, events, and user functionalities.

The following screenshot shows the All Monitored Components report:

Notice the number of additional reports listed in the sidebar.

www.allitebooks.com

http://www.allitebooks.org

Network and System Monitoring with Zenoss Core

[14]

Custom device reports
The canned reports are nice, but sometimes we need to access and analyze data that
the included reports do not cover. Zenoss Core enables users to write custom device
reports from the web interface, as seen in the following screenshot:

We step through the creation of custom device reports in Chapter 11, Writing Custom
Device Reports.

System architecture
Reviewing the system architecture now provides us with an understanding that can
help troubleshoot problems that may arise later. However, reading it to start using
Zenoss Core is definitely not required. So feel free to come back later.

Chapter 1

[15]

Zenoss Core builds upon several open-source software projects to create a robust
network and systems management solution. The most notable open-source software
components that integrate with Zenoss Core include Zope, Python, MySQL,
RRDtool, and Twisted.

When we talk about the system architecture, it helps to conceptually segregate
Zenoss Core into three layers:

•	 User
•	 Data
•	 Collection

User layer
Zenoss Core is flexible enough to work from a command line, but most of our
work will take place via a web interface, which is based on the Zope application
server framework.

Zope is a popular, extensible application server written in Python. It features a built-
in web server, transactional object database, and HTML templates. Python is the
basis for Zope; it's also the basis for Zenoss Core.

Through the web interface, we provide input with both the data and collection layers
to accomplish tasks related to the following areas:

•	 Navigation and organization
•	 Device management
•	 Availability and performance monitors
•	 System reports
•	 Event management
•	 Settings and administration

Network and System Monitoring with Zenoss Core

[16]

Data layer
As we might expect, databases are the heart of the data layer, and Zenoss Core stores
data in three types of databases. The Collection layer funnels device information
to ZenHub, which in turns stores the data in the appropriate place, as seen in the
following illustration.

Events are stored in a MySQL database. Zenoss Core generates Events when an
established threshold is crossed, such as a server outage or high memory usage.
Events trigger actions, such as e-mail or pager alerts.

Time series performance data gets stored in a Round Robin Database (RRD). A
RRD differs from a linear database, such as MySQL, in that it's circular—which
means the size does not increase over time. Data is stored in a first in, first out basis,
which implies that monitoring data is consolidated and eventually lost over time.
RRDtool provides Zenoss Core with the ability to log and graph performance data.

The third database deployed by Zenoss is a Configuration Management Database
(CMDB). The CMDB is an Information Technology Infrastructure Library (ITIL)
standard for managing the configuration, relationship, and change history of the IT
environment, which creates a detailed model of the network. Zenoss uses a Zope
Object Database (ZODB) to house the CMDB.

Chapter 1

[17]

Collection layer
The collection layer includes several daemons that gather information about devices,
performance, and Events. They feed information to ZenHub to distribute to the
appropriate database. The Zenoss Core daemons are easy to identify—they all start
with the prefix "zen".

As the following screenshot illustrates, the Daemons page provides us with the
complete view of the Zenoss Daemons that includes the process ID (PID) and
up/down State. Green is up; red is down. From the interface, we can also view
the Log File, edit the Configuration, and start and Stop each daemon.

Network and System Monitoring with Zenoss Core

[18]

If we browse the file system, we will find each daemon in $ZENHOME/bin. $ZENHOME
is an environment variable, which allows us to talk about the Zenoss installation
directory without knowing exactly where it is. For example, I may install to /usr/
local/zenoss/zenoss while you install to /home/zenoss.

Twisted is an integral network communication protocol for the daemons. The
Twisted Core README file describes Twisted as an "event-based framework for
Internet applications"

Device management daemons
Finding the devices on our networks is a prerequisite to managing them, and Zenoss
Core not only finds the devices, it models them. Device modeling builds a detailed
overview of the network by recording the following types of information: system
dependencies, available services, and change history.

The following table describes the daemons responsible for discovering
and modeling devices:

Device daemon Description
zenmodeler Queries the devices via SSH/Telnet, SNMP, and port scans when

we model the device. Each time zenmodeler runs on a device, it
compares its findings with existing configuration and updates it as
necessary.

zendisc Runs each time a request is made to discover a network or device.

Zenoss uses SNMP as a primary collection protocol. However, it can also collect
information via ICMP pings, port scans, and plugins.

Performance and availability daemons
The Zenoss Core performance and availability daemons help us determine if
the devices on our network are available and performing within our established
guidelines. If our monitored systems perform in an unexpected way, Zenoss
Core generates an event.

Chapter 1

[19]

The following daemons play an important role in collecting performance and
availability data:

Performance daemon Description
zenperfsnmp Stores the collected performance data in RRD files so that RRDtool

can graph device performance over hourly, daily, weekly,
monthly, or yearly durations.

zencommand Provides a way to run custom scripts and third party plugins
including Nagios and Cacti plugins from within Zenoss.

zenprocess Monitors the processes on Linux, Unix, and Windows systems.
zenping Pings a device and reports an up or down status to determine if a

device is active or not.
zenstatus Tests the TCP ports and reports an up or down service.

Event daemons
When a device goes down or a service crosses a predetermined threshold,
such as available disk space, Zenoss Core generates an event. Events can generate
a notification alert or run a custom command (to automatically take remedial
action to fix the event, for example).

Not only can Zenoss Core generate its own events, but it can collect events from
external sources (for example, custom system administration scripts) and convert
the information to a "Zenoss-style" event.

The following table outlines the Zenoss Core event daemons:

Event daemon Description
zensyslog Creates events from syslog messages.
zeneventlog Creates events from Windows event logs.
zentrap Creates events from SNMP traps. When a problem occurs on a monitored

device, it generates an SNMP trap to alert Zenoss of the problem.

Network and System Monitoring with Zenoss Core

[20]

Summary
In this chapter we provided a brief overview of Zenoss Core's monitoring capabilities
and the underlying technology that makes it all work. It's our blueprint for what
we'll discuss as we devote the rest of the book to configuring our monitoring
environment. As we work through the rest of the book, we'll demonstrate the core
concepts that will help you adapt Zenoss Core to your specific environment.

Feel free to treat each chapter as a stand-alone topic and skip around as needed.
In Chapter 2, Discovering Devices we jump right in and discover devices.

Discovering Devices
I assume that many of you already have a working Zenoss Core installation with
devices in your inventory; however, adding devices is the easy part. Before we
jump to monitoring, we need to think about how we will monitor. For example, we
can use Simple Network Management Protocol (SNMP), Windows Management
Instrumentation (WMI), or command-line plugins that run over SSH/Telnet. Each
of your monitored devices may have different requirements. We'll review each of
the monitoring protocols to help you decide how to monitor your devices with
Zenoss Core.

Because our Zenoss Core server needs to communicate with our monitored
devices, we will need to configure those devices to allow connections on various
TCP and UDP ports.

The order in which you perform the items in this chapter is not important. If you
are starting a new installation, then it makes sense to prepare your devices to be
monitored before you add them to your inventory. If you've already added devices
to your inventory, then you will still need to do these tasks in order to monitor them.

Here's what we'll do in this chapter:

•	 Prepare devices for monitoring via SNMP, WMI, or SSH
•	 Open ports for monitoring
•	 Run the Zenoss Core setup wizard
•	 Import devices with zenbatchload
•	 Discover devices with zendisc

Before we jump into SNMP, let's talk briefly about Zenoss Core installation options.

Discovering Devices

[22]

Zenoss Core installation
Zenoss, Inc., makes several installation packages of Zenoss Core available to meet
the needs of its community. For a list of current installation packages, visit www.
zenoss.com/download. You'll find native packages, stack installers, and source files
for several operating systems: Red Hat Enterprise Linux, Centos, Ubuntu, Fedora
Core, OS X, OpenSuse, and Debian. The stack installers and native packages include
all Zenoss Core dependencies.

If you need a no fuss installation to use as a sandbox or to follow along with the
book, then I recommend loading one of the Zenoss Core VMware appliances for
Windows, Linux, or OS X. To run the appliance, download the VMware Player or
VMware Server for free from www.vmware.com.

Preparing devices for monitoring
One of the first questions we need to answer is, "How will I collect information from
my devices and services?" Zenoss Core supports the following ways to model (collect
data from) the device:

•	 Simple Network Management Protocol (SNMP)
•	 Windows Management Instrumentation (WMI)
•	 SSH/Telnet (for example, Zenoss Plugins)
•	 Port scan

SNMP gives us the most flexibility and the best device support. WMI lets us access
information about services running on Windows servers and can co-exist with
SNMP. If we want to monitor Windows event logs, then WMI is a must.

Even if your device supports SNMP, there may be times when you are unable
to use it. For example, you're monitoring a remote device that's outside the local
network. Zenoss, Inc., distributes a suite of command-line monitors that can
be installed on a device via the Zenoss Plugins, and Zenoss Core runs the plugins
over an SSH or Telnet session to collect the performance data.

In the unfortunate event that your device doesn't support SNMP, WMI, SSH, or
Telnet you will only be able to monitor availability via ping. You may be able to
retrieve a list of services to monitor on the device via Zenoss Core's port scan plugin.

Chapter 2

[23]

SNMP
Zenoss Core uses SNMP to model the specific characteristics about a device, such
as file system utilization, memory usage, or throughput on a network interface.
The network devices report data to Zenoss Core via an SNMP agent that runs on
each device. The agent on the device communicates with Zenoss Core—the SNMP
network management station.

When Zenoss Core requests information from a device using SNMP, it asks the
device to send information for a specific characteristic by including an Object
Identifier (OID) in the request. For example, the OID 1.3.6.1.2.1.25.1.1.0 contains the
system uptime value.

The following screenshot shows a sample transaction between Zenoss Core and a
Linux server. Zenoss Core requests the value for an OID and the server responds
with the value:

SNMP associates OIDs with a human-friendly variable name via Management
Information Bases (MIBs). For example, 1.3.6.1.2.25.1.1.0 is also known as
sysUpTime.

www.allitebooks.com

http://www.allitebooks.org

Discovering Devices

[24]

OIDs are collected in modules, called Management Information Bases (MIBs).
Zenoss Core supplies many of the MIBs that we need to monitor a broad range
of devices. However, we can download and install manufacturer-specific MIBs to
extend our monitoring functionality. We'll cover adding MIBs in Chapter 8, Settings
and Administration including how to know when you need to download a new MIB.

SNMP agents don't always wait to be asked for information. They have the ability to
send traps to the network management station as a notification of a system problem.
We'll investigate SNMP traps in Chapter 7, Collecting Events.

We'll encounter more SNMP as we move through the remainder of the book, but if
you'd like to read more SNMP theory, consider the following resources:

•	 SNMP RFC: http://www.ietf.org/rfc/rfc1157.txt.
•	 Net-SNMP: http://www.net-snmp.org.

Let's take a quick look at the different SNMP versions before we configure our
monitored devices.

SNMP versions
SNMP comes in three versions: v1, v2c, and v3. SNMP v2c provides support for
64-bit counters, and it can embed multiple requests in one packet, whereas v1 needs
to send each SNMP request in a separate packet.

SNMP v3 improves upon the "weak" security model of the v1 and v2c by
implementing user authentication and roles. In the earlier versions of SNMP,
authentication is done with community strings. It's the equivalent of protecting
your childhood fort by asking, "What's the secret word," to everyone who knocks
on the door.

Let's manufacture an example and configure a Linux server to respond to any SNMP
request that contains the community string of "wildchicken". If the Zenoss Core
server queries with a SNMP community string of "public", the Linux server won't
respond and Zenoss Core won't collect data from the server.

Throughout the course of the book, we won't dwell on which version of SNMP
you should use. Use the version that meets your requirements and your devices'
capabilities. As we move through the device management chapter, we'll see how
to adjust the SNMP collection options in Zenoss Core. Experiment with different
configurations, as necessary.

Now, let's configure SNMP on a Linux host.

http://www.ietf.org/rfc/rfc1157.txt
http://www.net-snmp.org/

Chapter 2

[25]

Configuring SNMP on Linux
If we plan to collect device information from the network using SNMP, we need to
install an SNMP agent on all devices that we plan to monitor with SNMP. The SNMP
agent on the monitored devices listens for incoming SNMP requests from Zenoss
Core and responds to the request appropriately. Although there are other SNMP
options, Net-SNMP is widely used and recommended by the Zenoss team.

Net-SNMP also includes a set of utilities, such as snmpwalk, snmpget, and snmptrap that
can help us manipulate SNMP values and troubleshoot problems. It won't hurt you
to install both packages.

The Net-SNMP package names vary from one distribution to the next, so be sure
to check with your distribution if you are unsure of which file you need. Here are
a few examples:

•	 Red Hat users can install the agent and the utilities with the command:
yum -y install net-snmp net-snmp-utils

•	 Ubuntu users can install the agent and utilities with the command:
apt-get install snmpd snmp

Next, we must configure the SNMP agent to process requests and to publish the
entire MIB tree. As root, we need to edit the /etc/snmp/snmpd.conf file.

1.	 Before you make any changes, back up the snmpd.conf file:
cp /etc/snmp/snmpd.conf /etc/snmp/snmpd.conf.bak

2.	 In the section that begins "First, map the community name into a security
name," add the following line and replace public with the value of your
community string:
com2sec notConfigUser default public

3.	 In the section that begins "Second, map the security names into group
names," add:
group notConfigGroup v1 notConfigUser
group notConfigGroup v2c notConfigUser

4.	 In the section that begins "Third, create a view for us to let the groups have
rights," add:
view systemview included .1

Discovering Devices

[26]

5.	 In the section that begins, "Finally, grant the 2 groups access to the 1 view
with different write permissions," add the following line:
access notConfigGroup "" any noauth exact systemview none none

6.	 Add the following lines to the System Contact Information section using
your contact details:
syslocation Unknown (edit /etc/snmp/snmpd.local.conf)
syscontact Root <root@localhost> (configure /etc/snmp/snmpd.local.
conf)

7.	 Add the following lines to the Further Information section to send SNMP
traps to the Zenoss Core server. Replace the IP address with your Zenoss
server IP and use the community string for your network:
trapsink 192.168.1.125 public 162

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.
com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Configuring SNMP and WMI on Windows
Your Windows server most likely has WMI and SNMP already installed. However,
in the event you need to install one or the other, you can do so through Add or
Remove Programs.

WMI and SNMP are enabled from the Windows Management and Monitoring
Tools packages. To install WMI and SNMP (refer to the following screenshot),
follow these steps:

1.	 Open the Windows Control Panel.
2.	 Select Add/Remove Windows Components.
3.	 Click on Management and Monitoring Tools and select Details.
4.	 Select Simple Network Management Protocol and WMI.
5.	 Save the changes to install the Windows Components.

Chapter 2

[27]

After WMI installs, we should confirm that WMI is properly configured:

1.	 From the Windows Start menu, select Run.
2.	 Enter the command wbemtest.
3.	 Select the Connect button.
4.	 Change the Namespace field to \\HOST\root\cimv2.
5.	 Enter an administrator username and password.
6.	 Click the Query button.

Discovering Devices

[28]

7.	 In the search box, type select * from win32_service to see a list of services
as shown in the next screen capture.

The Windows SNMP agent does not return information about the server's
CPU, memory, or file system. For these stats, the Zenoss team recommends
the free SNMP (not open source) agent from SNMP Informant located at
http://www.snmp-informant.com. No configuration is necessary for
SNMP Informant.

Zenoss Plugins
If the device we plan to monitor does not support SNMP, or if we need to monitor a
device behind a firewall on a network far, far away, SSH provides an alternative to
SNMP. Zenoss Core also supports Telnet, but we'll work with SSH in our examples.

In order to collect performance data from our device over SSH, the monitored device
needs the Zenoss Plugins installed. And the monitored device needs to have an SSH
server installed so that it can accept incoming requests from the Zenoss Core server.
OpenSSH from openssh.com offers a good solution.

The Zenoss Plugins platform support is limited to
Linux, Darwin, and FreeBSD.

Chapter 2

[29]

The level of data provided by plugins varies between platforms. For this reason
we may not achieve the same level of detail as we do with SNMP; however, SSH
modeling provides more detail than a port scan.

Installing Zenoss Plugins
As a prerequisite to installing the Zenoss Plugins, the monitored system needs
a Python environment installed. This can be installed using your distribution's
package manager. If you have setuptools installed, you can install the Zenoss
Plugins package from the Cheese Shop (http://pypi.python.org/pypi/)
with the following command as root:

easy_install Zenoss-Plug-ins

We can also build the plugins package from source:

1.	 Download the Zenoss Plugins package from http://www.zenoss.com/
download/.

2.	 Extract the file.
3.	 From the extracted plugin source directory, run the following commands

as root:
python setup.py build

python setup.py install

The setuptools procedure installs zenplugin.py to /usr/bin, which is important
because we will need to configure the configuration properties(zCommandPath) of
the device or device class to look for the plugins at the correct location. We'll review
the configuration properties in Chapter 3, Device Setup and Administration.

To ensure that the plugin file is working correctly, run the following command on
the monitored device:

zenplugin.py –list-plugins

This command outputs the detected platform and the supported plugins as shown in
the following screenshot:

Discovering Devices

[30]

Port scan
Sometimes, the only option we have to model our devices is a port scan. A port scan
tries to guess which services are running on a device by connecting to various ports.
Port scans provide the least detailed model and may raise security alerts on your
network. Consult the security administrators before port scanning devices on the
network.

We don't need to make any special provisions on our monitored device if we plan
to check the availability of services with port scanning.

Opening monitoring-specific ports
Both the Zenoss Core server and the monitored devices have port requirements.
The Zenoss Core server needs to allow access to the following ports:

•	 TCP port 8080 for HTTP access
•	 TCP port 514 for syslog access, if Zenoss Core is acting as a syslog server
•	 TCP port 22 for remote SSH access
•	 UDP port 162 to process SNMP traps

To facilitate monitoring, the systems on the network need to allow access to the
following ports:

•	 UDP 161 for SNMP requests
•	 TCP port 22 for remote collector plugins via SSH
•	 TCP port 23 for remote collector plugins via Telnet

This is a common list of ports, but network and monitoring needs are unique from
one site to the next. For example, if you do not plan to monitor any devices with the
Zenoss Plugins over Telnet, then don't open port 23 on your monitored devices.

Chapter 2

[31]

Configuring Linux firewalls
Iptables is a popular tool for managing firewall access on Linux systems. Assuming,
iptables is installed and configured, use the following command to view the current
filtering rules:

iptables ‑‑list-rules |grep INBOUND

The following screenshot shows a sample list of iptables rules:

For more help with iptables, try the man page.

Discovering Devices

[32]

Configuring Windows firewall
Windows has built-in firewall support via the Windows Firewall Control Panel
(as shown in the following screenshot). If you are unsure about how to configure
port access, consult your system documentation or friendly system administrator.

In order to allow Zenoss Core to retrieve data via WMI, you must add a
remote administration exception. See this MSDN topic http://msdn.
microsoft.com/en-us/library/aa389286%28VS.85%29.aspx.

Chapter 2

[33]

Zenoss Core setup wizard
New installations automatically run a setup wizard that creates a user account,
defines an administrator password, and discovers devices attached to the network.
Many of you have probably already breezed through this step, but we'll step through
the process for the benefit of those of you who are working through an initial install.

Even if you already ran the initial setup wizard, you can invoke the add device
wizard by selecting the Add Multiple Devices... link on the Infrastructure | Devices
page. See the following screenshot:

To access your Zenoss Core installation, open a browser and
navigate to port 8080 of your Zenoss Core server. For example, go to
http://zenoss.example.com:8080 where zenoss.example.
com is your web address.

Step 1: Setting up users
If this is a new installation, you will be greeted with the setup wizard when you visit
the Zenoss Core application. Otherwise, you will see the Zenoss Core Dashboard.

www.allitebooks.com

http://www.allitebooks.org

Discovering Devices

[34]

Click the big green arrow to advance the wizard to the Set Up Initial Users screen.

The user setup screen will ask you to provide two important pieces of information.
The first is an administrative password for Zenoss Core's built-in admin user. You
also set up a privileged user account by specifying a User name, Password, and
email address.

The admin user in Zenoss Core has superuser privileges, similar to root
access on a Linux machine.

It's generally considered bad form to work under a system's admin account, and the
same philosophy holds with Zenoss Core. Zenoss Core logs each user's activities
throughout the system, so you don't want multiple people making changes as the
admin user.

The user account we setup should accommodate all our monitoring tasks.

As we'll see in the user management section of Chapter 8, Settings and Administration
we can control user access to the system via roles.

Click the Submit button after you have entered all the information.

Step 2: Specify or discover devices to monitor
Now we have some choices to make. Do we manually add devices, one at a time?
Or do we let Zenoss Core discover the devices attached to the network. Each
choice will lead to a different set of choices about how the device is discovered
and classified by Zenoss Core, and device classification is an important concept
in our monitoring activities.

Chapter 2

[35]

Classes in Zenoss Core establish a default set of monitoring characteristics for a
type of device, specifically, the collector plugins. The collector plugins determine
what information Zenoss Core collects from each type of device. As we'll find out in
Chapter 3, Device Setup and Administration when we review device classes in-depth,
we can always change the defaults and change the classification.

If we manually add devices, Zenoss Core will assign the device to the class based on
the device type we select. For example, if we select Linux Server, the device class will
be /Server/Linux. In contrast, if we autodiscover devices, Zenoss Core classifies all
our devices in a generic /Discovered class, and we will manually have to classify
the devices.

To enter devices in advanced mode, click the link titled skip to the
dashboard. Then you can skip to the start of Chapter 3, Device Setup
and Administration.

Adding devices
When you add a device manually, you provide Zenoss Core the IP address or the
hostname of the device. When you add devices automatically, you can specify an
entire subnet or ranges of IP addresses.

Here are some reasons you may opt to manually add devices:

•	 You have a relatively small number of devices on your network
•	 Your network has a large number of devices with dynamic IP addresses

(for example, Workstations)

Here are some reasons you may opt to autodiscover devices:

•	 You have a large number of devices on your network
•	 You need to probe multiple networks and IP ranges

Of course, what you choose to do is a judgment call. Let's look closer at each option.

Manually find devices
If we choose to manually add devices, we then specify the device type. Available
device types are Generic Switch/Router SNMP, Linux Server SNMP, or Window
Server SNMP. Notice an SNMP trend?

Discovering Devices

[36]

Let's step through the process:

1.	 Make sure the Manually find devices option is selected from the Add
Devices screen.

2.	 In the first text field, enter the IP address or the hostname of the first device.

Make sure the devices you want to add are turned on and connected
to the network, else Zenoss Core won't be able to find them. Sounds
obvious, right?

3.	 In the shaded Details box, select a device type from the drop-down box.
4.	 In the SNMP Credentials field, enter the community strings required to

connect to the device. The defaults are public and private.
5.	 To add more devices, click the button with the plus (+) sign to display a new

hostname/IP address entry field. Repeat for as many devices as necessary.
Before you click the Submit button, let's pause to talk about what is happening on
this screen:

Chapter 2

[37]

As you see in the screenshot, I have three devices specified: sausage, bacon, and
192.168.1.65. The hostname bacon is highlighted and contains an arrow that points to
the bacon Details section of the screen. As you click on the hostnames, you'll notice
the details section changes too. This allows us to specify a unique set of details for
each of the devices we're going to add.

This is a big interface improvement over the earlier versions of Zenoss Core. In the
next chapter, we'll take a look at the old add device interface, which has some of its
own advantages.

When you have all of your devices entered, click the Submit button. Zenoss Core
will create a job that tries to connect to each device using the details you specified
for it. You'll be looking at the Zenoss Core dashboard after you submit the job.

Take a coffee or tea break. When you come back, we'll review the results of
our work.

Autodiscover devices
If we choose to autodiscover devices, we will be prompted to specify SNMP
information, SSH login, or Windows administrator credentials. What you enter
depends on what types of devices you expect to monitor.

Let's autodiscover some devices. For this example, I'm going to scan my employer,
MoJo Active's, network.

1.	 From the Add Device screen, select autodiscover devices.
2.	 In the text field for Networks/Ranges, specify a network or an IP range.
3.	 To add more than one network or IP range, click the button with the plus (+)

sign on it.
4.	 In the Authentication section of the screen, specify the credentials that are

required to connect to the devices on your network.

Discovering Devices

[38]

5.	 Click the Discover button to tell Zenoss Core to find your devices. You'll be
transferred to the Zenoss Core dashboard.

The authentication options correspond to the monitoring methods we talked about
earlier in the chapter.

If Zenoss Core discovers a Windows server, it will try to log in with the supplied
username and password to retrieve information via WMI. It will also test the server
with the supplied SNMP community strings.

If Zenoss Core discovers a Unix based machine, it will query the device with the
SNMP community strings. It will also try to log in via SSH to determine if the Zenoss
Plugins are installed.

Our device inventory: A job well done
We've just completed the easy part. Let's take a look at our results. From the
main menu in the Zenoss Core interface, select Infrastructure to display a list of
the devices you just added. Your device list will be unique, but it should resemble
the following screenshot:

Chapter 2

[39]

We have a table that lists the device name, the device IP, the class, the production
state, and the number of events. That's a lot of information to process, and we're not
going to be able to decode it all at once.

Right now, I'd like to draw your attention to the Events column.

If you're like me, you have several devices with warning level events, which are
identified here by the color orange. These are errors that we need to address.

If you autodiscovered your devices, you're going to see more events per device than
if you manually added each device. Let's take a look.

To view the details of an event, click on the event column for a device to display the
Event Console for the selected device. See the following screenshot:

Chapter 6, Core Event Management and Chapter 7, Collecting Events are devoted
to events, but as you look at the details of the events you can begin to see some
problems. You might see problems with WMI, SNMP, or refused connections. You
may also see blue informational events to let you know the device was discovered.

Discovering Devices

[40]

Informational events will auto clear after four hours. You don't need to
be concerned with them.

If you autodiscovered your network, you could see multiple events as Zenoss Core
tried to connect to the device with WMI, SNMP, and SSH. Any failed attempts will
generate an event that we have to deal with by properly configuring our devices to
be monitored or by tuning how we monitor. We'll tune our monitoring in Chapter
5, Custom Monitoring Templates, Chapter 6, Core Event Management, and Chapter 7,
Collecting Events.

To clear an event, highlight the event and click the Close selected event
button at the top of the Event Console.

Manually adding the device will cause Zenoss Core to generate fewer events.
However, you may see a warning event that indicates the SNMP agent is down,
which indicates SNMP is not properly configured.

Before we can model our devices, we must resolve our SNMP, WMI, or Zenoss
Plugin issues. Modeling our devices means we collect performance data, such as
disk utilization, CPU utilization, and interface information.

Before we clean up our device inventory, let's take a look at the device discovery
process in a bit more detail by examining the log file.

Reviewing device creation job log
To review the log file from our device discovery job, click on the Advanced menu to
display the Settings page. From the sidebar navigation, choose Jobs. Then select the
Jobs tab to display a table of completed jobs. Actually, if the job is currently running,
it will still show in this table with a status of running.

At a glance, we see some information about this job, most of which is self explanatory.
The Description field provides the command that Zenoss Core ran. We can access the
log file by clicking the icon that resembles a notepad under the Actions column

Chapter 2

[41]

Click the notepad to display the log file:

At the top of the log file, we can see that our device creation job ran the zendisc
command:

$ZENHOME/bin/zendisc run --now --monitor localhost \

--deviceclass /Discovered --job 015be396-c020-424f-bbd1-ad37cc28e6ec \

--net 192.168.0.0/24

Zendisc is a device management command that operates in the collection layer of
Zenoss Core's architecture.

The job of zendisc is to scan the supplied network or IP address for a device, and
for each device it finds, create a device in the inventory. The discovered devices are
added to the Zope database ZODB.

The command accepts several options. The --deviceclass option sets the default
class for each new device. The --net option scans the supplied network. These
command line options correspond to the values we entered in the add device wizard.

To see the available options for zendisc, run the following command
as the zenoss user: zendisc help.
When we work with the Zenoss Core commands from the command
line, we need to work as the zenoss user, which was set up during
installation. To become the zenoss user, run the following command:
su – zenoss
<enter zenoss user's password>

Discovering Devices

[42]

Let's take a look at the log file for a manually added device and note the differences:

As the screenshot indicates, our command is:

$ZENHOME/bin/zendisc run --now -d coyote --monitor localhost \

--deviceclass /Server/Linux --job 015be396-c020-424f-bbd1-ad37cc28e6ec

zendisc used the --deviceclass option to set the device class to /Server/Linux
and the -d option specifies a hostname, instead of the --net option we used in the
autodiscovery example.

As we step through each of our log files, we can see what transpires between Zenoss
Core and the device. The zendisc daemon scans each device looking for SNMP,
WMI, and the Zenoss Plugins.

In the screenshot of the manually added device, there are some lines that follow the
format of Processing zenoss.snmp.DeviceMap for device localhost. This indicates
that zendisc successfully connected via SNMP and is running each of the collector
plugins for the /Server/Linux device class, of which zenoss.snmp.DeviceMap
is one.

Adding a single device
We've seen how you can autodiscover the devices on your network, but you may
not want to monitor all of the discovered networks. For example, you may have
workstations, test servers, and other systems not worth monitoring. By adding a
single device at a time, you can also specify device attributes, including classes,
SNMP properties, serial numbers, notes, and more.

The Add Single Device option is available by clicking on Infrastructure | Devices.
See the following screenshot:

Chapter 2

[43]

The Add a Single Device window displays as a pop up with the option to add
several device attributes:

The advantage of adding devices from this view is that we can add a device with
a specific set of properties. The wizard didn't give us this kind of flexibility.

Entering device attributes
At a minimum, we should enter a Device Name and Device Class. The Device
Name identifies the IP address or resolvable hostname, while the Device Class Path
sets the monitoring properties we want our device to inherit by default. Device
classes are a core concept in Zenoss Core and we will discuss them at length in
Chapter 3, Device Setup and Administration.

As you look at the Add Single Device window, you will notice there is a More link
that displays additional attributes.

The attributes and relations that we specify on the Add Device page have several
benefits. We can describe the devices in our inventory and we can actually use
Zenoss Core as a way to manage the information about each device. Using the
built-in reporting features of Zenoss Core, we can retrieve that information for
later use, analysis, or audit.

www.allitebooks.com

http://www.allitebooks.org

Discovering Devices

[44]

Some of the fields, such as groups, class, systems, and location, are often referred
to as "organizers" because they create hierarchies that help categorize the device
inventory. The organizers help us define monitoring properties, categorization,
and alerting rules. Alerting rules dictate how administrators are notified when
events occur.

The Add Device Options table lists the available attributes we can set when manually
adding a device:

Add Device Options
Field name Description More info
Name or IP Specify the IP address or

resolvable hostname of the device
to be monitored.

You can rename the device
later to anything you want.

Device Class Select a class from the drop-down
list that describes the device.

The classes form a hierarchy of
monitoring properties where
devices inherit the properties
of the parent class.

Model Device Determines whether or not
Zenoss will try to model the
device using SNMP, WMI, and
SSH.

Leave unchecked if you know
the device doesn't support any
of the monitoring protocols.

Collector The default collector is localhost. The collector defines how
Zenoss collects information,
including polling intervals.

SNMP Community Specify the SNMP community
string to try when zendisc
discovers the device.

Leave this field blank if the
device doesn't support SNMP.

SNMP Port The default SNMP port is 161. Zenoss Core will send SNMP
get requests to the port
specified for the device.

Tag Number Text field to record service tag
numbers or model numbers for
the device.

This field helps you manage
your devices by providing a
place to store service-related
information.

Serial Number Text field to record serial
numbers or other identifying
information.

Like the Tag Number, this
field enables you to enter
information that describes the
device.

Chapter 2

[45]

Add Device Options
Field name Description More info
Production State Select the appropriate state of this

device:

•	 Production (default)
•	 Pre-Production
•	 Test
•	 Maintenance
•	 Decommissioned

Production states provide rules
for monitoring, alerting, and
display:

•	 Production:
monitor, alert,
and display on
dashboard

•	 Pre-Production:
Excludes alerting
and dashboard
display

•	 Test: Excludes
dashboard display

•	 Maintenance:
Excludes alerting

•	 Decommissioned:
Do not monitor

Priority Select the device's priority:

•	 Highest
•	 High
•	 Normal (default)
•	 Low
•	 Lowest
•	 Trivial

How important are your
devices? Use the priority field
to rank how important one
device is in relation to the
others.

Rack Slot Enter the physical location. Never let a device hide from
you again.

Title Enter an alternate name. The title will be used
throughout the interface to
refer to the device.

Comments Text field to file notes about the
device.

Enter troubleshooting steps,
configuration information, or
share a haiku.

HW Manufacturer Select the name of the device
manufacturer.

Describe the device.

Discovering Devices

[46]

Add Device Options
Field name Description More info
HW Product Select the product name from

the drop-down list. The available
products are dependent on the
selected HW Manufacturer.

Describe the device.

OS Manufacturer Select the operating system
information from the drop-down
list.

Describe the device in terms of
the operating system.

OS Product Select the appropriate operating
system version. The available
products depend on the selected
OS Manufacturer.

Describe the device in terms of
the operating system.

Location Path Select a location from the drop-
down list.

The location can describe the
device's location in terms of
office, city, room, country,
or whatever you deem
appropriate.

Systems Select a Systems organizer from
the drop-down list. You can select
multiple systems.

The Systems organizer is a free
form classification that helps
you describe the device in the
context of your organization.

Groups Select a Groups organizer from
the drop-down list. You can select
multiple groups.

The Groups organizer is a free
form classification that helps
you describe the device in the
context of your organization.

After we enter the configuration information for the device, click the Add button to
schedule the job to run via Zenoss Core's zenjobs daemon. You may check on the
status of the job by going to Advanced | Settings | Jobs. Refresh the device list to
see the newly-added device.

Importing a list of devices with
zenbatchload
So far, we've seen ways to build our device inventory through the web interface.
In one case, we auto-discover everything and in the other case, we add the devices
one at a time.

What if you already have a list of the SNMP capable devices by hostname or IP
address? Wouldn't it be nice to import those devices. Zenoss Core can import a list
of devices and attributes via the zenbatchload command.

Chapter 2

[47]

In its simplest form, zebatchload will process a text file that lists one device per line.
Here's a sample list of devices that I will call deviceList.txt:

device01
router02
web03

Since zenbatchload is a Zenoss Core daemon, we need to run it as the zenoss user.
Here are the commands:

su – zenoss

<enter zenoss user's password>

zenbatchload deviceList.txt

The zenbatchload command will attempt to run SNMP on each device. If the device
doesn't support SNMP, it won't be added to the inventory. The zenbatchload
command accepts device classes, options, and zProperties in the text file. We'll talk
about zProperties in the Chapter 3, Device Setup and Administration.

Let's modify deviceList.txt with some options:

/Network/Router
device01 comments ='Sample Device'
/Server/Linux
router2 zSnmpMonitorIgnore='true'
web03 serialNumber='013478783'

The first thing we added was device class definitions. That's the /Network/Router
and /Server/Linux lines. The second thing we added was a list of comma-separated
options for each device. The option's value is enclosed in quotes.

When you specify the device class, zenbatchload will identify the class name and
assign all subsequent devices to that class name until it detects a new class name. So,
in our example, device01 is automatically assigned to/Network/Router, router2 and
web3 are assigned to /Server/Linux. Classes are coming up in the next chapter.

If you want to see which options you can use within the zenbatchload text file, run
the following command:

zenbatchload ‑‑show_options

The zenbatchload import utility will not update devices that are
already in the device inventory.

Discovering Devices

[48]

The zenbatchload file is a harness file for the $ZENHOME/Products/ZenModel/
BatchDeviceLoader.py file. It's well documented and gives more usage examples.

Command line discovery with zendisc
The zendisc daemon gives us an opportunity to discover devices from the command
line. It can be a helpful troubleshooting tool, or it can be a way for you to shed the
Web interface and satisfy your curiosity about how Zenoss Core works. Let's take a
look at a few example commands.

To see a list of available options, run the following command as the zenoss user:

zendisc help

Let's work through an example where we remodel a device on our network.
Modeling the device gives Zenoss Core the characteristics about the device that we
monitor. Sometimes Zenoss Core may not be collecting the information we think it
should, so we need to figure out why.

Run the following command as the zenoss user:

zendisc run --remodel -d coyote --logseverity=10

Because we used the --logseverity=10 option, the output is verbose and we can
step through the remodeling process, one line at a time. A value of 10 provides the
highest level of verbosity.

The -d coyote option ran the --remodel on the device named coyote. Now, if you
ran the command exactly as I wrote it, zendisc should have reported that it couldn't
find an IP address for the device. Feel free to run the command again and substitute
the IP address or hostname of a device on your network.

The run option tells zendisc to immediately run in the foreground, specifically
for debugging.

Let's try another command to scan a network for available devices:

zendisc run --net=192.168.0.0/24 --parallel=8

The --net=192.168.0.0/24 option scans for IP addresses on the 192.168.0.0
network. We could also specify a range of IP addresses using the --range option.
The --parallel=8 option tells zendisc to collect from eight devices at a time, which
helps discover large networks more efficiently.

Chapter 2

[49]

One more example: This time let's find all the routers on a network and
automatically assign them a device class:

zendisc run --net=192.168.0.0/24 --routers \ --deviceclass=/Server/
Network/Routers

While zendisc is helpful for debugging, you could use it to work directly with your
device inventory. I know many of you will prefer the command line to the web
environment, so enjoy.

Summary
In order to monitor a device, we need to tell Zenoss Core how to monitor the device.
Our options include SNMP, WMI, or Zenoss Plugins over SSH. Then we have to
make sure the monitored devices are configured to respond to the monitoring
protocol Zenoss Core uses for each device.

As you look at your Zenoss Core device list, you should see a list of devices.
However, you may see several events that indicate Zenoss Core is not able to model
devices correctly. Events could also signify there's a problem with the monitored
device, but we're just starting out. It's more likely we need to tweak the monitoring
properties of each device.

A common point of failure in establishing the relationship between the monitoring
server and monitored device is credentials. If you are having problems, make sure
Zenoss Core can authenticate using the unique credentials for each device.

Our monitoring protocols also require access to specific ports. In this chapter, we
outlined the common ports that Zenoss Core will need open in order to monitor via
SNMP and SSH.

In the next chapter, we'll refine the monitoring properties for each device so that we
can ensure we're collecting the correct information.

Device Setup and
Administration

Based on our work in Chapter 2, Discover Devices Zenoss Core is now monitoring
all the devices we added to our inventory. However, Zenoss Core is probably not
monitoring the way we need it to, and if we look closely, we may notice
that some devices have events associated with them. In this chapter, we're going
to configure our devices so that we ensure we collect the proper information.

As we work through the chapter, we will:

1.	 Organize devices by class, location, system, and group
2.	 Model devices via SNMP, WMI, and Zenoss Plugins
3.	 Troubleshoot our Zenoss Core data collection
4.	 Administer device properties

We'll spend the bulk of this chapter fine-tuning our device inventory and getting it
into monitoring shape. One of Zenoss Core's critical concepts is inheritance, which
means that the devices inherit monitoring properties from their parent device class.

We can change the monitoring rules at the device level by tweaking individual
device properties, called zProperties.

Let's start by taking a look at some of Zenoss Core's organizers.

Device Setup and Administration

[52]

Organizing devices in Zenoss Core
Zenoss Core provides multiple ways to organize our devices. We're going to take
a closer look at Locations, Systems, Groups, Networks, and Classes. Collectively,
these organizers allow us to describe devices in a way that's meaningful to
your organization.

We can define the organizers to be as specific as we need them to be, and not all
organizers are required. In other words, no one will care if you do not define any
groups. The information that we do specify can be used to establish monitoring
rules, event handling, and alerting rules.

Let's start by adding a location.

Locations
Zenoss Core does not include any location organizers by default. To add a location,
click on the Infrastructure menu. A list of organizers displays in the left sidebar of
the page, as seen in the following screenshot:

Potential location names are floors, buildings, wings, room numbers,
or office locations. Use something that's meaningful to you.

Chapter 3

[53]

To enter a new location:

1.	 Select Locations from the sidebar of organizers.
2.	 Click the plus sign (+) at the bottom of the sidebar to Add a child to the

selected organizer to display the Add Location dialog:

3.	 Enter the Name of the location, a Description, and an Address.
4.	 Click on SUBMIT to add the location:

Enter anything you think may be important about the location of that device. For
example, phone extension, driving directions, or site contacts may be practical items
to include in the description.

The real-world address may be something you want to record about a location,
especially if you have multiple locations. Zenoss Core provides a separate Address
field for each location name that ties into the Google Maps portlet.

The Google Maps portlet displays your locations on a map and connects them for
some nice dashboard eye candy. If a marketer happens to come by, be sure to show
them the Google Maps portlet. You may make a friend. We'll cover the maps portlet
in Chapter 9, Extending Zenoss Core with ZenPacks.

www.allitebooks.com

http://www.allitebooks.org

Device Setup and Administration

[54]

We can add as many locations as we need, or we can define a hierarchy of locations
by adding a sub-location. To add a sub-location, click on the name of the location
from the list and click on the Add a child to the selected organizer button.

Systems and Groups
Groups are closely related to Systems and how you use them is an exercise of your
imagination or operational needs. As an example, you might use groups to define
nodes on the org chart while the Systems describe the devices in terms of function.
In my monitoring environment, I group websites by project manager, so my groups
are names of people. I don't define any "systems" organizers, but you can. There's no
wrong answer.

Systems and Groups are displayed in the same spot as the locations, by clicking
on the Infrastructure menu. Adding either a system or a group works the same
way, too. Click on either System or Group, and then click the Add a child to
the selected organizer button. Enter the Name and Description, as shown in
the following screenshot:

Adding a system is the same as adding a group, except that you select the Systems
organizer in the sidebar first.

Organizer details
Before we look at classes, let's take a quick look at how we can work with Locations,
Groups, and Systems in the Zenoss Core interface.

You will notice that as you click on an organizer, the device list filters to include
all the devices assigned to an organizer. We haven't assigned any devices to an
organizer yet, so the device list is empty. However the following screenshot shows
an established Zenoss Core installation:

Chapter 3

[55]

If you click on the Details button, the sidebar changes to display the following items:
Devices, Events, Administration, Map, and Modifications.

As we move through the book, we will cover each of these items in more detail,
so I'll only provide a brief overview now. If you click on the Events link, you see
all the events associated with that organizer. We cover events in Chapter 6, Core
Event Management.

Click on the Administration link to display a list of commands, maintenance
windows, and device administrators. We cover administration in Chapter 8,
Settings and Administration.

The Map page displays a map of the location based on the address information you
entered for the organizer. The map requires a Google Maps key and we'll set that up
in Chapter 8, Settings and Administration.

To see a list of changes for the device, click on the Modifications link.

To exit the Details page, click on the See All button.

Device Setup and Administration

[56]

Editing organizers
You can change the name or description of an organizer by selecting the organizer
and then clicking Edit. You can find the Edit option by clicking on the Actions
menu button (which looks like a sprocket) at the bottom of the Infrastructure
sidebar. See the following screenshot:

Moving organizers
You can nest organizers by dragging and dropping one organizer into another one
to create a hierarchy. You can only nest similar organizers, which means that you
cannot move a system into a group or a group into a location.

Classes
Classes provide one of the most important organizers in Zenoss Core because we
can use the classes to establish monitoring properties for groups of devices. Each
device inherits the properties of its parent class. Using classes, we can define specific
monitoring rules and settings via zProperties. All devices in a class share the same
zProperties.

Classes also define what types of information Zenoss Core collects about a device by
assigning a set of collector plugins. Like the zProperties, each class contains a set of
collector plugins that can change from one class to another.

The Zenoss Plugins that we install on remote Unix servers are not the
same as the collector plugins we configure for our devices.

Several classes exist to organize devices, events, services, and processes based on
common groupings, but we'll stick to talking about devices right now.

Chapter 3

[57]

Viewing a list of device classes
You have probably already noticed that the list of device classes is available when
you click on the Infrastructure menu. Zenoss Core includes a default hierarchy of
classes; for now, we'll work within those default classes.

Next to each class is a number within parenthesis that indicates the number of
devices that are associated with the class, including the sub-classes. The icon to the
left shows the highest severity event for each class.

Click on the class name to display all the devices assigned to that class.

A devices can only be assigned to one class.

A hierarchical list of the default device classes in Zenoss Core follows. However you
can add as many classes as you want.

List of device classes

•	 Discovered
•	 KVM
•	 Network

°° Router
°° Cisco
°° Firewall
°° RSM
°° Terminal Server
°° Switch

•	 Ping

Device Setup and Administration

[58]

•	 Power
°° UPS

°° APC
•	 Printer

°° InkJet
°° Laser

•	 Server
°° Cmd
°° Darwin
°° Linux
°° Remote
°° Scan
°° Solaris
°° Windows

Assigning devices to a class
Depending on how you added devices, you may need to reclassify them. For
example, if you auto discovered your network, all the devices in your inventory
will be classified as /Discovered. There's no long term value in that.

To assign devices to a class:

1.	 Click on the Infrastructure menu to display a list of all devices.
2.	 Select one or more devices.
3.	 Drag and drop the selected devices onto the appropriate device class.
4.	 Click OK when prompted to confirm the move.

Chapter 3

[59]

The screenshot shows the device named coyote being moved to the /Server/Linux
class. Notice that the interface is giving you some feedback. You can only assign a
device to one class, so the selected class is highlighted.

The tool tip box in the screenshot is showing 1 selected row, which corresponds to
the number of devices you're adding to the class. In the screenshot, only one device
is being moved to /Server/Linux.

After you classify the devices, it's time to model them.

Modeling devices
Let's get our devices in shape to be modeled.

When we talk about Zenoss Core, two related terms often come up, monitoring
and modeling. Monitoring refers to the availability of the device and answers the
question, "Is the device accessible?". Modeling defines relationships between devices
and identifies the components available on a device, such as services, interfaces, and
file systems. It then collects varying amounts of data about each component.

Zenoss models devices via WMI, SNMP, SSH/Telnet, and port scan. Each class has a
default set of collector plugins that tells Zenoss how to model the devices assigned to
the class.

Device Setup and Administration

[60]

Remember in Chapter 2, Discovering Devices when we set up our servers to be
monitored by setting up WMI, SNMP, and the Zenoss plugins? Now is the time
to put that work to use. Feel free to go back and review that section now.

As we model our servers, routers, and other network devices, we'll be interested in
setting the collector plugins and zProperties for each device.

Modeler plugins gather device information
Each modeler plugin queries the device for a specific set of information that it will
store in Zenoss Core's device database. What we collect depends on multiple factors,
such as the capabilities of the device and the modeler plugins assigned to the device.
In general, we can expect to collect information about the operating system, file
systems, interfaces, routes, processes, IP services, CPU, and memory.

Modeler plugins can be assigned at the class level. However, we can
configure exceptions from the class properties at the device level.

Let's examine these modeler plugins I've been talking about.

1.	 From the Infrastructure menu, select Devices.
2.	 Navigate to the /Servers/Windows class.
3.	 Click on the Details button to display a list of settings.
4.	 Find and click the Modeler Plugins link to display a sortable list of plugins.

Chapter 3

[61]

A page showing the assigned collector plugins displays in the left column of the page
with an Add Fields link on the right.

To see a list of unassigned plugins click on the Add Fields link.

The plugin names are intuitive in that the name suggests the type of information
we expect to collect. For example, zenoss.snmp.IpServiceMap uses SNMP to
return a list of active IP services on the device, such as HTTP. The Dell-specific
plugins retrieve more detailed information from Dell devices using OpenManage,
and the HP plugins provide more information about devices using Insight
Management agents.

The plugins follow a three part naming convention. The first part identifies
the author (for example, zenoss). The second part lists the collection method
(for example, SNMP, WMI, cmd). The final part identifies the specific information
collected by the plugin (for example, IpServiceMap, CpuMap, uname).

Actually, the command plugins, identified by the "cmd" in the name, have an
optional field to specify system architecture. For example, cmd.linux applies to
Linux servers while cmd.darwin plugins apply to OSX.

To remove a plugin from the assigned plugin list, click on the x next to the plugin
name. To assign a plugin, drag the plugin name from the available list to the
assigned list.

Device Setup and Administration

[62]

Any change we make to the collector plugins at the class level will
be applied to all devices in the class. If we have one-off changes, we
should make the changes at the device level.

Assigning modeler plugins
Take the time now to review the devices in your inventory and set the appropriate
collector plugins. If you're not sure where to start, consider the following questions
as a starting point:

•	 Will you monitor with WMI? If not, remove the zenoss.wmi.WinServiceMap
plugin.

•	 Does the device support SNMP? If not, remove the snmp plugins.
•	 Is the server a Dell or HP? If so, add the PowerwareDeviceMap or

SysedgeDiskMap and SysedgeMap plugins.
•	 Are you monitoring a remote OSX server with the Zenoss Plugins? If so,

add the zenoss.cmd.darwin plugin.
•	 Plan to rely on port scan? Then use the port scan plugin.

Obviously, we can't cover every possible scenario; however that should get
you started.

Troubleshooting data collection
Wouldn't it be nice if everything just worked? Unfortunately, we can expect to make
a mistake or two.

Troubleshooting SNMP problems
If you see an event in Zenoss that reports SNMP agent down, we first need to find
out whether the issue is with Zenoss Core or with the device.

Not all network devices support SNMP. So, before you beat yourself
up troubleshooting, make sure your device supports SNMP.

Chapter 3

[63]

Running snmpwalk
Zenoss Core includes a command that will run the snmpwalk command on the
selected device. The snmpwalk command will query the device using the SNMP
community string we assigned to the device and will try to get a list of the OIDs.
Let's try it.

Navigate to Infrastructure and select Devices. Select a device (by clicking on the
device name) that should respond to SNMP requests. The device's Overview page
displays.

1.	 At the bottom of the sidebar, expand the Commands menu and select
snmpwalk.

2.	 The command runs against the device and returns the result, as shown
in the following screenshot:

The previous screenshot indicates that Zenoss Core was able to retrieve data from
the device successfully. If you have problems, the snmpwalk command will either
timeout or be refused.

If you're having problems connecting, check the SNMP Community attribute
(zSnmpCommunity) from the Configuration Settings of the device to make sure
it's correct.

If problems continue, let's move to the device itself and run the snmpwalk command,
assuming we're working with a Linux server. The snmpwalk command is included in
the SNMP utilities we installed in Chapter 2, Discovering Devices.

Run this command on the problem device:

snmpwalk -c public -v 2c localhost

Device Setup and Administration

[64]

If the command is successful, pages of results will scroll by the terminal. You should
check to make sure the device is allowing incoming connections on port 161/UDP
and that both the device and Zenoss Core are using the correct community strings.

Is the SNMP daemon running on Linux servers?
You should also check to make sure the snmpd daemon is running. Run the following
command to check:

ps aux | grep snmpd

We expect to see /usr/bin/snmpd running in the process list. If you don't see
snmpd, then install it as per the Prepare devices for monitoring section in Chapter 2,
Discovering Devices.

If you are still having problems, review the SNMP zProperties for the device. You
can try different SNMP versions and make sure SNMP monitoring is enabled. To
find the zProperties for a device, navigate to the device's status page. Then click on
the Configuration Properties link.

A description of the zProperties of all devices is included at the end of this chapter.

SNMP problems on Windows
Assuming the snmpwalk fails when run from Zenoss Core, make sure SNMP is
installed on the server (see Chapter 2, Discovering Devices).

The built-in Windows SNMP client doesn't provide as much information as
Net-SNMP does for our Unix-based systems. You may be wondering why
Zenoss Core isn't collecting file system information or CPU statistics. You need
a third-party SNMP agent for Windows. Try the free SNMP agent from
http//:www.snmp-informant.com.

Troubleshooting WMI problems
The first thing you should do is to make sure you have WMI installed as per the
instructions in Chapter 2, Discovering Devices, and have verified the setup.

Chapter 3

[65]

Zeneventlog—unable to connect to Windows
If you see an event that indicates zeneventlog is unable to connect to Windows, that's
an indication Zenoss Core is not able to authenticate to the Windows server. Check
the Configuration Properties (zProperties) of the device to ensure you have the
correct username and password set.

The following screenshot shows the WMI specific zProperties:

Remember, the zWinUser and zWinPassword properties must be an administrator
on the Windows server you're monitoring. It's possible that each of your Windows
servers could require a different username and password.

The zWinUser property can be either a local or a domain account. If you use
a domain account, specify the domain for the zWinuser value (for example,
mojoactive\administrator).

Zenoss Core does not collect WMI data
It's possible that Zenoss Core isn't collecting any data from the Windows Servers via
WMI, but there are no events reported. You can check the following zProperties at
the device or class level:

•	 Make sure the device is using the zenoss.wmi.WinServiceMap
collector plugin

•	 Set the zWmiMonitorIgnore property to False in the Configuration
Properties for the device or device class

•	 If you want to collect event logs, set the zWinEventlog property to True in
the Configuration Properties for the device or device class

Device Setup and Administration

[66]

Troubleshooting Zenoss Plugins
In Chapter 2, Discovering Devices we installed the Zenoss plugins on Unix hosts that
we may not be able to monitor with SNMP, such as remote Linux or OSX servers.
If you're encountering problems, there are several zProperties that affect how
successfully you can monitor remote machines. See the following screenshot:

There are several points of failure, but the most probable error is that the
zCommandPath value is not valid if you installed the Zenoss Plugins as I
described. The zenplugin.py file is installed to /usr/bin. And as you can see, the
zCommandPath is pointing to /usr/local/zenoss/libexec. This means that each
time Zenoss Core tries to collect data from the device using the remote command, it's
trying to run /usr/local/zenoss/libexec/zenplugin.py on the remote server.

Change the zCommandPath property to reflect the actual path to zenplugin.py on
the remote server, such as /usr/bin.

In order for Zenoss Core to connect to the remote server, it must supply valid user
credentials. Check the zCommandUsername and the zCommandPassword properties
to ensure they contain a valid username and password for the remote server.

A class of its own
Zenoss Core provides the /Server/Cmd class specifically for monitoring remote
machines. The collector plugins are specifically designed to interact with zenplugin.
py and retrieve data about the remote server. The following screenshot shows the
collector plugins assigned to the /Server/Cmd class.

Chapter 3

[67]

You won't find any SNMP collectors here.

Device administration
In this section, we'll take a look at some basic device administration tasks,
including: rename a device, delete a device, reset the IP address, and lock the
device's configuration.

Locking or unlocking a device
Zenoss Core automatically polls the devices in our inventory and remodels
the devices when it finds changes. To prevent changes to the device properties,
we can lock the configuration, and we can also lock the device from being deleted
from the inventory.

Device Setup and Administration

[68]

To change the lock status of a device:

1.	 From the Device Overview page, select Lock from the Actions menu.
2.	 Select from these choices, as shown in the following screenshot:

°° Lock from updates
°° Lock from deletion
°° Send event when actions are blocked

3.	 The device status page displays after we choose a locking option.

The options should be self explanatory. If you choose to send an event when actions
are blocked by a lock, the event will show up in the event console for the device.

Renaming a device
Zenoss automatically detects and populates the device name, but we can
name the device anything we want. On my test network, I prefer to use the
names of furbearers.

1.	 From the Device Overview page, select Rename Device from the
Actions menu.

2.	 Enter the new name (for example, Coyote) in the ID field of the Rename
Device dialog.

3.	 Click on OK to save the change.

On the Device Status page, the device information updates to reflect the new name.
Even the breadcrumb navigation changes to reflect the new name.

Chapter 3

[69]

Now, you can manage your devices using whatever slang you wish.

Resetting the IP address
Sometimes we need to move machines around and allocate new IP addresses. At
other times, we may try to monitor a server only to discover that it has a dynamic IP
address. Since Zenoss Core requires a static IP address on the monitored device, we
need to assign an IP address to the server, and therefore, IP information will need to
be updated in Zenoss Core.

To change the IP address:

1.	 From the Device Overview page, select Reset/Change IP from the
Actions menu.

2.	 Enter the new resolvable hostname or IP address in the IP Address field
of the Reset/Change IP dialog box (shown in the following screenshot) or
leave it blank to allow Zenoss to lookup the IP based on the device name.

3.	 Click OK to save the change.

Device Setup and Administration

[70]

Push changes
After we make changes to the device, we can "push" the changes to the collectors
right away instead of waiting for Zenoss Core to remodel the device. From the
Device Overview page, select Push Changes from the Actions menu.

Zenoss Core confirms the action with a status message in the bottom-right corner of
the page.

The collectors in Zenoss Core define settings that determine how each device
assigned to a collector is monitored. For example, we can configure the default cycle
times for the modeler protocol (SNMP, WMI, Ping). On Zenoss Core, the default
collector is localhost. Zenoss Core supports only one collector on the same host.

Deleting devices
Given enough time, we will find devices in our inventory that we want to delete.
For example, maybe we accidentally added a bunch of workstations with dynamic
IP addresses that go up and down. There are many other reasons to delete a device
from Zenoss Core, but I trust you have a firm grasp on when deleting a device from
the inventory is necessary.

If you think you might want to monitor the device in the future, you
should consider setting the production state to decommissioned. This
keeps all the historical data and retains the device in the inventory;
however, it's no longer monitored.

To remove a device from inventory:

1.	 Click on the Infrastructure menu and select the devices you want to remove.
2.	 From the Device Overview page, select Delete from the Actions menu.
3.	 Select the Remove Devices button (it looks like a minus sign) located at the

top of the device list.
4.	 The Remove Devices dialog displays and prompts you to select from the

following options:
°° Delete current events for these devices
°° Delete performance data for these devices

5.	 Make the appropriate selections and click on OK to confirm the delete.
6.	 The device will no longer show in inventory and Zenoss Core will no longer

monitor it.

Chapter 3

[71]

If you choose to retain the performance data by not deleting it, the data will be
available to the device should we decide to add the device back to Zenoss Core
at a later time. We'll review performance data in more detail in Chapter 5, Custom
Monitoring Templates and Chapter 6, Core Event Management.

zProperties defined
Throughout this chapter, we've seen several specific examples of zProperties, but
there are many properties that impact how we monitor. The following table lists the
device zProperties along with a brief description of the property. The zProperties are
accessible via the Configuration Properties link at the device or class level.

zProperty Description
zCollectorClientTimeout Set the collector timeout in seconds. The default value

is 180 seconds.
zCollectorDecoding Specify the character encoding. The default is latin-1.
zCollectorLogChanges Set to true to log changes and false to not log changes

to the collector.
zCollectorPlugins Click the Edit link to open the collector plugin

selection page.
zCommandTimeout Time in seconds to wait for a command to finish. The

default is 15.
zCommandCycleTime Specifies a time in seconds to cycle through

zCommands. The default is 60.
zCommandExistanceTest Test to see if a command exists on the monitored

device. The default is 'test -f %s'.
zCommandLoginTimeout Wait the specified number of seconds for a login

prompt to display. The default is 10.
zCommandLoginTries Attempt to log in to the remote sever the specified

number of times. The default is 1.
zCommandPassword Enter the password for the user's shell account on the

monitored device.
zCommandPath When you specify a command, Zenoss Core searches

the specified path for the command. You can enter
fully-qualified commands here.

zCommandPort The port the monitored system uses for remote
connections. The default is 22 for SSH. Specify 23 for
telnet.

zCommandProtocol Specify the protocol to use (Telnet, SSH). The default
is SSH.

zCommandSearchPath Not currently used.

Device Setup and Administration

[72]

zProperty Description
zCommandUsername Enter the user name for the remote device.
zDeviceTemplates Enter the templates by name to use in order to

display information. The default is device.
zFileSystemMapIgnoreNames Enter the names of the file systems to ignore. For

example: /boot.
zFileSystemMapIgnoreTypes Specify the file systems you want Zenoss Core to

ignore.
zFileSystemSizeOffset Adjust the file system capacity values reported by

Net-SNMP. Useful when the Linux server and Net-
SNMP report different capacities.

zHardDiskMapMatch A regular expression to match the names of hard
disks.

zIcon Each device class has a default icon that can be
changed as necessary.

zIfDescription Displays the interface description on the Interfaces
table of the OS tab. Select either true or false. The
default is false.

zInterfaceMapIgnoreNames Enter the names of the interfaces to ignore. For
example: lo.

zInterfaceMapIgnoreTypes Enter the type of interfaces to ignore. For example:
local loopback.

zIpServiceMapMaxPort Specify the maximum port number to port scan. The
default is 1024.

zKeyPath Specify the path to the user's public key file for use
with public-key authentication.

zLinks Enter HTML or TALES expressions to display content
on the device's status page. For example, you can
create a link to a router's administration console that
will display on the Device Status page.

zLocalInterfaceNames A regular expression match to identify local interface
names. The default expression looks for lo (loopback)
and vmnet (VMware).

zLocalIpAddresses A regular expression match to identify local IP
address.

zMaxOIDPerRequest Specify the number of OIDs Zenoss collects with a
single query. The default is 40.

zNmapPortscanOptions Specify the options to use for the zenoss.
portscan.IpServiceMap modeler plugin.

zPingMonitorIgnore Select true to not ping the device or false to ping the
device.

Chapter 3

[73]

zProperty Description
zProdStateThreshold Monitor a service that is higher than the production

state listed. Possible values include 1000 (Production),
500 (Pre-Production), 400 (Test), 300 (Maintenance),
and -1 (Decommissioned).

zPythonClass Not currently used.
zRouteMapCollectOnlyIndirect Set to true to collect only the indirect routes. Default

is false.
zRouteMapCollectOnlyLocal Set to true to collect only the local routes. Default is

false.
zRouteMapMaxRoutes Specify the maximum number of routes to map. The

default is 500.
zSnmpAuthPassword Specify SNMP password, if applicable.
zSnmpAuthType If using zSnmpAuthPassword, select either MD5 or

SHA authentication protocol.
zSnmpCommunities List of communities Zenoss tries to collect

information for. The defaults are public and private.
Enter more as needed.

zSnmpCommunity The default community name on the monitored
device.

zSnmpMonitorIgnore Set whether or not Zenoss should monitor the device
with SNMP. Defaults to false.

zSnmpPort The SNMP communication port. It defaults to port
161.

zSnmpPrivPassword Enter the security user's password.
zSnmpPrivType Select either AES or DES encryption.
zSnmpSecurityName Enter the security user's name.
zSnmpTimeout Length of time in seconds that Zenoss waits for a

response from the remote SNMP agent. Defaults to
2.5.

zSnmpTries Number of times Zenoss tries to connect via SNMP
before reporting a failure.

zSnmpVer The version of SNMP. Available options are 1, 2c, and
3. Defaults to 1.

zSshConcurrentSessions Set the number of concurrent SSH sessions that
Zenoss Core will make. The default is 10.

zStatusConnectTimeout Specifies the time in seconds for an IP service to
respond before the service is marked as down. The
default is 15.

zSysedgeDiskMapIgnoreNames Not currently used.

Device Setup and Administration

[74]

zProperty Description
zTelnetEnable On Cisco routers, send the enable command to enable

command collection. Default is false.
zTelnetEnableRegex Match the enable prompt with the specified regular

expression.
zTelnetLoginRegex Match the login prompt with the specified regular

expression.
zTelnetPasswordRegex Match the password prompt with the specified

regular expression.
zTelnetPromptTimeout Specify the time in seconds to wait for the login

prompt to display.
zTelnetSuccessRegexList Match the command prompt with the specified

regular expression.
zTelnetTermLength Select true to enable Telnet terminal length.
zWinEventLog Specifies whether or not Zenoss collects the Windows

event log. Default is false.
zWinEventLogMinSeverity Collect all Windows event logs that match the

specified severity. Enter a value between 1 and 5,
where 1 is the most severe. The default is 2.

zWinPassword Enter the Windows user's password.
zWinUser Enter the username of an account on the monitored

Windows system.
zWmiMonitorIgnore Set to true to ignore WMI monitoring and set to false

to monitor WMI services.
zXmlRpcMonitorIgnore Set to true to enable XML/RPC monitoring.

Summary
At this point, the devices in your inventory should be organized and configured
for monitoring. We defined the monitoring settings by assigning devices to classes,
adding/removing collector plugins, and fine tuning the zProperties for the class or
the individual device.

As we work with our devices and develop our Zenoss Core monitoring environment,
we may realize that we want to change some of the work we did in this chapter. And
that's no problem.

In the next chapter, we'll dig into the availability and performance data that Zenoss
Core collects for each component.

Monitor Status and
Performance

Is the device available? How has the device performed over time? We answer these
questions and more in our discussion about status and performance monitors. Status
monitoring lets us know if the device or service is up or down while performance
monitoring shows us the device's performance over time in the form of a graph.

In the previous chapters, we have built an inventory of the devices we wish to
monitor and Zenoss Core is happily monitoring them according to the classes,
zProperties, and modeler plugins we defined. In this chapter, we turn our attention
to the components we want to monitor for each device. In Zenoss Core terminology,
a component refers to some detail about the device, such as routes, services,
processes, file systems, and network interfaces.

In this chapter, we will:

•	 Configure collectors to gather data from each device
•	 Monitor routes, window services, IP services, processes, file systems, and

interfaces
•	 Graph the performance of individual components
•	 Customize the event threshold of an existing performance template

Let's jump right in.

Monitor Status and Performance

[76]

Collectors collect
The collector for a device sets the frequency that Zenoss Core monitors the
device. For example, we can configure how often Zenoss Core checks for device
configuration changes, how often it polls Windows events log, polls for SNMP data,
and more. We have already encountered collectors while editing device settings.
Zenoss Core has one default collector called localhost.

To view the collectors, click on the Advanced | Collectors menu. A simple table
containing a list of the available Zenoss Collectors will be displayed:

Click on the localhost monitor to display an overview of the settings as per the
following screenshot:

Chapter 4

[77]

In the overview we see a list of properties, which we will describe in a moment. The
bottom table shows all the devices attached to the localhost collector.

From the Devices menu, we can assign the device to a new monitor by selecting the
Set Perf Monitor option. Since we only have one monitor at the moment, we won't
be able to reassign the device to a new collector.

The collectors primarily set the polling cycles for Zenoss Core's
collection processes, such as WMI, SNMP, and ping.

The previous screenshot shows the properties with default values filled in. We'll
explain each property in the next section, but generally speaking, these properties
tell Zenoss Core how often it should do each of the items listed.

For example, the zenping daemon pings the device every 60 seconds to check its
availability. The zenping daemon expects a ping response within 1.5 seconds. If no
response is received, a second ping request is sent. The default number of ping tries
is two. If zenping fails to receive a response after two ping tries (three seconds), it
generates an event.

The first question, that comes to mind is, "do all these servers deserve to be
monitored every minute for availability?" Maybe we want to check some servers
only every five minutes. In that case, we can increase the Ping Cycle Time to
300 seconds.

Let's take a look a the collector properties.

Configuring the performance collector
The following table lists each property, data type, and description. The description
indicates which underlying Zenoss Core daemon requests the data. Using the
following settings, we can create collectors with highly customized monitoring
properties that we can assign to one or more device classes.

Property Data type Description
Event Log Cycle Interval int The time in seconds that the zenwin

daemon collects Windows event logs.
The default is 60.

SNMP Performance Cycle
Interval

int The time in seconds that the zenperfsnmp
daemon collects SNMP performance data.
The default is 300.

Monitor Status and Performance

[78]

Property Data type Description
Process Cycle Interval int The time in seconds that the zenprocess

daemon collects performance data about
the OS process. The default is 180.

Process Parallel Jobs int The number of jobs to process at one time.
The default is 10.

Status Cycle Interval int The time in seconds that the zenstatus
daemon collects data about IP services. The
default is 60.

Windows Service Cycle
Interval

int The time in seconds that the zenwin
daemon collects performance data about
Windows services. The default is 60.

Windows WMI Batch Size int The number of items zenwin asks for at one
time. The default is 10.

Windows WMI query
timeout

int The time in milliseconds that zenwin will
attempt to connect to the Windows server.
The default is 100.

Config Cycle Interval int The time in minutes that Zenoss reloads the
monitor configuration. The default is 360.

Ping Timeout float The time in seconds that zenping waits for
a reply to the ping command. Default is 1.5.

Ping Tries int The maximum number of ping attempts
per cycle Interval. The default is 2.

Cycle Interval int The time in seconds that Zenoss collects
availability data. The default is 60.

Maximum Ping Failures int If the device fails to respond to a ping for
the specified number of consecutive tries,
remove it. The default is 1440 (36 hours).

Chunk Size int Specifies a default chunk size for a ping, in
bytes The default is 75.

Configuration Reload Interval int The time in minutes that Zenoss reloads the
configuration. The default is 20.

Default Discovery Networks line Specify the networks to auto-discover in
CIDR format. Enter one IP number per line.
For example: 192.168.0.0/24.

Render URL string Used for inter-daemon communication
(XML/RPC) for graphing information. The
default is /zport/RenderServer.

Chapter 4

[79]

Property Data type Description
Render User string The username required to connect to the

Render URL. Default is blank.
Render Password string The password associated with the Render

User.
Default RRD Create
Command

line A set of default commands that Zenoss
Core uses to create performance graphs
from the collected data.

Monitoring components
Now that we know a bit about how Zenoss collects status and performance
information, we turn our attention to monitoring the status of the components from
the device's overview page. In Zenoss Core, our components are categorized by
Network Routes, Interfaces, OS Processes, File Systems, Win Services, IP Services,
and Processors.

To view the components for a device, click on the device name from the list of
devices in the Infrastructure menu. The list of components for each device varies
based upon several variables, such as the modeling protocol and the modeler
plugins used for the device. Therefore, not all the devices will have the same
components listed.

We'll cover each of the following components in turn: Interfaces, OS Process, IP
Services, Win Services, File Systems, Processors, and Network Routes.

Monitor Status and Performance

[80]

Interfaces
As part of the modeling process, Zenoss Core discovers the interfaces running on
the device and automatically begins monitoring them for throughput and errors.
However, Zenoss Core does not monitor the interface for up/down status by default.
There are community workarounds involving event transformations and custom
data sources in the interface template.

The following screenshot shows the discovered interfaces for a server.

As you review the screenshot, you see that the Interfaces table lists some descriptive
information about the device such as highest event associated with the interface, the
interface name, IP address, network, MAC address, availability status, monitoring
status, and locks. The action menu allows us to lock the device or change the
monitoring status of the device. Just because Zenoss discovers the interface doesn't
mean we need to monitor it. For example, we may decide we don't really need to
monitor the loopback adapter.

The loopback adapter (lo) provides an interface for network traffic that only takes
place on the local machine, and it always has an IP address of 127.0.0.1. To disable
monitoring of the loopback interface:

•	 Select the lo interface from the list
•	 From the Actions menu, select Monitoring to display the Monitoring

dialog box
•	 Uncheck Monitor these components and click SUBMIT

Chapter 4

[81]

The Monitored status for the lo interface is now false, indicating that the device is
not monitored. To make sure we stop monitoring the loopback adapter, we can edit
the Configuration Properties for the device and set zInterfacemapIgnoreName to
^lo.

OS Processes
Zenoss Core can keep tabs on almost any Unix process we want to monitor;
however, it won't be able to gather reliable statistics for short-lived processes
which are up at irregular intervals.

Before we can monitor an OS process, we need to add it to Zenoss Core's list of
processes. By default, Zenoss Core does not monitor any processes.

Add Process
Let's add the apache2 process, so we can monitor it:

•	 Click on the Infrastructure menu and then select Processes. The Processes
page displays.

•	 From the Add menu (at the bottom of the Processes sidebar), select
Add Process.

•	 Type apache2 in the name field of the Add Process dialog box and click
SUBMIT. When we enter a "name" in this dialog box, we're really specifying
the pattern we want Zenoss Core to search for when it monitors the process.

The new process is added to the list.

Monitor Status and Performance

[82]

You can create organizers, a.k.a subfolders, to help categorize your list.
The add menu at the bottom of the Processes sidebar also has an Add
Process Organizer option. After you have a process organizer defined,
you can drag and drop processes.

Viewing or editing the process details
To view or edit the monitoring details of the process, click on the name of the
process. See the following screenshot:

Most of the settings on this screen should be self explanatory, but it pays to review a
few of the more important properties.

The Pattern field allows you to enter a new regular expression pattern.

By default, Zenoss Core will monitor the process. You can override the default
setting by selecting No under the Enable Monitoring heading. This setting is also
configurable via the zMonitor zProperty, which is covered in the next section.

If you want a down process to generate an event with a higher priority, you can set
that using the Failure Event Severity, which is tied to the zFailSeverity zProperty.

Configuration properties
We can specify monitoring properties for an individual process or the process
organizer. Processes will inherit the properties of their parent organizer. The
configuration settings are handled via the zProperties.

Chapter 4

[83]

To view the zProperties, select the process or process organizer from the list under
Infrastructure | Processes. Then find the Display drop-down menu and choose
Configuration Properties.

The following table shows the zProperties:

Property Data type Descriptions
zAlertOnRestart Boolean Determines if Zenoss generates an event

when the process restarts. The default
value is False.

zCountProcs Boolean Set this value to true if you want to find
all the instances of the process that may
be running.

zfailSeverity Int Specify the default severity for events:
The default is Error.

zMonitor Boolean Specify whether or not you want to
monitor this process.

Don't forget to save any changes you make.

Monitoring OS Processes
The next time Zenoss Core models the devices, it will automatically scan each
device for the process and automatically add discovered instances to the device's
OS Processes list. Remember our discussion on collectors earlier in the chapter?
The default collector models devices every 12 hours.

To force remodeling of individual devices, select the Remodel
Device option from the Actions menu, which can be found on the
devices overview page.

Once Zenoss Core remodels the devices, we can view a list of all the monitored process
instances from the Processes page. Let's look at our Apache example navigating to
the apache2 process. The page should display the Process Instances by default. The
following screenshot shows all the devices with the apache2 process running:

Monitor Status and Performance

[84]

In the Process Instances list, each device lists the process name, monitoring status,
and process availability.

But what does the monitored process look like from the Device's point of view.
Let's find out. The following screenshot shows the OS Processes for a device with
apache2 selected.

We see performance graphs for CPU Utilization, Memory, and Processes Found
(not pictured).

Chapter 4

[85]

Services
Unlike processes, Zenoss Core provides a list of services that we can monitor across
Windows and Unix servers. Zenoss Core monitors two classes of services: IP Services
and Windows Services. To view the list of services, select Windows Services or IP
Services from the Infrastructure menu. The IP Services are organized by Privileged
and Registered.

The rules for how we make Zenoss Core monitor a service is the same whether we
want to monitor IP services (for example, Telnet, SMTP, HTTP) or Windows Services
(for example, Event Logs).

To monitor a service:

•	 Enable monitoring for the service at the class level
•	 Configure the monitoring properties
•	 Make monitoring exceptions at the device level

Let's walk through the process of monitoring an IP Service.

Monitoring is not set for individual services by default in Zenoss Core.
If you want to monitor a service, you need to explicitly enable it.

Enable monitoring for a service
To show how the services work, let's enable a service. Pick any service you want, but
this exercise will work better if you actually have a device running that service. In
my example, I will monitor http.

Monitor Status and Performance

[86]

Navigate to Infrastructure | IP Services to display a list of services. The sidebar
should display a long list of services. Zenoss Core provides a filter box, located just
above the list of services. You can narrow down the list and save some scrolling by
typing http into the filter. See the following screenshot:

Each service class has a set of properties that define how we monitor the service,
including whether or not monitoring is enabled. Since you have the service selected,
you see a list of monitoring properties, as seen in the following screenshot:

Chapter 4

[87]

To monitor this service, select Yes from the Enable Monitoring heading. As you can
read on the screen, this is also a zProperty. Let's look at the zProperties now.

Configuration properties
With the service selected, choose Configuration Properties from the Display menu.
The following table explains the zProperties you will find:

Zproperty Data type Description
zFailSeverity Int Zenoss will generate an event with

the specified severity when the service
becomes unavailable.

zHideFieldFromList Lines Hide the list of columns from the
services lists. Available options are port,
description, monitor, and count.

Enter each value on a new line.
zMonitor Boolean To monitor the service, select True.

Monitoring exceptions for services
At this point we just told Zenoss Core to monitor all instances of http, but we may
not want to monitor every instance.. We can selectively disable monitoring for a
service on a per device basis. The following screenshot shows the IP Services list for
a device:

Notice in the screenshot that I have several services listed, but only one of them
is being monitored. The http service has true in the Monitored column. That tells
us Zenoss Core has discovered several services for this device but monitoring is
disabled for most of them.

Monitor Status and Performance

[88]

Remember, our example is using IP Services, but the same logic applies
to Windows Services. If you enabled a Windows Service and viewed
your Windows Server, the Components list would include a page for
Windows Services.

We can change the status of monitored services:

•	 Select a service (for example, http) from the list
•	 Select Monitoring from the Actions menu
•	 When the Monitoring dialog box displays, uncheck Monitor these

components and click on Submit
•	 Zenoss Core will change the monitored status of the http service to false for

the current device

If the Monitored column is blank, you will not be able to set the monitoring status
at the device level. You will first have to enable monitoring at the service level.

Interactively monitor IP services
We can configure Zenoss Core to Send String when it checks the status of an IP
service. Then we can define the expected result in the Expect Regex field. See the
following screenshot, which shows the properties of the http service class:

Chapter 4

[89]

Any change we make at the service class level will apply to all instances of the
service, and the next time Zenoss models the devices, it will apply the new
monitoring rules. It will send the string and expect the result you specify.

File Systems
Zenoss Core models the file system hierarchy and reports the volume name (Mount),
capacity in Total Bytes, Used Bytes, Free Bytes, % Utilization, and whether or not
the file system configuration is locked. If we add a new Mount point to the device,
such as an extra drive, Zenoss Core automatically detects and adds the new file
system when it models the device.

The File Systems component is only visible at the device level, which is different than
the processes and services we have been working with. See the following screenshot:

Ignoring File Systems with zProperties
Zenoss Core provides a couple of device zProperties that help us configure what
file systems we monitor by default. They are zFileSystemMapIgnoreNames and
zFileSystemMapIgnoreTypes.

Monitor Status and Performance

[90]

Let's say we want to ignore the /boot partition for all Linux servers. Navigate to the
Configuration Properties of the /Server/Linux device class and enter /boot into the
zFileSystemMapIgnoreNames field.

The zFileSystemMapIgnoreNames field accepts a regular expression.

The zFileSystemMapIgnoreTypes property is a multi-line entry that lists the
types of memory that are ignored by Zenoss Core. If for some reason, you wanted
to monitor the virtual memory of a server or a class of servers, remove the
virtualMemory option.

Changes to these zProperties will be reflected the next time Zenoss Core models
the device.

Network Routes
For each device, Zenoss Core discovers the routing table and displays the following
information in the Network Routes table, which is listed under the Components for
each device: Destination, NextHop, Interface, Protocol, Type, and configuration
Locks (as shown in the following screenshot).

Chapter 4

[91]

If the Destination or NextHop values correspond to a discovered network, then we
can click on the IP Address to display the network properties. This will open the
Networks page in Zenoss Core, which is also a main menu under Infrastructure.

Networks
Zenoss Core allows you to enter multiple networks and configure the default
monitoring properties for each network. Some of the interesting things we can
decide on a network-by-network basis are whether or not we want to auto-discover
the network or whether Zenoss Core should only add devices that are available
via SNMP.

We don't need to review each of these settings, but I'll draw your attention to some
of them. First, in the left middle of the screen, Zenoss Core reports the number of
used and free IP addresses.

Then as we work down the right side of the settings, you can see options to disable
Auto-discovery on a network. Setting auto-discovery to false means that Zenoss
Core will not automatically add new devices you may add to the network. You will
have to add them manually.

If, for some reason, you want Zenoss Core to name the device according to the
SNMP name and not DNS, you enable that here.

Monitor Status and Performance

[92]

If Zenoss Core discovers a device that doesn't respond to SNMP, it will still add the
device to the inventory. You can set the Only create devices if SNMP Succeeds to
yes to drop those devices.

Add Components
We've just run through the configuration of the components that Zenoss Core could
monitor for a device. On a device-by-device level, we can add components to the
device by clicking the Add Components button (which looks like a + sign).

Chapter 4

[93]

As we talked about the individual components, we mentioned many times
that Zenoss Core would automatically detect the component. So why add it to
the device manually?

There are a few reasons you might want or need to add a component manually.
Maybe you previously removed it from the device. Maybe Zenoss Core did not
discover it, or maybe you don't want to wait 12 hours for Zenoss Core to find
the component.

For whatever reason, when you select one of the add menus, it will display a
component-specific dialog box. Try it and see. The Add OSProcess menu is a unique
menu in that it only displays the items defined in the Processes class. Remember, we
added apache2 as our example.

Viewing and editing component details for a
device
If Zenoss Core is monitoring a component for a device, it will display in the
Components list on the device overview. To see information, such as events,
configuration properties, or graphs related to a component, click on the component
while viewing the device details.

We're going to walk through an example using interfaces, but the same concepts
apply to all the components. Navigate to a device and click on Interfaces from the
Components list.

Monitor Status and Performance

[94]

Performance Graphs
To view the graph, you must select a specific component name. In the screenshot that
follows, we're looking at the eth0 interface. Note that a performance graph for an
interface has three graphs: Throughput, Packets, and Errors (not pictured).

If you do not see the list of graphs when you select an interface, select
Graphs from the Display drop-down list (see previous screenshot).
You can also display events, details, templates, and modifications.

Chapter 4

[95]

The data on the graph is collected and displayed according to the template associated
with the interface.

Interface template
A template tells Zenoss Core what data to collect, how to collect it, how to graph it,
and when to generate events based on the collected data. Templates are bound to
devices, classes, and components.

Zenoss Core binds templates automatically based on the monitoring rules we've
set up, but we can change template configurations, as needed. For example, Zenoss
Core's default interface template will generate an event when the interface is at 75 %
utilization or higher.

To view the template for an interface, select Template from the Display drop-down
list, and then click on the template name to display its properties.

As you can see in the following screenshot, the template consists of Data Sources,
Thresholds, and Graph Definitions:

The reason I have brought you to this awkward looking screen is to show you how
the data is being tied together. In the template shown in the screenshot, the Data
Sources correspond to OID values that Zenoss Core monitors via SNMP.

Monitor Status and Performance

[96]

The Thresholds contain rules that generate events. Not all templates have thresholds
established by default.

The Graph Definitions take the information from Data Sources and display it in a
graph. As the screenshot shows, there are graph definitions for Throughput, Packets,
and Errors. If that doesn't look familiar, you skipped the last couple of pages.

In the next chapter, we explore templates in more depth.

Performance Graphs
Zenoss Core creates time series graphs using the RRDTool for the device and
its components. "Time series" implies that we continuously measure data at
regular intervals.

Devices may have graphs to display CPU utilization, load average, memory
utilization, and IO. To display these graphs, navigate to a device and click on
the Graphs link. See the following screenshot:

The other place we find performance graphs is at the Component level, which we've
been discussing.

Chapter 4

[97]

Working with graphs
All performance graphs function in the same way. They can be viewed on an hourly,
daily, weekly, monthly, or yearly range. The default Range is Hourly (see the
following screenshot):

Each group of graphs has a Reset button that restores all the graphs on a page to the
default view. The Link graphs checkbox allows all the graphs on the page to stay
synchronized as we navigate through the time line of an individual graph.

Each graph also has its own set of controls. On either side of the graph, we have time
line navigation controls. The < navigates backward through the date range while
the > navigates forward. The magnifying glasses allow us to zoom in and out on the
graph. To zoom in, click the +, and then move the cursor over the graph. When the
cursor turns to a cross hair, click the mouse button to zoom in. The same process
applies to zoom out, except that we select the - magnifying glass.

The layout of each graph also follows a common format. The time measurement
plots on the x axis and the data point being measured plots on the y-axis. Beneath
the x-axis, the graph identifies the visible time range.

At the bottom of the graph, we see the color-coded data points represented on the
graph. Each data point displays current, average, and maximum measurements for
the visible time range.

Defining which data points a graph displays is controlled in the performance
template that is bound to the device. Collecting data via data points will be a central
topic in Chapter 5, Custom Monitoring Templates.

Monitor Status and Performance

[98]

Monitoring performance thresholds
Monitoring and graphing performance is related to monitoring a component for a
specific threshold. For example, if a file system exceeds certain utilization, Zenoss
Core can create an event to alert us of the state of the system.

By default, Zenoss Core has several default thresholds established via the
performance templates. Some thresholds are as follows:

•	 File system: 90 % utilization on /Device class
•	 Interface: 75 % utilization on /Device class
•	 CPU percentage: Less than 2 % on /Device class
•	 CPU high load: Greater than 1200 on /Device/Linux class

In order to change or add to our graphs, including thresholds, we modify the
device's performance template, which we will do in the next chapter.

Summary
We now have everything we need to configure our monitoring environment.
This chapter showed us how to monitor interfaces, processes, services, file systems,
and network routes.

In Chapter 5, Custom Monitoring Templates, we will fine-tune our data collection by
editing and creating monitoring templates. We'll use the data we collect to build
graphs and thresholds for event generation.

Custom Monitoring Templates
In the preceding chapters, we've seen how to set up our devices to be monitored by
defining classes, modeler plugins, and components. We now turn our attention to
one of the most flexible features within Zenoss Core: monitoring templates.

Templates are a graphical frontend to RRDtool. They collect performance data from
our devices and add that data into Zenoss Core's data model so we can monitor and
graphically display it.

In this chapter we will:

•	 Monitor using SNMP data sources, including MIBs and OIDs
•	 Monitor using a command data source (Nagios and Cacti plugins)
•	 Bind monitoring templates to device classes

This chapter roughly divides into two halves. In the first half, we tweak an existing
template and add a new SNMP data source and OID.

In the second half, we create a template that uses a Nagios style plugin that
randomly generates monitoring values; therefore it provides a great way to
demonstrate or experiment with events, data collection, and the RRDtool.
And the beauty of the plugin is that it does not require a real device to work.

Monitoring Templates
Templates allow us to customize our data collection when we decide the Zenoss
Core defaults no longer meet our needs. We could for example, collect data for a
specific OID, implement a Nagios plugin, or create our own plugin.

Custom Monitoring Templates

[100]

Monitoring Templates tell Zenoss what data sources to collect from and how to
graph the data. They can also establish monitoring thresholds on the collected data,
which we can use to generate events. We apply templates to the device class or to the
individual device. In Zenoss terminology, the process of applying a template
to a device or a class is called binding.

To view all the monitoring templates in Zenoss Core, click on the Advanced menu
and then select Monitoring Templates. In the sidebar you will see an expandable list
of templates. Let's look at an example.

Expand the Device heading and click on /Server/Linux. The details of the template
will display, as shown in the following screenshot:

As you look over the list of monitoring templates, you should make some
connections to Chapter 4, Monitor Status and Performance, where we reviewed device
components. The FileSystem, IpService, OSProcess, WinService, HardDisk,
ethernetCsmacd_64, and ethernetCsmacd monitoring templates match the
components we saw on the OS tab in the previous chapter.

Chapter 5

[101]

The Data Sources tell Zenoss Core what information to collect and define the type
of data it is. Zenoss Core supports SNMP, command, and built-in data types. It
supports the following data types:

•	 SNMP: Uses an OID value.
•	 Command: Uses the output from a shell command in a Nagios or Cacti

compatible plugin. The Zenoss Plugins we talked about in Chapter 2, Discover
Devices are a command type data source.

•	 Thresholds: If defined, this will generate an event when the data source
collects information that crosses the threshold.

•	 Graph Definitions: This provides rules to display a graphical representation
of the information collected from the data source and the thresholds.

Changes we make at the Monitoring templates level will be inherited
by all devices bound to the template. Zenoss Core allows us to override
each template at the device level.

Monitoring SNMP data sources
We're going to edit an existing monitoring template that's already set up for SNMP.
This will allow us to become familiar with the monitoring templates and discuss how
Zenoss Core incorporates OIDs into the template's data source.

Overriding templates
Rather than make changes at the class level, let's modify the device template for an
individual device. In my example, I'll continue to work with my test server which
is a member of the /Server/Linux class. If you don't have a Linux server in the /
Server/Linux class, you can work through the example by editing the /Server/
Linux template.

1.	 Navigate to the device and select Details, and from the Monitoring
Templates heading, select Devices (/Server/Linux).

2.	 From the Actions menu, select Override Template Here. In the Override
Templates dialog box, select Device (/Server/Linux), and then click
on SUBMIT.

Custom Monitoring Templates

[102]

3.	 The monitoring template name changes to Device (Locally defined).
Creating a copy of the template provides us with some protection from
ourselves and is equivalent to making a backup of a file. We preserve the
original template settings, so that if we don't like the changes we make to
the local copy of the template, we can delete the local copy and restore the
original settings.

4.	 Let's Edit the Device (Locally Defined) template. Click on the template name
to display the Data Sources, Thresholds, and Graph Definitions.

The Data Sources table lists the Name, Source, Source Type, and Enabled status
for each data source. The Source Type is either SNMP or command by default.
Additional source types can be added via plugins, ZenPacks, and add-on modules
in order to extend Zenoss Core's functionality.

Chapter 5

[103]

The data sources vary depending on the device class. Here are a few
examples:
The /Server/Linux class monitors multiple OIDs, which we've
already seen.
The /Server/Cmd class monitors with the Zenoss Plugins over SSH or
Telnet, so its Source is the zenplugin.py file with a Source Type of
command.
The /Server/Windows class relies on the SNMP Informant to collect
data on a couple of OIDs; the /Server/Linux class by comparison,
uses Net-SNMP and collects data for three times as many OIDs.
Not all device classes collect or graph performance data with their
default templates. The /Server/Scan and /Server/SSH device
classes have blank performance templates because they primarily
monitor services in a way that may not report performance data, such as
port scan in /Server/Scan.

Data sources and the related data points are the key components of a template
because they define what data we have available to build thresholds and graphs.
We'll explore the relationship between data points, thresholds, and graphs later in
this chapter.

Let's make a few changes to the data sources for /Server/Linux to demonstrate how
we can work with SNMP data sources. In the second part of this chapter, we'll work
with command data sources when we create a template from scratch.

Editing the /Server/Linux template
Currently, the /Server/Linux device template monitors the available physical
memory (memAvailReal) and the available swap memory (memAvailSwap).
The template defines what we graph and creates a minimum threshold for
available memory.

That's great stuff, if you need it. Maybe you need to monitor physical memory
and swap memory separately. Maybe you don't want to monitor any memory
characteristics. No problem. There is nothing magical about the Zenoss Core default
values. Zenoss Core can be easily customized to your needs, and we'll work through
some template customization now.

Custom Monitoring Templates

[104]

Let's work through an example where we monitor memTotalFree for our
Linux server:

1.	 Navigate to the Linux server from the device list. Then select Device
(Locally Defined) from Monitoring Templates.

2.	 Let's add the memTotalFree data source. From the Data Sources menu,
choose Add Data Source.

3.	 In the Add Data Source dialog box, type memTotalFree for the Name. Select
SNMP for the Type.

4.	 Click Add. The memTotalFree Data Source is added, but it's not configured.
5.	 To configure the data source, select memTotalFree from the list. Then select

View and edit details from the Data source edit options menu.
6.	 Set the following properties in the Edit Data Source dialog box.
7.	 Set Enabled to True.
8.	 Set OID to 1.3.6.1.4.1.2021.4.11.0.
9.	 Set Type to Gauge.
10.	 The Edit Data Source allows us to test the data source against a device.

To run the test, type the name of the device name (my example uses coyote)
and click the Test button.

11.	 When you're sure that the data source is configured properly, click Save.
12.	 The following screenshot shows the output of the data source Test command

against a device:

Chapter 5

[105]

The Test Against Device field just ran the snmpwalk command against the device we
specified using the community string and SNMP version from the zProperties. And
it asked the device to report the value of the memTotalFree OID.

The value of memTotalFree or OID 1.3.6.1.4.1.2021.4.11.0 is reported in the screenshot
with the line UCD-SNMP-MIB::memTotalFree.0 = INTEGER: 1995808 kB.

Sometimes it's just faster to work from the command line. You can use
the snmpwalk command to test a device for a specific OID by using a
command in the following format:
snmpwalk -c <community> -v <SNMP version> <device> <oid>

If the snmpwalk command fails, then you have some troubleshooting to do.
A good place to start is to verify your SNMP setup, which we covered in
Chapter 2, Discover Devices.

The other obstacle here is knowing which OIDs you have available to monitor.
MIBs are collection of OIDs and Zenoss Core includes several MIBs that we can use
to find OIDs.

Find OIDs for SNMP monitoring
Zenoss Core provides a MIB browser in the Zenoss Core web interface that we can
display by clicking on the MIBs menu from the navigation sidebar. The problem
is that the list is blank by default; however Zenoss Core stores lists of MIBs in
$ZENHOME/common/share/snmp/mibs and $ZENHOME/common/share/mibs.

We can use the zenmib command to add the MIBs into the graphical MIB browser
so we can find what we're looking for.

Since we used the 1.3.6.1.4.1.2021.4.11.0 OID in our example, lets pull its parent MIB
into Zenoss Core so we can browse it. If we look back at the output of the snmpwalk
test command we ran in the previous section, we see that the response line provides
us with the MIB we care about, UCD-SNMP-MIB, which happens to be located in
$ZENHOME/common/share/snmp/mibs.

To add all the OIDs in the UCD-SNMP-MIB to the MIB browser, let's open a
command line and run the following commands as the zenoss user:

cd $ZENHOME/common/share/snmp/mibs

zenmib run UCD-SNMP-MIB.txt

Custom Monitoring Templates

[106]

When the zenmib command completes, it will provide some status information,
such as the number of nodes that the MIB contained, which is 156 in our example.

To add all the MIBs in a directory, use the wild card, *, in place of the
MIB name. For example: zenmib run *.

Now, let's view the MIBs from Zenoss Core, which you'll find in the Advanced
menu. We see UCD-SNMP-MIB listed with a Description, the number of Nodes,
and the number of Notifications:

As the screenshot indicates, you can create sub-folders to organize your Mibs.
We're not going to worry about that now. Let's browse the MIB instead by
clicking on UCD-SNMP-MIB to display the properties of the MIB:

Chapter 5

[107]

We learn some details about our MIB including contact and description information.
In our example, we learn that UCD-SNMP-MIB addresses memory and system
status, and it's maintained by the NET-SNMP project.

The list of OID Mappings is paginated, and we find memTotalFree on the second
page. Click on it to display the properties for the OID:

On the properties page for memTotalFree, we learn some additional details, such as
the Access type, Node Type, Status, and Description. So now we know, in detail,
what we are collecting. The chances are good, however, that you know most of this
information before you import the MIB.

If we go back one page to the UCD-SNMP-MIB page, we see a Traps table at the
bottom of the page:

We'll cover traps in more detail in Chapter 7, Collect Events, but traps allow the
monitored devices to report events back to Zenoss Core. Then Zenoss Core can turn
the received trap into an event.

Custom Monitoring Templates

[108]

We've walked through how we import a MIB, and as we've seen the MIB contains
OIDs that we can use as our SNMP data sources in our monitoring templates. Even
though Zenoss Core includes many MIBs, hardware manufacturers release MIBs that
retrieve device-specific information. If you start seeing events with OIDs instead of a
friendlier name, then you know you need a MIB.

You can find MIBs from the manufacturers, directory sites, such as
www.mibdepot.com, or by performing an Internet search.

Have you had enough MIB browsing for now? Let's shift gears and set up a
monitoring template using a Nagios plugin. In the next section we will explore
command data sources, thresholds, and graphs.

Monitoring with Nagios plugins
With our exploration of SNMP-based templates behind us, let's add a demonstration
plugin to Zenoss Core that randomly generates a range of performance data. We'll
create a new device class called Demo with its own device template to collect,
generate events, and graph data from the bogo_check.py command.

First, let's give some credit. The bogo_check plugin we'll be using was
submitted to the Zenoss bug tracking database as bug number 2031
by Kells Kearney. I found out about Kells' plugin while he reviewed
the first version of this book, but it was too late to incorporate it. The
ticket is still open and there's some discussion on the ticket about
making this into a ZenPack. So, we're going to bring this plugin out
into the light of the day. See http://dev.zenoss.com/trac/
ticket/2031http://dev.zenoss.com/trac/ticket/2031 for
more information.

When we're finished with this chapter, we will be monitoring a fictitious device with
a plugin that generates random data. You might be inclined to ask why we'd want
to do such a thing, and that's a fair question. Generally speaking, we're not likely
to match monitoring environments, so this gives us a rare chance to have a similar
environment, and we'll turn this plugin into a ZenPack in Chapter 9, Extend Zenoss
Core with ZenPacks. The demo environment we're about to create can also become a
playground to explore templates, command data sources, and performance graphs
via RRDtool.

http://dev.zenoss.com/trac/ticket/2031

Chapter 5

[109]

Step one is to obtain the bogo_check plugin file. I'd recommend you download
the code files for this book to obtain the plugin file. To do so, visit http://www.
packtpub.com/support, select this book from the Title drop-down list, and click
on Go. However, you can also extract the code from the attachment at http://dev.
zenoss.com/trac/ticket/2031.

Let's install bogo_check.py. If you work as the zenoss user, you'll save yourself
some permission problems:

1.	 If you downloaded the code from Trac, copy all 130 lines of the script and
paste it into a text file named bogo_check.py.

2.	 Copy the file to $ZENHOME/zenoss/Extensions. Then navigate to the
Extensions directory.

$ZENHOME represents the installation path of Zenoss Core. It's /usr/
local/zenoss by default.

Custom Monitoring Templates

[110]

3.	 If you're not working as the zenoss user, you'll need to copy the file as a
superuser and change file ownership to the zenoss user with the command:

 chown zenoss bogo_check.py

4.	 Make the script executable with the following command:
 chmod +x bogocheck.py

5.	 If you downloaded the bogo_check.py file from the Trac ticket, you'll need
to change the first line of the script from #!/usr/bin/python to #!/usr/
bin/env python because Zenoss Core installs its own version of Python. The
zenoss user's environment is configured to use the version of python that is
packaged with Zenoss Core. Zenoss Core packages Python 2.6 in $ZENHOME/
python.

We're now ready to test our command, which we'll do from our terminal window.
As the zenoss user, run the following command several times from the $ZENHOME/
Extensions directory:

./bogo_check.py

Each time you execute the command, it returns a different result that resembles the
following output:

bogo_check OK datapoint 58 | bogopoint=58%;70;90;0;100

The OK in the results will randomly switch between OK, WARN, and CRITICAL
based on the datapoint value, which in my sample output is 58. The values 70 and
90 represent the default thresholds defined in the bogo_check plugin. So, if your
datapoint returns a 70 or higher, the plugin will trigger an event with a severity
of warning. If the datapoint is 90 or higher, the plugin generates an event with a
severity of critical.

The bogo_check plugin supports runtime options. For example, we can change
the warning event threshold at runtime with the --warn option. See the following
screenshot:

We need to specify the new warning threshold value with an integer, which is the
--warn =35 part the command in the previous screenshot. To find all the available
options for the bogo_check plugin, run it with the --help option.

The bogo_check plugin returns data in a Nagios plugin compliant way, which
Zenoss Core inherently understands.

Chapter 5

[111]

Working with Nagios plugins
Because Zenoss Core can understand the data returned by Nagios plugins, we have
a wide variety of command data sources available for us to plug into our device
templates. Likewise, if you need to write a custom plugin to pull data, you can write
it according to Nagios standards.

You can find Nagios plugins in a variety of places including Nagios
Exchange at http://exchange.nagios.org/ and the official Nagios
Plugins at http://nagiosplugins.org/.

Under the hood, Zenoss Core uses a command called zencommand to run the plugin
against a device. The important piece for now is that zencommand expects the output
of the plugin to conform to Nagios conventions in two important ways: return code
and performance data.

Nagios return codes
The following table shows the Nagios return codes:

Return Code Description
0 Status is OK, which means the device is available and does not violate

defined thresholds.
1 Status is WARN, which means the device is available but is crossing a

predetermined warning threshold.
2 Status is CRITICAL, which means the device may not be available. Or the

device is available but is performing at a threshold deemed critical.
3 Status is UNKNOWN, which implies the plugin failed in some way or was

unable to connect to the device.

The bogo_check plugin we're using does exit with one of these four return codes,
based on the random datapoint it generates.

Nagios performance data
Returning the status of the monitored component is a good start, but we often want
to collect the actual performance data so we can graph it and manipulate it inside
Zenoss Core.

Custom Monitoring Templates

[112]

The performance data can be found after the | in the plugin output and is
represented in the following format:

label=value;[warn];[crit];[min];[max]

Does that look familiar? Let's look at the relevant part from our bogo_check plugin output:

bogopoint=58%;70;90;0;100

The label is bogopoint and it reports a value (58) that uses a percentage as the unit
of measure. The unit of measure could also be none, seconds, bytes, and a counter.

We've identified the threshold values earlier (70 and 90), but now we know that the
0 and the 100 represent the minimum and maximum values returned by the plugin.

For more information about developing Nagios compliant plugins that you
can use with Zenoss Core, refer to the Nagios Developers Guidelines at
http://nagiosplug.sourceforge.net/developer-guidelines. Remember
one fine point, however. Zenoss Core is not Nagios and is not built upon Nagios.

Adding the Nagios plugin to Monitoring
Templates
OK, we're ready to monitor with bogo_check.py. Since this is really a demo plugin,
we want to make sure we keep it separate. Therefore, we'll add a special device
class, add a new monitoring template to bind to the class, and then add a device
to monitor. Even though we're working with a fictitious device, this is a common
and powerful capability that will provide a near endless amount of Zenoss Core
customizations.

Let's get back to the Zenoss Core web interface to add the device class:

1.	 From the Infrastructure menu in Zenoss Core, click on Devices to display
the Device Classes.

2.	 To add the Demo class, select the top level organizer, Device Classes. Then
click on the Add a child to the selected organizer button. The Add Device
Class dialog box displays.

3.	 In the Name field, enter Demo. The Description is optional.
4.	 In the Add Organizer dialog box, enter Demo.
5.	 Click on SUBMIT to add the device class.

Chapter 5

[113]

Let's add a new monitoring template and data source:

1.	 From the Advanced menu, select Monitoring Templates to display a list of
templates. Click the Add monitoring template button.

2.	 Enter a descriptive Name in the Add Template dialog box. I'll use bogo in
my example.

3.	 For the Template Path, select Demo in Devices. The Demo corresponds to
the Demo device class we created.

4.	 Click on SUBMIT to add the bogo template to the list.

Custom Monitoring Templates

[114]

5.	 As you can see in the previous screenshot, there is a new template organizer
named bogo that contains a template named Demo.

Adding a Data Source
So far, so good. We have our class and associated template created. Let's configure
the data sources for our template:

1.	 From the Monitoring Templates page, select the Demo template. Then, from
the Data Sources menu, choose Add DataSource.

2.	 In the Add a New DataSource dialog box enter a descriptive Name (bogo),
and select COMMAND as the Type.

3.	 Click on SUBMIT to add the data source.
4.	 Now we need to configure the new data source. Select bogo from the Data

Sources table. To display the Edit Data Source screen, select View and Edit
Details from the Data source edit options menu.

5.	 In the Command Template field, enter the full path to the bogo plugin: /
usr/local/zenoss/zenoss/Extensions/bogo_check.py.

6.	 Click on SAVE when finished.

Chapter 5

[115]

We must specify the full command path for our plugin, because Zenoss
Core will prefix a relative command with the path value from the
zCommandPath configuration property.

At some point in the future, you may want to change the properties for a command
data source. The following table describes each Data Source property:

Property Description
Name The friendly name of the data source.
Source Type Identifies the data source type. You can't change this value.
Enabled Select true to monitor the data source. False to not monitor it.
Use SSH If this value is set to True, then Zenoss Core will try to run the

command on the host over SSH.
Component Specify a component name for this data.

Custom Monitoring Templates

[116]

Property Description
Event Class Determines how Zenoss Core classifies events generated against this

command by selecting a predefined device class.
Severity Sets the default severity for events generated with the device. Can be

overridden in other places.
Cycle Time The default is 300 seconds (5 minutes). Sets the interval that Zenoss

Core collects data for the data source.
Parser Tells Zenoss Core how to parse the data that is returned from the

plugin. The default is Auto, but Cacti and Nagios are options.

Based on our review of the available options and considering this plugin is used for
demonstration, I will change my Cycle Time to 60, so we poll data every 60 seconds.
Feel free to do the same.

Adding a Data Point
Next we need to enter a data point to the bogo data source. The terminology can be a
challenge in Zenoss Core. The data point is the output from the data source, and the
data source is the command.

Let's add the data point:

1.	 From the Data Sources menu, select the bogo data source.
2.	 From the Data source edit options menu, select Add Data Point.
3.	 In the Add Data Point dialog box enter the name of our plugin data point.

The data point name must correspond to the label listed in the plugin's
output. For the bogo_check.py, the appropriate data point name is
bogopoint.

4.	 Click the Add button to save the changes. Now, bogopoint is listed as a
sub-item of the bogo data source. See the following screenshot:

Chapter 5

[117]

5.	 To configure the data point, select bogopoint. Then select View and Edit
Details from the Edit data source options menu.

6.	 In the Edit Data Point screen, set the following properties:
°° Type: Gauge.
°° RRD Minimum: 0.
°° RRD Maximum: 100.

7.	 Click on SAVE and see the following screenshot:

Before we proceed, let's take a small diversion and discuss the RRDtool values we
have available to us.

RRDtool Data Point configurations
In the Data Point properties, we can specify the Type of data we're measuring, and
the RRD minimum and maximum values. The RRD Minimum field specifies the
minimum value we expect to get back from our plugin, while the RRD Maximum
field specifies the maximum value we expect to get back from our plugin.

Custom Monitoring Templates

[118]

Obviously, you'll need to understand the device or service you're monitoring to
know what data range you should specify. Because our bogo_check plugin uses a
percentage, a minimum value of 0 and a maximum value of 100 makes sense.

As for the Type, the following table shows a list of the RRDtool types and when we
should use each type.

Type Description
Gauge Displays the value at the time the plugin collects the data. This is

analogous to a gas gauge.
Counter Measures the rate of change for the data point by subtracting the

previous value from the current value. Assumes a continual increase in
value over each polling cycle.

Derived Same as counter; however it will also show the rate of change for a
negative value, such as the available disk space.

Absolute Measures the rate of change divided by the cycle time. The previous
measurement is assumed to be 0.

You can learn more about RRDtool at http://oss.oetiker.ch/rrdtool/.

Defining monitoring thresholds
Now that we have our data source and associated data point defined, we can set up
our thresholds. The thresholds will generate events based on the values returned by
the plugin.

We can only set a threshold for a defined data source. However, not all
data sources need to have a threshold. Whether you add a threshold is
really a question of whether or not you want to be notified when the
monitored value exceeds a particular value.

With the Bogo (/Demo) monitoring template selected, let's add two thresholds that
correspond to the data the bogo_check plugin already reports:

1.	 From the Thresholds table, select Add Threshold.
2.	 In the Add Threshold dialog box, enter a descriptive name in the Name field,

such as Warning. For Type select MinMaxThreshold.
3.	 Click OK to add the threshold.
4.	 Now we need to configure the threshold. Select Warning from the thresholds

list, and then click the View and edit threshold details button. The Edit
Thresholds window displays.

Chapter 5

[119]

5.	 For this threshold, we want to be notified if the data point exceeds 70%, so
enter 70 in the Max Value field.

6.	 Change the Event Class to /Cmd/Fail from the default /Perf/SNMP.
We'll talk more about event classes in Chapter 6, Core Event Management.
However, this is a command data type; it makes sense to change the default
SNMP class.

7.	 All other values can remain at default. Click on SAVE.

There's one thing I glossed over as we configured the threshold. The Edit Threshold
page provides a selection box of available and selected data points. As you can see
in our example, we can only select data points that are configured for the template
we're working in. In our example, we only have one data point.

Custom Monitoring Templates

[120]

The Escalate Count field, shown in the previous screenshot, specifies the
number of times the threshold can be crossed before the event severity is
increased to the next level.

Use the same procedure to add a critical threshold with a Max value of 90 and a
severity of Critical. Our list of thresholds for the bogo template should look like the
following screenshot:

By defining the data source and the threshold, we have the necessary information to
collect information about a device and be notified of problems. For some of us, that's
enough. However, Zenoss Core provides us the ability to visualize our data over
time in the form of graphs.

So, let's complete our template and set up some graphs.

Graph definitions
We're almost finished. Our final step is to represent our data with a graph. Let's get
right to it:

1.	 From the Graphs table, select Add Graph.
2.	 Enter a descriptive name in the Name field of the Graph, such as bogo. Click

on SUBMIT to create an item in the Graph Definitions list.
3.	 To configure the graph, select bogo and then select View and edit details

from the Manage graph definitions button.
4.	 From the View and Edit Graph Definition window, specify the % as

the Units. The other values should be fine as defaults. Click on SUBMIT
to save it.

Chapter 5

[121]

5.	 Next we need to specify the points on the graph. With the bogo graph
definition selected, click Manage graph points from the Manage graph
definitions button. The Manage Graph Points dialog box appears.

6.	 From the Add graph point menu, click Data Point to display the Add Data
Point dialog box.

Custom Monitoring Templates

[122]

7.	 Select bogopoint from the Data Point drop-down list:

8.	 Check the box for Include Related Thresholds.
9.	 Click on SUBMIT to add the data point and both thresholds. See the

following screenshot:

Chapter 5

[123]

Save all changes. Our next step in this process is to add a device that we can
monitor with our new bogo template. Before we do that, let's pause for a moment
and review some of the advanced RRDtool operations we can do to each data point
on our graph.

RRDtool Graph Point configurations
To configure a graph, click on its name. If our plugin graphs data exponentially, set
the Logarithmic Scale value to true. To graph data that is measured in multiples of
1024, set Base 1024 to true. We can change the way the values get displayed on the
y-axis by specifying a Min or Max Y value.

For more information on RRD graph commands, see http://oss.
oetiker.ch/rrdtool/doc/rrdgraph_data.en.html.

Obviously, we have a lot of flexibility with how we can display the data we're
collecting and the more RRD tool knowledge you have, the more you'll be able to
manipulate your data.

You can edit the properties of the graph from the Manage Graph Points dialog box:

1.	 To get to the Manage Graph Points dialog box, select the graph.
2.	 Select Manage Graph Points from the Manage Graph Definition menu.
3.	 Next, select the bogopoint data point and then click on View and edit graph

point details.

Custom Monitoring Templates

[124]

See the following screenshot:

The following table shows the options available in the Edit Graph Point screen:

Property Description
Name Name of the graph point.
Type This will be the data point and is not changeable.
DataPoint A read only view of the data point name.
Consolidation Set to average by default. Other options include minimum,

maximum, total, and last. This setting determines how RRDtool
consolidates data over a period of time so that it doesn't have to save
minute-by-minute records. This helps save disk space.

Chapter 5

[125]

Property Description
RPN This field accepts commands in Reverse Polish Notation (RPN) to

evaluate the collected data. For example, you could convert bits to
bytes, seconds to milliseconds, calculate utilizations, and a whole lot
more. Accepts TALES expressions.

Limit The default is -1. Any data that exceeds the specified limit will not be
used.

Line Type Select how the graph should be drawn. The available options are
Line, Area, and Not Drawn. Line will do as it says and use a line
to graph the data. Area will fill the area from the horizontal axis
to the graph line using the specified color, which is a separate
configuration. The Not Drawn value will not create a graph line.

Line Width Specify the width of the graph line in pixels. The default is 1.
Stacked Select true to stack the data point on top of another data point on the

graph.
Color Displays the data point in the specified color when the graph is

displayed. Specify the hex value in RRGGBB.
Format Determines how the data on the graph is displayed using the print

option to the rrdgraph_graph command of RRDtool.
Legend Creates a legend on the graph for the data point. The default value

is a TALES expression that evaluates to the name of the data point:
${graphPoint/id}.

Available RRD
Variables

An automatically generated list of variables that can be used in the
RPN field.

For more information regarding RRDtool, check out the project's home
page at http://oss.oetiker.ch/rrdtool/.

Binding templates to the device class
We want our Demo device class to use the bogo template we just created. To ensure
that happens, we bind the template to the device class:

1.	 From the Devices page, select the Demo device class.
2.	 From the Actions menu, select Bind Templates.

Custom Monitoring Templates

[126]

3.	 From the Bind Templates dialog box, move bogo from Available to Selected
and move Device from Selected to Available:

4.	 Click on SAVE to preserve the binding and return to the list of available
templates.

Now, any device we add to the Demo class, will inherit the monitoring properties
we defined in the bogo template. We unselected the Device template because that
template only monitors system uptime by default, which will not make sense on our
fictitious device.

Let's add a device now.

Adding a device to monitor using the Bogo
template
We're left with the easy part. We need to add a device to Zenoss Core and add it to
the /Demo class. Click on the Add Single Device menu item from the Devices page
and specify the following properties:

•	 Device Name: Make up a name; I'm using Bogo, of course.
•	 Device Class Path: /Demo.

Set any of the other properties as you see fit and then click on Add Device.

Unless you really have a device on your network named Bogo, we just added a
device with no IP address. And Zenoss Core is going to monitor it with our new
command template that generates random data points.

Chapter 5

[127]

Cool, huh?

It will take a couple of monitoring intervals to actually get the data to display on the
graph for the Bogo device. However, once it does, this is what you'll see:

The screenshot shows an hourly view of the data and the horizontal lines on the
graph represent the thresholds at 90 % and 70 %. Each time the graph exceeded the
threshold lines, Zenoss Core generated an event.

Monitoring with Cacti plugins
The Zenoss Core documentation is rampant with references that you can use
a Cacti plugin or Cacti compatible plugin, but there do not appear to be any
readily available examples.

To help us find an example that you can use to as a guide to creating your own
plugin, we once again turn our attention to the Zenoss bug tracker to review ticket
#4945 (http://dev.zenoss.com/trac/attachment/ticket/4945/single_dp_
cacti_plugin.py). This script is similar in function to the bogo_check.py plugin
we just installed and is authored by Kells Kearnery. This Cacti compatible plugin
generates random data in a single datapoint value, which the Zenoss Core Cacti
parser understands.

Everything we just did to add and configure a monitoring template can be done with
a Cacti compatible plugin. Just feed the data the location of the script and you're on
your way.

Custom Monitoring Templates

[128]

Data Source parser
For each command-type data source, you have the option to set a parser. As you can
see in the following screenshot, the choices are Auto, Cacti, Nagios, ps, and uptime.
The default value is Auto and it's what we selected when we added the bogo_check.
py plugin.

Cacti and Nagios obviously expect the output of a command to be in a specific
format, and this chapter provides sample scripts for both. The ps and uptime
values parse the output from their respective Unix commands.

It's helpful to know what your options are, but you probably won't have to change
the parser type unless you're troubleshooting plugin problems.

Chapter 5

[129]

Summary
We learned how to extend our Zenoss Core monitoring environment with
monitoring templates and collect performance data via SNMP and command data
sources, including Nagios and Cacti plugins. In the process, we discovered that
Zenoss Core leverages the ubiquitous RRDtool to graph time-series data. There's a
lot to digest with monitoring templates and modifying your templates provides one
of the most powerful customizations in Zenoss Core.

Up to this point we have enough information to discover, monitor, and tune the
monitoring properties of our devices. So, in the next two chapters, we focus on
events. All that monitoring we're doing, including our dummy bogo device, is
generating events in Zenoss Core. It's time we understand what that means.

Core Event Management
We've spent a considerable amount of time defining what devices, services, and
processes we want to monitor and how we want to monitor them. All that work is
for nothing if our monitoring system doesn't have a mechanism to let us know when
problems occur. In Zenoss Core, events identify when something happens to one of
the devices we're monitoring.

In this chapter, we will:

•	 Use the Event Console to process events
•	 Create event commands through the Event Manager
•	 Test events without affecting the actual device
•	 Map events based on monitoring activity

One word of caution before we begin: Don't confuse events with alerts. In Zenoss
Core, alerts notify us, the human, when an event occurs. We'll configure alerting
rules in Chapter 7, Collecting Events.

Core Event Management

[132]

Event Console
The Event Console, available from the Events menu, provides us with a single view
of all the current events in the system. As the following screenshot depicts, we are
presented with a lot of information about each event: Status, Severity, Device, Event
Class, Summary, First Seen, Last Seen, and Count. And, naturally, we can change
the information that is displayed, which we will cover later in this chapter when we
talk about the Event Manager.

By default, the Event Console displays events with a minimum severity of
information and minimum status of acknowledged. There are filters for Status,
Severity, Device, Component, Event Class, Summary, First Seen, Last Seen, and
Count that will expand or restrict the devices that display. For example, to filter by
Severity or Status, select a new value from the drop-down list, and either check or
uncheck a value. The view will automatically be updated:

You can filter the list of events by typing a value in any of the column's text fields
to filter the entire view based on the column. The following screenshot shows the
events filtered by device:

Chapter 6

[133]

The Event Console automatically refreshes every minute, and the refresh will adhere
to any filters you specify. So, if you filter the list for a specific device and a new event
comes in for a different device, it won't show in the list until you remove the filter.

To change the refresh interval, select a new value from the Refresh drop-down list,
as shown in the following screenshot:

If you don't like the order of the columns on the Event Console, you can click and
drag the columns around to change the order.

Event severities defined
The following table illustrates the available severities from the least severe to
the most severe. There are no hard and fast rules to dictate how we apply event
severities to our devices or monitoring environment. Zenoss Core makes some
assumptions about an events default severity, but those assumptions are easily
changed via the event class configurations, as well as at the device level.

Event severity Integer value Description
Clear 0 Correlates to a previous down event and moves the event to

history. Represented by a green icon.
Debug 1 Used for troubleshooting. Does not indicate a problem.

Represented by a gray icon.
Info 2 Used to mark an event in the system for informational

purposes. Represented by a blue icon.
Warning 3 Indicates a potential problem. Represented by a yellow icon.
Error 4 The device or component is unavailable or is operating at

dangerous performance levels. Represented by an orange icon.
Critical 5 The device or component is down. Represented by a red icon.

Core Event Management

[134]

In the previous chapter we defined monitoring thresholds for our templates and one
of the settings available to us was event severity. Anywhere we have an event, we
have a severity.

Events become a key filter when we set up alerting rules, which we will do in Chapter
7, Collecting Events.

Event statuses defined
An event status categorizes the current working status of an event. The following
table lists each event status with a brief description of the state:

Event status Integer value Description
Suppressed 2 An event occurred, but it was sent directly to history.
Acknowledged 1 The event is still active and is being worked on by an

admin.
Unacknowledged 0 Represents a new event that has not been acknowledged

and is presumably not being worked on.

Zenoss Core provides several places for us to manipulate the status of an event,
including event classes and event transformations.

Acknowledging an event
Acknowledging an event signals to other team members and to Zenoss Core that
you are aware of the event and, presumably, taking action. Acknowledging the event
is good communication among your team, but Zenoss Core can also escalate event
severities or alerts based on an event status.

A common way to escalate an event or an alert is by the event count. For example,
we can instruct Zenoss Core to escalate the event severity from Error to Critical if the
event hasn't been acknowledged after a specified number of monitoring cycles. Or if
we're dealing with alerts, Zenoss Core can be configured to alert the next person on
call, in the event you fall asleep on the roof at 3 in the morning and don't realize the
database server has been down for 15 minutes.

Make sense?

To acknowledge an event:

1.	 Select the event from the Event Console by clicking on it.
2.	 Click the on Acknowledge Events button (the icon that looks like

a check mark).

Chapter 6

[135]

A check mark will appear next to the event. See the following screenshot:

In the screenshot all the events are acknowledged, except the first one.

Viewing an event log
Now that we know how to acknowledge an event, we should figure out how to view
its details. That way we can get on to fixing the problem. The Event Console shows
us a summary of information. However, there is a wealth of diagnostic data attached
to each event, and we can view it by double clicking on an individual event.

Previous versions of Zenoss Core had a View Log link for each event, but in version
3.0, the only way to view the event log is to double click the event. Since it's really
not intuitive to double-click in a web application, it bears some emphasis.

Core Event Management

[136]

In the event details, we have a place to log notes about the event.
Each note is timestamped and associated with the logged in user,
thereby creating documentation about the event.

To see more details about the event, click on the Show more details link.
The event details window will now scroll vertically indicating there's a lot
of information to be seen:

If Zenoss knows the value of a field, it's populated. However, there are some quirks.
For example, many of the fields list the numeric representation of a value instead of
the human friendly text descriptions. Also, the field names look more like variable
names than labels.

Chapter 6

[137]

But we're all smart people. We can cope with these interface nuances.

Appendix A, Event Attributes lists the event fields you see listed with a description
of the field. We can also programmatically transform and access these event fields
using Python code and TALES Expressions. We get to transformations in Chapter 7,
Collecting Events.

Events consoles are everywhere
If you browse the Zenoss Core interface long enough, it will seem like events spring
up with every mouse click. Or maybe I'm just being dramatic.

You can find Event Consoles for each device, device class, and event class.
The events are filtered based on the page you're looking at. So if you're viewing
the /Server/Linux class, you will not see events for the devices in the /Server/
Windows class.

Closing events
If Zenoss Core monitors a device and finds that a previously detected error condition
no longer exists, it automatically clears the event and moves it to History. When
we create a test event later in this chapter, we will demonstrate clearing events;
however, the bogo plugin we installed in Chapter 5, Custom Monitoring Templates is
already automatically clearing events, which you can see in History.

You can also manually close an event, after you fix the problem that caused the
initial error condition. Let's manually close an event.

1.	 Highlight the event from the Event Console.
2.	 Find the Close selected events icon and click on it. It's the button with the X

inside a circle at the top of the Event Console. Closing an event has the same
effect as when Zenoss Core clears the event.

3.	 The event disappears from the Event Console.

Don't worry, if the issue isn't really resolved, the event will reappear the next
monitoring cycle.

Core Event Management

[138]

Displaying historical events
After we close an event, it gets moved to the Event History. You didn't think we'd
just delete it, did you?

To view the historical events, click on History from the Events menu. If you
installed and configured the bogo_check Nagios plugin with me in Chapter 5, Custom
Monitoring Templates, then your Bogo device is generating lots of events, and you will
have events in your history:

The screenshot shows that the threshold exceeded events were automatically closed
by subsequent threshold restored events.

Event Manager
The Event Manager provides an interface that allows us to configure how
events are stored, displayed, and acted on. We access the Event Manager from
the Events menu:

Chapter 6

[139]

The Edit page displays when we first open the Event Manager and provides three
configuration areas: Connection Information, Cache, and Maintenance (as shown in
the previous screenshot).The following fields are available:

1.	 Connection Information
°° Backend Type: Events are stored in a MySQL database.
°° User Name: Database username. Default is zenoss.
°° Password: Password for username. Default is zenoss.
°° Database: Events database name. Default is events.
°° Hostname: Database hostname. Default is localhost.
°° Port: Database port number. Default is 3306.

Core Event Management

[140]

2.	 Cache
°° Cache Timeout: Sets the event cache timeout in seconds. The lower

the number, the more responsive the Event Console will be. The
default is 20.

°° Cache Clear Count: Sets a threshold to clear event cache counts. The
default is 20.

°° History Cache Timeout: Sets the history event cache timeout in
seconds. The lower the number, the more responsive the history
events views will be. The default is 300.

°° History Cache Clear Count: Sets a threshold to clear history event
cache counts. The default is 20.

3.	 Maintenance
°° Event Aging Threshold (hours): If the event has not been

acknowledged in the specified amount of time, move it to history.
Default is 4 hours.

°° Don't Age This Severity and Above: Events higher than the specified
severity will not automatically go to history. Default is error.

°° Delete Historical Events Older than (days): If you want to remove
your event history, specify the number of days you want to keep
event history. The default value is 0, which means events are never
deleted from history. And since it takes disk space to store these
events in a MySQL database, you should consider removing event
history, especially on larger installations.

°° Default Availability Report (days): Specify the number of days to
show data for the availability report. The default is 7.

°° Default Syslog Priority: Set the severity level for an event to generate
an entry in the syslog. The default is 3, which is an error.

The automatic event aging settings are interesting. If you check your event history,
you will likely see lots of events with severities of information, clear, and maybe
debug. These events show up on the Event Console, and then automatically clear
after 4 hours, which is the default Event Aging Threshold. Clear events, go straight
to history. We use alerting rules to determine what events we, the admins, receive
notification of. This means that if informational events are important to you, you
should set up an alerting rule so that you're notified when the event occurs.

Chapter 6

[141]

Event Fields
The Fields page of the Event Manager provides a way to add and remove fields
from the Event Consoles. The page divides into two rows: Default Result Fields
and Device Result Fields, as seen in the next screenshot:

As the screenshot indicates, the page provides controls to move the fields from
Available to Selected and vice versa. The up and down arrows sort the selected
field in the list.

The fields assigned to the Default Result Fields display on the Event Console and
the Events page of an Event Class. The fields assigned to the Device Result Fields
display on the device's Events page.

Core Event Management

[142]

You can change the fields of the event history via the History Fields link in the left
sidebar. The fields assigned to the Default Result Fields display on the event class'
History page, while the fields assigned to the Device Result Fields display on the
device's History page.

Both the Fields and the History Fields pages provide a Default Sort field to control
how the data is sorted. The default sort order for the Fields tab is descending by
severity, and then descending by lastTime.

The History Fields are sorted in descending order by lastTime. The lastTime
variable corresponds to the last time the event was seen by Zenoss Core.

The syntax for the sort field is to list the field name to be sorted followed by the sort
order. Multiple sort conditions (fields) are separated by a comma, as illustrated in
the previous screenshots. As an example, if we want to sort our historical events in
ascending order by count, we enter "count asc" as the Default Sort.

Appendix A, Event Attributes lists most of the events fields with descriptions. You also
see the same information when viewing the event log.

Chapter 6

[143]

Event commands
The Commands page of the Event Manager (shown in the following screenshot),
allows us to create shell commands that we can run in response to an event. Here
are some possible uses for event commands:

•	 Integration with external services, such as Twitter
•	 Restart a service on a monitored device via SSH
•	 Push alerts through alternative mediums, such as instant messages

For our event command example, we'll write to a text file, which I admit is a
contrived example. However, I want to demonstrate the feature, and we'll use this
command later in the chapter to generate some events. If you want to do something
more interesting, such as creating an RSS feed of your events, visit the Zenoss Core
community and look up this tip: http://community.zenoss.org/docs/DOC-7815.

Now, let's create that file.

Creating a command
To create a command, type a descriptive name (for example, CreateFile) in the text
box and click the Add button. Click on the command name to display the Edit tab.

Let's modify our CreateFile command in the following way:

1.	 Set the Enabled field to True.
2.	 In the Command field, enter the following:

 echo "The Event with ID ${evt/evid} is on fire!" >>
 /tmp/SampleEventCommand\

3.	 In the Clear Command field, enter the following:
 echo "${evt/evid} for ${dev/id} is no longer a burning issue" >>
 /tmp/SampleEventCommand

Core Event Management

[144]

4.	 In the Where field, define a filter for Event Class that begins with /App.
5.	 Save the changes:

The variables inside the brackets {} are TALES expressions. Zenoss uses TALES
expressions to substitute contextual information about an event or device into the
command. When we test this command in a few pages, you will see the real-world
result. Appendix A, Event Attributes and Appendix B, Device Attributes provide a
listing of event and device attributes that can be substituted into our commands
as TALES expressions.

The following table lists each of the options on the command's edit page:

Property Description
Enabled Select True to enable the command and False to disable it.
Default Command Timeout The time in seconds to wait for the command to complete.

The default is 60.This can be adjusted as needed to account
for lag or to give the command enough time to run.

Delay The time in seconds Zenoss waits to execute the command
from the time an event triggers the command. The default
is 0, which means the command will run as soon as the
event occurs.

Chapter 6

[145]

Property Description
Command Enter the command to run when a new event matches

the command filter. Accepts either Python statements or
substitution via TALES expressions.

Clear Command Enter the command to run when a clear event matches
the command filter. Accepts Python code or TALES
expressions.

Where Add filters to modify the conditions that trigger the
command.

Let's put our event command to use and work with events.

Working with events
Zenoss Core creates events in response to a monitored condition, such as availability
status, or performance.

For the most part, the event creation process is automatic, and we don't need to think
about it, but we do have the opportunity to customize how events are processed in
our individual monitoring environments.

Zenoss Core provides us an easy way to manually generate events via the
Event Console. We may want to manually generate an event so that we can test
or troubleshoot mappings, transformations, or alerting rules without actually
taking the monitored device out of service.

Simulating an event
Let's create an event to run the createFile command that we created:

1.	 Go to the Event Console and click on the Add Event button (it looks like a
plus sign).

2.	 In the Create Event dialog box, set the following fields:
°° Type a brief Summary message
°° Type the name of a Device
°° Select /App from the Event Class.

Core Event Management

[146]

3.	 Click the SUBMIT button to generate the event.

The event we just created displays in the Event Console and in the Events tab of the
/Events/App class. Here's the screenshot to prove it:

Please note that no actual device, service, or process was hurt in the creation
of this event.

Now, check the /tmp/SampleEventCommand file and verify that the event created
an entry in the file. The following screenshot shows the Event Console, the event
properties, and a terminal window with the contents of the SampleEventCommand:

Chapter 6

[147]

Notice the long alpha-numeric string and the name of the device appear in the
command output. The alphanumeric string is the event ID, represented as {evt/id}
in our event command that we created earlier in the chapter. Coyote is our device
name and is represented by {dev/id} in the event command.

Do you think your command would run if you did not specify the Event Class when
you created the test event?

Remember, we specified a filter for the command based on an event class that began
with /App. So creating an event against /App/Info would trigger the command, but
/Server would not.

Clearing the event
Next, we will simulate a clear event. Add another test event via the Event Console,
but this time choose Clear for the Event Severity. See the following screenshot:

When we submit the clear event, Zenoss correlates the current critical event with the
clear event and moves both of them to History. All the event views update, and the
/tmp/Sample/Event/Command file updates based on the clear command value we
specified in the CreateFile command.

As long as we know the specific event condition we want to test, we can use the add
event option to simulate a real event, thereby allowing us to test mapping rules,
event commands, or notification rules.

Core Event Management

[148]

Event mapping
What did our event simulation and event command example show us, other than
two really helpful features? If you said event mapping, you're reading closely. Let's
see what that means.

Zenoss Core automatically maps an event to an event class based on the daemon
reporting the event. The following table lists some Zenoss Core daemons and the
default event class:

Daemon Default event class Type of event
Zenping /Status/Ping Device does not respond to

a ping.
Zendisc /Information A new device is discovered.
Zenprocess /Status/OSProcess There is a problem with a

monitored process.
Zenstatus /Status/IpService There is a problem with a

monitored IP service.
Zenwin /Status/WinServices There is a problem with a

Windows Service.
zenperfsnmp /Status/SNMP The device is not available

via SNMP.

By knowing something as simple as the class that a type of event gets mapped to,
we can customize our event handling by using the class zProperties. We could,
for example, drop all ping events so they don't show in the Event Console or set
the severity for all SNMP events to critical. Those are just a couple ideas to get
you thinking.

Let's take a look at event classes.

Event Classes
Event classes establish a hierarchy of rules in the same way that we use device
classes to inherit configuration properties. To view the classes, click on the Events
menu and then Event Classes. To view the properties of a class, click on the name
of the event class. I'm going to look at /Status:

Chapter 6

[149]

Event Classes have two items that are of interest to us: mapping and configuration
properties. For now, let's take a look at the Configuration Properties:

Event class zProperties
After an event maps to an event class, the class configuration properties
(a.k.a zProperties) are assigned. The event class properties will override any
properties (for example, status or severity) that the event inherited from the
device itself.

Core Event Management

[150]

The available zProperties (shown in the previous screenshot) are outlined in the
following table:

zProperty Description
zEventAction Specify the action to take on the event. The following options

are available:

•	 Status: Keep the event active and display it in
the Event Console.

•	 History: Move the event straight to history. Does
not show the event on the Event Console.

•	 Drop: Do not archive the event.
zEventClearClasses Clear the event if the device generates an event that matches

one of the specified event classes.
zEventSeverity Specify the fail severity for the event. In descending order of

severity, the available options are:

•	 Critical
•	 Error
•	 Warning
•	 Info
•	 Debug
•	 Clear
•	 Default

Mapping an event
There may be times when an event pops into the Event Console in the /Unknown
event class. Syslog events, for example, will map to the /Unknown event class.

We can change the mapping of an existing event to a new class. Whether
you're mapping an unknown event or changing an existing mapping, the
procedure is the same.

Let's take an example where we have an active event from an exim4 mail server
program event which we want to map to the /App/Log event class. Feel free to use
your own example.

Chapter 6

[151]

To map the event:

1.	 Select the event from the Events list.
2.	 Click the Map to Event Class button (looks like an org chart) to display the

Classify Events dialog box.
3.	 In the Classify Events dialog box, select the event class (for example,

/App/Log).
4.	 Click on SUBMIT to map the event.

After we map the event, Zenoss displays a confirmation message with a link to view
the new mapping. Follow the link to view the new mapping:

You can also browse the exim4 mapping by navigating to the /Apps/Log event class
and then selecting the Mappings link in the sidebar.

Core Event Management

[152]

Let's test our work by simulating an event from the Event Console. Give the event
the following attributes:

•	 Message: This is a test event
•	 Device: Any device
•	 Event Class Key: exim4
•	 Event Class: Leave this blank

The event displays in the Event Console. To clear the event, we can move it
to History.

When processing events generated by Zenoss daemons, the events
classes are used. When the event comes from external sources, the
event class key is used to process the event.

The exim4 mapping in the preceding screenshot is one of several event mappings
for the /App/Log class. We can view all the mappings associated with the class by
clicking on the Log link in the page breadcrumb.

As seen in the following screenshot, the EventClass Mappings table displays some
information about each mapping including event class, evaluation rule, and the
number of active events for the mapping:

Chapter 6

[153]

To configure a mapping, click on the mapping name and then click on the Edit link.
Let's edit the CROND mapping to see what information is available to us.

The following table outlines the available properties for an event class mapping:

Option Description Example
Name A descriptive name for the mapping. CROND
Event Class
Key

Refers to the component name
attached to the incoming event.
Matches the event with the event
class.

exim4

Sequence Defines the order in which the Event
Class Key is processed in relation to
the other keys with the same name.

7

Rule A Python statement and TALES
expression that evaluates the current
event context.

evt.ipAddress ==
192.168.1.132

evt.device != Coyote

Regex A Python regular expression used to
match the current event details.

\((?P<username>\S+)\) CMD \
((?P<command>.*)\)

Example Sample event text. Click Save to
validate the regular expression
against the Example text. If the Regex
command turns red, the expression
does not match the Example.

(root) CMD (run-parts /etc/
cron.hourly)

Transform Manipulate an event using Python
and TALES. For more information
about TALES expressions, see
Appendix B.

evt.summary = 'Down again!'

Explanation A text description of the event
mapping for Zenoss users.

Resolution Provides a spot to document fixes
that can be used by other system
administrators.

As we saw when we created the exim4 mapping to the /App/Log event class,
specifying the component name as the event class key is enough to map the event.
However, you can have multiple mappings per class and multiple mappings for the
same event class key. The Rule, Regex, and Transform values help you refine the
mapping so that you can isolate specific events and filter the noise.

Core Event Management

[154]

Event mapping sequence
If we can have multiple event class keys across mappings, there must be some
processing logic—and there is. To demonstrate, pull up the evtsys mapping for
the /Heartbeat event class. Then, click on the Sequence link in the sidebar. See the
following screenshot:

The Sequence page displays the Sequence, ID, EventClass, and Evaluation for each
instance of the event class mapping. If we look closely at the two instances of evtsys,
we see that evtsys maps to two event classes. The evaluation field tells us what each
mapping looks for.

If the evtsys event includes --MARK--, the event goes to /Heartbeat and Zenoss Core
stops processing event mappings. If the first mapping fails, then mapping two is
evaluated, and so on until all mappings are evaluated or a match is found.

To resequence the mappings, type the new order into Sequence column and click
on Save.

Event de-duplication
Zenoss Core continuously monitors devices and will continue to generate events for
problems it has previously detected. However, Zenoss Core builds some intelligence
into its event handling by recognizing duplicate events.

An example of a duplicate event might be a file system that's operating at 98%
capacity on a server. We want Zenoss Core to notify us when that threshold is
crossed, but we don't need a "reminder" every time Zenoss polls the device. That
would clog up the Event Console and clog up our e-mail with dubious alerts.

Chapter 6

[155]

Think about this. If Zenoss Core monitors a device every 60 seconds, it could
generate 1,440 events a day for a single problem. Thankfully, Zenoss suppresses all
that noise with event de-duplication.

If Zenoss determines that the event is a duplicate of an existing event, it increments
the count on the existing event, rather than generate a new event. Events trigger
alerts, and by suppressing duplicate events we avoid duplicate alerts, thereby
reducing the volume of e-mails or pages we receive.

The de-duplication identification (dedupid) is a combination of the following fields:
device, daemon, event class, event key, severity, and event message. We can see it
in the event log of any event. Go the Event Console and double click on an event to
display the log.

Turning off event de-duplication
Zenoss Core wants to dedupe every event it receives, but you can override this
behavior by adding a custom event mapping and event transformation for the
event class. The following transformation comes from the Zenoss Core community
documentation at http://community.zenoss.org/docs/DOC-2445#HowdoIstopau
tomaticEventDeduplication:

mydedupfix1 = getattr(evt,'triggerLastOccur')
mydedupfix2 = getattr(evt,'triggerEventName')
evt.eventKey = '%s - %s' % (mydedupfix1, mydedupfix2)

This code creates a unique event key for every instance of the event, thereby voiding
Zenoss Core's deduplication efforts. We'll work with event transformations some
more in Chapter 7, Collecting Events.

Core Event Management

[156]

Summary
Events are the fruit of our monitoring labor, and event handling is one of the
primary ways we can turn the raw monitoring data into actionable items.
For example, we review the event history of a device to identify trends. Event
commands provide a way to automate actions when a certain event happens,
and the breadth of what you can do with event commands is only limited by
your imagination and programming knowledge. In the next chapter, we will also
collect events from external sources and create alerting rules.

Event mappings route the event to the event class and in the process, the event
inherits properties, such as severity. In the next chapter, we'll see how we can
manipulate the properties of an event with transformations.

Collecting Events
In Chapter 6, Core Event Management we took an in-depth look at how Zenoss Core
processes events that result from its core monitoring activities. In other words,
Zenoss Core went looking for problems. In this chapter, we'll let the problems come
to Zenoss Core by way of non-Zenoss applications, such as syslog, Windows event
log, scripting, and e-mail.

In this chapter, we will:

•	 Route syslog messages to Zenoss Core
•	 Monitor the Windows event log
•	 Incorporate event reporting into third-party scripts via zensendevent
•	 Create events by e-mail using zenpop3 and zenmail
•	 Configure alerting rules

Let's get started.

Routing syslog messages to Zenoss
Core
We have the capability to monitor syslog messages from Unix-based hosts on the
network by turning Zenoss Core into a syslog server. The syslog is a standard
logging format for Unix-based systems that allow administrators to analyze,
troubleshoot, and debug the programs and services running on a device. Zenoss uses
the zensyslog daemon to turn incoming syslog messages into events from any host
on the network.

Collecting Events

[158]

Before we configure our servers to send syslog messages to Zenoss Core, we need to
determine the syslog facility and priority we want to monitor. The available facilities
include auth, authpriv, cron, daemon, ftp, kern, lpr, mail, news, syslog, user,
and uucp. The facility specifies the subsystem we want to monitor. For example, we
specify the lpr facility to monitor print activity.

We specify one of the following priorities, listed from the lowest to the highest
severity: debug, info, notice, warning, err, crit, alert, and emerg. As an
example, we would choose warning to monitor logs with a priority of warning,
err, crit, alert, and emerg.

Pick a Linux server from your inventory and let's work through an example by
modifying its syslog.conf file:

1.	 Edit /etc/syslog.conf as root (refer to the following screenshot).
2.	 Add the following line where 192.168.1.125 is the IP address or the host

name of the Zenoss Core server:
*.debug @192.168.1.125

3.	 Restart the syslog service as root:
/etc/init.d/sysklogd restart

Chapter 7

[159]

Note the *.debug syntax in the syslog example. This sends all syslog facilities
(represented with *) with a minimum priority of debug to Zenoss Core. I chose
this setting for our example so we could get the events flowing. Dumping all your
syslog messages to a the Zenoss Core event will likely cause a lot of events, and may
be more than you want. So, some customization is warranted here and the natural
question is, "What is an appropriate value?". However, I can't provide an answer that
applies to you and your environment. Remember, we're telling individual servers
what messages to send to Zenoss Core. If in doubt, cast a wide net and then narrow
it down.

I, for example, really don't want to see events in Zenoss Core for anything less than
an error. So at the very least, I modify the rule in my server's syslog.conf file to:

*.err @192.168.1.125

If I was configuring the syslog on a server whose main mission in life was as an FTP
server, then I might be inclined to narrow the server's syslog.conf with this rule:

ftp.err@192.168.1.125

This will send all syslog messages concerning FTP that at least have a priority
of error to the Zenoss Core server for processing by zensyslog. You can specify
multiple rules, which helps us send just the right messages to Zenoss Core.

Feel free to set a more appropriate value. For the benefit of the non-Linux system
administrators, you can gain more information about syslog.conf, by running the
command at your nearest terminal:

man syslog.conf

Of course, Unix-based servers are not the only devices that have remote syslog
capabilities. Many routers provide remote logging features. We'll overview the
steps needed for a Cisco router. For other devices, consult the documentation.

Collecting Cisco router syslogs
To forward a Cisco router's syslogs to Zenoss Core, we need to know the Zenoss
Core host, the minimum log priority to collect, and the facility. The following
priorities are available: emergency, alert, critical, error, warning, notice,
informational, and debug. The available facilities include local0 through local7
(also available to syslog on Unix servers) and the default facility is local7.

Collecting Events

[160]

To forward syslog messages from a Cisco IOS router to Zenoss Core, log into the
router and follow these steps using privileged EXEC mode:

1.	 Enter the configuration mode with the command:
	 configure terminal

2.	 Specify the Zenoss server by IP address or host name with the command:
	 logging 192.168.1.125

3.	 Set the syslog priority:
	 logging trap warning

4.	 Set the syslog facility:
	 logging facility local7

5.	 Quit the configuration mode:
	 end

6.	 Verify the logging information:
	 show logging

Testing syslog configuration with Logger
We can test our remote syslog configuration by using the command line tool
"logger" to send a test syslog message of a specified facility and priority. To test,
run the following commands from the Linux device that is logging its syslog
messages to Zenoss Core:

logger -p cron.warn "This is a test"

logger -p mail.error "This is another test"

The logger command syntax is straightforward. The -p option specifies the facility
and the priority which we follow with a message in quotes. Depending on the
syslog.conf rules you wrote, the event may or may not be sent to Zenoss Core.
Obviously, your examples should test both use cases.

To double check, click on the Event Console and verify that the syslog messages are
being logged correctly.

The events from syslog will show with an unknown class. Use the
procedures outlined in Chapter 6, Core Event Management to map the
events to a class.

Chapter 7

[161]

Monitoring Windows event logs
In the Configure SNMP and WMI for Windows section of Chapter 2, Discovering Devices
we discussed setting up Windows Management Instrumentation (WMI). If WMI
is not yet installed, take a few moments to review the instructions in Chapter 2,
Discovering Devices.

Unlike syslog, which logs messages directly to a remote host, Zenoss Core has to
connect to the Windows server to pull entries from the Event Log—at least that's the
default behavior we will explore in this section. There are third party applications
that will log Windows event logs to remote syslog servers such as Zenoss Core. This
allows zensyslog to process the messages, and you could use event mappings to
make sure the events from the Windows server get associated with an appropriate
event class.

If you have a Windows server available, open it in Zenoss Core so we can configure
Event Log monitoring:

1.	 From the devices page, select Add WinService from the Add
Component menu.

2.	 In the Add WinService dialog box, enter Eventlog:

3.	 Click Submit to add the service to the device. You will also notice that
a new group of Components have been added to the device, called
Windows Services.

Collecting Events

[162]

4.	 When you add the service it will inherit the service class' default monitoring
value. So we need to ensure monitoring is enabled. Click on Windows
Services from the device's Components. Then click on the Eventlog service
to display its configuration.

5.	 Under the heading Enable Monitoring, select Yes from the Set Local Value
drop-down list.

6.	 Click on Save.

Next, we need to configure the appropriate device zProperties (Configuration
Properties) to connect to the Windows machine and monitor the event logs.
From the device's overview page, select Configuration Properties and enter
the following configuration:

1.	 Set zWinEventlog to True.
2.	 Set zWinPassword to the password of the zWinUser.
3.	 Set zWinUser to a user who has administrative access to the

Windows server.
4.	 For a domain user, specify DOMAIN\user.
5.	 For a local user, specify \user.
6.	 Set zWmiMonitorignore to False.

Windows event log severities
By default, Zenoss Core collects the Windows events with a minimum severity of
warning. But we can change that by specifying a value in zWinEventlogMinSeverity.
The following table shows the available event log severities:

Chapter 7

[163]

Event Log Severity Description
1 Error
2 Warning
4 Informational
8 Security Audit Success
16 Security Audit Failure

Testing the event log configuration with
Eventcreate
Windows provides a tool called eventcreate.exe that we can use to generate
system events and test our Event Log setup. To test, run the following commands
from a Windows device where Zenoss Core is monitoring the Event Log:

eventcreate /t error /l system /id 500 /d "test message"

eventcreate /t error /id 501 /d "another test message"

eventcreate /?

Let's look at the command syntax. We use the /t option to specify the severity, /l to
specify either the application or the system message, /id to create an event ID, and
/d to include a message. The first command creates a system error message with an
ID of 500, while the second command creates an application error message with an
ID of 501. The third command displays the eventcreate.exe help page.

Incorporating event reporting into
third-party scripts via zensendevent
Do you have a bunch of homegrown system administration scripts running on your
network? Wouldn't it be nice to monitor the activities of those scripts? Zenoss Core
ships with a stand alone script called zensendevent that we can integrate into our
existing scripts in order to use Zenoss Core's event systems.

We can install zensendevent on any server (or desktop) as long as the
system has Python installed.

A sample use would be to use zensendevent to create events to document the
progress of a backup script by generating an informational event at the start and
a clear event after the script completes.

Collecting Events

[164]

We'll work up a simple example, but first let's use zensendevent to generate some
events from a command line. To see what options are available, run the following
command from a command line as the zenoss user:

zensendevent ‑‑help

As you look over the usage summary, you should recognize most of the available
options from our previous topics. Among the familiar items that we can recognize
are device, ipAddress, event key, event class, and component.

Let's run a test command:

zensendevent -d bogo -s Warn -v "I like pie"

The following screenshot shows the output of the command:

There are not really any surprises in this command. We created an event for the
device named bogo with a severity of warning. The summary of the event is I like
pie. Hey, it's getting lonely writing about network monitoring late at night. My
mind likes to wander to pie. Feel free to substitute your own silliness. The -v option
shows the verbose output, which is showing us the information that was sent to
Zenoss Core.

Let's look at the events for our bogo device in Zenoss Core:

Chapter 7

[165]

Once we get that event into Zenoss Core we can leverage Zenoss's event handling
system, which we talked about in the previous chapter. Perhaps more importantly,
we can now use Zenoss Core's alerting system, which we will set up at the end of
this chapter. We could also transform the event, also coming up in this chapter.

Or we could just take a moment to reflect on the world of opportunity we've
just unlocked:

Let's run one more test command using a device that doesn't exist in Zenoss
Core's inventory:

zensendevent -d dedkat -s Warn -v "Better do CPR"

The following screenshot shows Zenoss Core's event console:

Note that the event name dedkat is not a clickable link, but it still shows up in the
Event Console. It's not clickable because it's not a device in the inventory. The point
of showing this was just to show that you can feed Zenoss Core a lot of information,
which could be used to report some high level monitoring aspect not tied to a device
or to have a new server automatically report system information to Zenoss Core for
use in configuring the device in Zenoss Core. (Thank you to my technical reviewers,
Jonny and Charlie for providing some ideas.)

Simple backup script with zensendevent
Let's take a look at a real world use for zensendevent by incorporating it into a script
that backs up our Zenoss Core data:

#!/bin/sh

zenbackup --save-mysql-access 2> $HOME/backups/zenbackup.log

STATUS=$(echo $?)

Collecting Events

[166]

if ["$STATUS" = "0"]; then

 zensendevent -d fox -k backup -s Info -c /Status/Update "Zenoss
backup successful"

else

 zensendevent -d fox -k backup -s Warn -c /Status/Update "Zenoss
backup failed"
fi

The script itself is fairly simple. It runs a Zenoss file called zenbackup which will
automatically write backups to /home/zenoss/backups. We use zensendevent to
create an event. If the zenbackup command completes successfully, we set a severity
of informational, and if it fails, we set the severity to warning.

The biggest shortcoming of this script is that it doesn't alert you if the backup fails to
run, which could be a problem for some. Feel free to adapt this script as you see fit.

I suspect many readers probably have similar scripts that send e-mails if there is
a problem, so you might wonder why we'd want to go through the trouble of
directing the data to Zenoss Core. As we already discussed, Zenoss Core provides
a centralized place to collect and alert on our events. Zenoss Core will also maintain
an event history and we can write custom reports to view that history.

Creating events by e-mail
Zenoss Core provides two not often talked about daemons to generate events from
e-mails. The zenmail daemon allows us to start a Zenoss Core SMTP server that
other programs can use as a mail server to send e-mail messages directly to Zenoss
Core. Zenoss Core automatically turns the message into an event. The zenpop3
daemon retrieves e-mails from a specified account and generates events based
on the incoming e-mails.

To use either program in daemon mode, we need to edit the $ZENHOME/bin/zenoss
configuration file, so that the daemons start when Zenoss Core starts.

As the zenoss user:

1.	 Open $ZENHOME/bin/zenoss in a text editor.
2.	 Find the line in the script that begins with $ZENHOME/bin/zenfunctions

and uncomment or add the following lines (refer to the next screenshot):
	 C="$C zenmail"

	 C="$C zenpop3"

Chapter 7

[167]

3.	 Restart the Zenoss daemons with the command zenoss restart:

When we restart the Zenoss daemons, zenmail and zenpop3 print warning messages
that tell us that they were unable to find the configuration files in /usr/local/
zenoss/etc/. To clear those messages up, run the following commands as the
zenoss user:

zenmail genconf

zenpop3 genconf

The genconf option creates a configuration file in $ZENHOME/etc with all the
available options for the daemon. Each Zenoss daemon accepts the genconf
option. Now we're ready to configure zenmail and zenpop3.

Zenmail
You may have some devices on your network that don't support other monitoring
protocols, such as SNMP. However, they may be capable of sending e-mail
notifications when there is a problem (for example, Low disk space on a network
storage device). By setting up zenmail and configuring the device to relay the e-mail
notifications through the IP of the Zenoss Core server, we can keep a history of
events and use Zenoss Core to manage the events and alerts.

An easy way to test out zenmail is to configure a mail client to send e-mail via the
host name or IP address of the Zenoss Core server. The default port will be 25, unless
you already have a mail server running on port 25 of the Zenoss Core server, in
which case zenmail will not function.

If we want to bind zenmail to a port other than 25, we can edit the zenmail
configuration file and add the parameter listenport followed by the new port
number. We examine the Zenoss Core daemons and their configurations in more
detail in Chapter 9, Extending Zenoss Core with ZenPacks. Don't forget to restart the
daemon after you make configuration changes:

zenmail restart

Collecting Events

[168]

The following screenshot shows an event that was sent through zenmail along with
part of the event log:

The device name is automatically determined by the from address and the event is
created with a severity of information. The event log shows many interesting fields,
including the eventClassKey. We covered the event class key in Chapter 6, Core
Event Management.

All events have an agent field that lists the Zenoss Core daemon that is responsible
for creating the event. In this case, the agent is zenmail.

If you use zenmail, then you will probably want to use an event transformation to
fine tune how the event is generated. The device, eventClasskey, and agent are all
great fields to use for an event transformation.

Most mail programs will require that you specify a To: address in your e-mail, but
zenmail doesn't use that information.

For a list of all options of zenmail, run the command:

zenmail ‑‑help

Chapter 7

[169]

Zenpop3
As the name implies, zenpop3 will check a POP3 account and turn the messages
into events. Finding a use for zenpop3 might take more creative work, but we'll
explore it anyway.

In order to make zenpop3 work, we need to specify the mail server, username,
and password at a minimum:

1.	 In Zenoss Core, navigate to Administration | Daemons.
2.	 Edit the configuration for zenpop3.
3.	 Enter the following parameters followed by the correct POP3 server values

(refer to the next screenshot):
°° pophost
°° popuser
°° poppass
°° cycletime

4.	 Save the configuration.
5.	 Restart zenpop3.

To test the setup, we send an e-mail to the account we specified in the zenpop3
configuration. If everything is successful, we get an unknown event in the Event
Console. If you also retrieve this e-mail account from another e-mail client, make
sure you check the nodelete option to leave the mail on the server.

Now that we're collecting all these events in Zenoss Core, let's take a look at how
we proactively notify an admin.

Collecting Events

[170]

Configuring alerting rules
Alerts are the final piece of our core monitoring setup, if you need or want them.
Events trigger alerts, and alerts notify a human about a problem. We attach alerts to
users or groups of users. Configuring alerts for users and groups require the same
basic steps, so we'll demonstrate the alerting rules for a user. If you opt not to set
up e-mail or pager alerting rules, Zenoss Core will continue to monitor devices and
generate events that will be visible in the Event Console.

To add an alerting rule, first edit the user. Select the Alerting Rules tab (see the
following screenshot) while editing the username to display the list of rules assigned
to the user.

1.	 From the Advanced menu, select Settings and then Users to display a list of
users. You should see a list of users that includes the admin user and the user
you defined during installation.

2.	 Edit a user (other than admin) by clicking on the name. The properties for the
user account will be displayed:

3.	 From the sidebar, click on the Alerting Rules menu. A blank Alerting Rules
page will be displayed.

4.	 Select Add Alerting Rule from the Alerting Rules menu. The Add Alerting
Rule dialog box will be displayed.

5.	 In the Add Alerting Rule dialog box, type a name for the rule (for example,
Test). Click the OK button to add the rule. At this point the rule is disabled.

Chapter 7

[171]

6.	 To enable the rule, click on the rule name to display the properties.
7.	 Select True from the Enabled drop-down list.
8.	 Click on Save to enable the alerting rule.

At this point we have an alerting rule with some default settings. The default rule
sends an e-mail when any device in a Production State generates a new event with
a Severity level equal to or greater than Error. Zenoss also sends an alert when the
event clears.

We can do so much more. Let's take a look at the alerting rule properties:

The properties are explained in the following table:

Property Description
Delay (secs) Delay sending the alert for the specified time. Default is 0.
Enabled Set to True to enable the alert. If the value is False, this rule does

not send alerts.
Action Choose either email or pager notifications.
Address (optional) Specify any valid e-mail address. If left blank, the e-mail address

specified for the user is used.
Send clear messages Select True to send alerts when the event clears. Select False to

suppress clear messages.
Repeat Time (secs) Repeat the alerting rule for the specified time. Default is 0.
Where Select the alert filter criteria. Add and remove filters as needed.

Collecting Events

[172]

By adding filters to the alerting rule, we can create very specific alerting conditions.
Let's take a closer look at the alert filters.

Alert filters
An alert filter consists of three parts: an event field, a comparison operator, and
a value to compare to the event field. The following screenshot shows the default
filters for a new rule:

In the screenshot, Production State, Severity, and Event State are the event fields.
The middle column of drop-downs with the = and >= signs are the comparison
operators, and the third column shows the available values that can be assigned to
the event fields.

The Add filter drop-down list contains a list of available event fields:

You can find each of these items with a corresponding description listed in
Appendix A Event Attributes.

Chapter 7

[173]

The more filters we add to a rule, the more specific our alerting rule becomes.
A common practice with alerts is to build an alert escalation. For example, we can
create a rule that says, if a new event remains unacknowledged after five consecutive
times, then trigger a new alert. Five is an arbitrary number.

Let's add an escalation for our default alerting rule.

Alert escalations
Alert escalation is a broad term that commonly refers to the act of increasing the
severity of an event or notifying a different person about an event. For a quick
example, we'll create an alerting rule to notify a backup contact person regarding
an unacknowledged event.

In our example, I'll assume you're adding a second rule named Escalate to your user
account, but the rule can be added to any user or group.

In the Alerting Rules properties for the new rule, set the following fields:

•	 Address: The e-mail address of on-call admin
•	 Add filter for Count. For the comparison select >= and enter 5 for the value

By adding the new filter, the rule will only be triggered if a event has been
unacknowledged for five consecutive times.

Collecting Events

[174]

It's important to note that Zenoss Core will only send one alert based
on the alerting rule's criteria. If you want multiple alerts to be sent, then
you need to set up a new alerting rule with the "escalation point".

By default the alerting rules will be active 24/7, but we have the ability to schedule
the active time frame for each alert.

Schedule
We may set a schedule for each alerting rule so that the rule sends alerts only during
the specified period. When editing an alerting rule, click on the Schedule link (in the
sidebar) to view the Active Periods table.

The Active Periods table displays a list of schedules sorted by Name with columns
for Start, Duration, Repeat, and Enabled, as shown in the next screenshot:

To add a schedule:

1.	 Select Add Rule Window from the Active Periods menu.
2.	 Enter a descriptive name when prompted. I'm using Weekends as my

example.
3.	 Click OK to add the new schedule to the Active Periods table.
4.	 Click on the name of the schedule to display the Status page.
5.	 From the Status page, enable the schedule and enter the Start, Duration,

and interval to Repeat. Sample values might include:
°° Start Date: 10/30/2010
°° Start Time: 0700
°° Duration: 3 Days
°° Repeat: Weekly

Chapter 7

[175]

6.	 Click on Save.

This rules starts at 0700 on 10/30/2010, which is a Friday. It will be active until
Monday morning. Then, the alerting will become active again on each Friday in
the future.

The following table lists the available schedule settings:

Property Description
Enabled Set to True to enable the alerting rule during the specified time and

duration.
Start Specify the start date, hour, and minute. The hours are specified in

24-hour time.
Duration Enter the Days, Hours, and Minutes to keep the alerting rule active

after it starts.
Repeat Available intervals are:

•	 Never
•	 Daily
•	 Every weekday
•	 Weekly
•	 Monthly
•	 First Sunday of the month

We may add as many schedules to an alerting rule as we need to accommodate each
user's work schedule.

Collecting Events

[176]

Alert messages
While editing our alerting rule, we have the ability to customize the text of the
alert message. To view the message template, click on the Message link while
viewing an alert.

We can specify the Subject and the Body for both the down alert and the clear alert.
As the text at the bottom of the Message tab indicates, the "Message Format is a
Python format string. Fields are specified as %(fieldname)s."

All the event fields are listed at the bottom of the page for reference:

If we set the alerting rule to send a page, we can only specify a subject line for the
down and clear alerts because of likely character restrictions on the pager. The
following screenshot shows the available message settings for a pager alert:

Chapter 7

[177]

Feel free to experiment with the messages as you see fit.

Event transformations
Event transformations allow us to alter an event's properties with a Python
expression. For example, we can use an event transformation to:

•	 Suppress, drop, or otherwise alter the state of an event.
•	 Assign the event properties, such as severity, state, or summary, based on a

conditional check of another device or event.
•	 Process events by location.
•	 Sort the incoming syslog messages for further handling.
•	 ... and much, much more

Event transformations are a flexible tool in your Zenoss Core toolbox, and how you
use them will largely depend on your imagination, needs, and scripting abilities.

Zenoss Core is a Python-based application and as a result, knowing Python will
drastically increase what you can do with event transformations. However, for
the non-Python people among us, myself included, we can still use the event
transformations to do some things. Appendix A, Event Attributes and Appendix
B, Device Attributes contain event and device attributes that you can use in your
transformations.

For example, if I wanted to suppress all ping events, I could write a simple transform
at the /Status/Ping event class that looks like this:

evt.eventState = 2

Collecting Events

[178]

We need to provide a context for the expression we're writing, so we specify evt. If
we need to access a device attribute, the context is device. The attribute we want to
assign a new value to is eventState. The 2 represents suppressed, so we'll suppress
all events for the class.

There are several event fields that you cannot alter with an event
transformation, including evid, dedupid, count, firstTime, and lastTime.
These fields are set when the event is added to the MySQL database,
which is the last action in the event processing.

When Zenoss Core receives an event, it assigns properties to the event in the
following order: device class, device properties, event class, and then event
class mapping (if no event class can be assigned). We've already looked at the
configuration properties for each of those steps already. Event transformations
can be applied to either the event class or the event class mapping.

Some event transformation examples
To pull off an event transformation, you need to know a bit of Python and how to
access the Zenoss Core device and event attributes.

Let's start by reviewing an example that's included with Zenoss Core by default,
by looking at the /Perf/Filesystem event class. To view the transform, navigate
to the event class, and then select Transform from the Actions menu. See the
following screenshot:

Chapter 7

[179]

As you can see this transformation is a relatively complex Python script that
manipulates filesystem events. As a Python coder or someone who longs to
be, remember Python expects blocks to be indented with the same amount of
whitespace.

When you apply a transformation to an event class, subclasses will inherit the
event transformation. Zenoss calls this: cascading event transformations.

If Zenoss Core displays your event transform code in red text, the code
is invalid. The code is only evaluated after you save the transform.

Collecting Events

[180]

And now, a simpler example. The following screenshot shows an event
transformation that changes the event state for a device named Master to
acknowledged (1) for the /Status/Wmi/Conn event class:

This transform looks to see if the device name attached to the event is "Master",
and then changes the event state to acknowledged if the check is true.

The Zenoss Core community wiki provides some additional transformations that
will give you more ideas: http://community.zenoss.org/docs/DOC-2554.

Zenoss Core provides a modified Python shell named zendmd that lets us interact
with the Zenoss Core object database. We can use zendmd to test our python
statements and to access the methods and attributes available to us from
Zenoss Core.

Programming in zendmd, an interactive
shell
We can use zendmd to test our python statements and to access the methods and
attributes available to us from Zenoss Core. From zendmd, we can write and test
Python statements that manipulate the attributes of the devices:

You can use zendmd as a way to:

•	 Test event transformations
•	 Mass update device properties from a command line
•	 Test programming expressions when writing plugins or zenpacks

This section introduces the environment and provides some basic commands
to get us started.

To start the zendmd shell, you'll need to run the following command as the
zenoss user:

zendmd

Chapter 7

[181]

The Zenoss dmd command shell opens and displays with a >>> prompt. Enter the
following statements at the shell (exclude the commented text that begins with #):

zhelp() # Display a list of objects
pprint(dir(dmd)) # Display methods available to dmd object
dir(devices) # Display methods available to devices object
find('Coyote') # Find the device by name
d = find('Coyote') # Assign the device to the variable d
d.deviceClass() # Display the device class

The dmd object is the root of the Zenoss object database. When we execute the
dir(devices) statement, one of the methods we return is deviceClass(), which we
then use to print Coyote's device class. In this example, d.deviceClass() returns:

<DeviceClass at /zport/dmd/Devices/Server/Remote/devices/Coyote/
deviceClass/Remote>

The following script prints all the devices in the Zenoss object database with the
corresponding device class. The zendmd command prompts are preserved:

>>> for x in dmd.Devices.getSubDevices():
... print "%s, %s" % (x. x.getDeviceClassName())
...

When working in the zendmd shell, the spacing of our code is important. Python
requires that all lines of a block be indented the same number of spaces. If you make
a mistake, the zendmd interpreter will display an IndentationError: expected an
indented block error.

When you finish typing the python statement, hit enter on a blank line that's
preceded by three periods (...) and the shell will evaluate the statement. The
following is a sample output:

<Device at Crow>, /Network/Router
<Device at Fox>, /Server/Linux
<Device at Master>, /Server/Windows
<Device at Coyote>, /Server/Remote
<Device at Print Server>, /Printer
<Device at Bobcat>, /Workstation
<Device at badgerfiles.com>, /Web

If we want to print only the devices in the /Server device class, our Python
statement becomes:

>>> for x in dmd.Devices.Server.getSubDevices():
... print "%s, %s" % (x, x.deviceClass())
...

Collecting Events

[182]

If we want to print only the devices in the /Server/Linux device class, our Python
statement becomes:

>>> for x in dmd.Devices.Server.Linux.getSubDevices():
... print "%s, %s" % (x, x.deviceClass())
...

As we run each statement, our results become very specific. We can also commit
changes to the Zenoss object database from zendmd. Our next example finds the
device named Bobcat and sets the production state to Production:

>>> x = find('Bobcat')
... x.productionState = 1000
....
>>> commit()

The commit() method applies our changes to the Zenoss object database. When you
commit changes from zendmd, the changes will be reflected in the Zenoss Core web
interface, too.

For more information about using zendmd, check out the Zenoss Core community
wiki at http://community.zenoss.org/community/documentation/wiki/zendmd.
We'll dig deeper into zendmd when we review custom device reports in Chapter 11,
Writing Custom Device Reports.

Summary
If our toaster could plug into our network, Zenoss Core could receive events from it.
In this chapter, we used Zenoss Core as a centralized place to manage events from
many different sources, including syslog, Windows Event Log, shell scripts using
zensendevent, and e-mail using zenmail and zenpop3.

Regardless of whether Zenoss Core generated the event or the event was generated
by external applications, we can transform the event by modifying its attributes.
This is powerful stuff and it means you can bend your monitoring environment
to your will.

Alerts give events a way to get noticed, and we wrapped up our discussion on
events by setting up alert notifications. That way, those pesky events, aka problems,
can get fixed.

In the next chapter, we look at ways to extend our monitoring capabilities with
add-on modules called zenpacks.

Settings and Administration
Now that we've invested time in configuring our monitoring environment, it's wise
for us to review some Zenoss Core administration tasks. Most of the features we
need to discuss will be found under the Advanced menu in Zenoss Core, but we'll
also jump out to the command line several times.

In this chapter, we will:

•	 Manage Zenoss Core users
•	 Create custom user commands
•	 Configure Zenoss Core's dashboard
•	 Backup and restore monitoring data
•	 Update Zenoss Core

Let's get started with users and groups to round out the alerting discussion from the
end of Chapter 7, Collecting Events.

Managing Zenoss Core users
We should set up a username for each person who will be using Zenoss Core, and
all the users should log in using their user account, not as the default admin user.
Individual users can be granted the same privileges as the admin account. However,
working as a non-admin with an individual user account has several benefits:

•	 Changes to settings are tracked via username
•	 Custom alerting rules can be defined per user
•	 Access permissions can be restricted per user

The initial setup created a user account and we've already configured that account
with alerting rules in the previous chapter. Let's walk through the process of adding
a user so we can review all the settings that are attached to a user.

Settings and Administration

[184]

Let's add a new user:

1.	 Select Advanced from the main menu.
2.	 Select Users from the side bar.
3.	 From the Users menu, select Add New User.
4.	 Enter the User Name and Email address in the Add User dialog box.
5.	 Click on Submit to create the user account.

The new username is added to the list of users (see the following screenshot) along
with columns for Email address, Pager, UserID, and Roles.

Before a new user can log in, we must specify a password. To create a password and
configure the account, edit the user account by clicking on the username from the
Users table. The following table includes the fields we can set via the Edit Screen:

Property Description
Password Specify the new password in the first text field. Retype the

password in the second box and click on Save to verify if the
passwords match.

Roles Specify a user role. Available options are Manager, ZenManager,
and ZenUser.

Groups If the user is a member of a defined group, select it. Groups are
defined in Settings | Users.

Email Enter an e-mail address if the user has to receive alerts via e-mail.
Test Click the test link to send an e-mail to the e-mail address specified.

Pager Enter a pager number if the user will receive alerts via a pager.
Default Page Size Specify number of entries displayed in a grid listing. Default is 40.
Default Admin Role Select the default role for administered objects.
Default Admin Level This field is not currently used and is reserved for future use.

Chapter 8

[185]

Property Description
Dashboard Refresh Enter the time in seconds between dashboard refreshes for the user.

The default is 30 seconds.
Dashboard Timeout Enter the time in seconds before the dashboard refresh times out.

The default is 25 seconds.
Dashboard Organizer Select the organizer view for the Device Issues dashboard portlet.

The user can change or select a new organizer via the Preferences
link. Available options include:

•	 Devices
•	 Systems
•	 Groups
•	 Locations

Network Map Start
Object

Specify a default network from the monitored networks to map on
the Network Maps view. For example, 192.168.1.1.

In order to save any changes, the user making the changes must type his password
into the field labeled Enter your password to confirm changes.

We use roles to define a user's level of access to the system. The following table lists
the available roles from the most to the least restrictive access:

Role Access Privileges
ZenUser View-only access to the system. Includes the Dashboard, Device

List, Browse by organizers, and classes.
ZenManager Access includes view, update, and delete. User is able to access the

Management menu items and Event Console.

Administered Objects
For each user, we can assign a list of administered objects, which includes devices,
systems, groups, device classes, and locations. By matching users to administered
objects, we have an easy way to identify who is responsible for the object. Any user
with administrative rights can match users to administered objects.

To view or edit the administered objects for a user, click on the Administered Objects
menu while editing a user account.

Settings and Administration

[186]

To add an object:

1.	 Choose the appropriate option from the Administered Objects menu.
2.	 If we add a device, the Add Device dialog box filters the list of devices as

we type.
3.	 If we add a system, group, or location, we can choose the object from a

drop-down list.
The following screenshot shows that our test user, janitor, is responsible for the
Linux servers and the Green Pasture location.

A quirk with the administered objects is that if you assign a class to a user, the
administered objects are not inherited (at least it's not displayed) at the device level.
This means that if I have a device classified in /Server/Linux, the Administration
page for the device will not show the user janitor (in keeping with this example)
as an administrator.

If we click on the object name, Zenoss Core displays the status page for the
device, system, group, class, or location. And on the Details page, there will be an
Administration link. The following screenshot shows the Administration details for
the /Server/Linux class and guess what you see under the Administrators heading?

Chapter 8

[187]

The screenshot shows that the administrator for this device class is the username
janitor, which is the assignment we just made. Now we know who to contact with
questions about this device class. You may be wondering if you need to match up
users with administered objects. Just because we have the capability doesn't mean
we have the need. In my monitoring environments, I'm usually the only person who
cares about monitoring. So, I administer everything. If you have a larger installation
with multiple system administrators and want to use Zenoss Core as a way to track
some detailed information about your device inventory, this might be an appropriate
feature. The username in the Administrators list is a hyperlink that will take us back
to an overview of the user.

Event Views
Zenoss Core enables each user to define a custom event view which will modify how
that user sees the Event Consoles. We can filter the event view by a set of device and
event-specific criteria, such as device class, production state, IP address, location, or
severity, to name a few possibilities.

Settings and Administration

[188]

To define a custom event view for a user:

1.	 Edit the user account.
2.	 Select the Event Views link in the sidebar.
3.	 From the Event Views menu, select Add Event View.
4.	 Enter a descriptive name in the Add Event View dialog box.
5.	 Click on Submit to add the event view.

By default, the newly-created event view looks identical to the Event Console. Click
on the event view name to edit the properties, as seen in the following screenshot:

Chapter 8

[189]

The following table describes the available options for the Event Views:

Property Description
Type Select status to display active events and history to display cleared events.
Where Build the filtering rules for the event view. For example,

Device is Coyote.
Order by Specify the default sort order. Sort orders are specified in pairs by field and

order. Each sort order is comma separated. For example, if we specify a sort
order equal to severity desc, count asc, the event view lists all the events
from the most severe to the least severe. Within each severity, the view sorts
by the count field in ascending order.

Result Fields Add and remove fields to the event view.

Groups
Everything that we have been configuring on a per user basis can also be configured
on a group basis, including alerting rules, administered objects, and event views.
Groups streamline our user management tasks by allowing us to configure a single
set of properties and then assign users to the group. The users inherit the group's
properties. You can override a group setting at the user level.

Configuring alerting rules, event views, and administered objects for a group is the
same as for a user. Therefore, we won't step through any examples.

Creating custom User Commands
User Commands are a convenient way to troubleshoot a device from the user
interface and Zenoss Core includes a few such commands by default, such as ping,
snmpwalk, and traceroute. By combining shell commands and TALES expressions,
we can run commands against our devices from within the Zenoss Core web portal.

Settings and Administration

[190]

The following screenshot shows the defined commands, which you can see by
navigating to Advanced | Settings | Commands:

Although the terminology is similar, User Commands are different than
Event Commands. We can run user commands against a device. An
event command is a shell script that gets executed as a result of an event.

Let's examine the ping command. The actual command Zenoss Core executes
against the device is ping -c2 ${device/manageIp}. The first half of the command
construction (ping -c2) is a ping command that sends no more than two ping
requests. The second half of the command (${device/manageIp} is a TALES
expression that substitutes the IP address of the device into the command. The
device portion defines the currently-selected device, while the part after the slash (/)
gets the attribute of the device. You can find a list of the device attributes in Appendix
B, Device Attributes.

As an example, let's ping a device in our inventory. I'm going to ping my favorite
server, Coyote. So, find the device in the Devices view of the Infrastructure menu
and select it. When you select the device, the Commands menu will become active.
From the list of commands, select Ping. Refer to the following screenshot:

Chapter 8

[191]

To run a command on more than one device at a time, select multiple
devices from the list, and then run the command.

The command will run against each selected device and Zenoss Core will display
the results, as seen in the following screenshot:

As you can see, I have some device issues, including devices without IP addresses.

Settings and Administration

[192]

Adding a User Command
Adding a new command is straight forward. Let's walk through the process of
adding a new nmap command. We use nmap to determine open ports and available
services on a machine. From the Commands page:

1.	 Select Add User Command from the Commands menu.
2.	 Enter a descriptive name (for example, nmap) in the Add User Command

dialog box.
3.	 Click on Submit to add the command and display the command properties.
4.	 Type a short explanation in the Description field, such as Display

interesting ports on a device.
5.	 Enter the following in the Command field: nmap -v ${device/manageIp}.
6.	 Enter your password to confirm the changes.
7.	 Click on Save.

To test the command, you can run it against a device in the same way that we tested
the ping command.

Let's step away from the user-level administration and settings and look at our
administration options for the Zenoss Core application itself.

Chapter 8

[193]

System settings
The Settings screen, available from the Advanced menu, includes important
information such as mail server, paging services, and conversion for severities and
priorities. Before Zenoss Core can send alerts, we need to configure the SMTP and
SNPP hosts' information, depending on which notification method we use.

The following table lists the available settings:

Property Description
SMTP Host The address of the SMTP server.
SMTP Port The SMTP port. The default is 25.
SMTP Username If the SMTP server requires authentication to send mail,

specify the username to send the mail.
SMTP Password If necessary, specify the password for the SMTP

username.
From Address for Emails Alerts will come from the specified e-mail address.
Use TLS? If the SMTP host uses Transport Layer Security, check

this box.
Page Command Specifies the path to the page command. The

default value is $ZENHOME/bin/zensnpp localhost
444 $RECIPIENT where zensnpp is the Zenoss Core
Simple Network Paging Protocol application and
$RECIPIENT is the contact of the user receiving the
page.

Dashboard Production State
Threshold

The dashboard displays devices with a threshold equal to
or greater than the specified value. Default is 1000.

Dashboard Priority Threshold The dashboard displays devices with a priority equal to
or greater than the specified value. Default is 2.

State Conversions In descending order, Zenoss includes the following
device states by default:

•	 Production: 1000
•	 Pre-Production: 500
•	 Test: 400
•	 Maintenance: 300
•	 Decommissioned: -1

Some places within Zenoss use the text description while
other places use the numeric state.

Settings and Administration

[194]

Property Description
Priority Conversions In descending order, Zenoss uses the following device

priorities:
•	 Highest: 5
•	 High: 4
•	 Normal: 3
•	 Low: 2
•	 Lowest: 1
•	 Trivial: 0

Some places within Zenoss use the text description while
other places use the numeric priority.

Administrative Roles Create user-defined roles. Not currently used in Zenoss
Core for event processing.

Google Maps API Key Enter the Google Maps API key to map locations on the
dashboard.

Sending SMS pages via SNPP provides a unique problem in that Zenoss Core
provides a utility, zensnpp, which will send the page. However, zensnpp needs
network connectivity to function. And, as you can surmise, if network connectivity
to the outside world is down, no SMS pages will get out. The same is true for
e-mail, obviously.

There is a community contributed solution that talks about setting up paging
alerts via a modem. I am including this as information only, as I've not tried the
solution personally.

Configuring Zenoss Core's Monitoring
Dashboard
When a user logs in, Zenoss Core opens to a Dashboard, which contains a list of
configurable, drag-and-drop portlets. Portlets are widgets that provide an overview
of our monitoring environment.

We can choose from the following portlets:

•	 Locations (Google Maps)
•	 Device Issues
•	 Zenoss Issues
•	 Top Level Organizers

Chapter 8

[195]

•	 Watch List
•	 Production States
•	 Site Window
•	 Messages

For some tips on writing a custom dashboard portlet, see the Zenoss Core
developers guide at http://community.zenoss.org/community/
documentation/official_documentation/zenoss-dev-guide.

The Location, Device Issues, and Site Window (Welcome) portlets display by
default, but we can remove any of them by clicking on the asterisk at the top-right
corner of the portlet to show a settings panel, as seen in the following screenshot.
From the settings panel, choose the Remove Portlet link:

To add a portlet, click on the Add Portlet link at the top of the Dashboard. From the
Add Portlet dialog box that is displayed, select the portlet you want to see on the
Dashboard (refer to the following screenshot):

Settings and Administration

[196]

To arrange the portlets, click on the Configure Layout link at the top of the
Dashboard to display the Column Layout dialog box. We can choose from various
combinations of one, two, and three column arrangements. After we choose a layout,
we can rearrange the order of the portlets on the screen by dragging and dropping a
portlet to a new position on the screen.

You've probably noticed by now that the Locations portlet is complaining about a
missing Google Maps API key. Let's set that up now and then we'll review each of
the available portlets.

Locations portlet with Google Maps
The Locations portlet makes great eye candy as it will display a point on the map for
each location, link the locations, and show the highest severity event at each location.

In order to make the Locations portlet work, we need to add a Google Maps API key
to the Zenoss settings. To acquire a free Google Maps API key:

Visit http://www.google.com/apis/maps/signup.html and follow the
registration procedure:

1.	 When prompted for a site URL, specify the URL of your Zenoss Core server,
including the port number (for example, http://localhost:8080).

2.	 Copy the key.
3.	 In Zenoss Core, click on the Advanced menu and paste the key into the

Google API field on the Settings page.
4.	 Save the changes.

Now when you navigate back to the Dashboard and view the Locations portlet, a
map displays. Each location organizer we add to Zenoss Core has an Address field.
We added locations in Chapter 3, Device Setup and Administration.

To edit the address of a location, select the name of the location from the
Devices page, which can be found under the Infrastructure menu. Then from
the Actions menu, select Edit to display the Edit Organizer dialog box, seen in
the following screenshot:

http://www.google.com/apis/maps/signup.html

Chapter 8

[197]

Specify an Address that Google Maps will understand, which means it's a good idea
to test the address out in Google Maps so you can see what Google returns for the
address you enter.

Device Issues portlet
The Device Issues portlet displays a list of all devices with an event using a
color-coded status. Each device name is a hyperlink that links to the device's
main status page. Likewise, clicking on the event redirects us to the event page
for each device.

We can modify the portlet Title and Refresh Rate from the settings pane.

Settings and Administration

[198]

Zenoss Issues portlet
Zenoss Core not only monitors our network but it monitors itself. If one of
the daemons has a problem, Zenoss Core displays that problem in the Zenoss
Issues portlet:

Like the Device Issues portlet, we can only change the portlet Title and
Refresh Rate.

Watch List portlet
With the Watch List portlet we can monitor the status of a device class hierarchy.
If a device in the selected class generates an event, the status updates on the Watch
List portlet.

To watch a device class, select the class from the Zenoss Objects drop-down menu
that appears in the portlet settings pane. We can also change the Title and Refresh
Rate. The following screenshot shows the Watch List portlet with the settings
pane expanded:

The Zenoss Objects field is a drop-down list of device classes.

Chapter 8

[199]

Root Organizers portlet
The Root Organizers portlet displays the status for the grouping we choose
(locations, systems, groups, and devices). The default organizer is devices.

If you want to select a new Root Organizer, choose the new organizer from the
settings pane of the portlet, as seen in the following screenshot:

We can also change the portlet Title and Refresh Rate.

Production States portlet
The Production States portlet displays the Devices assigned to the selected
Production State. Default Production States are Production, Pre-Production,
Test, Maintenance, and Decommissioned.

Select the Production States to display from the settings pane. To monitor multiple
states, hold down the Ctrl key while selecting the states.

Settings and Administration

[200]

You may also change the portlet Title and Refresh Rate.

Portlet permissions
We can restrict which users see which dashboard portlets by setting permissions
on the Portlets page in the Advanced menu. We can choose from three levels:

•	 Users with Manage DMD permission
•	 Users with View permission
•	 Users with ZenCommon permission

The three permission levels correspond to available Zenoss Core user roles: Manager,
ZenManager, and ZenUser.

If you want to restrict users within the ZenUsers role from seeing a dashboard
portlet, assign the portlet Users with Manage DMD permission. Users who are
members of either the Manager or ZenManager role will be able to see all the device
portlets regardless of the set permission.

Meet the Zenoss Daemons
A daemon is a process that runs in the background on Unix systems and is
comparable to what Windows calls a service. To see a list of Zenoss Core daemons,
navigate to Advanced | Settings | Daemons. For each daemon, we see the process
ID (PID), Log File, Configuration, State, and Actions, as shown in the following
screenshot:

Chapter 8

[201]

We've been working with these daemons from the very beginning through our
actions within the Zenoss UI. As we look over the list of daemons, we can speculate
about what some of these processes are responsible for. For example, zensyslog
processes syslogs, zenmodeler creates the model of our devices based on the plugins
defined for each device, and zenping monitors device availability.

We usually turn to the daemons when we're curious or troubleshooting. Click on the
view log link to display the log file for each daemon. We can also find the logs by
browsing the $ZENHOME/log directory.

If we want to override the default daemon behavior, we can edit the configuration
by clicking on the edit config link, and naturally, the view config link displays
the current configuration. To view the available options for each daemon, open a
command line environment and type the name of the daemon followed by the word
help. To see zenmodeler's options, we type:

zenmodeler help

The syntax we use to enter command parameters and values via the web interface
varies from the way we specify options on the command line. As an example,
let's increase zenmodeler's logging level from the default INFO to a more verbose
DEBUG. On the command line, we use the following command as the Zenoss User:

zenmodeler restart --logseverity=4

Settings and Administration

[202]

If we use the edit config link via the Daemons page, all the possible options, with
descriptions are displayed by the interface. To, set zenmodeler to log in debug mode,
find the logseverity option, and choose Debug from the drop-down list. See the
following screenshot:

Don't forget to click the restart button for the zenmodeler daemon to pass the new
configuration to the daemon. To view the results of our change, click on the view log
link and scroll to the bottom. We see the results of our action and our logs now show
debugging messages.

Each of the daemon configuration files can be found in the $ZENHOME/etc directory,
and we can edit them with a text editor if we so choose.

Maintenance Windows
If we plan to take a device out of service for maintenance or other scheduled down
time, we can set up a maintenance window so that Zenoss Core does not alert us of a
problem when our scheduled maintenance starts. Using a maintenance window also
helps ensure that the availability reports show accurate numbers. We'll cover reports
in Chapter 10, Reviewing Built-in Reports. We define maintenance windows via the
Administration properties of devices, device classes, systems, groups, or locations.

Let's walk through a quick example using a device of your choice:

1.	 While viewing the device, click on the Administration link on the device's
overview page.

2.	 From the Maintenance Windows table, select Add Maint Window.
3.	 In the Add Maintenance Window dialog box, enter a descriptive

name: Upgrade.

Chapter 8

[203]

4.	 Click OK to add the maintenance window.
5.	 Next, click on the name of the maintenance window to display the properties.

We need to define the window.
6.	 The following screenshot shows the configurable options for a

maintenance window.

The following table outlines the available maintenance window properties:

Property Description
Enabled Select true to activate the Maintenance window. Default is

False.
Start Enter the start date and time.
Duration Specify the duration in Days, Hours, and Minutes.
Repeat Select the interval to repeat the maintenance window.

Available intervals are:

•	 Never
•	 Daily
•	 Every weekday
•	 Weekly
•	 Monthly
•	 First Sunday of the month

Settings and Administration

[204]

Property Description
Start Production State Specify the production state to move the devices into, once the

maintenance window starts. Default is Maintenance.
Stop Production State Specify the production state for the device after the

maintenance window ends. The default selection is Original.

By setting the production state to Maintenance, Zenoss Core continues to monitor
the device; however, it will not send any alerts.

Adding MIBs
We haven't talked about Management Information Database's files since Chapter 2,
Discovering Devices but at some point, we may need a MIB that Zenoss Core does
not provide. If we see OID numbers (for example, .1.3.6.1.4.1.311.1.1.3.1.3) in our
events, then that indicates that we need to update our MIBs. To find a MIB and its
dependencies, we can search the following resources:

•	 Vendor's support site
•	 Web search for the OID
•	 MIB search sites, such as http://www.mibsearch.com

We will use the MSFT-MIB.mib file (found at http://mibsearch.com) to
demonstrate how to register a MIB with Zenoss Core. First, copy the MSFT-MIB.
mib to /usr/local/zenoss/common/share/mibs/site/. Second, run the following
command as the Zenoss user:

zenmib run

If the command is successful, we will see the following in our command output:

INFO:zen.zenmib:Loaded mib MSFT-MIB

We can see the result of our action by logging into the Zenoss Core UI and selecting
MIBs from the Advanced menu. Our newly-registered MIB displays in the table
along with the number of nodes mapped by the MIB. Click on the name to display
the contents of the MIB file. Refer to the following screenshot, which shows the OID
mappings of an imported MIB file:

Chapter 8

[205]

By looking at the contents of the MIB, we can see the human friendly name each
node (OID) maps to.

Backing up and restoring monitoring
data
Most of us believe in backing up our data and Zenoss Core provides some tools to
make the task a bit easier. For example, we can create an on-demand backup from
the Zenoss Core web interface. Navigate to Advanced | Settings | Backups to
find it.

Settings and Administration

[206]

Here, you can create a backup and view your available backup files. The backup files
are stored in $ZENHOME/backups.

As you see in the screenshot, you can choose whether or not you want to include
MySQL events or include MySQL login information in the backup. The default for
both options is to include the information. If you do include the login information,
your database connection will be included in the backup in a plain text file.

When you create a backup, the following directories in $ZENHOME are included:

•	 /bin: Zenoss utilities and commands
•	 /etc: Configuration files
•	 /perf: RRD files to graph the performance of devices and daemons
•	 /ZenPacks: Add-on modules that you installed in Zenoss Core

Snagging a backup from the interface is convenient, especially if you do it just prior
to upgrading. However, you probably want a more regular backup plan. Zenoss
Core provides the zenbackup command that we can use to automate the process.

Automating backups with zenbackup
We can schedule regular backups and the zenbackup command with cron, a
Unix-based daemon.

In order for the zenoss user to use crontab, the username zenoss must either
appear in the /etc/cron.allow file or must not appear in the /etc/cron.deny file
depending on the system configuration. As an example, we'll add zenoss to /etc/
cron.allow by adding a new line with the username zenoss on it. If /etc/cron.
allow does not exist, we can create it as root using our favorite text editor.

When we define a crontab entry, we define the minute, hour, day of the month,
month, or day of the week followed by the command to run. The following table
shows valid values for each time, day, and date field:

Time intervals (listed in the order they
appear in crontab)

Valid values

Minute 0 - 59
Hour 0 – 23
Day of Month 1 – 31
Month 1 – 12 (January = 1)
Day of Week 0 - 6 (Sunday = 0)

Chapter 8

[207]

Let's set our zenoss_daily script to run at 11:30 P.M. daily. As the zenoss user,
invoke the crontab editor with the following command:

crontab -e

Make the following entry into the crontab editor and save it:

30 23 * * * zenbackup --save-mysql-access

In this example, we're not specifying a day of the month, month, or day of the week,
so we use an asterisk (*) for those fields.

The default behavior of zenbackup mimics the web interface, except that we need
to specify the option --save-mysql-access in order for zenbackup to include the
MySQL login information with the backup. The events are included by default and
the files are stored in $ZENHOME/backups.

Want to do more with zenbackup? Append the --help option to the command to
see available options. It's probably a good idea to backup $ZENHOME/backups to your
central backup location.

Restoring backups with zenrestore
In order to restore the backup file, we need to know the backup filename and the
events database password. If our system uses a non-Zenoss default events database
name and credentials, then we need to specify that information in our zenrestore
command. To see a list of all the available options, append the --help option to the
zenrestore command.

To restore a backup file, run the following commands as the zenoss user:

zenoss stop

zenrestore --file=$ZENHOME/backups/zenbackup__20101113.tgz

zenoss start

The sequence of events here should be fairly obvious. We stop all the Zenoss Core
daemons, restore the backup, and then restart the Zenoss Core daemons. We can
exclude certain parts of the backup by adding options to the zenrestore command:

•	 --no-zobd: Do not restore the ZODB (device data)
•	 --no-eventsdb: Do not restore the events
•	 --no-perfdata: Do not restore the performance data

Settings and Administration

[208]

Updating Zenoss Core
We won't dwell on the updating process as it may vary over time and depend on the
installation method. For each new release, the Zenoss team will publish any specific
steps you need to take to update your installation.

Zenoss updates frequently and as I write this sentence, the current version is 3.03.

To view version information about the current Zenoss Core installation, navigate to
Advanced | Settings | Versions (see the following screenshot):

Chapter 8

[209]

The Versions tab shows us version information about Zenoss Core, its core
components, and the host operating system. In the Check For Updates table, we
can click the Check Zenoss Version Now button to get the latest version number,
which is then reported as the Available Zenoss Version. You'll note that I'm two
maintenance releases behind, but I refuse to update until rewrites.

Zenoss does not upgrade automatically. We need to download the update from
http://www.zenoss.com/download/. The update procedure depends on whether
or not we are using a DEB, RPM, source, or virtual appliance install.

Summary
Now that we have concluded our Zenoss Core administration discussion, we have all
the tools to implement and maintain a highly customizable monitoring solution. We
looked at the various ways to control system-wide monitoring properties through
daemons, system settings, and custom user commands. And yes, we reviewed all of
the important backup procedures.

In the next chapter, we'll take a look at extending Zenoss Core's functionality
through its ZenPack architecture.

Extending Zenoss Core with
ZenPacks

In the previous chapters, we've explored the out-of-the-box functionality of Zenoss
Core. In this chapter, we'll explore ZenPacks. ZenPacks are add-on modules and
are the most common way for the Zenoss community to extend Zenoss Core's
capabilities. In this chapter, we will learn how to:

•	 Install HttpMonitor—a community ZenPack to monitor the response time
and content of a web page

•	 Create a ZenPack using the bogo_check plugin that we configured in Chapter
5, Custom Monitoring Templates

•	 Package and distribute a ZenPack

The examples in this chapter provide a solid understanding of how you would
install or create a ZenPack. As with all the other examples in this book, it's up
to you to apply the concepts to your individual monitoring environments.

Let's start by installing HttpMonitor.

Installing community ZenPacks
My goal will not be to review all the ZenPacks currently available or try to anticipate
your exact monitoring needs. Rather, we're going to walk through the process with a
relatively simple example to monitor websites with the HTTPMonitor ZenPack.

Find ZenPacks online at http://community.
zenoss.org/community/zenpacks.

Extending Zenoss Core with ZenPacks

[212]

Many ZenPacks are community contributed and are reviewed by the Zenoss team
prior to being made available for download. Still, it would be wise to install a
ZenPack on a test installation of Zenoss Core before you commit an unknown change
to your monitoring environment.

As of December 2010, Zenoss Core 3.0 has been out for six months, but not all
ZenPacks are compatible with the latest version of Zenoss Core. Check the ZenPack
download page to ensure 3.0 compatibility.

Installing a ZenPack consists of three general steps:

1.	 Download the ZenPack from the Zenoss ZenPack Project Site.
2.	 Install the ZenPack.
3.	 Configure the devices to use the ZenPack.

Let's demonstrate the process with the HttpMonitor ZenPack, which monitors the
status and response time of a website.

Monitoring websites with HttpMonitor
Always check the documentation that accompanies a ZenPack for clues about
functionality and additional configuration steps. You should also make sure you
meet any prerequisites. The following screenshot shows the download page for our
HttpMonitor ZenPack.

Chapter 9

[213]

As the screenshot shows, ZenPacks are available in multiple versions. Zenoss Core
3.0 ZenPacks will have a py2.6 in the file name while ZenPacks for earlier versions of
Zenoss Core will have py2.4 in the file name. The nomenclature refers to the Python
version. Zenoss Core 3.0 is based on Python 2.6 and previous versions were based on
Python 2.4.

Let's begin by installing the HttpMonitor ZenPack:

1.	 Download the HttpMonitor package from the ZenPack project site and unzip
the file. When you unzip the file, you will have a Python package in .egg
format.

2.	 From the Advanced menu, navigate to Settings | ZenPacks.
3.	 From the Loaded ZenPacks table menu, select Install ZenPack.
4.	 Browse for and select the HttpMonitor ZenPack you downloaded.

Extending Zenoss Core with ZenPacks

[214]

5.	 Click OK to install the ZenPack.
6.	 Restart Zope by running the command zopectl restart.

After the ZenPack installs, Zenoss displays the results of the ZenPack installation in
the browser window, as shown in the following screenshot:

As you can see from the screenshot, it's possible to have multiple ZenPacks installed.

Sometimes we may have problems (for example, timeouts) installing a
ZenPack from the web interface. We can also install with the zenpack
command. Using our HttpMonitor example, here is the command:
zenpack ‑‑install ZenPacks.zenoss.HttpMonitor-2.0.3-
py2.6.egg

zenoss restart

Note that we install the ZenPack after we unzip it.

Installing the HttpMonitor ZenPack gives us access to new monitoring functionality
but we won't be able to use that functionality until we configure a device, device
class, and monitoring template to monitor with the ZenPack.

We can get a good idea of the capabilities of any ZenPack we install by viewing the
list of objects that the ZenPack provides.

The HttpMonitor ZenPack is distributed by the Zenoss team and is now documented
in the Zenoss Core Extended Monitoring Guide. For that reason, we won't cover this
ZenPack feature-by-feature.

Chapter 9

[215]

Viewing a list of installed ZenPack objects
After we install the ZenPack, we can view its details by clicking on the package name
in the list of Loaded ZenPacks. Among the meta information, you'll see a list of files
and a list of objects provided. It's the ZenPack Provides list that gives us the most
insight into its functionality:

Based on the names of the items in this list, we know that the ZenPack installs a new
device and event classes, /Devices/HTTP and /Events/Status/HTTP respectively. The
other objects include a monitoring template called HttpMonitor that adds a new data
source to graph size and time values. You can click on each item to go directly to its
configuration screen.

We've covered all the concepts required to use the ZenPack in previous chapters:
device classes in Chapter 3, Device Setup and Administration, event classes in Chapter
6, Core Event Management, and templates in Chapter 4, Monitor Status and Performance
and Chapter 5, Custom Monitoring Templates.

One of features of this ZenPack is that it adds its own configuration screen. Let's take
a look.

Extending Zenoss Core with ZenPacks

[216]

Configuring HttpMonitor
Pick a website to monitor and add it as a device to the /Devices/Http class. You're
now monitoring the availability and response time for the website. It doesn't get
much easier than that. Add as many websites as you care to monitor.

Monitoring response time may be helpful to you. For me, it's not my primary
concern. A more important use case for me is to monitor my websites to ensure the
Google Analytics tracking code is always present. Sometimes during site updates the
tracking code gets nuked. Among other things, HttpMonitor can check the contents
of the web page for text and generate an event if the text isn't found.

In order to monitor unique content for each website, we need to override the
monitoring template for each device. We learned how to override templates in
Chapter 5, Custom Monitoring Templates. To override the default template, navigate
to the device and select Override Template from the Actions menu.

The following screenshot shows the Override dialog box for a website that I'm
monitoring. After you select the template you want to override, submit the change.
Now we can configure the locally defined version of the template, and any changes
we make will be isolated to the selected device, which provides us the flexibility
to monitor unique properties for each site.

Chapter 9

[217]

A new copy of the template will be created for the device and listed as a subitem of
the HttpMonitor Template.

Configuring HttpMonitor settings
The HttpMonitor ZenPack adds its own interface to configure specific monitoring
properties, such as authentication, regular expressions, and page redirects.

Let's take a look. I'll be using my website http://www.badgerfiles.com:

1.	 Select the overridden template you just created in the last section.
2.	 Select the HttpMonitor data source and select View and Edit Details from

the Data Sources menu. The Edit Data Source dialog box displays.
3.	 The first half of the Edit Data Source window shows us the normal

configuration options that we reviewed in Chapter 5, Custom Monitoring
Templates. If you scroll down the window, however, you will notice that we
have an entire section dedicated to HttpMonitor. The following screenshot
shows the options:

Extending Zenoss Core with ZenPacks

[218]

These options should be self-evident and more information can be found in the
Zenoss Core 3.0 Extended Monitoring Guide. However, I'll call out a few items of
interest—or at least things I want to draw your attention to.

The Host Name and Ip Address fields use TALES expressions to reference the
device. That way when HttpMonitor polls the device, it just substitutes the device
ID for the host name. That's why you enter your device as www.example.com.

The Regular Expression field lets us search for a specific piece of text on the page.
Select the Invert Expression checkbox to check if the defined regular expression is
not present.

HttpMonitor will generate an event when it monitors the device and finds a
condition that is not true with regard to the settings.

Assuming you have something unique to monitor for all your websites, you'll need
to create a local template for each device.

Want to see the code that implements the graphical interface
for the settings? You can start with the interfaces.py and
editHttpMonitorDataSource.pt files for real-life programming
examples. To find the path to these files, view the Files in ZenPack
section of the interface, available from Advanced | Settings | ZenPack
| ZenPacks.zenoss.HttpMonitor.

Creating a ZenPack
There may be a couple of different reasons for creating a ZenPack. Perhaps, you
want to package a group of custom settings to share with other locations or test
environments. Or you may want to contribute a custom monitoring solution to the
Zenoss Core community.

To demonstrate the creation and distribution process, we're going to package the
bogo_check plugin we installed in Chapter 5, Custom Monitoring Templates. That will
give us an opportunity to show you how to distribute preconfigured objects with the
ZenPack, as we saw with the HttpMonitor example earlier in this chapter.

And even though we didn't write the bogo_check plugin, it still serves as an excellent
programming example for a Nagios compliant plugin. It shows us how we can
package a custom script into a ZenPack.

Chapter 9

[219]

Creating ZenPacks is a three step process:

1.	 Create the ZenPack.
2.	 Add objects and files to the ZenPack.
3.	 Package the ZenPack for distribution.

Please note that even though we're going to walk through an example that adds
a custom script, the procedures discussed also apply to users who may only want
to create a ZenPack to distribute a report or a set of graphs. Let's get right to it and
create the ZenPack:

1.	 From the Advanced menu, navigate to Settings | ZenPacks.
2.	 From the Loaded ZenPacks menu, choose Create New ZenPack to display

the Create a new ZenPack dialog box.
3.	 The Create a new ZenPack dialog box asks you to specify a Name according

to a Zenoss Core convention. View the following screenshot for an example.
Then we'll talk about that convention.

As the dialog box describes, the name consists of three fields separated by periods:

•	 Field 1: ZenPacks is a default value.
•	 Field 2: Identify the name or organization of the author (for example,

MikeBadger).
•	 Field 3: Identify the function of the ZenPack (for example,

PerformanceMonitorDemo).

Extending Zenoss Core with ZenPacks

[220]

The naming convention helps keep ZenPack naming problems to a minimum by
creating unique name spaces by the author.

After you name the ZenPack, click OK to create it. The properties (meta data) of the
ZenPack will display, as seen in the following screenshot:

Let's make a few observations about the configuration of the ZenPack. First, you can
set the ZenPack Version number and Author in the Metadata section.

The Dependencies section will show you a list of all your installed ZenPacks and
allow you to choose one of them as a dependency of your new ZenPack. Obviously,
you only choose this option if your ZenPack builds upon functionality contained in
another ZenPack.

The meta data and dependency information are displayed on the ZenPack's download
page on the Zenoss Core website. It lets users know what they need in order to use
your ZenPack.

You will also notice that the ZenPack does not contain any objects. That's our
next task.

Chapter 9

[221]

Adding files and objects to the ZenPack
Now that we have the ZenPack directory structure defined, let's move our bogo_
check plugin into the ZenPack directory structure. We'll need to work from the
command line as the zenoss user to copy the plugin from the $ZENHOME/Extensions
directory where we installed it in Chapter 5, Custom Monitoring Templates, into the
correct ZenPack directory.

Remember in the previous section, we discussed that the unique ZenPack naming
convention created name spaces that prevent community naming collisions? Well,
that unique naming convention creates an ugly directory structure that we need
to traverse.

Generally speaking, $ZENHOME/ZenPacks is our root ZenPack directory with
directories that correspond to the name of the ZenPack. From there, the directory
structure follows the naming convention: ZenPacks, Author, and Description.

In our example, the ZenPack is named ZenPacks.MikeBadger.
PerformanceMonitorDemo. If you are using a different example, substitute the name
of your ZenPack where appropriate in the following commands.

Here are the steps:

su – zenoss

cd $ZENHOME

mkdir ZenPacks/ZenPacks.MikeBadger.PerformanceMonitorDemo \
 /ZenPacks/MikeBadger/PerformanceMonitorDemo/libexec

cp Extensions/bogo_check.py \
 ZenPacks/ZenPacks.MikeBadger.PerformanceMonitorDemo \
 /ZenPacks/MikeBadger/PerformanceMonitorDemo/libexec/

When we modify the monitoring template, we'll find a slightly better shorthand way
to reference the bogo_check.py plugin.

As you see, we created a libexec directory to store our plugin because the
Zenoss Core Development Guide suggests that we keep our collector plugins
in the libexec directory.

Extending Zenoss Core with ZenPacks

[222]

Adding a new data source to the monitoring
template
Next we need to update the data source of the Demo monitoring template to
the new path of the bogo_check.py plugin:

1.	 Navigate to the Monitoring Templates page and select the bogo/Demo
template.

2.	 Select the bogo data source.
3.	 From the Data Source Edit menu, select View and Edit Details to display

the Edit Data Source dialog box.

Replace the original command in the Command Template field with the following
(replace ZenPackName with the actual name of your ZenPack):

${here/ZenPackManager/packs/ZenPackName/path}/libexec/bogo_check.py

Refer to the following screenshot.

To test the command, enter bogo in the Test Against a Device field. Then click on
Test. You should expect an output similar to:

bogo_check CRITICAL datapoint 92 | bogopoint=92%;70;90;0;100

Click on SAVE to update the data source.

Chapter 9

[223]

You should notice that we didn't specify the absolute path for our command. Instead,
we used another TALES expression to reference the path of bogo_check.py file. The
TALES expression is ${here/ZenPackManager/packs/ZenPackName/path} where
ZenPackName is the actual name of the ZenPack. When Zenoss Core evaluates that
expression, the absolute path is substituted.

This is Zenoss' preferred convention and should help prevent broken monitoring
templates in future Zenoss Core versions, and it should allow the ZenPack to run
regardless of where Zenoss Core is installed on the system.

You can also use the zentestcommand to test the data source
against a device from the command line. Here's the equivalent of
using Test Against a Device field in the Edit Data Source window:
zentestcommand --device=bogo --data source=bogo

Adding objects to a ZenPack
Now that we've updated the Demo monitoring template with the new data source,
it's time to add the template to the ZenPack. The Zenoss Core interface makes it easy
to add classes, templates, graphs, and reports to our ZenPack. It only requires that
we navigate to each object to add them.

Because we just modified the Demo monitoring template, let's add the template to
our ZenPack:

1.	 With the Demo template selected, select Add to Zen Pack from the
Actions menu.

2.	 In the Add to Zen Pack dialog box, use the drop-down list to select the name
of our ZenPack. See the next screenshot.

3.	 Click on the Submit button to add the template to the ZenPack.

Extending Zenoss Core with ZenPacks

[224]

4.	 It doesn't get much easier than that, eh? Repeat the steps for each object, such
as the Demo device class, you wish to add to the ZenPack.

5.	 Want to check your work? Go back to the ZenPack screen in Zenoss Core and
click on the ZenPack name to view the settings. Scroll to the bottom and view
the ZenPack Provides section. You'll see the name of the objects listed, as
seen in the following screenshot:

You can't add a device to a ZenPack because devices
are unique to each installation.

6.	 We're now ready to package the ZenPack for distribution.

Packaging the ZenPack
The first step to distributing your ZenPack is to export the ZenPack.

1.	 To export the ZenPack, go to the ZenPack's Detail page.
2.	 Select Export ZenPack from the Actions menu.
3.	 From the Export ZenPack dialog box, choose an export option:

°° Export to $ZENHOME/exports
°° Export to $ZENHOME/exports and download

4.	 Click on OK to export the ZenPack.

Chapter 9

[225]

If you didn't choose the option to download the ZenPack, you can retrieve the
ZenPack as a Python egg file from $ZENHOME/export.

Our ZenPack is ready to distribute to other users.

ZenPack development mode
When users install an .egg file, they will be unable to update the contents of the
ZenPack. If you were watching closely when you added the monitoring template
and the device class to the PerformanceMonitorDemo ZenPack, you noticed that
HttpMonitor was not an available option, meaning we can't add objects to it.

We can, however, work around this limitation by placing the ZenPack into
development mode. Depending on your point of view, this may actually be
a feature in that you don't allow users to edit your ZenPack.

ZenPack development mode is a euphemism for copying some source files into the
ZenPack's .egg directory. If we browse to the $ZENHOME/ZenPacks directory, and
view the contents we can make some observations about the directory names. Refer
to the following screenshot:

By looking at the directory names in my ZenPack directory, we know that
HttpMonitor is a ZenPack that we installed as a Python egg, as evidenced by the
.egg extension of the directory name. The PerformanceMonitorDemo ZenPack
we created does not have .egg in its name because that's a ZenPack we created
and developed.

Extending Zenoss Core with ZenPacks

[226]

Let's assume that we want to add objects to the HttpMonitor ZenPack. To place
the ZenPack in development, we must copy the ZenPackTemplate files to our
HttpMonitor directory. Copy the following list of files to $ZENHOME/ZenPacks/
ZenPacks.zenoss.HttpMonitor-2.0.3-py2.6.egg:

•	 $ZENHOME/Products/ZenModel/ZenPackTemplate/setup.py

•	 $ZENHOME/Products/ZenModel/ZenPackTemplate/INSTALL.txt

•	 $ZENHOME/Products/ZenModel/ZenPackTemplate/MANIFEST.in

•	 $ZENHOME/Products/ZenModel/ZenPackTemplate/README.txt

This is basically the contents of the ZenPackTemplate folder minus the
CONTENT directory.

Now, when you choose the Add to ZenPack option from the Actions menu,
the HttpMonitor ZenPack will be an option. To preserve your changes, export
the ZenPack.

Developer resources
The Zenoss team publishes a Community ZenPack Development page at http://
community.zenoss.org/community/developers/zenpack_development. Here
you'll find examples and techniques.

The Zenoss Developer's Guide provides an overview of Zenoss Core's architecture,
data structure, programming techniques, and API documentation. You'll also find
good reference material for zendmd, event processing, and more.

Developing for Zenoss Core and ZenPacks are topics that deserve their own book.
We're only touching the fringes of those topics here.

You can find the Developer's Guide at http://community.zenoss.org/community/
documentation/official_documentation.

Summary
Now you have a well rounded view of ZenPacks. You can install a community
ZenPack, create and distribute a ZenPack, or update an existing ZenPack. This
chapter didn't make you a Zenoss developer but it did provide the knowledge
to create/distribute customizations.

In the next chapter, we review the available reports.

Reviewing Built-in Reports
Zenoss Core includes several reports that allow us to view and export status and
performance information about the devices and components we monitor. Using
these reports, we can troubleshoot problems, brief management, provide justification
for system upgrades, or view data over time for further analysis.

In this chapter, we'll review each of the included reports, as well as create a custom
graph and multi-graph reports.

Report overview
To see a list of the default report classes, select Reports from the navigation menu.
The report classes we will cover are:

•	 Device Reports
•	 Event Reports
•	 Graph Reports
•	 Multi-Graph Reports
•	 Performance Reports
•	 User Reports

Reviewing Built-in Reports

[228]

The following screenshot shows the available reports:

As you see from the screenshot, the report classes display in the sidebar and expand
to display the individual reports contained in the class.

Most of the reports share common functionality. For example, all reports include a
search box that allows you to find specific information based on the data the report
shows. Each report also includes an export all button that creates a CSV file of the
current report view. As we move through the reports, you'll notice that many of the
reports include report-specific selection criteria.

Device Reports
The Device Reports class contains reports that aggregate information from all the
devices. Zenoss Core includes the following device reports by default, as of version
3.0.2:

•	 New Devices
•	 Device Changes
•	 Model Collection Age
•	 Software Inventory
•	 SNMP Status Issues
•	 Ping Status Issues
•	 All Devices
•	 All Monitored Components

Chapter 10

[229]

New Devices
The New Devices report shows a list of devices that have been added to the Zenoss
Core inventory within the past seven days. The report lists the device's Name and
Class with timestamps for the First Seen, Collection, and Change dates:

Device Changes
When Zenoss Core models a device and detects a change, it records the date of the
change. The Device Changes report displays all devices that have changed within
the past day. The report lists the devices by Name and Class. We also see the date
and time when the device was First Seen, last modeled, and changed.

Model Collection Age
If a non-decommissioned device has not been updated for 48 hours, it displays on
the Model Collection Age report. The report includes the same data as the Device
Changes report: Name, Class, First Seen, Collection, and Change:

This report excludes devices that have the zSnmpMonitorIgnore zProperty
set to True.

Reviewing Built-in Reports

[230]

Software Inventory
The Software Inventory report pulls data from two sources and organizes the
information by Manufacturer and Product. If we specify the OS Manufacturer and
OS Product fields on a device's overview page, that information will display on the
report. The report also includes the software listed on the device's Software page,
which may be collected via normal monitoring:

The Count column on the report provides the total number of instances that the
software product shows up.

If we click on the manufacturer link, the manufacturer overview page displays
information specific to the vendor, including associated products. If we click on the
product name, the product overview page displays a list of all the devices associated
with that product.

Manufacturers and Products
Zenoss Core includes a default list of Manufacturers with associated products;
however we can add or remove items at will. To view the list, first click on the
Infrastructure menu and then the Manufacturers menu:

As the screenshot shows, we see a list of Manufacturers by name, URL, and number
of products attached to each listing.

In addition to organizing a list of products, we can document contact information
for each manufacturer, as the following screenshot shows. To view the details of a
manufacturer, click on its name from the list:

Chapter 10

[231]

SNMP Status Issues
The SNMP Status Issues report is similar to the Ping Status Issues report, except
that it reports devices that have an SNMP status other than up. For devices that have
an SNMP status equal to down, the report includes a count of unsuccessful SNMP
connection attempts to the device.

Because the SNMP Status Issues report shows the SNMP status for each device in
one place, it makes a great report to identify all system-wide SNMP issues. The
SNMP issues may be normal system downtime, but they might also correspond to
improperly configured devices or monitoring setups.

Reviewing Built-in Reports

[232]

Ping Status Issues
The Ping Status Issues report shows a list of devices that currently have a ping
status other than up. In addition to the device Name and Class, the report lists the
hardware Product description, State, Ping status, and Snmp status. If the ping status
is down, a count of failed ping attempts is displayed in the Ping status column.

Like the SNMP Status Issues report, the Ping Status Issues report shows a system-
wide view of all the ping problems. The problems might be caused by device
downtime, but it might also identify problems with the monitoring or device setup.

All Devices
The All Devices report (refer to the following screenshot) lists each device's Name
with additional columns for Class, Product, State, Ping status, and Snmp status:

The All Devices report differs from the SNMP Status Issues and Ping Status Issues
reports in that it displays all devices regardless of the SNMP or ping status.

All Monitored Components
The All Monitored Components report lists all the interfaces, processes, services,
file systems, and routes that are being monitored for each device.

Chapter 10

[233]

The report includes the Device name, Component name, Type, Description, and
component Status. Click on the device name to view the device's status page or click
on the component name to view the properties screen for the component.

Event Reports
The Event Reports give us a system-wide view of event classes, mappings, and
heartbeats. We'll review the following reports:

•	 All Event Classes
•	 All Event Mappings
•	 All Heartbeats

All Event Classes
To see a list of all the event classes defined in the system, we view the All Event
Classes report. For each event class, the report includes the number of SubClasses,
Instances of the class within the system, and the number of current Events:

Reviewing Built-in Reports

[234]

All Event Mappings
The All Event Mappings report displays a list of all the event mappings currently
defined in the Zenoss system. For each event mapping, the report lists the
EventClassKey, the Evaluation text, and the number of current Events:

All Heartbeats
Heartbeats monitor the health of the Zenoss Core daemons, and the All Heartbeats
report displays the list of current heartbeat failures by Device and Component. On
the report, the Components column corresponds to the available daemons, such as
zenactions and zenstatus. The report provides the duration of the heartbeat failure
in Seconds:

Graph Reports
Graph reports allow us to create custom graphs based on existing performance
graphs. You might recall from our ongoing discussions that graphs show up for
multiple components, such as interfaces, processes, file systems, memory, and
CPU. The HttpMonitor ZenPack we added in Chapter 9, Extending Zenoss Core with
ZenPacks also added graphs to track the response time of the web page.

The value of a graph report is that we can create one view with multiple, related
graphs instead of going to each device to view graphs in isolation. Zenoss Core does
not include any graph reports by default.

Chapter 10

[235]

As an example, we're going to create a report to list all the response time graphs for
the websites we're monitoring with the HttpMonitor ZenPack. Let's get started.

1.	 Select Reports from the navigation menu.
2.	 Select the Graph Reports class from the sidebar.
3.	 We need to create the report, so click the Add button at the bottom of the

Report Classes sidebar and choose Add Graph Report.
4.	 Enter a descriptive name (for example, Website Response Time) in the ID

field of the Add Graph Report dialog box.
5.	 Click OK to add the report. The graph's configuration page displays.
6.	 From the Device field, select all the websites you're monitoring with

HttpMonitor.
7.	 Select Size from the list of graphs.
8.	 Click the Add Graph to Report button to save the graph.

Reviewing Built-in Reports

[236]

After we click the Add Graph to Report button, a graph for each device is added to
the Graphs table, as seen in the screenshot. Because the websites do not have any
components, no values show up in the Components field.

The list of components will dynamically display based on the selected
devices. And the list of graphs you can choose from is based on the
combined device and component selection.

The prominent field on this edit screen that needs some explanation is the Comments
field (refer to the following screenshot). As you can see, it's a block of customizable
HTML that allows you to add a logo, set the report name and time.

This information will display on the printed version of the report, and if you're so
inclined, you can edit the information.

To view our new report, click the View Report link in the sidebar or if you've
already clicked out of the edit view, navigate to Reports | Graph | Website
Response Times.

Chapter 10

[237]

To print this report, click the Printable button at the top-left of the report window.

Multi-Graph Reports
Multi-Graph reports are similar to graph reports in that we can create custom
graphs. Graph reports, however, restrict us to existing performance graphs, whereas
the multi-graph reports allow us to define our own data points. In addition, we can
graph multiple devices and components on a single graph.

As you will see, creating a multi-graph report is much more complicated than
creating a graph report, but it also gives us more flexibility. If you know the name of
the data point that's collecting data from your monitoring template, you can graph
it in a multi-graph report, regardless of whether or not the monitoring template is
configured to show a graph.

Since we're already familiar with HttpMonitor, let's continue to work with it by
turning the data points into a multi-graph report.

1.	 Select Reports from the navigation menu.
2.	 Click the Add button at the bottom of the Report Classes sidebar and choose

Add Multi-Graph Report.

Reviewing Built-in Reports

[238]

3.	 Enter a descriptive name (for example, Website Monitoring Report) in the
ID field of the Add Multi-Graph Report dialog box.

4.	 Click OK to add the report and display the graph's Edit page. See the
following screenshot:

Adding Collections
Naming the report is easy. To make the graph display data, we need to create
Collections, Graph Definitions, and Graph Groups. Collections allow us to filter
the list of device classes, systems, groups, locations, or specific devices/components.

To add a new collection:

1.	 Select Add Collection from the Collections table menu.
2.	 Enter a descriptive name (for example, HTTP) in the ID field of the Add

Collection dialog box. The actual name you use doesn't matter.
3.	 Click OK to add the collection and display the properties.
4.	 In the Add to Collection table, select an Item Type (for example, Device

Class).
5.	 From the list of available selections, select the item (for example, /HTTP).
6.	 Set Include Suborganizers to True to recursively include all suborganizers

for the selected Item Type.

Chapter 10

[239]

7.	 Click the Add to Collection button (see the following screenshot).

The Collection Items table updates to include a description of the item we added
along with the number of devices selected.

We can add as many item types to an individual collection as necessary,
and we can add multiple collections to the report.

Reviewing Built-in Reports

[240]

Adding Graph Definitions
Next, we add graph definitions, which tell the report what data to retrieve for each
device in the collection. We add the graph definitions from the edit report screen,
which you can get back to by clicking on the report name (Website Monitoring
Report) in the breadcrumb navigation at the top of the page.

1.	 Select Add Graph from the Graph Definition menu.
2.	 Enter a descriptive name (for example, Time) in the ID field of the Add a

New Graph dialog box. The actual name of the graph doesn't matter.
3.	 Click OK to display the Graph Definition edit page. Now we need to add

the actual graph points, which will get us access to the data.
4.	 From the Graph Points table menu, select Add DataPoint to display the Add

Graph Point dialog box.
5.	 In the Add GraphPoint dialog box, type HttpMonitor_time into the

datapoint field. Then, Click OK to add the data point to the Graph Points
table.

The graph point HttpMonitor_time is derived from the Data Sources
section of the HTTP monitoring template. HttpMonitor is the data
source and time is the data point we want to graph. To create the graph
point for the multi-graph report we separate the two values with an
underscore. The following screenshot shows the Data Sources of the
HTTP monitoring template:

The next screenshot shows the Graph Definition properties for the time graph point.
If you recall, the HttpMonitor ZenPack also collects the size of the web page. I'm
going to add a second graph definition for size. Feel free to do the same.

Chapter 10

[241]

For this example, we're only going to add data points to the graph, but we have
the option to display thresholds on the graph just as we can create and display
thresholds on the monitoring templates. To include a threshold, select Add
Threshold from the Graph Point menu.

Adding Graph Groups
Finally, we need to add a graph group. This is where we answer the all important
question: Do we want to see a single graph or one graph for each device?

Navigate back to the report's edit page to add the graph group:

1.	 From the Graph Groups menu, select Add Graph Group.
2.	 Enter a descriptive name in the ID field of the Add Group dialog box

(for example, Time).
3.	 Click OK to display the Graph Group properties.

Reviewing Built-in Reports

[242]

4.	 Select the Collection and Graph Definition to apply to the graph group,
which will be HTTP and Time respectively. Remember, we can have
multiple collections and graph definitions set up.

5.	 In the Method drop-down list, choose how you want the graphs to display.
I should point out that if you select Separate graph for each device, you will
duplicate the Graph Report we created earlier. That's not our goal here, so
choose All devices on single graph.

6.	 Click on Save.
7.	 If you're also going to graph the size data point, don't forget to add a

graph group.

Our multi-graph example is simple in that we didn't add multiple collections and
graph definitions; however, we have enough background to experiment with more
complex multi-graphs to correlate device performance.

To view the multi-report, select the Multi-Graph Reports class from the Reports
page, and then click on the report name. If you followed my example, you have a
report that looks like the following screenshot:

Chapter 10

[243]

By creating a single graph, we can compare the response time of all the websites in
relation to one another at the same moment in time. Likewise for size.

When you view this graph online, you'll notice that each device on the graph has a
unique color.

That should get you started with multi-graph reports. I like them for comparing data,
but you might want to create report dashboards that show the file system utilization
for all devices in a location for further review. You know the drill by now. It's up to
you to apply this information to your specific needs.

Performance Reports
The performance reports include a mix of the following graphs and
text-based reports:

•	 Aggregate
•	 Availability
•	 CPU Utilization

Reviewing Built-in Reports

[244]

•	 Filesystem Utilization
•	 Interface Utilization
•	 Memory Utilization
•	 Threshold Summary

Aggregate Report
The Aggregate Report shows the performance graphs that combine data from all
the devices into one graph, which allows us to view the cumulative performance for
a component. The available aggregate reports include CPU Use, Free Memory, Free
Swap, and Network Input/Output. We can customize how each graph is displayed
by changing the graph parameters. To make changes, click on the graph image to
open the parameters window (as shown in the following screenshot):

We can control the size of the graph by specifying a new Width and Height in pixels.
In addition, we can set new minimum and maximum values for the y-axis that
correspond to the unit of measurement for each graph. By default, all the devices are
included, but we can view the graph for a single device by entering the device name
in the Devices field.

Chapter 10

[245]

The default time Span for the graph is One Week, but we may choose one day, two
weeks, one month, or one year. After making the selections, press the Submit Query
button to redraw the graph based on the new parameters.

Availability
The Availability report lists each device in the inventory along with its Systems
organizer. The availability is calculated for the selected Event Class and Severity:

The default report gives us the availability percentage for the past seven days for the
/Status/Ping event class based on a Severity of Error. We can change the reporting
criteria based on the following options:

Report Filter Description
Device Enter a device name to limit the report to a single device.
Component Enter a component name from the device OS tab. Zenoss returns devices

that match with the specified component.
Start Date Specify the first day of the report.
End Date Specify the last day of the report
Event Class Select the type of the event to report on. For example: /Status/SNMP.
Severity Select the event severity to use when calculating availability.

After we enter the report criteria, we can click on the Update button to view the
new report.

Reviewing Built-in Reports

[246]

CPU Utilization
The CPU Utilization provides the Load Average and the Percent Utilization for each
device. If Zenoss Core is not collecting CPU performance statistics for a device, the
Load Average and Percent Utilization values display as N/A (refer to the following
screen shot):

By default, the report displays the previous seven days. However, we can specify
a custom Start Date and End Date for the report. We can also choose one of the
following for Summary Type: Maximum or Average. Maximum displays the
maximum Load Average and Percent Utilization for the date range while the Average
summary type provides average Load Average and Percent Utilization calculations.

Filesystem Utilization
All monitored file systems are included in the Filesystem Utilization report. For
each file system Mount point, the report includes the Device, Total bytes, Used
bytes, Free bytes, and Percent Utilization (as seen in the next screenshot). If Zenoss
Core does not know a value, it populates the report values with N/A.

Chapter 10

[247]

The default date range of the report includes the previous seven days, but we can
specify our own Start and End Dates. We can further filter the report output by
showing the Maximum or Average usage statistics by choosing the appropriate
option from the Summary Type.

This report gives us a single view of file system utilization site-wide or across a
single class, which may help identify the need for more disk space.

Interface Utilization
The Interface Utilization Report (seen in the following screenshot) includes all
monitored interfaces. For each Interface, the report includes the Device, Speed,
Input, Output, Total throughput, and Percent Utilization. The report lists N/A for
any unknown values.

The default date range of the report includes the previous seven days, but we can
specify our own Start and End Dates. We can further filter the report output by
showing the Maximum or Average usage statistics by choosing the appropriate
option from the Summary Type.

Reviewing Built-in Reports

[248]

Memory Utilization
The Memory Utilization Report (see the next screenshot) includes all the devices
and provides the following memory statistics: Total, Available, Cached, Buffered,
and Percent Utilization. Like several of the performance reports, known values are
displayed, while N/A is displayed for unknown values.

The default date range of the report includes the previous seven days, but we can
specify our own Start Date and End Date. We can further filter the report output
by showing the Maximum or Average usage statistics by choosing the appropriate
option from the Summary Type.

Threshold Summary
To see a list of the devices that have crossed their performance threshold, we
run the Threshold Summary Report (refer to the following screenshot). For each
Component listed, the report includes the Device, Event Class, and a Count
of the threshold violations, the Duration, and Percent Utilization:

The report displays the previous seven days by default, but we can specify a
custom Start Date and End Date. The default Class is /Perf, which includes all the
performance class events. However, we can limit the report to the following event
subclasses: /Perf/CPU, /Perf/Memory, /Perf/Filesystem, /Perf/Interface, /Perf/
Snmp, and /Perf/XmlRpc.

Chapter 10

[249]

User Reports
The User Reports organizer includes user-centric reports. We'll review the
Notification Schedules report.

Notification Schedules
The Notification Schedules report (see the next screenshot) displays each alerting
rule by name along with the assigned user. The other fields on the report include
alert delays, Active status, alert Duration, and Next Active window:

Each alert includes two rows on the report, and on the second row, we see the
actual alert criteria, which makes this an ideal report to troubleshoot problems
with alert notifications.

Summary
I know, some of you find reports boring. But for the critical thinkers among us,
reports provide the opportunity to learn something from our monitoring activities.
This chapter shows us where to find a well rounded view of your monitoring
activities, including devices, events, and performance. We build custom graph and
multi-graph reports so that we can compare monitoring performance among devices.

In the next chapter, we take Zenoss Core reporting to the next level and review
custom device reports.

Writing Custom Device
Reports

In the previous chapter, we reviewed each of Zenoss Core's canned reports, and
even though we could customize some of them, we were still constrained as to what
each report could contain. In this chapter, we're going to query the Zenoss Core data
model to create custom reports. And we'll do it from the graphical interface provided
by the Custom Device Report interface. Our topics include:

•	 Custom Device Reports and how to use zendmd to explore the data model
•	 Scheduled report delivery with reportmail

Let's start with a simple custom device report.

Creating Custom Device Reports
When you view the Reports page in Zenoss Core, you should notice an empty report
class called Custom Device Reports. The custom device report provides an interface
that lets us query Zenoss Core for devices. Each device that matches the query is
listed as a row on the report.

Let's get started with a simple report to show uptime values for all devices, and then
we'll talk through the options.

With the Custom Device Reports organizer selected:

1.	 Select Add Custom Device Report from the Add Report button (at the
bottom of the Report Classes sidebar.

2.	 In the Create Custom Device Report dialog, type a name for your report in
the ID field. I'm going to use Uptime. When you click on Submit, the edit
screen is displayed.

Writing Custom Device Reports

[252]

3.	 Enter the following values for the Uptime report, as seen in the following
screenshot. Leave all other fields set to their default values.

°° Title: Uptime
°° Sort Column: Name
°° Columns: uptimeStr, getId

4.	 To view the report, click the Save button, and then click the View Report
link (in the sidebar).

The following screenshot shows the edit screen of our report:

The next screenshot shows what our report looks like when we view it:

Chapter 11

[253]

As you see, we created a simple report that lists each device along with its uptime
value. In this report, we use the Column field to do the heavy lifting. We specified
the device attributes of uptimeStr and getId, which give us a human readable value
of the device's uptime and the name of the device, respectively.

A good place to find device attributes is in Appendix B, Device Attributes
which lists common attributes you can use with TALES expressions.

Our report shows columns for Name and Uptime, which are the values we specified
in the Column Names field. For each attribute specified in the Columns field, we can
define a corresponding friendly Column Name. List the column names in the same
sequence as the columns.

Now that we've seen how easy it is to get started with a simple report, we'll preface
our more involved examples by reviewing the available report fields.

Custom Device Report fields
The following table shows the available fields on the custom device reports:

Field Description Example
Name Descriptive name for the report.

The name doesn't display on the
report.

Uptime

Title The title displays on the report. Uptime Report
Path Specify the device class to

query. The default is /, which
will include all devices.

/Server/Linux

Query Use the query field to filter and
select data. Accepts a python or
TALES expression.

Leave blank to select all devices.

here.hw.cpus.countObjects() > 0

here.sysUpTime() > -1

here.comments != ""

Sort Column Specify the column that the
report is sorted on. Can either
be the Column or Column
Name value.

Name

getId

Writing Custom Device Reports

[254]

Field Description Example
Sort Sense Apply the specific sort order

to the value in Sort Column.
Can either be ascending or
descending.

asc

desc

Columns Specify the data to display for
each device returned in the
query. This can take a device
attribute or a python expression.
Python expressions must be
prefaced with python:. Enter
one value per line.

UptimeStr

python:dev.hw.totalMemoryString()

Column
Names

Define the human-friendly
names that correspond to each
value you entered in Columns.

Enter one value per line.

Uptime

Total Memory

There is minimal error checking done on the data you enter. If you enter a query
with an invalid syntax, the View Report option will tell you about the error.

If you enter more column names than you specify columns, the interface will turn all
the column names red when you save the report.

Let's refine our uptime report a bit more, so we can figure out exactly how we can
build meaningful queries.

Building Custom Device Report queries
Our current version of the uptime report returns the uptime value for each device.
Because we didn't specify a query, the report includes all devices and shows us
values for devices that aren't reporting an uptime. That's what all the "Unknown"
values are on the report.

To improve our report, let's exclude those devices from our report. The query that
will exclude devices with an unknown system uptime is:

here.uptimeStr() != "Unknown"

Let's examine the query from left to right. The here portion evaluates the expression
on the currently selected device. The custom device reports will retrieve all devices
that are included in the specified Path.

Chapter 11

[255]

The here.uptimeStr() != "Unknown" query returns the system uptime value for
the selected device and checks to see if it is not equal to "Unknown". If the statement
evaluates to true, then the device is included in the report.

But how do you know which query to use when building a report? To help us build
queries, we turn to the interactive shell zendmd.

Using zendmd to test report queries
We got our first look at zendmd in Chapter 7, Collecting Events as a resource for
determining event transformations, and it came up again in Chapter 9, Extending
Zenoss Core with ZenPacks when we talked about programming ZenPacks. We're
going to explore the zendmd shell a bit deeper this time to help us figure out how we
can identify the devices with unknown system uptime values.

As the zenoss user, run zendmd. Let's start with a device that we know is reporting
uptime. In my test network, that device name is Coyote. We'll run through the
command and then we'll talk about what happened.

From zendmd, run the following commands:

d = find("Coyote")

Hopefully, you remembered to use a device on your network. otherwise, your
assignment will fail. You can check to see what's assigned to the variable d with
the command:

print d

If that command returns the value None, you need to retry your find command
using a correct device name. Don't forget to wrap the device name you want to
find in quotes.

Now we need to figure out which object holds the uptime value. Zendmd has a
built-in auto-complete feature. So, if you type this command, you will see all the
available methods that you can run against the device:

d.<tab> <tab> <y>

Pressing the Tab key twice is the way to get zendmd to auto-complete the command.
In this scenario, it will ask if you want to display all 605 possibilities. Pressing y for
yes will page through the results.

Writing Custom Device Reports

[256]

Unless you're bored, you may not want to page through hundreds of pages of
possible objects. It's probably more fruitful to guess at the first letter of the object you
need. In our uptime report, we use the uptimeStr attribute to display the system
uptime value. So, give it a try:

d.u<tab> <tab>

The output is as follows:

This command provides several methods that begin with the letter "u" and
uptimeStr is one of the options. Let's finish out the command:

d.uptimeStr()

The result of the command is the uptime value for the device, as seen in the
following screenshot:

So far so good, but we're actually looking for the opposite condition. Let's see what
an unknown uptime value looks like. In my network, the device Fox is not reporting
system uptime, so I can start the process over again:

d = find("Fox")

d.uptimeStr()

This results in an Unknown message, which is what we want to see:

Chapter 11

[257]

At this point we have what we need to write our query for the custom device report
or at least test it out. Edit the uptime report and enter this new value in the Query
field: here.uptimeStr() != "Unknown".

Save and view the report. It works. All the devices that have an unknown system
uptime value are excluded from the report.

What if we mistype the query and enter this instead: here.uptimeStr != "Unknown".
Go ahead and give it a try.

The query brings back all devices, which means it's wrong. If you pop back into
zendmd and run d.uptimeStr, you'll notice that you get an entirely different result
than we did before. The lesson here is simple. The parentheses matter, so when in
doubt, test the output of your functions with and without the parentheses.

Incidentally, this would be an equivalent query to exclude all unknown values:
here.sysUpTime() > -1.

The sysUpTime function returns the uptime value in an integer format and -1 is
equal to Unknown. The uptimeStr function translates the sysUpTime value to a
friendly format. In other words, there may often be more than one way to get your
data and a little exploration may lead to enlightenment.

What if you wanted to create a report that listed all devices with a serial number?
What would that query look like? Try this:

here.hw.serialNumber != ""

Let's explore this command using auto-complete in zendmd. Type d.hw <tab><tab>.
The following screenshot shows the result:

Notice that the there is an open parenthesis after hw. This is our cue in zendmd that
we may be able to access other objects, so we replace the opening parenthesis with a
dot and type the following command:

d.hw.s <tab><tab>

Writing Custom Device Reports

[258]

The output is as follows:

We see that serialNumber is one of our options. The other place we can find useful
device data is in the os object, such as this report query:

here.os.filesystems.countObjects() > 0

This query will return all devices with a known file system, as seen in the
Components section of the device overview. If we take that knowledge back to
zendmd, we can interact with the os object to discover the data that might be
available to us:

As the screenshot shows, the countObjects function is available from zendmd.

Are you wondering how we knew to look in the os and hw objects? To answer that
question, let's turn back to the Zenoss Core web interface and briefly explore Zope,
the framework that drives Zenoss Core.

Exploring data in Zope
Navigate to a device and note the URL. When I navigate to my favorite device,
Coyote, here is the URL I see: http://localhost:8080/zport/dmd/Devices/Server/
Linux/devices/coyote/devicedetail#deviceDetailNav:device_overview.

Your hostname and device name will vary, but you should see something similar.
Replace /devicedetail#deviceDetailNav:device_overview with /manage so that the
new URL looks like this: http://localhost:8080/zport/dmd/Devices/Server/Linux/
devices/coyote/manage.

Chapter 11

[259]

When you press return, should you see a screen that resembles the
following screenshot:

If we direct our attention to the left sidebar, we see the data structure that we just
explored from zendmd. We see that hw and os are children of Device. To view the
final piece of this puzzle, click on the hw link, and then click on the Properties tab:

Writing Custom Device Reports

[260]

As we see in the screenshot, serialNumber is a property of hw.

Using Zope is just a different way to visualize the Zenoss Core data. We happen
to be talking about custom device reports, but this could be useful for other Zenoss
Core programming tasks as well.

Let's get back to the custom device reports, so we can review how to evaluate python
expressions in the column data.

Using Python expressions in the columns
The custom device report allows us to specify a Python expression for each column
on the report. The expression must be prefaced with python:.

To demonstrate, let's run a report that pulls all devices with monitored memory
values, using this query:

here.hw.totalMemory > 0

Enter the following values for Columns:

•	 getId
•	 python:dev.hw.totalMemory
•	 python:convToUnits(dev.hw.totalMemory)

For the Column Names, specify Name, Memory, and Total Memory, respectively.

Chapter 11

[261]

Save and the view the report.

When we run the report, we see that for each device with a totalMemory property,
we're printing the total memory value as an integer and in a human readable format,
as seen in the following screenshot:

Before we talk about the convToUnits function, note how we reference the device in
the Python expression. In the context of the report columns, we use the variable dev
to access the device. Recall that we use the here variable when writing a query, but
this expression will fail as a column expression:

python: here.hw.totalMemory # not correct

In place of the variable dev, we could also use device, but why type three extra
letters if we don't have to?

Now, what about convToUnits? When we work with custom device reports, we
have access to a couple of "convenience" functions.

Convenience functions
In the preceding report, we use the convToUnits function to turn the totalMemory
value into something human readable. Sample usage follows.

convToUnits
The convToUnits function converts a number to its human-readable format
(for example, 4GM, 128MB, 2.1GHz, and so on). We can supply it with the number
to convert, the number to divide by, and a unit string:

convToUnits(number=0, divby=1024, unitstr="B")

If we give the function a number, such as the totalMemory value, it will
automatically divide the number by 1024 and append a "B" to the units.
We can change all three values if we need to, as the following usage shows:

convToUnits(123456789, 1000, "Hz")

Writing Custom Device Reports

[262]

The divby number should be self-evident and answers the question, "what value do
I need to divide my number by in order to obtain a readable result?". The unitstr
value needs some further explanation.

By default, the function will evaluate the unit in terms of 'K','M','G','T', and 'P'. The
unitstr value you specify is appended to the evaluated unit. So if you specify Hz as
the unitstr, then your potential units become KHz, MHz, GHz, and so on when the
function evaluates the number.

The convToUnits function is also available to event transformations.
The function is defined in $ZENHOME/Products/ZenUtils/Utils.py.

Scheduling reports for e-mail delivery
Zenoss Core includes the reportmail command in $ZENHOME/bin that enables us
to send any report, including custom device reports, via e-mail. No graphical
interface is available which means that we must work from the command line as
the zenoss user.

We need to specify the URL of the report, the username/password for a user, and a
from address for the e-mail. Run the command reportmail --help to get a full list
of options.

To get the URL of the report, open the report you want to mail from the Zenoss UI
and copy the URL from the browser. Using the Uptime Report we created earlier in
this chapter, I would use the command:

reportmail -U userName -p password \

-u http://localhost:8080/zport/dmd/reports#reporttree:.zport.dmd.
Reports.Custom%20Device%20Reports.Uptime

As you can see, the URL is quite large and causes the above command to wrap
over three lines. It's one of those things that doesn't transfer well to print. And
even though it's ugly, it's relatively simple. We feed reportmail a username
and password. Then we specify in the above command the URL to the report.

The report will be sent to the e-mail address associated with the user account.
Use the -a option to change the recipient.

Chapter 11

[263]

Sending a CSV report
The default report that gets sent from reportmail will be readable and will likely
serve its purpose. However, you may want to e-mail the CSV version of the report
instead. To get the CSV version of any report, append ?doExport to the report URL.

Scheduling a cron job
If we want to e-mail the report out on a recurring basis, we can schedule it as a cron
job. We talked about setting up cron jobs in the Automating backups with zenbackup
section of Chapter 8, Settings and Administration. To add the reportmail command,
edit the crontab as the zenoss user with the command:

crontab -e

The following screenshot shows my updated crontab:

Not all of the reportmail command is shown in the screenshot because it's too long.

Just be aware that reportmail requires you to specify the username/password
for a Zenoss Core account. If you do report mail in a script, change the ownership
on the script so only the zenoss user can read it. You might also want to set up a
less privileged account in Zenoss Core account with a role of ZenUser for use with
reportmail.

Summary
As you can see, custom device reports make writing custom reports in Zenoss Core
tolerable. It keeps us from pulling our hair out while trying to write complicated
scripts from scratch. If, however, you want to write your own scripts from scratch,
the Zenoss Core Administrators Guide provides a brief introduction. And with
this chapter as background information, you should at least have a good
starting position.

That concludes our introduction to Zenoss Core. Now, go forth and monitor.

Event Attributes
Throughout the course of this book, we've interacted with event attributes in many
different contexts. As you might guess, these attributes define the details of an event
in Zenoss Core. However, not all attributes are applicable to each event. The most
obvious place to witness the event attributes and how they are applied is in the event
log, which we covered in Chapter 6, Core Event Management. Also in Chapter 6, Core
Event Management we reviewed event views, which determine how events show up
in the event console—all predicated on the event attributes listed in this appendix.

We can also use the event attributes to process events in relation to:

•	 Event transformations
•	 Event mappings
•	 Event commands
•	 ZenPack programming

Your programming context determines how you access the event attributes. We can
substitute the event attributes in our Python statements via TALES expressions, as
we saw with the discussion of event commands in Chapter 6, Core Event Management.

An example of a TALES expression to access an event attribute looks like this:

${evt/attribute}

The attribute can be any of the event fields defined in the following table. So if we
wanted to write a TALES expression to access the message body of an event, the
expression would look like this: ${evt/message}. Python evaluates the expression
and substitutes the value into the current Python statement.

In other programming contexts where you might not use TALES, you would use the
following syntax to access the event attribute:

evt.attribute

Event Attributes

[266]

The following table lists the available event attributes in Zenoss Core.

Event Attribute Description
dedupid Identifies the event so that Zenoss can deduplicate events. Takes

the form of device, component, eventClass, eventKey, and severity.
evid A unique identifier for the event.
device Specifies the device attached to the event.
component The Zenoss daemon reporting the event.
eventClass The event class that the event maps to.
eventKey A user-defined way to map events. Event keys can be sequenced to

aid the event class mapping of events from
a common source to different event classes.

summary Summary of the event.
message Message body for the event. May be the same as summary.
severity A Numeric representation of the event:

•	 5 = Critical
•	 4 = Error
•	 3 = Warning
•	 2 = Info
•	 1 = Debug
•	 0 = Clear

eventState Numeric representation of the event state:

•	 0 = New
•	 1 = Acknowledged
•	 2 = Suppressed

eventClassKey Maps the event to an event class.
eventGroup Event source group: For example, syslog, process, and ping.
stateChange Time stamp when the event state changed.
firstTime Time stamp when the event first occurred.
lastTime Time stamp when the event last occurred.
count The total number of times the event has occurred based on the

dedupid.

Appendix A

[267]

Event Attribute Description
prodState The production state of the device. The Zenoss defaults are:

•	 1000 = Production
•	 500 = Pre-Production
•	 Test = 400
•	 Maintenance = 300
•	 Decommissioned = -1

suppid If the event is suppressed, this is the ID of the suppressing event.
manager The fully qualified domain name of the event collector that

generated the event.
agent Reports the Zenoss daemon responsible for generating the event.
DeviceClass The device class.
Location The location organizer assigned to the device.
Systems The system organizer assigned to the device.
DeviceGroups The group organizer assigned to the device.
ipAddress The IP address of the device.
facility The syslog subsystem that generated the event (for example, cron,

mail, lpr, auth, authpriv, daemon, ftp, kern, mark, news, syslog,
user, uucp, local0 through local7).

priority The priority of the syslog event.
ntevid The Event ID field of the Windows NT event log.
ownerid The ID number of the event owner.
clearid The ID number of the event that cleared this event.
DevicePriority The priority as assigned in the device's Edit page:

•	 5 = Highest
•	 4 = High
•	 3 = Normal
•	 2 = Low
•	 1 = Lowest
•	 0 = Trivial

eventClassMapping The event class mapping used to evaluate and map the event.

Device Attributes
Device attributes describe each device, and like the event attributes in Appendix A,
Event Attributes not all attributes will apply to every device. We use device attributes
to extract bits of information in the following places:

•	 User commands
•	 Event commands
•	 Monitoring template commands
•	 Event transformations
•	 ZenPack programming
•	 Custom device reports

Your programming context determines how you access the device attributes.
For example, we can substitute the device attributes in our Python statements
via TALES expressions.

An example of a TALES expression to access a device attribute looks like this:

${dev/attribute}

So if we wanted to write a TALES expression to access the name of the device, the
expression would look like this: ${dev/getId}. Python evaluates the expression
and substitutes the value into the current Python statement.

In other programming contexts where you might not use TALES, you would use the
following syntax to access the event attribute:

device.attribute

Device Attributes

[270]

The following table includes a list of the attributes that we may use when working
with our devices. If you recall our work with custom device reports in Chapter
11, Writing Custom Device Reports, you know this is not an exhaustive list of
device attributes that we access. In Chapter 11, Writing Custom Device Reports, we
used zendmd to explore and find device attributes. However, the attributes listed
correspond closely to the fields found on the device's Configuration Properties:

Device Attributes Description
id The device name, which is not necessarily the fully

qualified domain name.
manageIp The IP address of the device.
productionState The numeric value of the device's production state:

•	 1000 = Production
•	 500 = Pre-Production
•	 400 = Test
•	 300 = Maintenance
•	 -1 = Decommissioned

productionStateString The device's production state as a human-readable string.
priority The numeric priority value:

•	 5 = Highest
•	 4 = High
•	 3 = Normal
•	 2 = Low
•	 1 = Lowest
•	 0 = Trivial

priorityString The device's priority as a human-readable string.
locationName The location organizer assigned to the device.
systemNames The list of system organizers assigned to the device.
groupNames The list of group organizers assigned to the device.
snmpDescr The SNMP Description.
snmpOID The OID from SNMP.
snmpContact The SNMP contact value.
snmpSysName The system name from SNMP.
snmpLastCollection The last time Zenoss collected SNMP data for the device.
comments User-entered comments on the device.
uptimeStr The uptime values for the device.

Appendix B

[271]

Device Attributes Description
pingStatusString The device's ping status:

•	 0 = Up
•	 1 = Down
•	 2 = None

snmpStatusString The device's SNMP status:

•	 0 = Up
•	 1 = Down
•	 2 = None

osVersion The operating system version.
osProductName The software product name defined on the device's edit

page.
osManufactureName The operating system manufacturer name defined on the

device's edit page.
hwProductName The hardware product name defined on the device's edit

page.
hwManufacturerName The hardware manufacturer name defined on the device's

edit page.

Example snmpd.conf
In Chapter 2, Discovering Devices we configured the /etc/snmp/snmpd.conf file,
which allows Zenoss Core to retrieve monitoring data from the server. A sample
snmpd.conf file is listed here as a reference:

##
Access Control

##

YOU SHOULD CHANGE THE "COMMUNITY" TOKEN BELOW TO A NEW KEYWORD ONLY

KNOWN AT YOUR SITE. YOU *MUST* CHANGE THE NETWORK TOKEN BELOW TO

SOMETHING REFLECTING YOUR LOCAL NETWORK ADDRESS SPACE.

By far, the most common question I get about the agent is "why won't

it work?", when really it should be "how do I configure the agent to

allow me to access it?"

#

By default, the agent responds to the "public" community for read

only access, if run out of the box without any configuration file in

place. The following examples show you other ways of configuring

Example snmpd.conf

[274]

the agent so that you can change the community names, and give

yourself write access as well.

#

The following lines change the access permissions of the agent so

that the COMMUNITY string provides read-only access to your entire

NETWORK (EG: 10.10.10.0/24), and read/write access to only the

localhost (127.0.0.1, not its real ipaddress).

#

For more information, read the FAQ as well as the snmpd.conf(5)

manual page.

First, map the community name "public" into a "security name"

sec.name source community

com2sec notConfigUser default public

####

Second, map the security name into a group name:

groupName securityModel securityName

group notConfigGroup v1 notConfigUser

group notConfigGroup v2c notConfigUser

####

Third, create a view for us to let the group have rights to:

Make at least snmpwalk -v 1 localhost -c public system fast again.

name incl/excl subtree mask(optional)

Appendix C

[275]

view systemview included .1

####

Finally, grant the group read-only access to the systemview view.

group context sec.model sec.level prefix read write
notif

access notConfigGroup "" any noauth exact systemview
none none

##
System contact information

#

It is also possible to set the sysContact and sysLocation system

variables through the snmpd.conf file:

syslocation Unknown (edit /etc/snmp/snmpd.conf)

syscontact Root <root@localhost> (configure /etc/snmp/snmp.local.conf)

Added for support of bcm5820 cards.

pass .1 /usr/bin/ucd5820stat

##
Further Information

#

See the snmpd.conf manual page, and the output of "snmpd -H".

trapcommunity public

trapsink default

trapsink 127.0.0.1 public 162

Index
Symbols
${evt/message} expression 265
$ZENHOME/log directory 201
$ZENHOME/ZenPacks directory 225
/App/Log event class 153
/Apps/Log event class 151
--deviceclass option 41, 42
{dev/id} 147
.egg directory 225
/Events/App class 146
{evt/id} 147
--help option 110
/Information class 148
--no-eventsdb option 207
--no-perfdata option 207
--no-zobd option 207
-p option 160
/Server/Cmd class 66, 103
/Server/Linux class 101, 103
/Server/Linux device class 90
/Server/Linux template

editing 103-105
/Server/Scan class 103
/Server/SSH class 103
/Server/Windows class 103, 137
/Status/IpService class 148
/Status/OSProcess class 148
/Status/Ping class 148
/Status/SNMP class 148
/Status/WinServices class 148
/tmp/Sample/Event/Command file 147
/tmp/SampleEventCommand file 146
/Unknown event class 150

A
Actions menu 83
Add a Single Device window

about 43
device attributes, adding to 43

Add Components button 92, 93
Add Device Options

attributes 44-46
Add OSProcess menu 93
Add Single Device option 42
administered objects

about 185
editing, for users 185, 187

Advanced | Collectors menu 76
agent event attribute 267
aggregate report 244, 245
alert escalation 173, 174
alert filter 172, 173
alerting rules

alert escalation 173, 174
alert filters 172, 173
alert messages 176, 177
configuring 170, 171
schedule 174, 175

alert messages 176, 177
alerts 170
All Devices report 232
All Event Classes report 233
All Event Mappings report 234
All Heartbeats report 234
All Monitored Components report 13, 232
auth facility 158
authpriv facility 158
availability report 245
Available RRD Variables property 125

[278]

B
backups

automating, with zenbackup 206
restoring, with zenrestore 207

binding 100
bogo_check plugin 108-111
bogo_check.py command

about 108
installing 109

bogo_check.py plugin 128
bogo device 164
Bogo template

device, adding for monitoring 126

C
Cacti 10
Cacti plugins

data source parser 128
monitoring with 127

Chunk Size property 78
Cisco router syslogs

collecting 159, 160
class

about 56
devices, assigning to 58

clearid event attribute 267
CMDB 9, 16
collection layer

about 17
device management daemons 18
event daemons 19
performance daemons 18, 19

collections
adding 238, 239

collectors
about 76, 77
performance collector, configuring 77-79

color property 125
command

creating 143, 144
command line discovery 48
Commands page, Event Manager

about 143
commands, creating 143, 144

comments device attribute 270
commit() method 182

community ZenPack
installing 211, 212

Community ZenPack Development page
URL 226

component event attribute 266
components

monitoring 79
components, monitoring

about 79
add components button 92, 93
component details, editing 93
component details, viewing 93
file systems 89
interfaces 80, 81
network routes 90
OS processes 81
services 85

Config Cycle Interval property 78
configuration, HttpMonitor settings 217, 218
Configuration Management Database. See

CMDB
Configuration Reload Interval property 78
convToUnits function 261, 262
count event attribute 266
countObjects function 258
CPU utilization report 246
CreateFile command 147
creatFile command 145
cron facility 158
cron job

scheduling 263
CSV report

scheduling 263
custom device report fields

about 253
column names 254
columns 254
name 253
path 253
query 253
sort column 253
sort sense 254
title 253

custom device report queries
building 254
testing, zendmd used 255-258

custom device reports

[279]

about 14, 251
creating 252, 253
fields 253, 254
Python expressions, using in columns 260,

261
custom event view

defining, for users 188
custom user commands

creating 189-191
Cycle Interval property 78

D
daemon 200
daemon facility 158
daemons, Zenoss Core

zendisc 148
zenperfsnmp 148
zenping 148
zenprocess 148
zenstatus 148
zenwin 148

Dashboard
configuring 194

data
backing up, with zensendevent 165
exploring, in Zope 258-260

data collection
troubleshooting 62

data layer 16
data point

adding 116, 117
DataPoint property 124
data source

adding, to monitoring templates 222, 223
data sources, Nagios plugin

adding 114-116
data point, adding 116, 117
RRDtool data point configurations 117, 118

data sources, SNMP
monitoring 101
data sources, SNMPtemplates, overriding

101-103
data sources, Zenoss Core 101
dedkat 165
dedupid 155
dedupid event attribute 266

de-duplication identification. See dedupid
Default Discovery Networks property 78
development mode, ZenPack 225, 226
device administration tasks 67
device attributes

Add a Single Device window, adding to 43
device attributes, Zenoss Core

about 269
comments 270
groupNames 270
hwManufacturerName 271
hwProductName 271
id 270
locationName 270
manageIp 270
osManufactureName 271
osProductName 271
osVersion 271
pingStatusString 271
priority 270
priorityString 270
productionState 270
productionStateString 270
snmpContact 270
snmpDescr 270
snmpLastCollection 270
snmpOID 270
snmpStatusString 271
snmpSysName 270
systemNames 270
uptimeStr 270

Device Changes report 229
device classes

about 57
list 57
templates, binding to 125, 126

DeviceClass event attribute 267
device event attribute 266
DeviceGroups event attribute 267
device information

gathering, modeler plugin used 60, 61
Device Issues portlet 197
device management 9
device management daemons, Zenoss Core

about 18
zendisc 18
zenmodeler 18

[280]

DevicePriority event attribute 267
Device Reports class

about 228
All Devices report 232
All Monitored Components report 232
Device Changes report 229
Model Collection Age report 229
New Devices report 229
Ping Status Issues report 232
SNMP Status Issues report 231
Software Inventory report 230

devices
adding 35
assigning, to class 58
autodiscovering 37, 38
deleting 70
locking 67
organizing, in Zenoss Core 52-54
preparing, for monitoring 22
renaming 68
searching, manually 35
unlocking 67

devices, organizing
by groups 54
by location 52-54
by systems 54

device status page 9
dmd command 181

E
Edit Graph Point screen

options 124, 125
Edit Graph Point screen, options

Available RRD Variables property 125
color property 125
consolidation property 124
DataPoint property 124
format property 125
legend property 125
limit property 125
line type property 125
line width property 125
name property 124
RPN property 125
stacked property 125
type property 124

e-mail
events, creating by 166

e-mail delivery
reports, scheduling for 262, 263

Errors graph 94
eth0 interface 94
event attributes, Zenoss Core

agent 267
clearid 267
component 266
count 266
dedupid 266
device 266
DeviceClass 267
DeviceGroups 267
DevicePriority 267
eventClass 266
eventClassKey 266
eventClassMapping 267
eventGroup 266
eventKey 266
eventState 266
evid 266
facility 267
firstTime 266
ipAddress 267
lastTime 266
Location 267
manager 267
message 266
ntevid 267
ownerid 267
priority 267
prodState 267
severity 266
stateChange 266
summary 266
suppid 267
Systems 267

event classes
about 148, 149
properties 149

event classes, Zenoss Core
/Information 148
/Status/IpService 148
/Status/OSProcess 148
/Status/Ping 148

[281]

/Status/SNMP 148
/Status/WinServices 148

eventClass event attribute 266
eventClassKey event attribute 168, 266
event class mapping

properties 153
eventClassMapping event attribute 267
event class mapping, properties

Event Class Key 153
Example 153
Explanation 153
Name 153
Regex 153
Resolution 153
Rule 153
Sequence 153
Transform 153

Event Console
about 12, 132
event log, viewing 135-137
events, closing 137
event severities, defining 133, 134
event statuses, defining 134
working 132, 133

Eventcreate
event log configuration, testing with 163

eventcreate.exe 163
event daemons, Zenoss Core

about 19
zeneventlog 19
zensyslog 19
zentrap 19

event de-duplication
about 154
turning off 155

eventGroup event attribute 266
eventKey event attribute 266
event log

viewing 135-137
event log configuration

testing, with Eventcreate 163
Event Log Cycle Interval property 77
event log severities, Windows 162, 163
event logs, Windows

monitoring 161, 162
event management 11, 12
Event Manager

about 132, 138
Commands page 143
Edit page 139, 140
Fields page 141, 142

event mapping 148-152
event mapping sequence 154
event reporting

incorporating, into third-party scripts 163,
165

Event Reports
about 233
All Event Classes report 233
All Event Mappings report 234
All Heartbeats report 234

events
about 16
acknowledging 134
clearing 147
closing 137
creating, by e-mail 166
event classes 148, 149
event mapping sequence 154
mapping 150-152
simulating 145-147
working with 145

event severities
defining 133, 134

Events menu 132
eventState event attribute 266
event status

defining 134
event, acknowledging 134

event transformations
about 177, 178
examples 178-180

event views
about 187
options 189

evid event attribute 266
EXEC mode 160
exim4 mapping 151, 152
Expect Regex field 88

F
facility event attribute 267
Fields page, Event Manager 141, 142

[282]

files
adding, to ZenPack 221

file systems
about 89
ignoring, with zProperties 89, 90

Filesystem Utilization report 246, 247
firstTime event attribute 266
format property 125
ftp facility 158

G
genconf option 167
getId attribute 253
Google Maps portlet 53
graph

configuring 123
data, representing graphically 120-122
RRDtool graph point configurations 123

graph definitions
adding 240, 241

graph group
adding 241-243

graph reports
about 234
creating 235-237

groupNames device attribute 270
groups 189
groups organizer 54

H
historical events

displaying 138
HttpMonitor

installing 211, 212
settings, configuring 217, 218
websites, monitoring with 212-217

HttpMonitor settings
configuring 217, 218

HttpMonitor ZenPack
installing 213, 214

hwManufacturerName device attribute 271
hwProductName device attribute 271

I
ICMP monitoring 10
id device attribute 270
Infrastructure | IP Services 86
installation, community ZenPack 211, 212
installation, HttpMonitor 211, 212
installation, HttpMonitor ZenPack 213, 214
installation, Zenoss Plugins 29
installation, ZenPacks 211, 212
installed ZenPack objects

list, viewing 215
interface template 95, 96
Interface Utilization report 247
IP address

resetting 69
ipAddress event attribute 267
Iptables 31

K
kern facility 158

L
lastTime event attribute 266
legend property 125
libexec directory 221
limit property 125
line type property 125
line width property 125
Link graphs checkbox 97
Linux

SNMP, configuring on 25, 26
Linux firewalls

configuring 31
Linux server

memTotalFree, monitoring for 104, 105
listenport parameter 167
localhost monitor 76
Location event attribute 267
locationName device attribute 270
location organizers 52-54
Locations portlet 196, 197

[283]

log file
discovering, from device discovery job

40-42
logger

syslog configuration, testing with 160
lpr facility 158

M
mail facility 158
maintenance window

about 202
properties 203

Manage Graph Points dialog box 123
manageIp device attribute 270
Management Information Bases. See MIBs
manager event attribute 267
Maximum Ping Failures property 78
Memory Utilization report 248
memTotalFree

monitoring, for Linux server 104, 105
message event attribute 266
MIBs

about 24
adding 204, 205

Model Collection Age report 229
model devices 59
modeler plugin

assigning 62
device information, gathering 60, 61

monitoring data
backing up 205
restoring 205

monitoring solutions, Zenoss Core
about 8
availability monitoring 10
device management 9
event management 11, 12
performance graphs 10
plugin architecture 12, 13
system architecture 14, 15
system reports 13

monitoring templates
about 100
data source, adding to 222, 223
Nagios plugin, adding to 112-114

monitoring thresholds 118-120
multi-graph reports

about 237
collections, adding 238, 239
graph definitions, adding 240, 241
graph group, adding 241-243

N
Nagios 10
Nagios plugin

about 138
adding, to monitoring templates 112-114
data, representing graphically 120-122
data sources, adding 114-116
monitoring thresholds 118-120
monitoring with 108-110
performance data 111, 112
return codes 111
working with 111

name property 124
Net-SNMP 25
network routes 90
networks 91
New Devices report 229
news facility 158
nmap command 192
Notification Schedules report 249
ntevid event attribute 267

O
Object Identifier. See OID
objects

adding, to ZenPack 221-224
OID

about 23
searching, for SNMP monitoring 105-108

OpenSSH 28
organizers

editing 56
moving 56
working with 54, 55

osManufactureName device attribute 271
OS processes

about 81
adding 81

[284]

configuration properties 82, 83
details, adding 82
details, editing 82
monitoring 83, 84

osProductName device attribute 271
osVersion device attribute 271
ownerid event attribute 267

P
Packets graph 94
Pattern field 82
performance collector

configuring 77- 79
performance daemons, Zenoss Core

about 18
zencommand 19
zenperfsnmp 19
zenping 19
zenprocess 19
zenstatus 19

performance data, Nagios plugin 111, 112
performance graphs

about 96
performance thresholds, monitoring 98
working with 97

performance reports
about 243
aggregate reports 244, 245
availability report 245
CPU utilization 246
filesystem utilization 246, 247
interface utilization 247
memory utilization 248
threshold summary 248

ping command 190
Ping Status Issues report 232
pingStatusString device attribute 271
Ping Timeout property 78
Ping Tries property 78
plugin architecture 12, 13
POP3 account 169
portlets permissions 200
portlets, Zenoss Core

about 194, 195
device issues 197
locations 196, 197

permissions 200
production states 199, 200
root organizers 199
watch list 198
Zenoss issues 198

port scan 30
priority device attribute 270
priority event attribute 267
priorityString device attribute 270
Process Cycle Interval property 78
Process Parallel Jobs property 78
prodState event attribute 267
productionState device attribute 270
Production States portlet 199, 200
productionStateString device attribute 270
Python expressions

using, in columns 260, 261

R
Remodel Device option 83
Render URL property 78
Render User property 79
report classes, Zenoss Core

about 227
device reports 228
event reports 233
graph reports 234-237
multi-graph reports 237, 238
performance reports 243, 244
user reports 249

reportmail command 262, 263
reports

about 227, 228
scheduling, for e-mail delivery 262, 263

Reset button 97
return codes, Nagios plugin

0 111
1 111
2 111
3 111
about 111

Root Organizers portlet 199
Round Robin Database. See RRD
router syslogs, Cisco

collecting 159, 160
RPN property 125

[285]

RRD 16
RRDtool 99
RRDtool Data Point configurations 117, 118
RRDtool graph point configurations 123

S
SampleEventCommand 146
schedule 174, 175
SCMP monitoring 10
serialNumber property 260
service

about 85
configuration properties 87
exceptions, monitoring 87, 88
IP services, monitoring 88
monitoring, enabling 85-87

severity event attribute 266
Simple Network Management Protocol. See

SNMP
SNMP

about 9-23
configuring, on Linux 25, 26
configuring, on Windows 26-28
versions 24

snmpContact device attribute 270
SNMP data sources

monitoring 101
/Server/Linux template, editing 103-105

SNMP data sources, monitoring
templates, overriding 101-103

snmpd.conf file
example 273-275

snmpDescr device attribute 270
snmpget utility 25
SNMP Informant

URL 28
SNMP issues

on Windows 64
troubleshooting 62

SNMP issues, troubleshooting
about 62
snmpwalk command, running 63

snmpLastCollection device attribute 270
SNMP monitoring

OIDs, searching for 105-108
snmpOID device attribute 270

SNMP Performance Cycle Interval property
77

SNMP Status Issues report 231
snmpStatusString device attribute 271
snmpSysName device attribute 270
snmptrap utility 25
SNMP v3 24
SNMP versions 24
snmpwalk command

about 63, 105
running 63

SNPP 194
Software Inventory report

about 230
manufacturers 230
products 230

SSH 9
stacked property 125
stateChange event attribute 266
Status Cycle Interval property 78
summary event attribute 266
suppid event attribute 267
syslog 157
syslog.conf file 158, 159
syslog configuration

testing, with logger 160
syslog facility 158
syslog messages

routing, to Zenoss Core 157-159
system architecture 14, 15
systemNames device attribute 270
system reports

about 13
custom device reports 14

system settings, Zenoss Core 193, 194
Systems event attribute 267
systems organizer 54
sysUpTime function 23, 257

T
TALES expression

about 144
example 265

Telnet 28
templates

about 99

[286]

binding, to device class 125, 126
monitoring 100
overriding 101-103

Threshold Summary report 248
Throughput graph 94
totalMemory property 261
Twisted 15
type property 124

U
uptimeStr attribute 253, 256, 270
user command

adding 192
user facility 158
user layer 15
user reports

about 249
notification schedules 249

users
adding 184
administered objects, editing for 185, 187
custom event view, defining for 188
managing 183-185

uucp facility 158

V
virtualMemory option 90
VMware 8
VMware Server

URL, for downloading 22

W
Watch List portlet 198
web portal 9
websites

monitoring, with HttpMonitor 212-217
Windows

event log severities 162, 163
SNMP, configuring on 26-28
SNMP issues 64
WMI, configuring on 26-28

Windows event logs
monitoring 161, 162

Windows firewall
configuring 32

Windows Management Instrumentation.
See WMI

Windows Service Cycle Interval property
78

Windows WMI Batch Size property 78
Windows WMI query timeout property 78
WMI

about 21, 22
configuring, on Windows 26-28

WMI issues
troubleshooting 64

WMI issues, troubleshooting
Zeneventlog 65

Z
zAlertOnRestart property 83
zCollectorClientTimeout property 71
zCollectorDecoding property 71
zCollectorLogChanges property 71
zCollectorPlugins property 71
zCommandCycleTime property 71
zCommandExistanceTest property 71
zCommandLoginTimeout property 71
zCommandLoginTries property 71
zCommandPassword property 71
zCommandPath configuration property 115
zCommandPath property 71
zCommandPort property 71
zCommandProtocol property 71
zCommandSearchPath property 71
zCommandTimeout property 71
zCommandUsername property 72
zCountProcs property 83
zDeviceTemplates property 72
zen 17
zenbackup command

backups, automating with 206
zenbatchload command

about 46
devices, importing with 47

zenbatchload file 48
zenbatchload import utility 47
zencommand daemon 19, 111
zendisc daemon

about 18, 41, 48, 148
command line discovery 48

[287]

zendmd command 270
custom device report queries, testing

255-258
using 180-182

Zeneventlog 65
zeneventlog daemon 19
ZenHub 16
zenmail daemon 166-168
zenmib command 106
zenmodeler daemon 18, 201, 202
Zenoss

component 79
zenoss.cmd.darwin plugin 62
Zenoss Core

about 7
Add Single Device option 42
alerting rules, configuring 170, 171
collection layer 17
community ZenPacks, installing 211, 212
custom device reports, creating 251-253
custom user commands, creating 189-191
daemon 200-202
Dashboard, configuring 194
data layer 16
data sources 101
device administration tasks 67
device attributes 269-271
device classes 57
devices, organizing in 52-54
devices, preparing for monitoring 22
event attributes 266, 267
Event Console 132, 133
event de-duplication 154
Event Manager 138-140
event mapping 148
events 145
events, generating with e-mails 166
event transformations 177, 178
event views 187-189
features 7
groups 189
HttpMonitor settings, configuring 217, 218
HttpMonitor ZenPack, installing 213, 214
maintenance window 202, 203
MIBs, adding 204, 205
model devices 59
monitoring data, backing up 205

monitoring data, restoring 205
monitoring solutions 8
monitoring templates 100
portlets 194-196
port requisites 30
report classes 227
reports 227, 228
/Server/Cmd class 66
set up wizard 33-38
syslog messages, routing to 157-159
system settings 193, 194
templates, monitoring 100
updating 208, 209
user layer 15
users, adding 184
websites, monitoring with HttpMonitor

212, 213
ZenPack, creating 218- 220
zProperties 71-74

Zenoss Core 3.0 212
Zenoss Core daemons 200-202
Zenoss Core data collection

troubleshooting 62
Zenoss Core setup wizard

about 33
device inventory example 38, 40
devices, specifying to monitor 34-38
users, setting up 33, 34

Zenoss Core users
managing 183-185

Zenoss Core web interface
device class, adding 112

Zenoss Developer's Guide
URL 226

Zenoss Enterprise 7
Zenoss Issues portlet 198
Zenoss Plugins

about 28
installing 29
troubleshooting 66

ZenPack
about 10, 13, 211, 212
creating 218-220
development mode 225, 226
exporting 224
files, adding to 221
installing 211, 212

[288]

objects, adding to 221-224
packaging 224
URL 211

ZenPackName 223
ZenPacks
zenperfsnmp daemon 19, 148
zenping 201
zenping daemon 19, 148
zenpop3 169
zenprocess daemon 19, 148
zenrestore command

about 207
backups, restoring with 207
options 207

zensendevent
data, backing up with 165
event reporting, incorporating into third-

party scripts 163, 165
zenstatus daemon 19, 148
zensyslog daemon 19, 157, 201
zentrap daemon 19
zenwin daemon 148
zEventAction property 150
zEventClearClasses property 150
zEventSeverity property 150
zfailSeverity property 83
zFailSeverity, Zproperty 87
zFileSystemMapIgnoreNames field 90
zFileSystemMapIgnoreNames property 72
zFileSystemMapIgnoreTypes property 72,

90
zFileSystemSizeOffset property 72
zHardDiskMapMatch property 72
zHideFieldFromList, Zproperty 87
zIcon property 72
zIfDescription property 72
zInterfaceMapIgnoreNames property 72
zInterfaceMapIgnoreTypes property 72
zIpServiceMapMaxPort property 72
zKeyPath property 72
zLinks property 72
zLocalInterfaceNames property 72
zLocalIpAddresses property 72
zMaxOIDPerRequest property 72
zMonitor property 83
zMonitor, Zproperty 87
zNmapPortscanOptions property 72

ZODB 16
Zope

about 15
data, exploring in 258, 260

zopectl restart command 214
Zope Object Database. See ZODB
zPingMonitorIgnore property 72
zProdStateThreshold property 73
zProperties

about 71, 149
zCollectorClientTimeout 71
zCollectorDecoding 71
zCollectorLogChanges 71
zCollectorPlugins 71
zCommandCycleTime 71
zCommandExistanceTest 71
zCommandLoginTimeout 71
zCommandLoginTries 71
zCommandPassword 71
zCommandPath 71
zCommandPort 71
zCommandProtocol 71
zCommandSearchPath 71
zCommandTimeout 71
zCommandUsername 72
zDeviceTemplates 72
zEventAction 150
zEventClearClasses 150
zEventSeverity 150
zFailSeverity 87
zFileSystemMapIgnoreNames 72
zFileSystemMapIgnoreTypes 72
zFileSystemSizeOffset 72
zHardDiskMapMatch 72
zHideFieldFromList 87
zIcon 72
zIfDescription 72
zInterfaceMapIgnoreNames 72
zInterfaceMapIgnoreTypes 72
zIpServiceMapMaxPort 72
zKeyPath 72
zLinks 72
zLocalInterfaceNames 72
zLocalIpAddresses 72
zMaxOIDPerRequest 72
zMonitor 87
zNmapPortscanOptions 72

[289]

zPingMonitorIgnore 72
zProdStateThreshold 73
zPythonClass 73
zRouteMapCollectOnlyIndirect 73
zRouteMapCollectOnlyLocal 73
zRouteMapMaxRoutes 73
zSnmpAuthPassword 73
zSnmpAuthType 73
zSnmpCommunities 73
zSnmpCommunity 73
zSnmpMonitorIgnore 73
zSnmpPort 73
zSnmpPrivPassword 73
zSnmpPrivType 73
zSnmpSecurityName 73
zSnmpTimeout 73
zSnmpTries 73
zSnmpVer 73
zSshConcurrentSessions 73
zStatusConnectTimeout 73
zSysedgeDiskMapIgnoreNames 73
zTelnetEnable 74
zTelnetEnableRegex 74
zTelnetLoginRegex 74
zTelnetPasswordRegex 74
zTelnetPromptTimeout 74
zTelnetSuccessRegexList 74
zTelnetTermLength 74
zWinEventLog 74
zWinEventLogMinSeverity 74
zWinPassword 74
zWinUser 74
zWmiMonitorIgnore 74
zXmlRpcMonitorIgnore 74

Zproperty
zPythonClass property 73
zRouteMapCollectOnlyIndirect property 73
zRouteMapCollectOnlyLocal property 73
zRouteMapMaxRoutes property 73
zSnmpAuthPassword property 73
zSnmpAuthType property 73
zSnmpCommunities property 73
zSnmpCommunity property 73
zSnmpMonitorIgnore property 73, 229
zSnmpPort property 73
zSnmpPrivPassword property 73
zSnmpPrivType property 73
zSnmpSecurityName property 73
zSnmpTimeout property 73
zSnmpTries property 73
zSnmpVer property 73
zSshConcurrentSessions property 73
zStatusConnectTimeout property 73
zSysedgeDiskMapIgnoreNames property

73
zTelnetEnable property 74
zTelnetEnableRegex property 74
zTelnetLoginRegex property 74
zTelnetPasswordRegex property 74
zTelnetPromptTimeout property 74
zTelnetSuccessRegexList property 74
zTelnetTermLength property 74
zWinEventLogMinSeverity property 74
zWinEventLog property 74
zWinPassword property 74
zWinUser property 74
zWmiMonitorIgnore property 74
zXmlRpcMonitorIgnore property 74

Thank you for buying
Zenoss Core 3.x Network and System Monitoring

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Nagios 3.0
ISBN: 978-1-847195-18-0 Paperback: 316 pages

A comprehensive configuration guide to monitor and
maintain your network and systems

1.	 Secure and monitor your network system with
open-source Nagios version 3

2.	 Set up, configure, and manage the latest version
of Nagios

3.	 In-depth coverage for both beginners and
advanced users

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1.	 Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions

2.	 Apply object-oriented principles, design
patterns, and advanced syntax tricks

3.	 Manage your code with distributed version
control

4.	 Profile and optimize your code

Please check www.PacktPub.com for information on our titles

Nginx HTTP Server
ISBN: 978-1-849510-86-8 Paperback: 348 pages

Adopt Nginx for your web applications to make the
most of your infrastructure and serve pages faster
than ever

1.	 Get started with Nginx to serve websites faster
and safer

2.	 Learn to configure your servers and virtual
hosts efficiently

3.	 Set up Nginx to work with PHP and other
applications via FastCGI

4.	 Explore possible interactions between Nginx
and Apache to get the best of both worlds

Cacti 0.8 Network Monitoring
ISBN: 978-1-847195-96-8 Paperback: 132 pages

Monitor your network with ease!

1.	 Install and setup Cacti to monitor your network
and assign permissions to this setup in no time
at all

2.	 Create, edit, test, and host a graph template to
customize your output graph

3.	 Create new data input methods, SNMP, and
Script XML data query

4.	 Full of screenshots and step-by-step
instructions to monitor your network with
Cacti

Please check www.PacktPub.com for information on our titles

FreeSWITCH 1.0.6
ISBN: 978-1-847199-96-6 Paperback: 320 pages

Build robust high-performance telephony systems
using FreeSWITCH

1.	 Install and configure a complete telephony
system of your own even if you are using
FreeSWITCH for the first time

2.	 In-depth discussions of important concepts like
the dialplan, user directory, and the powerful
FreeSWITCH Event Socket

3.	 Best practices and expert tips from the
FreeSWITCH experts, including the creator of
FreeSWITCH, Anthony Minessale

Tcl 8.5 Network Programming
ISBN: 978-1-849510-96-7 Paperback: 588 pages

Build network-aware applications using Tcl, a
powerful dynamic programming language

1.	 Develop network-aware applications with Tcl

2.	 Implement the most important network
protocols in Tcl

3.	 Packed with hands-on-examples, case studies,
and clear explanations for better understanding

Please check www.PacktPub.com for information on our titles

Zabbix 1.8 Network Monitoring
ISBN: 978-1-847197-68-9 Paperback: 428 pages

Monitor your network hardware, servers, and web
performance effectively and efficiently

1.	 Start with the very basics of Zabbix, an
enterprise-class open source network
monitoring solution, and move up to more
advanced tasks later

2.	 Efficiently manage your hosts, users, and
permissions

3.	 Get alerts and react to changes in monitored
parameters by sending out e-mails, SMSs, or
even execute commands on remote machines

OpenVPN 2 Cookbook
ISBN: 978-1-84951-010-3 Paperback: 356 pages

100 simple and incredibly effective recipes for
harnessing the power of the OpenVPN 2 network

1.	 Set of recipes covering the whole range of tasks
for working with OpenVPN

2.	 The quickest way to solve your OpenVPN
problems!

3.	 Set up, configure, troubleshoot and tune
OpenVPN

4.	 Uncover advanced features of OpenVPN and
even some undocumented options

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Network and System Monitoring with Zenoss Core
	Device management
	Availability and performance monitors
	Event management
	Plugin architecture
	System reports
	Custom device reports

	System architecture
	User layer
	Data layer
	Collection layer
	Device management daemons
	Performance and availability daemons
	Event daemons

	Summary

	Chapter 2: Discovering Devices
	Zenoss Core installation
	Preparing devices for monitoring
	SNMP
	SNMP versions
	Configuring SNMP on Linux
	Configuring SNMP and WMI on Windows

	Zenoss Plugins
	Installing Zenoss Plugins

	Port scan

	Opening monitoring-specific ports
	Configuring Linux firewalls
	Configuring Windows firewall

	Zenoss Core setup wizard
	Step 1: Set up users
	Step 2: Specify or discover devices to monitor
	Adding devices
	Manually find devices
	Autodiscover devices

	Our device inventory: A job well done
	Reviewing device creation job log

	Adding a single device
	Entering device attributes

	Importing a list of devices with zenbatchload
	Command line discovery with zendisc
	Summary

	Chapter 3: Device Setup and Administration
	Organizing devices in Zenoss Core
	Locations
	Systems and Groups
	Organizer details
	Editing organizers
	Moving organizers

	Classes
	Viewing a list of device classes
	Assigning devices to a class

	Modeling devices
	Modeler plugins gather device information
	Assigning modeler plugins

	Troubleshooting data collection
	Troubleshooting SNMP problems
	Running snmpwalk
	Is the SNMP daemon running on Linux servers?
	SNMP problems on Windows

	Troubleshooting WMI problems
	Zeneventlog—unable to connect to Windows
	Zenoss Core does not collect WMI data

	Troubleshooting Zenoss Plugins
	A class of its own

	Device administration
	Locking or unlocking a device
	Renaming a device
	Resetting the IP address
	Push changes
	Deleting devices

	zProperties defined
	Summary

	Chapter 4: Monitor Status and Performance
	Collectors collect
	Configuring the performance collector

	Monitoring components
	Interfaces
	OS Processes
	Add Process
	Viewing or editing the process details
	Configuration properties
	Monitoring OS Processes

	Services
	Enable monitoring for a service
	Configuration properties
	Monitoring exceptions for services
	Interactively monitor IP services

	File Systems
	Ignoring File Systems with zProperties

	Network Routes
	Networks

	Add Components
	Viewing and editing component details for a device
	Performance Graphs
	Interface template

	Performance Graphs
	Working with graphs
	Monitoring performance thresholds

	Summary

	Chapter 5: Custom Monitoring Templates
	Monitoring Templates
	Monitoring SNMP data sources
	Overriding templates
	Editing the /Server/Linux template
	Find OIDs for SNMP monitoring

	Monitoring with Nagios plugins
	Working with Nagios plugins
	Nagios return codes
	Nagios performance data

	Adding the Nagios plugin to Monitoring Templates
	Adding a Data Source
	Adding a Data Point
	RRDtool Data Point configurations

	Defining monitoring thresholds
	Graph definitions
	RRDtool Graph Point configurations

	Binding templates to the device class
	Adding a device to monitor using the Bogo template

	Monitoring with Cacti plugins
	Data Source parser

	Summary

	Chapter 6: Core Event Management
	Event Console
	Event severities defined
	Event statuses defined
	Acknowledging an event

	Viewing an event log
	Events consoles are everywhere
	Closing events
	Displaying historical events

	Event Manager
	Event Fields
	Event commands
	Creating a command

	Working with events
	Simulating an event
	Clearing the event

	Event mapping
	Event Classes
	Event class zProperties
	Mapping an event
	Event mapping sequence

	Event de-duplication
	Turning off event de-duplication

	Summary

	Chapter 7: Collecting Events
	Routing syslog messages to Zenoss Core
	Collecting Cisco router syslogs
	Testing syslog configuration with Logger

	Monitoring Windows event logs
	Windows event log severities
	Testing the event log configuration with Eventcreate

	Incorporating event reporting into
third-party scripts via zensendevent
	Simple backup script with zensendevent

	Creating events by e-mail
	Zenmail
	Zenpop3

	Configuring alerting rules
	Alert filters
	Alert escalations
	Schedule
	Alert messages

	Event transformations
	Some event transformation examples

	Programming in zendmd, an interactive shell
	Summary

	Chapter 8: Settings and Administration
	Managing Zenoss Core users
	Administered Objects
	Event Views
	Groups

	Creating custom User Commands
	Adding a User Command

	System settings
	Configuring Zenoss Core's Monitoring Dashboard
	Locations portlet with Google Maps
	Device Issues portlet
	Zenoss Issues portlet
	Watch List portlet
	Root Organizers portlet
	Production States portlet
	Portlet permissions

	Meet the Zenoss Daemons
	Maintenance Windows
	Adding MIBs
	Backing up and restoring monitoring data
	Automating backups with zenbackup
	Restoring backups with zenrestore

	Updating Zenoss Core
	Summary

	Chapter 9: Extending Zenoss Core with ZenPacks
	Installing community ZenPacks
	Monitoring websites with HttpMonitor
	Viewing a list of installed ZenPack objects
	Configuring HttpMonitor
	Configuring HttpMonitor settings

	Creating a ZenPack
	Adding files and objects to the ZenPack
	Adding a new data source to the monitoring template
	Adding objects to a ZenPack

	Packaging the ZenPack
	ZenPack development mode

	Developer resources
	Summary

	Chapter 10: Reviewing Built-in Reports
	Report overview
	Device Reports
	New Devices
	Device Changes
	Model Collection Age
	Software Inventory
	Manufacturers and Products

	SNMP Status Issues
	Ping Status Issues
	All Devices
	All Monitored Components

	Event Reports
	All Event Classes
	All Event Mappings
	All Heartbeats

	Graph Reports
	Multi-Graph Reports
	Adding Collections
	Adding Graph Definitions
	Adding Graph Group

	Performance Reports
	Aggregate Report
	Availability
	CPU Utilization
	Filesystem Utilization
	Interface Utilization
	Memory Utilization
	Threshold Summary

	User Reports
	Notification Schedules

	Summary

	Chapter 11: Writing Custom Device Reports
	Creating Custom Device Reports
	Custom Device Report fields
	Building Custom Device Report queries
	Using zendmd to test report queries

	Exploring data in Zope
	Using Python expressions in the columns
	Convenience functions
	convToUnits

	Scheduling reports for e-mail delivery
	Sending a CSV report
	Scheduling a cron job

	Summary

	Appendix A: Event Attributes
	Appendix B: Device Attributes
	Appendix C: Example snmpd.conf
	Index

